Properties

Label 1127.4.a.c.1.3
Level $1127$
Weight $4$
Character 1127.1
Self dual yes
Analytic conductor $66.495$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,4,Mod(1,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1127.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.4951525765\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.334189.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 16x^{2} - 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.83969\) of defining polynomial
Character \(\chi\) \(=\) 1127.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.86845 q^{2} -3.43737 q^{3} +0.228032 q^{4} +17.9704 q^{5} -9.85995 q^{6} -22.2935 q^{8} -15.1845 q^{9} +51.5473 q^{10} +26.7049 q^{11} -0.783832 q^{12} +14.4956 q^{13} -61.7710 q^{15} -65.7723 q^{16} -24.7016 q^{17} -43.5560 q^{18} -94.6224 q^{19} +4.09784 q^{20} +76.6018 q^{22} -23.0000 q^{23} +76.6312 q^{24} +197.935 q^{25} +41.5801 q^{26} +145.004 q^{27} -57.5965 q^{29} -177.187 q^{30} -88.8691 q^{31} -10.3165 q^{32} -91.7948 q^{33} -70.8553 q^{34} -3.46255 q^{36} -305.467 q^{37} -271.420 q^{38} -49.8269 q^{39} -400.624 q^{40} +179.205 q^{41} -96.5826 q^{43} +6.08959 q^{44} -272.871 q^{45} -65.9745 q^{46} -218.484 q^{47} +226.084 q^{48} +567.769 q^{50} +84.9085 q^{51} +3.30548 q^{52} -519.174 q^{53} +415.937 q^{54} +479.898 q^{55} +325.252 q^{57} -165.213 q^{58} +37.2884 q^{59} -14.0858 q^{60} -96.3052 q^{61} -254.917 q^{62} +496.586 q^{64} +260.493 q^{65} -263.309 q^{66} +497.552 q^{67} -5.63276 q^{68} +79.0596 q^{69} -19.6235 q^{71} +338.515 q^{72} +208.235 q^{73} -876.219 q^{74} -680.378 q^{75} -21.5770 q^{76} -142.926 q^{78} -446.200 q^{79} -1181.95 q^{80} -88.4513 q^{81} +514.042 q^{82} -501.151 q^{83} -443.897 q^{85} -277.043 q^{86} +197.981 q^{87} -595.347 q^{88} -1102.82 q^{89} -782.718 q^{90} -5.24475 q^{92} +305.476 q^{93} -626.711 q^{94} -1700.40 q^{95} +35.4615 q^{96} -1814.37 q^{97} -405.500 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 7 q^{3} + 20 q^{4} - 14 q^{5} + 17 q^{6} - 63 q^{8} - 33 q^{9} + 70 q^{10} + 8 q^{11} + 67 q^{12} - 111 q^{13} + 10 q^{15} + 64 q^{16} - 98 q^{17} + 49 q^{18} - 96 q^{19} - 140 q^{20} + 220 q^{22}+ \cdots - 1498 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.86845 1.01415 0.507076 0.861901i \(-0.330726\pi\)
0.507076 + 0.861901i \(0.330726\pi\)
\(3\) −3.43737 −0.661523 −0.330761 0.943714i \(-0.607306\pi\)
−0.330761 + 0.943714i \(0.607306\pi\)
\(4\) 0.228032 0.0285041
\(5\) 17.9704 1.60732 0.803661 0.595087i \(-0.202883\pi\)
0.803661 + 0.595087i \(0.202883\pi\)
\(6\) −9.85995 −0.670885
\(7\) 0 0
\(8\) −22.2935 −0.985244
\(9\) −15.1845 −0.562388
\(10\) 51.5473 1.63007
\(11\) 26.7049 0.731985 0.365993 0.930618i \(-0.380730\pi\)
0.365993 + 0.930618i \(0.380730\pi\)
\(12\) −0.783832 −0.0188561
\(13\) 14.4956 0.309259 0.154630 0.987973i \(-0.450582\pi\)
0.154630 + 0.987973i \(0.450582\pi\)
\(14\) 0 0
\(15\) −61.7710 −1.06328
\(16\) −65.7723 −1.02769
\(17\) −24.7016 −0.352412 −0.176206 0.984353i \(-0.556383\pi\)
−0.176206 + 0.984353i \(0.556383\pi\)
\(18\) −43.5560 −0.570347
\(19\) −94.6224 −1.14252 −0.571259 0.820770i \(-0.693545\pi\)
−0.571259 + 0.820770i \(0.693545\pi\)
\(20\) 4.09784 0.0458152
\(21\) 0 0
\(22\) 76.6018 0.742344
\(23\) −23.0000 −0.208514
\(24\) 76.6312 0.651762
\(25\) 197.935 1.58348
\(26\) 41.5801 0.313636
\(27\) 145.004 1.03355
\(28\) 0 0
\(29\) −57.5965 −0.368807 −0.184403 0.982851i \(-0.559035\pi\)
−0.184403 + 0.982851i \(0.559035\pi\)
\(30\) −177.187 −1.07833
\(31\) −88.8691 −0.514882 −0.257441 0.966294i \(-0.582879\pi\)
−0.257441 + 0.966294i \(0.582879\pi\)
\(32\) −10.3165 −0.0569909
\(33\) −91.7948 −0.484225
\(34\) −70.8553 −0.357400
\(35\) 0 0
\(36\) −3.46255 −0.0160303
\(37\) −305.467 −1.35726 −0.678629 0.734482i \(-0.737425\pi\)
−0.678629 + 0.734482i \(0.737425\pi\)
\(38\) −271.420 −1.15869
\(39\) −49.8269 −0.204582
\(40\) −400.624 −1.58360
\(41\) 179.205 0.682613 0.341306 0.939952i \(-0.389131\pi\)
0.341306 + 0.939952i \(0.389131\pi\)
\(42\) 0 0
\(43\) −96.5826 −0.342528 −0.171264 0.985225i \(-0.554785\pi\)
−0.171264 + 0.985225i \(0.554785\pi\)
\(44\) 6.08959 0.0208645
\(45\) −272.871 −0.903938
\(46\) −65.9745 −0.211465
\(47\) −218.484 −0.678067 −0.339034 0.940774i \(-0.610100\pi\)
−0.339034 + 0.940774i \(0.610100\pi\)
\(48\) 226.084 0.679841
\(49\) 0 0
\(50\) 567.769 1.60589
\(51\) 84.9085 0.233129
\(52\) 3.30548 0.00881514
\(53\) −519.174 −1.34555 −0.672774 0.739848i \(-0.734897\pi\)
−0.672774 + 0.739848i \(0.734897\pi\)
\(54\) 415.937 1.04818
\(55\) 479.898 1.17654
\(56\) 0 0
\(57\) 325.252 0.755802
\(58\) −165.213 −0.374026
\(59\) 37.2884 0.0822803 0.0411401 0.999153i \(-0.486901\pi\)
0.0411401 + 0.999153i \(0.486901\pi\)
\(60\) −14.0858 −0.0303078
\(61\) −96.3052 −0.202141 −0.101071 0.994879i \(-0.532227\pi\)
−0.101071 + 0.994879i \(0.532227\pi\)
\(62\) −254.917 −0.522169
\(63\) 0 0
\(64\) 496.586 0.969894
\(65\) 260.493 0.497079
\(66\) −263.309 −0.491077
\(67\) 497.552 0.907248 0.453624 0.891193i \(-0.350131\pi\)
0.453624 + 0.891193i \(0.350131\pi\)
\(68\) −5.63276 −0.0100452
\(69\) 79.0596 0.137937
\(70\) 0 0
\(71\) −19.6235 −0.0328011 −0.0164005 0.999866i \(-0.505221\pi\)
−0.0164005 + 0.999866i \(0.505221\pi\)
\(72\) 338.515 0.554089
\(73\) 208.235 0.333865 0.166932 0.985968i \(-0.446614\pi\)
0.166932 + 0.985968i \(0.446614\pi\)
\(74\) −876.219 −1.37647
\(75\) −680.378 −1.04751
\(76\) −21.5770 −0.0325664
\(77\) 0 0
\(78\) −142.926 −0.207477
\(79\) −446.200 −0.635461 −0.317730 0.948181i \(-0.602921\pi\)
−0.317730 + 0.948181i \(0.602921\pi\)
\(80\) −1181.95 −1.65183
\(81\) −88.4513 −0.121332
\(82\) 514.042 0.692273
\(83\) −501.151 −0.662752 −0.331376 0.943499i \(-0.607513\pi\)
−0.331376 + 0.943499i \(0.607513\pi\)
\(84\) 0 0
\(85\) −443.897 −0.566440
\(86\) −277.043 −0.347375
\(87\) 197.981 0.243974
\(88\) −595.347 −0.721184
\(89\) −1102.82 −1.31347 −0.656733 0.754124i \(-0.728062\pi\)
−0.656733 + 0.754124i \(0.728062\pi\)
\(90\) −782.718 −0.916731
\(91\) 0 0
\(92\) −5.24475 −0.00594351
\(93\) 305.476 0.340606
\(94\) −626.711 −0.687663
\(95\) −1700.40 −1.83640
\(96\) 35.4615 0.0377008
\(97\) −1814.37 −1.89919 −0.949595 0.313478i \(-0.898506\pi\)
−0.949595 + 0.313478i \(0.898506\pi\)
\(98\) 0 0
\(99\) −405.500 −0.411659
\(100\) 45.1357 0.0451357
\(101\) 1386.24 1.36570 0.682852 0.730557i \(-0.260739\pi\)
0.682852 + 0.730557i \(0.260739\pi\)
\(102\) 243.556 0.236428
\(103\) −1372.33 −1.31281 −0.656407 0.754407i \(-0.727925\pi\)
−0.656407 + 0.754407i \(0.727925\pi\)
\(104\) −323.159 −0.304696
\(105\) 0 0
\(106\) −1489.23 −1.36459
\(107\) 1657.83 1.49784 0.748919 0.662662i \(-0.230573\pi\)
0.748919 + 0.662662i \(0.230573\pi\)
\(108\) 33.0656 0.0294605
\(109\) −821.369 −0.721770 −0.360885 0.932610i \(-0.617525\pi\)
−0.360885 + 0.932610i \(0.617525\pi\)
\(110\) 1376.57 1.19319
\(111\) 1050.01 0.897857
\(112\) 0 0
\(113\) −267.142 −0.222395 −0.111197 0.993798i \(-0.535469\pi\)
−0.111197 + 0.993798i \(0.535469\pi\)
\(114\) 932.972 0.766498
\(115\) −413.319 −0.335150
\(116\) −13.1339 −0.0105125
\(117\) −220.109 −0.173924
\(118\) 106.960 0.0834447
\(119\) 0 0
\(120\) 1377.09 1.04759
\(121\) −617.847 −0.464198
\(122\) −276.247 −0.205002
\(123\) −615.995 −0.451564
\(124\) −20.2650 −0.0146762
\(125\) 1310.68 0.937846
\(126\) 0 0
\(127\) −1446.21 −1.01048 −0.505239 0.862979i \(-0.668596\pi\)
−0.505239 + 0.862979i \(0.668596\pi\)
\(128\) 1506.97 1.04061
\(129\) 331.990 0.226590
\(130\) 747.211 0.504114
\(131\) −1459.33 −0.973297 −0.486649 0.873598i \(-0.661781\pi\)
−0.486649 + 0.873598i \(0.661781\pi\)
\(132\) −20.9322 −0.0138024
\(133\) 0 0
\(134\) 1427.20 0.920088
\(135\) 2605.78 1.66126
\(136\) 550.685 0.347212
\(137\) −1889.31 −1.17821 −0.589105 0.808056i \(-0.700520\pi\)
−0.589105 + 0.808056i \(0.700520\pi\)
\(138\) 226.779 0.139889
\(139\) 1506.31 0.919159 0.459580 0.888137i \(-0.348000\pi\)
0.459580 + 0.888137i \(0.348000\pi\)
\(140\) 0 0
\(141\) 751.011 0.448557
\(142\) −56.2890 −0.0332653
\(143\) 387.105 0.226373
\(144\) 998.717 0.577961
\(145\) −1035.03 −0.592791
\(146\) 597.314 0.338589
\(147\) 0 0
\(148\) −69.6565 −0.0386873
\(149\) −2946.38 −1.61998 −0.809989 0.586444i \(-0.800527\pi\)
−0.809989 + 0.586444i \(0.800527\pi\)
\(150\) −1951.63 −1.06233
\(151\) 1979.37 1.06675 0.533374 0.845880i \(-0.320924\pi\)
0.533374 + 0.845880i \(0.320924\pi\)
\(152\) 2109.47 1.12566
\(153\) 375.080 0.198192
\(154\) 0 0
\(155\) −1597.01 −0.827582
\(156\) −11.3622 −0.00583142
\(157\) −505.403 −0.256915 −0.128457 0.991715i \(-0.541003\pi\)
−0.128457 + 0.991715i \(0.541003\pi\)
\(158\) −1279.90 −0.644454
\(159\) 1784.59 0.890110
\(160\) −185.391 −0.0916027
\(161\) 0 0
\(162\) −253.719 −0.123049
\(163\) −2604.26 −1.25142 −0.625711 0.780055i \(-0.715191\pi\)
−0.625711 + 0.780055i \(0.715191\pi\)
\(164\) 40.8646 0.0194572
\(165\) −1649.59 −0.778305
\(166\) −1437.53 −0.672131
\(167\) 845.304 0.391686 0.195843 0.980635i \(-0.437256\pi\)
0.195843 + 0.980635i \(0.437256\pi\)
\(168\) 0 0
\(169\) −1986.88 −0.904359
\(170\) −1273.30 −0.574456
\(171\) 1436.79 0.642539
\(172\) −22.0240 −0.00976343
\(173\) −886.843 −0.389742 −0.194871 0.980829i \(-0.562429\pi\)
−0.194871 + 0.980829i \(0.562429\pi\)
\(174\) 567.898 0.247427
\(175\) 0 0
\(176\) −1756.44 −0.752255
\(177\) −128.174 −0.0544303
\(178\) −3163.38 −1.33205
\(179\) 1103.01 0.460575 0.230288 0.973123i \(-0.426033\pi\)
0.230288 + 0.973123i \(0.426033\pi\)
\(180\) −62.2234 −0.0257659
\(181\) 1200.43 0.492967 0.246483 0.969147i \(-0.420725\pi\)
0.246483 + 0.969147i \(0.420725\pi\)
\(182\) 0 0
\(183\) 331.037 0.133721
\(184\) 512.751 0.205438
\(185\) −5489.37 −2.18155
\(186\) 876.244 0.345427
\(187\) −659.653 −0.257961
\(188\) −49.8214 −0.0193277
\(189\) 0 0
\(190\) −4877.53 −1.86238
\(191\) 2415.93 0.915237 0.457618 0.889149i \(-0.348703\pi\)
0.457618 + 0.889149i \(0.348703\pi\)
\(192\) −1706.95 −0.641607
\(193\) 232.884 0.0868568 0.0434284 0.999057i \(-0.486172\pi\)
0.0434284 + 0.999057i \(0.486172\pi\)
\(194\) −5204.44 −1.92607
\(195\) −895.410 −0.328829
\(196\) 0 0
\(197\) −1418.48 −0.513008 −0.256504 0.966543i \(-0.582571\pi\)
−0.256504 + 0.966543i \(0.582571\pi\)
\(198\) −1163.16 −0.417485
\(199\) −1068.21 −0.380520 −0.190260 0.981734i \(-0.560933\pi\)
−0.190260 + 0.981734i \(0.560933\pi\)
\(200\) −4412.68 −1.56012
\(201\) −1710.27 −0.600165
\(202\) 3976.37 1.38503
\(203\) 0 0
\(204\) 19.3619 0.00664511
\(205\) 3220.39 1.09718
\(206\) −3936.47 −1.33139
\(207\) 349.243 0.117266
\(208\) −953.412 −0.317823
\(209\) −2526.88 −0.836307
\(210\) 0 0
\(211\) −1537.74 −0.501717 −0.250859 0.968024i \(-0.580713\pi\)
−0.250859 + 0.968024i \(0.580713\pi\)
\(212\) −118.388 −0.0383535
\(213\) 67.4532 0.0216987
\(214\) 4755.41 1.51903
\(215\) −1735.63 −0.550553
\(216\) −3232.65 −1.01830
\(217\) 0 0
\(218\) −2356.06 −0.731984
\(219\) −715.783 −0.220859
\(220\) 109.432 0.0335360
\(221\) −358.065 −0.108987
\(222\) 3011.89 0.910563
\(223\) 5359.68 1.60946 0.804732 0.593638i \(-0.202309\pi\)
0.804732 + 0.593638i \(0.202309\pi\)
\(224\) 0 0
\(225\) −3005.54 −0.890532
\(226\) −766.285 −0.225542
\(227\) −1108.36 −0.324072 −0.162036 0.986785i \(-0.551806\pi\)
−0.162036 + 0.986785i \(0.551806\pi\)
\(228\) 74.1681 0.0215434
\(229\) 5046.34 1.45621 0.728104 0.685467i \(-0.240402\pi\)
0.728104 + 0.685467i \(0.240402\pi\)
\(230\) −1185.59 −0.339893
\(231\) 0 0
\(232\) 1284.03 0.363365
\(233\) 7102.11 1.99689 0.998444 0.0557635i \(-0.0177593\pi\)
0.998444 + 0.0557635i \(0.0177593\pi\)
\(234\) −631.372 −0.176385
\(235\) −3926.25 −1.08987
\(236\) 8.50296 0.00234532
\(237\) 1533.75 0.420372
\(238\) 0 0
\(239\) 1556.22 0.421187 0.210594 0.977574i \(-0.432460\pi\)
0.210594 + 0.977574i \(0.432460\pi\)
\(240\) 4062.82 1.09272
\(241\) −3028.88 −0.809573 −0.404787 0.914411i \(-0.632654\pi\)
−0.404787 + 0.914411i \(0.632654\pi\)
\(242\) −1772.27 −0.470767
\(243\) −3611.06 −0.953291
\(244\) −21.9607 −0.00576184
\(245\) 0 0
\(246\) −1766.95 −0.457954
\(247\) −1371.61 −0.353334
\(248\) 1981.21 0.507285
\(249\) 1722.64 0.438426
\(250\) 3759.63 0.951118
\(251\) −1449.39 −0.364480 −0.182240 0.983254i \(-0.558335\pi\)
−0.182240 + 0.983254i \(0.558335\pi\)
\(252\) 0 0
\(253\) −614.213 −0.152629
\(254\) −4148.40 −1.02478
\(255\) 1525.84 0.374713
\(256\) 349.976 0.0854433
\(257\) 3099.62 0.752332 0.376166 0.926552i \(-0.377242\pi\)
0.376166 + 0.926552i \(0.377242\pi\)
\(258\) 952.299 0.229797
\(259\) 0 0
\(260\) 59.4008 0.0141688
\(261\) 874.572 0.207412
\(262\) −4186.01 −0.987071
\(263\) −1087.92 −0.255073 −0.127537 0.991834i \(-0.540707\pi\)
−0.127537 + 0.991834i \(0.540707\pi\)
\(264\) 2046.43 0.477080
\(265\) −9329.76 −2.16273
\(266\) 0 0
\(267\) 3790.79 0.868887
\(268\) 113.458 0.0258603
\(269\) −4721.01 −1.07006 −0.535028 0.844834i \(-0.679699\pi\)
−0.535028 + 0.844834i \(0.679699\pi\)
\(270\) 7474.55 1.68477
\(271\) −1401.15 −0.314074 −0.157037 0.987593i \(-0.550194\pi\)
−0.157037 + 0.987593i \(0.550194\pi\)
\(272\) 1624.68 0.362171
\(273\) 0 0
\(274\) −5419.41 −1.19488
\(275\) 5285.85 1.15909
\(276\) 18.0281 0.00393176
\(277\) 4122.82 0.894283 0.447142 0.894463i \(-0.352442\pi\)
0.447142 + 0.894463i \(0.352442\pi\)
\(278\) 4320.77 0.932167
\(279\) 1349.43 0.289564
\(280\) 0 0
\(281\) 803.897 0.170664 0.0853318 0.996353i \(-0.472805\pi\)
0.0853318 + 0.996353i \(0.472805\pi\)
\(282\) 2154.24 0.454905
\(283\) 3147.53 0.661134 0.330567 0.943782i \(-0.392760\pi\)
0.330567 + 0.943782i \(0.392760\pi\)
\(284\) −4.47479 −0.000934964 0
\(285\) 5844.92 1.21482
\(286\) 1110.39 0.229577
\(287\) 0 0
\(288\) 156.650 0.0320510
\(289\) −4302.83 −0.875806
\(290\) −2968.94 −0.601181
\(291\) 6236.67 1.25636
\(292\) 47.4844 0.00951649
\(293\) 2812.88 0.560854 0.280427 0.959875i \(-0.409524\pi\)
0.280427 + 0.959875i \(0.409524\pi\)
\(294\) 0 0
\(295\) 670.088 0.132251
\(296\) 6809.95 1.33723
\(297\) 3872.31 0.756547
\(298\) −8451.56 −1.64290
\(299\) −333.400 −0.0644850
\(300\) −155.148 −0.0298583
\(301\) 0 0
\(302\) 5677.73 1.08184
\(303\) −4765.02 −0.903444
\(304\) 6223.53 1.17416
\(305\) −1730.64 −0.324906
\(306\) 1075.90 0.200997
\(307\) 7885.52 1.46596 0.732981 0.680249i \(-0.238128\pi\)
0.732981 + 0.680249i \(0.238128\pi\)
\(308\) 0 0
\(309\) 4717.22 0.868457
\(310\) −4580.96 −0.839294
\(311\) 1904.46 0.347240 0.173620 0.984813i \(-0.444453\pi\)
0.173620 + 0.984813i \(0.444453\pi\)
\(312\) 1110.82 0.201563
\(313\) 3854.89 0.696137 0.348069 0.937469i \(-0.386838\pi\)
0.348069 + 0.937469i \(0.386838\pi\)
\(314\) −1449.73 −0.260550
\(315\) 0 0
\(316\) −101.748 −0.0181132
\(317\) 1878.70 0.332865 0.166432 0.986053i \(-0.446775\pi\)
0.166432 + 0.986053i \(0.446775\pi\)
\(318\) 5119.03 0.902707
\(319\) −1538.11 −0.269961
\(320\) 8923.85 1.55893
\(321\) −5698.58 −0.990853
\(322\) 0 0
\(323\) 2337.32 0.402638
\(324\) −20.1698 −0.00345846
\(325\) 2869.20 0.489707
\(326\) −7470.21 −1.26913
\(327\) 2823.35 0.477467
\(328\) −3995.11 −0.672541
\(329\) 0 0
\(330\) −4731.77 −0.789320
\(331\) 6829.96 1.13417 0.567083 0.823661i \(-0.308072\pi\)
0.567083 + 0.823661i \(0.308072\pi\)
\(332\) −114.279 −0.0188911
\(333\) 4638.36 0.763305
\(334\) 2424.72 0.397229
\(335\) 8941.21 1.45824
\(336\) 0 0
\(337\) 11048.9 1.78597 0.892985 0.450087i \(-0.148607\pi\)
0.892985 + 0.450087i \(0.148607\pi\)
\(338\) −5699.26 −0.917157
\(339\) 918.267 0.147119
\(340\) −101.223 −0.0161458
\(341\) −2373.24 −0.376886
\(342\) 4121.37 0.651632
\(343\) 0 0
\(344\) 2153.17 0.337474
\(345\) 1420.73 0.221709
\(346\) −2543.87 −0.395258
\(347\) −7093.14 −1.09735 −0.548674 0.836037i \(-0.684867\pi\)
−0.548674 + 0.836037i \(0.684867\pi\)
\(348\) 45.1460 0.00695425
\(349\) 5363.16 0.822588 0.411294 0.911503i \(-0.365077\pi\)
0.411294 + 0.911503i \(0.365077\pi\)
\(350\) 0 0
\(351\) 2101.92 0.319636
\(352\) −275.500 −0.0417165
\(353\) −11789.3 −1.77757 −0.888787 0.458320i \(-0.848451\pi\)
−0.888787 + 0.458320i \(0.848451\pi\)
\(354\) −367.662 −0.0552006
\(355\) −352.642 −0.0527219
\(356\) −251.478 −0.0374391
\(357\) 0 0
\(358\) 3163.94 0.467093
\(359\) −2645.66 −0.388949 −0.194474 0.980908i \(-0.562300\pi\)
−0.194474 + 0.980908i \(0.562300\pi\)
\(360\) 6083.26 0.890600
\(361\) 2094.39 0.305349
\(362\) 3443.37 0.499943
\(363\) 2123.77 0.307077
\(364\) 0 0
\(365\) 3742.07 0.536628
\(366\) 949.564 0.135613
\(367\) 9775.68 1.39043 0.695213 0.718804i \(-0.255310\pi\)
0.695213 + 0.718804i \(0.255310\pi\)
\(368\) 1512.76 0.214289
\(369\) −2721.13 −0.383893
\(370\) −15746.0 −2.21242
\(371\) 0 0
\(372\) 69.6585 0.00970866
\(373\) 10981.1 1.52435 0.762174 0.647373i \(-0.224132\pi\)
0.762174 + 0.647373i \(0.224132\pi\)
\(374\) −1892.19 −0.261611
\(375\) −4505.30 −0.620407
\(376\) 4870.78 0.668062
\(377\) −834.899 −0.114057
\(378\) 0 0
\(379\) −2313.77 −0.313589 −0.156795 0.987631i \(-0.550116\pi\)
−0.156795 + 0.987631i \(0.550116\pi\)
\(380\) −387.747 −0.0523447
\(381\) 4971.18 0.668455
\(382\) 6929.97 0.928189
\(383\) −9219.25 −1.22998 −0.614989 0.788535i \(-0.710840\pi\)
−0.614989 + 0.788535i \(0.710840\pi\)
\(384\) −5180.00 −0.688388
\(385\) 0 0
\(386\) 668.017 0.0880860
\(387\) 1466.55 0.192633
\(388\) −413.736 −0.0541346
\(389\) 5876.90 0.765991 0.382996 0.923750i \(-0.374892\pi\)
0.382996 + 0.923750i \(0.374892\pi\)
\(390\) −2568.44 −0.333483
\(391\) 568.136 0.0734830
\(392\) 0 0
\(393\) 5016.25 0.643858
\(394\) −4068.85 −0.520268
\(395\) −8018.39 −1.02139
\(396\) −92.4671 −0.0117340
\(397\) −14268.6 −1.80383 −0.901916 0.431911i \(-0.857840\pi\)
−0.901916 + 0.431911i \(0.857840\pi\)
\(398\) −3064.12 −0.385905
\(399\) 0 0
\(400\) −13018.7 −1.62733
\(401\) −11556.1 −1.43911 −0.719557 0.694434i \(-0.755655\pi\)
−0.719557 + 0.694434i \(0.755655\pi\)
\(402\) −4905.84 −0.608659
\(403\) −1288.21 −0.159232
\(404\) 316.108 0.0389281
\(405\) −1589.51 −0.195020
\(406\) 0 0
\(407\) −8157.48 −0.993492
\(408\) −1892.91 −0.229689
\(409\) 14148.3 1.71049 0.855245 0.518223i \(-0.173406\pi\)
0.855245 + 0.518223i \(0.173406\pi\)
\(410\) 9237.54 1.11271
\(411\) 6494.27 0.779413
\(412\) −312.936 −0.0374205
\(413\) 0 0
\(414\) 1001.79 0.118925
\(415\) −9005.88 −1.06526
\(416\) −149.544 −0.0176250
\(417\) −5177.73 −0.608045
\(418\) −7248.25 −0.848142
\(419\) 2222.16 0.259092 0.129546 0.991573i \(-0.458648\pi\)
0.129546 + 0.991573i \(0.458648\pi\)
\(420\) 0 0
\(421\) 2518.51 0.291555 0.145777 0.989317i \(-0.453432\pi\)
0.145777 + 0.989317i \(0.453432\pi\)
\(422\) −4410.94 −0.508818
\(423\) 3317.56 0.381337
\(424\) 11574.2 1.32569
\(425\) −4889.31 −0.558039
\(426\) 193.486 0.0220057
\(427\) 0 0
\(428\) 378.039 0.0426944
\(429\) −1330.62 −0.149751
\(430\) −4978.57 −0.558344
\(431\) 9935.17 1.11035 0.555174 0.831734i \(-0.312652\pi\)
0.555174 + 0.831734i \(0.312652\pi\)
\(432\) −9537.22 −1.06218
\(433\) 8427.47 0.935331 0.467665 0.883906i \(-0.345095\pi\)
0.467665 + 0.883906i \(0.345095\pi\)
\(434\) 0 0
\(435\) 3557.79 0.392145
\(436\) −187.299 −0.0205734
\(437\) 2176.31 0.238232
\(438\) −2053.19 −0.223985
\(439\) −4886.04 −0.531203 −0.265601 0.964083i \(-0.585570\pi\)
−0.265601 + 0.964083i \(0.585570\pi\)
\(440\) −10698.6 −1.15918
\(441\) 0 0
\(442\) −1027.09 −0.110529
\(443\) 9724.04 1.04290 0.521448 0.853283i \(-0.325392\pi\)
0.521448 + 0.853283i \(0.325392\pi\)
\(444\) 239.435 0.0255926
\(445\) −19818.1 −2.11116
\(446\) 15374.0 1.63224
\(447\) 10127.8 1.07165
\(448\) 0 0
\(449\) −10093.7 −1.06091 −0.530457 0.847712i \(-0.677980\pi\)
−0.530457 + 0.847712i \(0.677980\pi\)
\(450\) −8621.27 −0.903134
\(451\) 4785.66 0.499662
\(452\) −60.9171 −0.00633915
\(453\) −6803.83 −0.705678
\(454\) −3179.28 −0.328658
\(455\) 0 0
\(456\) −7251.02 −0.744650
\(457\) 3561.77 0.364578 0.182289 0.983245i \(-0.441649\pi\)
0.182289 + 0.983245i \(0.441649\pi\)
\(458\) 14475.2 1.47682
\(459\) −3581.82 −0.364237
\(460\) −94.2502 −0.00955313
\(461\) 7492.00 0.756914 0.378457 0.925619i \(-0.376455\pi\)
0.378457 + 0.925619i \(0.376455\pi\)
\(462\) 0 0
\(463\) 15427.0 1.54849 0.774247 0.632884i \(-0.218129\pi\)
0.774247 + 0.632884i \(0.218129\pi\)
\(464\) 3788.25 0.379020
\(465\) 5489.53 0.547464
\(466\) 20372.1 2.02515
\(467\) −11868.7 −1.17606 −0.588028 0.808841i \(-0.700096\pi\)
−0.588028 + 0.808841i \(0.700096\pi\)
\(468\) −50.1919 −0.00495753
\(469\) 0 0
\(470\) −11262.3 −1.10530
\(471\) 1737.26 0.169955
\(472\) −831.290 −0.0810662
\(473\) −2579.23 −0.250725
\(474\) 4399.51 0.426321
\(475\) −18729.1 −1.80916
\(476\) 0 0
\(477\) 7883.38 0.756719
\(478\) 4463.96 0.427148
\(479\) −697.153 −0.0665005 −0.0332503 0.999447i \(-0.510586\pi\)
−0.0332503 + 0.999447i \(0.510586\pi\)
\(480\) 637.258 0.0605973
\(481\) −4427.95 −0.419744
\(482\) −8688.20 −0.821030
\(483\) 0 0
\(484\) −140.889 −0.0132315
\(485\) −32605.0 −3.05261
\(486\) −10358.2 −0.966782
\(487\) 14414.0 1.34119 0.670597 0.741822i \(-0.266038\pi\)
0.670597 + 0.741822i \(0.266038\pi\)
\(488\) 2146.98 0.199159
\(489\) 8951.83 0.827844
\(490\) 0 0
\(491\) 17538.9 1.61206 0.806029 0.591876i \(-0.201612\pi\)
0.806029 + 0.591876i \(0.201612\pi\)
\(492\) −140.467 −0.0128714
\(493\) 1422.72 0.129972
\(494\) −3934.41 −0.358335
\(495\) −7287.00 −0.661669
\(496\) 5845.12 0.529140
\(497\) 0 0
\(498\) 4941.32 0.444630
\(499\) −18798.6 −1.68645 −0.843226 0.537559i \(-0.819347\pi\)
−0.843226 + 0.537559i \(0.819347\pi\)
\(500\) 298.878 0.0267324
\(501\) −2905.62 −0.259109
\(502\) −4157.50 −0.369638
\(503\) −4634.11 −0.410785 −0.205392 0.978680i \(-0.565847\pi\)
−0.205392 + 0.978680i \(0.565847\pi\)
\(504\) 0 0
\(505\) 24911.3 2.19513
\(506\) −1761.84 −0.154789
\(507\) 6829.63 0.598254
\(508\) −329.784 −0.0288027
\(509\) 2193.57 0.191018 0.0955092 0.995429i \(-0.469552\pi\)
0.0955092 + 0.995429i \(0.469552\pi\)
\(510\) 4376.80 0.380016
\(511\) 0 0
\(512\) −11051.8 −0.953958
\(513\) −13720.6 −1.18086
\(514\) 8891.13 0.762979
\(515\) −24661.4 −2.11012
\(516\) 75.7045 0.00645873
\(517\) −5834.60 −0.496335
\(518\) 0 0
\(519\) 3048.41 0.257823
\(520\) −5807.30 −0.489744
\(521\) 4401.81 0.370147 0.185074 0.982725i \(-0.440748\pi\)
0.185074 + 0.982725i \(0.440748\pi\)
\(522\) 2508.67 0.210348
\(523\) 9974.09 0.833913 0.416957 0.908926i \(-0.363097\pi\)
0.416957 + 0.908926i \(0.363097\pi\)
\(524\) −332.774 −0.0277429
\(525\) 0 0
\(526\) −3120.66 −0.258683
\(527\) 2195.20 0.181451
\(528\) 6037.55 0.497634
\(529\) 529.000 0.0434783
\(530\) −26762.0 −2.19333
\(531\) −566.204 −0.0462734
\(532\) 0 0
\(533\) 2597.69 0.211104
\(534\) 10873.7 0.881183
\(535\) 29791.9 2.40751
\(536\) −11092.2 −0.893861
\(537\) −3791.46 −0.304681
\(538\) −13542.0 −1.08520
\(539\) 0 0
\(540\) 594.201 0.0473525
\(541\) −9161.72 −0.728083 −0.364042 0.931383i \(-0.618603\pi\)
−0.364042 + 0.931383i \(0.618603\pi\)
\(542\) −4019.15 −0.318519
\(543\) −4126.31 −0.326109
\(544\) 254.833 0.0200843
\(545\) −14760.3 −1.16012
\(546\) 0 0
\(547\) 1113.51 0.0870390 0.0435195 0.999053i \(-0.486143\pi\)
0.0435195 + 0.999053i \(0.486143\pi\)
\(548\) −430.825 −0.0335838
\(549\) 1462.34 0.113682
\(550\) 15162.2 1.17549
\(551\) 5449.92 0.421369
\(552\) −1762.52 −0.135902
\(553\) 0 0
\(554\) 11826.1 0.906939
\(555\) 18869.0 1.44314
\(556\) 343.486 0.0261998
\(557\) −7660.96 −0.582775 −0.291387 0.956605i \(-0.594117\pi\)
−0.291387 + 0.956605i \(0.594117\pi\)
\(558\) 3870.78 0.293661
\(559\) −1400.03 −0.105930
\(560\) 0 0
\(561\) 2267.47 0.170647
\(562\) 2305.94 0.173079
\(563\) −17217.7 −1.28888 −0.644441 0.764654i \(-0.722910\pi\)
−0.644441 + 0.764654i \(0.722910\pi\)
\(564\) 171.255 0.0127857
\(565\) −4800.65 −0.357460
\(566\) 9028.54 0.670491
\(567\) 0 0
\(568\) 437.476 0.0323171
\(569\) −2385.63 −0.175766 −0.0878830 0.996131i \(-0.528010\pi\)
−0.0878830 + 0.996131i \(0.528010\pi\)
\(570\) 16765.9 1.23201
\(571\) 16927.9 1.24065 0.620323 0.784347i \(-0.287002\pi\)
0.620323 + 0.784347i \(0.287002\pi\)
\(572\) 88.2725 0.00645255
\(573\) −8304.44 −0.605450
\(574\) 0 0
\(575\) −4552.52 −0.330179
\(576\) −7540.39 −0.545457
\(577\) −2886.69 −0.208275 −0.104137 0.994563i \(-0.533208\pi\)
−0.104137 + 0.994563i \(0.533208\pi\)
\(578\) −12342.5 −0.888200
\(579\) −800.509 −0.0574578
\(580\) −236.021 −0.0168970
\(581\) 0 0
\(582\) 17889.6 1.27414
\(583\) −13864.5 −0.984920
\(584\) −4642.30 −0.328938
\(585\) −3955.44 −0.279551
\(586\) 8068.62 0.568791
\(587\) −503.810 −0.0354250 −0.0177125 0.999843i \(-0.505638\pi\)
−0.0177125 + 0.999843i \(0.505638\pi\)
\(588\) 0 0
\(589\) 8409.00 0.588263
\(590\) 1922.12 0.134122
\(591\) 4875.85 0.339366
\(592\) 20091.3 1.39484
\(593\) 7654.92 0.530101 0.265050 0.964235i \(-0.414611\pi\)
0.265050 + 0.964235i \(0.414611\pi\)
\(594\) 11107.6 0.767253
\(595\) 0 0
\(596\) −671.870 −0.0461760
\(597\) 3671.84 0.251723
\(598\) −956.343 −0.0653976
\(599\) 17366.5 1.18460 0.592301 0.805717i \(-0.298220\pi\)
0.592301 + 0.805717i \(0.298220\pi\)
\(600\) 15168.0 1.03205
\(601\) −3872.81 −0.262854 −0.131427 0.991326i \(-0.541956\pi\)
−0.131427 + 0.991326i \(0.541956\pi\)
\(602\) 0 0
\(603\) −7555.06 −0.510225
\(604\) 451.361 0.0304066
\(605\) −11103.0 −0.746115
\(606\) −13668.3 −0.916229
\(607\) 12823.3 0.857464 0.428732 0.903432i \(-0.358961\pi\)
0.428732 + 0.903432i \(0.358961\pi\)
\(608\) 976.167 0.0651132
\(609\) 0 0
\(610\) −4964.27 −0.329504
\(611\) −3167.07 −0.209699
\(612\) 85.5304 0.00564928
\(613\) −17226.4 −1.13502 −0.567509 0.823367i \(-0.692093\pi\)
−0.567509 + 0.823367i \(0.692093\pi\)
\(614\) 22619.3 1.48671
\(615\) −11069.7 −0.725809
\(616\) 0 0
\(617\) −5892.12 −0.384454 −0.192227 0.981351i \(-0.561571\pi\)
−0.192227 + 0.981351i \(0.561571\pi\)
\(618\) 13531.1 0.880747
\(619\) 13036.6 0.846503 0.423251 0.906012i \(-0.360889\pi\)
0.423251 + 0.906012i \(0.360889\pi\)
\(620\) −364.171 −0.0235894
\(621\) −3335.09 −0.215511
\(622\) 5462.84 0.352154
\(623\) 0 0
\(624\) 3277.23 0.210247
\(625\) −1188.48 −0.0760630
\(626\) 11057.6 0.705989
\(627\) 8685.84 0.553236
\(628\) −115.248 −0.00732310
\(629\) 7545.52 0.478314
\(630\) 0 0
\(631\) −10044.6 −0.633707 −0.316853 0.948475i \(-0.602626\pi\)
−0.316853 + 0.948475i \(0.602626\pi\)
\(632\) 9947.37 0.626084
\(633\) 5285.79 0.331898
\(634\) 5388.95 0.337575
\(635\) −25989.1 −1.62416
\(636\) 406.945 0.0253717
\(637\) 0 0
\(638\) −4412.00 −0.273782
\(639\) 297.972 0.0184469
\(640\) 27080.8 1.67260
\(641\) 4583.33 0.282419 0.141209 0.989980i \(-0.454901\pi\)
0.141209 + 0.989980i \(0.454901\pi\)
\(642\) −16346.1 −1.00488
\(643\) −19260.0 −1.18125 −0.590623 0.806948i \(-0.701118\pi\)
−0.590623 + 0.806948i \(0.701118\pi\)
\(644\) 0 0
\(645\) 5966.00 0.364203
\(646\) 6704.50 0.408336
\(647\) 1771.91 0.107667 0.0538337 0.998550i \(-0.482856\pi\)
0.0538337 + 0.998550i \(0.482856\pi\)
\(648\) 1971.89 0.119542
\(649\) 995.784 0.0602279
\(650\) 8230.18 0.496637
\(651\) 0 0
\(652\) −593.857 −0.0356706
\(653\) −28000.8 −1.67803 −0.839017 0.544106i \(-0.816869\pi\)
−0.839017 + 0.544106i \(0.816869\pi\)
\(654\) 8098.66 0.484224
\(655\) −26224.7 −1.56440
\(656\) −11786.7 −0.701515
\(657\) −3161.94 −0.187761
\(658\) 0 0
\(659\) −27664.0 −1.63526 −0.817629 0.575745i \(-0.804712\pi\)
−0.817629 + 0.575745i \(0.804712\pi\)
\(660\) −376.160 −0.0221848
\(661\) −23392.1 −1.37647 −0.688234 0.725489i \(-0.741614\pi\)
−0.688234 + 0.725489i \(0.741614\pi\)
\(662\) 19591.4 1.15022
\(663\) 1230.80 0.0720972
\(664\) 11172.4 0.652973
\(665\) 0 0
\(666\) 13304.9 0.774107
\(667\) 1324.72 0.0769016
\(668\) 192.757 0.0111646
\(669\) −18423.2 −1.06470
\(670\) 25647.5 1.47888
\(671\) −2571.82 −0.147964
\(672\) 0 0
\(673\) 4318.41 0.247344 0.123672 0.992323i \(-0.460533\pi\)
0.123672 + 0.992323i \(0.460533\pi\)
\(674\) 31693.3 1.81124
\(675\) 28701.4 1.63662
\(676\) −453.072 −0.0257779
\(677\) −18272.8 −1.03734 −0.518671 0.854974i \(-0.673573\pi\)
−0.518671 + 0.854974i \(0.673573\pi\)
\(678\) 2634.01 0.149201
\(679\) 0 0
\(680\) 9896.04 0.558082
\(681\) 3809.84 0.214381
\(682\) −6807.53 −0.382220
\(683\) −7245.38 −0.405910 −0.202955 0.979188i \(-0.565055\pi\)
−0.202955 + 0.979188i \(0.565055\pi\)
\(684\) 327.635 0.0183150
\(685\) −33951.7 −1.89376
\(686\) 0 0
\(687\) −17346.2 −0.963314
\(688\) 6352.45 0.352013
\(689\) −7525.76 −0.416123
\(690\) 4075.31 0.224847
\(691\) 12055.2 0.663679 0.331839 0.943336i \(-0.392331\pi\)
0.331839 + 0.943336i \(0.392331\pi\)
\(692\) −202.229 −0.0111092
\(693\) 0 0
\(694\) −20346.3 −1.11288
\(695\) 27068.9 1.47738
\(696\) −4413.69 −0.240374
\(697\) −4426.64 −0.240561
\(698\) 15384.0 0.834229
\(699\) −24412.6 −1.32099
\(700\) 0 0
\(701\) −15301.9 −0.824455 −0.412228 0.911081i \(-0.635249\pi\)
−0.412228 + 0.911081i \(0.635249\pi\)
\(702\) 6029.27 0.324160
\(703\) 28904.0 1.55069
\(704\) 13261.3 0.709948
\(705\) 13496.0 0.720975
\(706\) −33817.2 −1.80273
\(707\) 0 0
\(708\) −29.2279 −0.00155148
\(709\) −12173.6 −0.644835 −0.322418 0.946597i \(-0.604496\pi\)
−0.322418 + 0.946597i \(0.604496\pi\)
\(710\) −1011.54 −0.0534680
\(711\) 6775.30 0.357375
\(712\) 24585.7 1.29408
\(713\) 2043.99 0.107360
\(714\) 0 0
\(715\) 6956.44 0.363854
\(716\) 251.522 0.0131283
\(717\) −5349.32 −0.278625
\(718\) −7588.95 −0.394453
\(719\) −2639.63 −0.136914 −0.0684572 0.997654i \(-0.521808\pi\)
−0.0684572 + 0.997654i \(0.521808\pi\)
\(720\) 17947.3 0.928970
\(721\) 0 0
\(722\) 6007.67 0.309671
\(723\) 10411.4 0.535551
\(724\) 273.736 0.0140515
\(725\) −11400.4 −0.584000
\(726\) 6091.94 0.311423
\(727\) 32759.5 1.67123 0.835613 0.549319i \(-0.185113\pi\)
0.835613 + 0.549319i \(0.185113\pi\)
\(728\) 0 0
\(729\) 14800.7 0.751956
\(730\) 10734.0 0.544222
\(731\) 2385.74 0.120711
\(732\) 75.4871 0.00381159
\(733\) −29178.0 −1.47028 −0.735139 0.677917i \(-0.762883\pi\)
−0.735139 + 0.677917i \(0.762883\pi\)
\(734\) 28041.1 1.41010
\(735\) 0 0
\(736\) 237.278 0.0118834
\(737\) 13287.1 0.664092
\(738\) −7805.45 −0.389326
\(739\) −13704.9 −0.682194 −0.341097 0.940028i \(-0.610798\pi\)
−0.341097 + 0.940028i \(0.610798\pi\)
\(740\) −1251.75 −0.0621830
\(741\) 4714.74 0.233739
\(742\) 0 0
\(743\) −991.593 −0.0489610 −0.0244805 0.999700i \(-0.507793\pi\)
−0.0244805 + 0.999700i \(0.507793\pi\)
\(744\) −6810.14 −0.335581
\(745\) −52947.6 −2.60383
\(746\) 31498.9 1.54592
\(747\) 7609.71 0.372724
\(748\) −150.422 −0.00735292
\(749\) 0 0
\(750\) −12923.2 −0.629186
\(751\) 9440.73 0.458718 0.229359 0.973342i \(-0.426337\pi\)
0.229359 + 0.973342i \(0.426337\pi\)
\(752\) 14370.2 0.696844
\(753\) 4982.09 0.241112
\(754\) −2394.87 −0.115671
\(755\) 35570.1 1.71461
\(756\) 0 0
\(757\) 10480.1 0.503177 0.251589 0.967834i \(-0.419047\pi\)
0.251589 + 0.967834i \(0.419047\pi\)
\(758\) −6636.94 −0.318027
\(759\) 2111.28 0.100968
\(760\) 37908.0 1.80930
\(761\) 31314.9 1.49168 0.745838 0.666128i \(-0.232049\pi\)
0.745838 + 0.666128i \(0.232049\pi\)
\(762\) 14259.6 0.677915
\(763\) 0 0
\(764\) 550.909 0.0260880
\(765\) 6740.34 0.318559
\(766\) −26445.0 −1.24739
\(767\) 540.519 0.0254459
\(768\) −1203.00 −0.0565227
\(769\) 20862.1 0.978292 0.489146 0.872202i \(-0.337309\pi\)
0.489146 + 0.872202i \(0.337309\pi\)
\(770\) 0 0
\(771\) −10654.6 −0.497684
\(772\) 53.1051 0.00247577
\(773\) 20340.2 0.946426 0.473213 0.880948i \(-0.343094\pi\)
0.473213 + 0.880948i \(0.343094\pi\)
\(774\) 4206.75 0.195360
\(775\) −17590.3 −0.815308
\(776\) 40448.8 1.87117
\(777\) 0 0
\(778\) 16857.6 0.776832
\(779\) −16956.8 −0.779898
\(780\) −204.183 −0.00937296
\(781\) −524.043 −0.0240099
\(782\) 1629.67 0.0745230
\(783\) −8351.71 −0.381182
\(784\) 0 0
\(785\) −9082.30 −0.412944
\(786\) 14388.9 0.652970
\(787\) −31293.8 −1.41741 −0.708707 0.705503i \(-0.750721\pi\)
−0.708707 + 0.705503i \(0.750721\pi\)
\(788\) −323.460 −0.0146228
\(789\) 3739.60 0.168737
\(790\) −23000.4 −1.03584
\(791\) 0 0
\(792\) 9040.03 0.405585
\(793\) −1396.01 −0.0625140
\(794\) −40928.9 −1.82936
\(795\) 32069.9 1.43069
\(796\) −243.587 −0.0108464
\(797\) −32015.4 −1.42289 −0.711446 0.702741i \(-0.751959\pi\)
−0.711446 + 0.702741i \(0.751959\pi\)
\(798\) 0 0
\(799\) 5396.89 0.238959
\(800\) −2041.99 −0.0902442
\(801\) 16745.7 0.738677
\(802\) −33148.2 −1.45948
\(803\) 5560.91 0.244384
\(804\) −389.997 −0.0171071
\(805\) 0 0
\(806\) −3695.19 −0.161486
\(807\) 16227.9 0.707867
\(808\) −30904.2 −1.34555
\(809\) 5234.16 0.227470 0.113735 0.993511i \(-0.463719\pi\)
0.113735 + 0.993511i \(0.463719\pi\)
\(810\) −4559.43 −0.197780
\(811\) 2377.40 0.102937 0.0514685 0.998675i \(-0.483610\pi\)
0.0514685 + 0.998675i \(0.483610\pi\)
\(812\) 0 0
\(813\) 4816.29 0.207767
\(814\) −23399.4 −1.00755
\(815\) −46799.7 −2.01144
\(816\) −5584.62 −0.239584
\(817\) 9138.87 0.391345
\(818\) 40583.9 1.73470
\(819\) 0 0
\(820\) 734.353 0.0312740
\(821\) 5174.70 0.219974 0.109987 0.993933i \(-0.464919\pi\)
0.109987 + 0.993933i \(0.464919\pi\)
\(822\) 18628.5 0.790443
\(823\) 44178.3 1.87115 0.935576 0.353126i \(-0.114881\pi\)
0.935576 + 0.353126i \(0.114881\pi\)
\(824\) 30594.1 1.29344
\(825\) −18169.4 −0.766762
\(826\) 0 0
\(827\) 5766.56 0.242470 0.121235 0.992624i \(-0.461314\pi\)
0.121235 + 0.992624i \(0.461314\pi\)
\(828\) 79.6387 0.00334255
\(829\) −38465.6 −1.61154 −0.805770 0.592229i \(-0.798248\pi\)
−0.805770 + 0.592229i \(0.798248\pi\)
\(830\) −25833.0 −1.08033
\(831\) −14171.7 −0.591589
\(832\) 7198.33 0.299949
\(833\) 0 0
\(834\) −14852.1 −0.616650
\(835\) 15190.5 0.629566
\(836\) −576.211 −0.0238381
\(837\) −12886.3 −0.532159
\(838\) 6374.17 0.262759
\(839\) 17261.8 0.710301 0.355151 0.934809i \(-0.384430\pi\)
0.355151 + 0.934809i \(0.384430\pi\)
\(840\) 0 0
\(841\) −21071.6 −0.863981
\(842\) 7224.22 0.295681
\(843\) −2763.29 −0.112898
\(844\) −350.655 −0.0143010
\(845\) −35705.0 −1.45360
\(846\) 9516.28 0.386733
\(847\) 0 0
\(848\) 34147.2 1.38281
\(849\) −10819.2 −0.437355
\(850\) −14024.8 −0.565936
\(851\) 7025.75 0.283008
\(852\) 15.3815 0.000618500 0
\(853\) −29038.7 −1.16561 −0.582805 0.812612i \(-0.698045\pi\)
−0.582805 + 0.812612i \(0.698045\pi\)
\(854\) 0 0
\(855\) 25819.7 1.03277
\(856\) −36958.9 −1.47574
\(857\) 9865.16 0.393217 0.196609 0.980482i \(-0.437007\pi\)
0.196609 + 0.980482i \(0.437007\pi\)
\(858\) −3816.84 −0.151870
\(859\) 24476.6 0.972214 0.486107 0.873899i \(-0.338416\pi\)
0.486107 + 0.873899i \(0.338416\pi\)
\(860\) −395.779 −0.0156930
\(861\) 0 0
\(862\) 28498.6 1.12606
\(863\) −37353.6 −1.47339 −0.736693 0.676227i \(-0.763614\pi\)
−0.736693 + 0.676227i \(0.763614\pi\)
\(864\) −1495.92 −0.0589032
\(865\) −15936.9 −0.626442
\(866\) 24173.8 0.948567
\(867\) 14790.4 0.579365
\(868\) 0 0
\(869\) −11915.7 −0.465148
\(870\) 10205.4 0.397695
\(871\) 7212.34 0.280575
\(872\) 18311.2 0.711120
\(873\) 27550.3 1.06808
\(874\) 6242.66 0.241603
\(875\) 0 0
\(876\) −163.222 −0.00629538
\(877\) −25920.7 −0.998040 −0.499020 0.866590i \(-0.666307\pi\)
−0.499020 + 0.866590i \(0.666307\pi\)
\(878\) −14015.4 −0.538720
\(879\) −9668.92 −0.371018
\(880\) −31564.0 −1.20912
\(881\) 9337.06 0.357064 0.178532 0.983934i \(-0.442865\pi\)
0.178532 + 0.983934i \(0.442865\pi\)
\(882\) 0 0
\(883\) −70.8656 −0.00270081 −0.00135041 0.999999i \(-0.500430\pi\)
−0.00135041 + 0.999999i \(0.500430\pi\)
\(884\) −81.6505 −0.00310656
\(885\) −2303.34 −0.0874870
\(886\) 27893.0 1.05765
\(887\) 1058.85 0.0400819 0.0200409 0.999799i \(-0.493620\pi\)
0.0200409 + 0.999799i \(0.493620\pi\)
\(888\) −23408.3 −0.884608
\(889\) 0 0
\(890\) −56847.2 −2.14104
\(891\) −2362.08 −0.0888135
\(892\) 1222.18 0.0458762
\(893\) 20673.5 0.774705
\(894\) 29051.2 1.08682
\(895\) 19821.6 0.740293
\(896\) 0 0
\(897\) 1146.02 0.0426583
\(898\) −28953.3 −1.07593
\(899\) 5118.55 0.189892
\(900\) −685.362 −0.0253838
\(901\) 12824.4 0.474187
\(902\) 13727.4 0.506734
\(903\) 0 0
\(904\) 5955.54 0.219113
\(905\) 21572.1 0.792356
\(906\) −19516.5 −0.715664
\(907\) 29050.2 1.06350 0.531751 0.846900i \(-0.321534\pi\)
0.531751 + 0.846900i \(0.321534\pi\)
\(908\) −252.742 −0.00923736
\(909\) −21049.3 −0.768055
\(910\) 0 0
\(911\) 16041.6 0.583404 0.291702 0.956509i \(-0.405778\pi\)
0.291702 + 0.956509i \(0.405778\pi\)
\(912\) −21392.6 −0.776732
\(913\) −13383.2 −0.485125
\(914\) 10216.8 0.369738
\(915\) 5948.87 0.214933
\(916\) 1150.73 0.0415078
\(917\) 0 0
\(918\) −10274.3 −0.369392
\(919\) −30151.2 −1.08226 −0.541130 0.840939i \(-0.682003\pi\)
−0.541130 + 0.840939i \(0.682003\pi\)
\(920\) 9214.35 0.330204
\(921\) −27105.5 −0.969767
\(922\) 21490.5 0.767626
\(923\) −284.455 −0.0101440
\(924\) 0 0
\(925\) −60462.8 −2.14919
\(926\) 44251.6 1.57041
\(927\) 20838.1 0.738311
\(928\) 594.192 0.0210186
\(929\) −43339.8 −1.53061 −0.765303 0.643670i \(-0.777411\pi\)
−0.765303 + 0.643670i \(0.777411\pi\)
\(930\) 15746.5 0.555212
\(931\) 0 0
\(932\) 1619.51 0.0569194
\(933\) −6546.32 −0.229707
\(934\) −34044.8 −1.19270
\(935\) −11854.2 −0.414626
\(936\) 4907.00 0.171357
\(937\) −27291.9 −0.951533 −0.475766 0.879572i \(-0.657829\pi\)
−0.475766 + 0.879572i \(0.657829\pi\)
\(938\) 0 0
\(939\) −13250.7 −0.460511
\(940\) −895.311 −0.0310658
\(941\) 4358.15 0.150980 0.0754898 0.997147i \(-0.475948\pi\)
0.0754898 + 0.997147i \(0.475948\pi\)
\(942\) 4983.25 0.172360
\(943\) −4121.72 −0.142335
\(944\) −2452.54 −0.0845587
\(945\) 0 0
\(946\) −7398.40 −0.254274
\(947\) 39067.8 1.34059 0.670293 0.742097i \(-0.266169\pi\)
0.670293 + 0.742097i \(0.266169\pi\)
\(948\) 349.746 0.0119823
\(949\) 3018.51 0.103251
\(950\) −53723.6 −1.83476
\(951\) −6457.78 −0.220197
\(952\) 0 0
\(953\) −52563.8 −1.78668 −0.893341 0.449379i \(-0.851645\pi\)
−0.893341 + 0.449379i \(0.851645\pi\)
\(954\) 22613.1 0.767428
\(955\) 43415.2 1.47108
\(956\) 354.869 0.0120055
\(957\) 5287.06 0.178585
\(958\) −1999.75 −0.0674416
\(959\) 0 0
\(960\) −30674.6 −1.03127
\(961\) −21893.3 −0.734896
\(962\) −12701.4 −0.425684
\(963\) −25173.3 −0.842365
\(964\) −690.682 −0.0230761
\(965\) 4185.02 0.139607
\(966\) 0 0
\(967\) −2440.46 −0.0811580 −0.0405790 0.999176i \(-0.512920\pi\)
−0.0405790 + 0.999176i \(0.512920\pi\)
\(968\) 13774.0 0.457348
\(969\) −8034.24 −0.266354
\(970\) −93525.9 −3.09581
\(971\) −45490.7 −1.50347 −0.751733 0.659468i \(-0.770782\pi\)
−0.751733 + 0.659468i \(0.770782\pi\)
\(972\) −823.439 −0.0271727
\(973\) 0 0
\(974\) 41345.9 1.36017
\(975\) −9862.52 −0.323952
\(976\) 6334.21 0.207739
\(977\) −33244.4 −1.08862 −0.544311 0.838884i \(-0.683209\pi\)
−0.544311 + 0.838884i \(0.683209\pi\)
\(978\) 25677.9 0.839559
\(979\) −29450.6 −0.961437
\(980\) 0 0
\(981\) 12472.1 0.405914
\(982\) 50309.6 1.63487
\(983\) −1171.32 −0.0380053 −0.0190027 0.999819i \(-0.506049\pi\)
−0.0190027 + 0.999819i \(0.506049\pi\)
\(984\) 13732.7 0.444901
\(985\) −25490.7 −0.824569
\(986\) 4081.02 0.131811
\(987\) 0 0
\(988\) −312.772 −0.0100715
\(989\) 2221.40 0.0714220
\(990\) −20902.4 −0.671033
\(991\) −3714.32 −0.119061 −0.0595304 0.998226i \(-0.518960\pi\)
−0.0595304 + 0.998226i \(0.518960\pi\)
\(992\) 916.814 0.0293436
\(993\) −23477.1 −0.750276
\(994\) 0 0
\(995\) −19196.2 −0.611618
\(996\) 392.818 0.0124969
\(997\) −19521.0 −0.620098 −0.310049 0.950721i \(-0.600345\pi\)
−0.310049 + 0.950721i \(0.600345\pi\)
\(998\) −53922.9 −1.71032
\(999\) −44293.9 −1.40280
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1127.4.a.c.1.3 4
7.6 odd 2 23.4.a.b.1.3 4
21.20 even 2 207.4.a.e.1.2 4
28.27 even 2 368.4.a.l.1.2 4
35.13 even 4 575.4.b.g.24.3 8
35.27 even 4 575.4.b.g.24.6 8
35.34 odd 2 575.4.a.i.1.2 4
56.13 odd 2 1472.4.a.y.1.2 4
56.27 even 2 1472.4.a.bf.1.3 4
161.160 even 2 529.4.a.g.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.a.b.1.3 4 7.6 odd 2
207.4.a.e.1.2 4 21.20 even 2
368.4.a.l.1.2 4 28.27 even 2
529.4.a.g.1.3 4 161.160 even 2
575.4.a.i.1.2 4 35.34 odd 2
575.4.b.g.24.3 8 35.13 even 4
575.4.b.g.24.6 8 35.27 even 4
1127.4.a.c.1.3 4 1.1 even 1 trivial
1472.4.a.y.1.2 4 56.13 odd 2
1472.4.a.bf.1.3 4 56.27 even 2