Properties

Label 575.4.b.g.24.6
Level $575$
Weight $4$
Character 575.24
Analytic conductor $33.926$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [575,4,Mod(24,575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("575.24");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 575.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.9260982533\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 36x^{6} + 244x^{4} + 153x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 24.6
Root \(-2.83969i\) of defining polynomial
Character \(\chi\) \(=\) 575.24
Dual form 575.4.b.g.24.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.86845i q^{2} -3.43737i q^{3} -0.228032 q^{4} +9.85995 q^{6} +32.7301i q^{7} +22.2935i q^{8} +15.1845 q^{9} +26.7049 q^{11} +0.783832i q^{12} +14.4956i q^{13} -93.8848 q^{14} -65.7723 q^{16} +24.7016i q^{17} +43.5560i q^{18} -94.6224 q^{19} +112.505 q^{21} +76.6018i q^{22} +23.0000i q^{23} +76.6312 q^{24} -41.5801 q^{26} -145.004i q^{27} -7.46352i q^{28} +57.5965 q^{29} +88.8691 q^{31} -10.3165i q^{32} -91.7948i q^{33} -70.8553 q^{34} -3.46255 q^{36} -305.467i q^{37} -271.420i q^{38} +49.8269 q^{39} -179.205 q^{41} +322.717i q^{42} +96.5826i q^{43} -6.08959 q^{44} -65.9745 q^{46} +218.484i q^{47} +226.084i q^{48} -728.258 q^{49} +84.9085 q^{51} -3.30548i q^{52} +519.174i q^{53} +415.937 q^{54} -729.669 q^{56} +325.252i q^{57} +165.213i q^{58} +37.2884 q^{59} +96.3052 q^{61} +254.917i q^{62} +496.989i q^{63} -496.586 q^{64} +263.309 q^{66} +497.552i q^{67} -5.63276i q^{68} +79.0596 q^{69} -19.6235 q^{71} +338.515i q^{72} +208.235i q^{73} +876.219 q^{74} +21.5770 q^{76} +874.054i q^{77} +142.926i q^{78} +446.200 q^{79} -88.4513 q^{81} -514.042i q^{82} -501.151i q^{83} -25.6549 q^{84} -277.043 q^{86} -197.981i q^{87} +595.347i q^{88} -1102.82 q^{89} -474.444 q^{91} -5.24475i q^{92} -305.476i q^{93} -626.711 q^{94} -35.4615 q^{96} +1814.37i q^{97} -2088.98i q^{98} +405.500 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 40 q^{4} - 34 q^{6} + 66 q^{9} + 16 q^{11} + 288 q^{14} + 128 q^{16} - 192 q^{19} + 360 q^{21} + 376 q^{24} - 458 q^{26} - 42 q^{29} - 386 q^{31} - 1332 q^{34} - 1258 q^{36} + 582 q^{39} - 250 q^{41}+ \cdots + 2996 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/575\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.86845i 1.01415i 0.861901 + 0.507076i \(0.169274\pi\)
−0.861901 + 0.507076i \(0.830726\pi\)
\(3\) − 3.43737i − 0.661523i −0.943714 0.330761i \(-0.892694\pi\)
0.943714 0.330761i \(-0.107306\pi\)
\(4\) −0.228032 −0.0285041
\(5\) 0 0
\(6\) 9.85995 0.670885
\(7\) 32.7301i 1.76726i 0.468187 + 0.883629i \(0.344907\pi\)
−0.468187 + 0.883629i \(0.655093\pi\)
\(8\) 22.2935i 0.985244i
\(9\) 15.1845 0.562388
\(10\) 0 0
\(11\) 26.7049 0.731985 0.365993 0.930618i \(-0.380730\pi\)
0.365993 + 0.930618i \(0.380730\pi\)
\(12\) 0.783832i 0.0188561i
\(13\) 14.4956i 0.309259i 0.987973 + 0.154630i \(0.0494184\pi\)
−0.987973 + 0.154630i \(0.950582\pi\)
\(14\) −93.8848 −1.79227
\(15\) 0 0
\(16\) −65.7723 −1.02769
\(17\) 24.7016i 0.352412i 0.984353 + 0.176206i \(0.0563825\pi\)
−0.984353 + 0.176206i \(0.943617\pi\)
\(18\) 43.5560i 0.570347i
\(19\) −94.6224 −1.14252 −0.571259 0.820770i \(-0.693545\pi\)
−0.571259 + 0.820770i \(0.693545\pi\)
\(20\) 0 0
\(21\) 112.505 1.16908
\(22\) 76.6018i 0.742344i
\(23\) 23.0000i 0.208514i
\(24\) 76.6312 0.651762
\(25\) 0 0
\(26\) −41.5801 −0.313636
\(27\) − 145.004i − 1.03355i
\(28\) − 7.46352i − 0.0503740i
\(29\) 57.5965 0.368807 0.184403 0.982851i \(-0.440965\pi\)
0.184403 + 0.982851i \(0.440965\pi\)
\(30\) 0 0
\(31\) 88.8691 0.514882 0.257441 0.966294i \(-0.417121\pi\)
0.257441 + 0.966294i \(0.417121\pi\)
\(32\) − 10.3165i − 0.0569909i
\(33\) − 91.7948i − 0.484225i
\(34\) −70.8553 −0.357400
\(35\) 0 0
\(36\) −3.46255 −0.0160303
\(37\) − 305.467i − 1.35726i −0.734482 0.678629i \(-0.762575\pi\)
0.734482 0.678629i \(-0.237425\pi\)
\(38\) − 271.420i − 1.15869i
\(39\) 49.8269 0.204582
\(40\) 0 0
\(41\) −179.205 −0.682613 −0.341306 0.939952i \(-0.610869\pi\)
−0.341306 + 0.939952i \(0.610869\pi\)
\(42\) 322.717i 1.18563i
\(43\) 96.5826i 0.342528i 0.985225 + 0.171264i \(0.0547851\pi\)
−0.985225 + 0.171264i \(0.945215\pi\)
\(44\) −6.08959 −0.0208645
\(45\) 0 0
\(46\) −65.9745 −0.211465
\(47\) 218.484i 0.678067i 0.940774 + 0.339034i \(0.110100\pi\)
−0.940774 + 0.339034i \(0.889900\pi\)
\(48\) 226.084i 0.679841i
\(49\) −728.258 −2.12320
\(50\) 0 0
\(51\) 84.9085 0.233129
\(52\) − 3.30548i − 0.00881514i
\(53\) 519.174i 1.34555i 0.739848 + 0.672774i \(0.234897\pi\)
−0.739848 + 0.672774i \(0.765103\pi\)
\(54\) 415.937 1.04818
\(55\) 0 0
\(56\) −729.669 −1.74118
\(57\) 325.252i 0.755802i
\(58\) 165.213i 0.374026i
\(59\) 37.2884 0.0822803 0.0411401 0.999153i \(-0.486901\pi\)
0.0411401 + 0.999153i \(0.486901\pi\)
\(60\) 0 0
\(61\) 96.3052 0.202141 0.101071 0.994879i \(-0.467773\pi\)
0.101071 + 0.994879i \(0.467773\pi\)
\(62\) 254.917i 0.522169i
\(63\) 496.989i 0.993884i
\(64\) −496.586 −0.969894
\(65\) 0 0
\(66\) 263.309 0.491077
\(67\) 497.552i 0.907248i 0.891193 + 0.453624i \(0.149869\pi\)
−0.891193 + 0.453624i \(0.850131\pi\)
\(68\) − 5.63276i − 0.0100452i
\(69\) 79.0596 0.137937
\(70\) 0 0
\(71\) −19.6235 −0.0328011 −0.0164005 0.999866i \(-0.505221\pi\)
−0.0164005 + 0.999866i \(0.505221\pi\)
\(72\) 338.515i 0.554089i
\(73\) 208.235i 0.333865i 0.985968 + 0.166932i \(0.0533861\pi\)
−0.985968 + 0.166932i \(0.946614\pi\)
\(74\) 876.219 1.37647
\(75\) 0 0
\(76\) 21.5770 0.0325664
\(77\) 874.054i 1.29361i
\(78\) 142.926i 0.207477i
\(79\) 446.200 0.635461 0.317730 0.948181i \(-0.397079\pi\)
0.317730 + 0.948181i \(0.397079\pi\)
\(80\) 0 0
\(81\) −88.4513 −0.121332
\(82\) − 514.042i − 0.692273i
\(83\) − 501.151i − 0.662752i −0.943499 0.331376i \(-0.892487\pi\)
0.943499 0.331376i \(-0.107513\pi\)
\(84\) −25.6549 −0.0333236
\(85\) 0 0
\(86\) −277.043 −0.347375
\(87\) − 197.981i − 0.243974i
\(88\) 595.347i 0.721184i
\(89\) −1102.82 −1.31347 −0.656733 0.754124i \(-0.728062\pi\)
−0.656733 + 0.754124i \(0.728062\pi\)
\(90\) 0 0
\(91\) −474.444 −0.546541
\(92\) − 5.24475i − 0.00594351i
\(93\) − 305.476i − 0.340606i
\(94\) −626.711 −0.687663
\(95\) 0 0
\(96\) −35.4615 −0.0377008
\(97\) 1814.37i 1.89919i 0.313478 + 0.949595i \(0.398506\pi\)
−0.313478 + 0.949595i \(0.601494\pi\)
\(98\) − 2088.98i − 2.15325i
\(99\) 405.500 0.411659
\(100\) 0 0
\(101\) −1386.24 −1.36570 −0.682852 0.730557i \(-0.739261\pi\)
−0.682852 + 0.730557i \(0.739261\pi\)
\(102\) 243.556i 0.236428i
\(103\) − 1372.33i − 1.31281i −0.754407 0.656407i \(-0.772075\pi\)
0.754407 0.656407i \(-0.227925\pi\)
\(104\) −323.159 −0.304696
\(105\) 0 0
\(106\) −1489.23 −1.36459
\(107\) 1657.83i 1.49784i 0.662662 + 0.748919i \(0.269427\pi\)
−0.662662 + 0.748919i \(0.730573\pi\)
\(108\) 33.0656i 0.0294605i
\(109\) 821.369 0.721770 0.360885 0.932610i \(-0.382475\pi\)
0.360885 + 0.932610i \(0.382475\pi\)
\(110\) 0 0
\(111\) −1050.01 −0.897857
\(112\) − 2152.73i − 1.81620i
\(113\) 267.142i 0.222395i 0.993798 + 0.111197i \(0.0354686\pi\)
−0.993798 + 0.111197i \(0.964531\pi\)
\(114\) −932.972 −0.766498
\(115\) 0 0
\(116\) −13.1339 −0.0105125
\(117\) 220.109i 0.173924i
\(118\) 106.960i 0.0834447i
\(119\) −808.484 −0.622803
\(120\) 0 0
\(121\) −617.847 −0.464198
\(122\) 276.247i 0.205002i
\(123\) 615.995i 0.451564i
\(124\) −20.2650 −0.0146762
\(125\) 0 0
\(126\) −1425.59 −1.00795
\(127\) − 1446.21i − 1.01048i −0.862979 0.505239i \(-0.831404\pi\)
0.862979 0.505239i \(-0.168596\pi\)
\(128\) − 1506.97i − 1.04061i
\(129\) 331.990 0.226590
\(130\) 0 0
\(131\) 1459.33 0.973297 0.486649 0.873598i \(-0.338219\pi\)
0.486649 + 0.873598i \(0.338219\pi\)
\(132\) 20.9322i 0.0138024i
\(133\) − 3097.00i − 2.01913i
\(134\) −1427.20 −0.920088
\(135\) 0 0
\(136\) −550.685 −0.347212
\(137\) − 1889.31i − 1.17821i −0.808056 0.589105i \(-0.799480\pi\)
0.808056 0.589105i \(-0.200520\pi\)
\(138\) 226.779i 0.139889i
\(139\) 1506.31 0.919159 0.459580 0.888137i \(-0.348000\pi\)
0.459580 + 0.888137i \(0.348000\pi\)
\(140\) 0 0
\(141\) 751.011 0.448557
\(142\) − 56.2890i − 0.0332653i
\(143\) 387.105i 0.226373i
\(144\) −998.717 −0.577961
\(145\) 0 0
\(146\) −597.314 −0.338589
\(147\) 2503.30i 1.40455i
\(148\) 69.6565i 0.0386873i
\(149\) 2946.38 1.61998 0.809989 0.586444i \(-0.199473\pi\)
0.809989 + 0.586444i \(0.199473\pi\)
\(150\) 0 0
\(151\) 1979.37 1.06675 0.533374 0.845880i \(-0.320924\pi\)
0.533374 + 0.845880i \(0.320924\pi\)
\(152\) − 2109.47i − 1.12566i
\(153\) 375.080i 0.198192i
\(154\) −2507.18 −1.31191
\(155\) 0 0
\(156\) −11.3622 −0.00583142
\(157\) 505.403i 0.256915i 0.991715 + 0.128457i \(0.0410025\pi\)
−0.991715 + 0.128457i \(0.958997\pi\)
\(158\) 1279.90i 0.644454i
\(159\) 1784.59 0.890110
\(160\) 0 0
\(161\) −752.792 −0.368499
\(162\) − 253.719i − 0.123049i
\(163\) 2604.26i 1.25142i 0.780055 + 0.625711i \(0.215191\pi\)
−0.780055 + 0.625711i \(0.784809\pi\)
\(164\) 40.8646 0.0194572
\(165\) 0 0
\(166\) 1437.53 0.672131
\(167\) − 845.304i − 0.391686i −0.980635 0.195843i \(-0.937256\pi\)
0.980635 0.195843i \(-0.0627443\pi\)
\(168\) 2508.15i 1.15183i
\(169\) 1986.88 0.904359
\(170\) 0 0
\(171\) −1436.79 −0.642539
\(172\) − 22.0240i − 0.00976343i
\(173\) − 886.843i − 0.389742i −0.980829 0.194871i \(-0.937571\pi\)
0.980829 0.194871i \(-0.0624289\pi\)
\(174\) 567.898 0.247427
\(175\) 0 0
\(176\) −1756.44 −0.752255
\(177\) − 128.174i − 0.0544303i
\(178\) − 3163.38i − 1.33205i
\(179\) −1103.01 −0.460575 −0.230288 0.973123i \(-0.573967\pi\)
−0.230288 + 0.973123i \(0.573967\pi\)
\(180\) 0 0
\(181\) −1200.43 −0.492967 −0.246483 0.969147i \(-0.579275\pi\)
−0.246483 + 0.969147i \(0.579275\pi\)
\(182\) − 1360.92i − 0.554275i
\(183\) − 331.037i − 0.133721i
\(184\) −512.751 −0.205438
\(185\) 0 0
\(186\) 876.244 0.345427
\(187\) 659.653i 0.257961i
\(188\) − 49.8214i − 0.0193277i
\(189\) 4745.98 1.82656
\(190\) 0 0
\(191\) 2415.93 0.915237 0.457618 0.889149i \(-0.348703\pi\)
0.457618 + 0.889149i \(0.348703\pi\)
\(192\) 1706.95i 0.641607i
\(193\) − 232.884i − 0.0868568i −0.999057 0.0434284i \(-0.986172\pi\)
0.999057 0.0434284i \(-0.0138280\pi\)
\(194\) −5204.44 −1.92607
\(195\) 0 0
\(196\) 166.067 0.0605199
\(197\) − 1418.48i − 0.513008i −0.966543 0.256504i \(-0.917429\pi\)
0.966543 0.256504i \(-0.0825707\pi\)
\(198\) 1163.16i 0.417485i
\(199\) −1068.21 −0.380520 −0.190260 0.981734i \(-0.560933\pi\)
−0.190260 + 0.981734i \(0.560933\pi\)
\(200\) 0 0
\(201\) 1710.27 0.600165
\(202\) − 3976.37i − 1.38503i
\(203\) 1885.14i 0.651777i
\(204\) −19.3619 −0.00664511
\(205\) 0 0
\(206\) 3936.47 1.33139
\(207\) 349.243i 0.117266i
\(208\) − 953.412i − 0.317823i
\(209\) −2526.88 −0.836307
\(210\) 0 0
\(211\) −1537.74 −0.501717 −0.250859 0.968024i \(-0.580713\pi\)
−0.250859 + 0.968024i \(0.580713\pi\)
\(212\) − 118.388i − 0.0383535i
\(213\) 67.4532i 0.0216987i
\(214\) −4755.41 −1.51903
\(215\) 0 0
\(216\) 3232.65 1.01830
\(217\) 2908.69i 0.909930i
\(218\) 2356.06i 0.731984i
\(219\) 715.783 0.220859
\(220\) 0 0
\(221\) −358.065 −0.108987
\(222\) − 3011.89i − 0.910563i
\(223\) 5359.68i 1.60946i 0.593638 + 0.804732i \(0.297691\pi\)
−0.593638 + 0.804732i \(0.702309\pi\)
\(224\) 337.658 0.100718
\(225\) 0 0
\(226\) −766.285 −0.225542
\(227\) 1108.36i 0.324072i 0.986785 + 0.162036i \(0.0518061\pi\)
−0.986785 + 0.162036i \(0.948194\pi\)
\(228\) − 74.1681i − 0.0215434i
\(229\) 5046.34 1.45621 0.728104 0.685467i \(-0.240402\pi\)
0.728104 + 0.685467i \(0.240402\pi\)
\(230\) 0 0
\(231\) 3004.45 0.855750
\(232\) 1284.03i 0.363365i
\(233\) − 7102.11i − 1.99689i −0.0557635 0.998444i \(-0.517759\pi\)
0.0557635 0.998444i \(-0.482241\pi\)
\(234\) −631.372 −0.176385
\(235\) 0 0
\(236\) −8.50296 −0.00234532
\(237\) − 1533.75i − 0.420372i
\(238\) − 2319.10i − 0.631617i
\(239\) −1556.22 −0.421187 −0.210594 0.977574i \(-0.567540\pi\)
−0.210594 + 0.977574i \(0.567540\pi\)
\(240\) 0 0
\(241\) 3028.88 0.809573 0.404787 0.914411i \(-0.367346\pi\)
0.404787 + 0.914411i \(0.367346\pi\)
\(242\) − 1772.27i − 0.470767i
\(243\) − 3611.06i − 0.953291i
\(244\) −21.9607 −0.00576184
\(245\) 0 0
\(246\) −1766.95 −0.457954
\(247\) − 1371.61i − 0.353334i
\(248\) 1981.21i 0.507285i
\(249\) −1722.64 −0.438426
\(250\) 0 0
\(251\) 1449.39 0.364480 0.182240 0.983254i \(-0.441665\pi\)
0.182240 + 0.983254i \(0.441665\pi\)
\(252\) − 113.330i − 0.0283297i
\(253\) 614.213i 0.152629i
\(254\) 4148.40 1.02478
\(255\) 0 0
\(256\) 349.976 0.0854433
\(257\) − 3099.62i − 0.752332i −0.926552 0.376166i \(-0.877242\pi\)
0.926552 0.376166i \(-0.122758\pi\)
\(258\) 952.299i 0.229797i
\(259\) 9997.97 2.39862
\(260\) 0 0
\(261\) 874.572 0.207412
\(262\) 4186.01i 0.987071i
\(263\) 1087.92i 0.255073i 0.991834 + 0.127537i \(0.0407070\pi\)
−0.991834 + 0.127537i \(0.959293\pi\)
\(264\) 2046.43 0.477080
\(265\) 0 0
\(266\) 8883.60 2.04770
\(267\) 3790.79i 0.868887i
\(268\) − 113.458i − 0.0258603i
\(269\) −4721.01 −1.07006 −0.535028 0.844834i \(-0.679699\pi\)
−0.535028 + 0.844834i \(0.679699\pi\)
\(270\) 0 0
\(271\) 1401.15 0.314074 0.157037 0.987593i \(-0.449806\pi\)
0.157037 + 0.987593i \(0.449806\pi\)
\(272\) − 1624.68i − 0.362171i
\(273\) 1630.84i 0.361549i
\(274\) 5419.41 1.19488
\(275\) 0 0
\(276\) −18.0281 −0.00393176
\(277\) 4122.82i 0.894283i 0.894463 + 0.447142i \(0.147558\pi\)
−0.894463 + 0.447142i \(0.852442\pi\)
\(278\) 4320.77i 0.932167i
\(279\) 1349.43 0.289564
\(280\) 0 0
\(281\) 803.897 0.170664 0.0853318 0.996353i \(-0.472805\pi\)
0.0853318 + 0.996353i \(0.472805\pi\)
\(282\) 2154.24i 0.454905i
\(283\) 3147.53i 0.661134i 0.943782 + 0.330567i \(0.107240\pi\)
−0.943782 + 0.330567i \(0.892760\pi\)
\(284\) 4.47479 0.000934964 0
\(285\) 0 0
\(286\) −1110.39 −0.229577
\(287\) − 5865.40i − 1.20635i
\(288\) − 156.650i − 0.0320510i
\(289\) 4302.83 0.875806
\(290\) 0 0
\(291\) 6236.67 1.25636
\(292\) − 47.4844i − 0.00951649i
\(293\) 2812.88i 0.560854i 0.959875 + 0.280427i \(0.0904761\pi\)
−0.959875 + 0.280427i \(0.909524\pi\)
\(294\) −7180.59 −1.42442
\(295\) 0 0
\(296\) 6809.95 1.33723
\(297\) − 3872.31i − 0.756547i
\(298\) 8451.56i 1.64290i
\(299\) −333.400 −0.0644850
\(300\) 0 0
\(301\) −3161.15 −0.605335
\(302\) 5677.73i 1.08184i
\(303\) 4765.02i 0.903444i
\(304\) 6223.53 1.17416
\(305\) 0 0
\(306\) −1075.90 −0.200997
\(307\) − 7885.52i − 1.46596i −0.680249 0.732981i \(-0.738128\pi\)
0.680249 0.732981i \(-0.261872\pi\)
\(308\) − 199.313i − 0.0368730i
\(309\) −4717.22 −0.868457
\(310\) 0 0
\(311\) −1904.46 −0.347240 −0.173620 0.984813i \(-0.555547\pi\)
−0.173620 + 0.984813i \(0.555547\pi\)
\(312\) 1110.82i 0.201563i
\(313\) 3854.89i 0.696137i 0.937469 + 0.348069i \(0.113162\pi\)
−0.937469 + 0.348069i \(0.886838\pi\)
\(314\) −1449.73 −0.260550
\(315\) 0 0
\(316\) −101.748 −0.0181132
\(317\) 1878.70i 0.332865i 0.986053 + 0.166432i \(0.0532247\pi\)
−0.986053 + 0.166432i \(0.946775\pi\)
\(318\) 5119.03i 0.902707i
\(319\) 1538.11 0.269961
\(320\) 0 0
\(321\) 5698.58 0.990853
\(322\) − 2159.35i − 0.373714i
\(323\) − 2337.32i − 0.402638i
\(324\) 20.1698 0.00345846
\(325\) 0 0
\(326\) −7470.21 −1.26913
\(327\) − 2823.35i − 0.477467i
\(328\) − 3995.11i − 0.672541i
\(329\) −7151.00 −1.19832
\(330\) 0 0
\(331\) 6829.96 1.13417 0.567083 0.823661i \(-0.308072\pi\)
0.567083 + 0.823661i \(0.308072\pi\)
\(332\) 114.279i 0.0188911i
\(333\) − 4638.36i − 0.763305i
\(334\) 2424.72 0.397229
\(335\) 0 0
\(336\) −7399.74 −1.20146
\(337\) 11048.9i 1.78597i 0.450087 + 0.892985i \(0.351393\pi\)
−0.450087 + 0.892985i \(0.648607\pi\)
\(338\) 5699.26i 0.917157i
\(339\) 918.267 0.147119
\(340\) 0 0
\(341\) 2373.24 0.376886
\(342\) − 4121.37i − 0.651632i
\(343\) − 12609.5i − 1.98499i
\(344\) −2153.17 −0.337474
\(345\) 0 0
\(346\) 2543.87 0.395258
\(347\) − 7093.14i − 1.09735i −0.836037 0.548674i \(-0.815133\pi\)
0.836037 0.548674i \(-0.184867\pi\)
\(348\) 45.1460i 0.00695425i
\(349\) 5363.16 0.822588 0.411294 0.911503i \(-0.365077\pi\)
0.411294 + 0.911503i \(0.365077\pi\)
\(350\) 0 0
\(351\) 2101.92 0.319636
\(352\) − 275.500i − 0.0417165i
\(353\) − 11789.3i − 1.77757i −0.458320 0.888787i \(-0.651549\pi\)
0.458320 0.888787i \(-0.348451\pi\)
\(354\) 367.662 0.0552006
\(355\) 0 0
\(356\) 251.478 0.0374391
\(357\) 2779.06i 0.411999i
\(358\) − 3163.94i − 0.467093i
\(359\) 2645.66 0.388949 0.194474 0.980908i \(-0.437700\pi\)
0.194474 + 0.980908i \(0.437700\pi\)
\(360\) 0 0
\(361\) 2094.39 0.305349
\(362\) − 3443.37i − 0.499943i
\(363\) 2123.77i 0.307077i
\(364\) 108.189 0.0155786
\(365\) 0 0
\(366\) 949.564 0.135613
\(367\) − 9775.68i − 1.39043i −0.718804 0.695213i \(-0.755310\pi\)
0.718804 0.695213i \(-0.244690\pi\)
\(368\) − 1512.76i − 0.214289i
\(369\) −2721.13 −0.383893
\(370\) 0 0
\(371\) −16992.6 −2.37793
\(372\) 69.6585i 0.00970866i
\(373\) − 10981.1i − 1.52435i −0.647373 0.762174i \(-0.724132\pi\)
0.647373 0.762174i \(-0.275868\pi\)
\(374\) −1892.19 −0.261611
\(375\) 0 0
\(376\) −4870.78 −0.668062
\(377\) 834.899i 0.114057i
\(378\) 13613.6i 1.85241i
\(379\) 2313.77 0.313589 0.156795 0.987631i \(-0.449884\pi\)
0.156795 + 0.987631i \(0.449884\pi\)
\(380\) 0 0
\(381\) −4971.18 −0.668455
\(382\) 6929.97i 0.928189i
\(383\) − 9219.25i − 1.22998i −0.788535 0.614989i \(-0.789160\pi\)
0.788535 0.614989i \(-0.210840\pi\)
\(384\) −5180.00 −0.688388
\(385\) 0 0
\(386\) 668.017 0.0880860
\(387\) 1466.55i 0.192633i
\(388\) − 413.736i − 0.0541346i
\(389\) −5876.90 −0.765991 −0.382996 0.923750i \(-0.625108\pi\)
−0.382996 + 0.923750i \(0.625108\pi\)
\(390\) 0 0
\(391\) −568.136 −0.0734830
\(392\) − 16235.5i − 2.09187i
\(393\) − 5016.25i − 0.643858i
\(394\) 4068.85 0.520268
\(395\) 0 0
\(396\) −92.4671 −0.0117340
\(397\) 14268.6i 1.80383i 0.431911 + 0.901916i \(0.357840\pi\)
−0.431911 + 0.901916i \(0.642160\pi\)
\(398\) − 3064.12i − 0.385905i
\(399\) −10645.5 −1.33570
\(400\) 0 0
\(401\) −11556.1 −1.43911 −0.719557 0.694434i \(-0.755655\pi\)
−0.719557 + 0.694434i \(0.755655\pi\)
\(402\) 4905.84i 0.608659i
\(403\) 1288.21i 0.159232i
\(404\) 316.108 0.0389281
\(405\) 0 0
\(406\) −5407.43 −0.661001
\(407\) − 8157.48i − 0.993492i
\(408\) 1892.91i 0.229689i
\(409\) 14148.3 1.71049 0.855245 0.518223i \(-0.173406\pi\)
0.855245 + 0.518223i \(0.173406\pi\)
\(410\) 0 0
\(411\) −6494.27 −0.779413
\(412\) 312.936i 0.0374205i
\(413\) 1220.45i 0.145410i
\(414\) −1001.79 −0.118925
\(415\) 0 0
\(416\) 149.544 0.0176250
\(417\) − 5177.73i − 0.608045i
\(418\) − 7248.25i − 0.848142i
\(419\) 2222.16 0.259092 0.129546 0.991573i \(-0.458648\pi\)
0.129546 + 0.991573i \(0.458648\pi\)
\(420\) 0 0
\(421\) 2518.51 0.291555 0.145777 0.989317i \(-0.453432\pi\)
0.145777 + 0.989317i \(0.453432\pi\)
\(422\) − 4410.94i − 0.508818i
\(423\) 3317.56i 0.381337i
\(424\) −11574.2 −1.32569
\(425\) 0 0
\(426\) −193.486 −0.0220057
\(427\) 3152.08i 0.357236i
\(428\) − 378.039i − 0.0426944i
\(429\) 1330.62 0.149751
\(430\) 0 0
\(431\) 9935.17 1.11035 0.555174 0.831734i \(-0.312652\pi\)
0.555174 + 0.831734i \(0.312652\pi\)
\(432\) 9537.22i 1.06218i
\(433\) 8427.47i 0.935331i 0.883906 + 0.467665i \(0.154905\pi\)
−0.883906 + 0.467665i \(0.845095\pi\)
\(434\) −8343.45 −0.922807
\(435\) 0 0
\(436\) −187.299 −0.0205734
\(437\) − 2176.31i − 0.238232i
\(438\) 2053.19i 0.223985i
\(439\) −4886.04 −0.531203 −0.265601 0.964083i \(-0.585570\pi\)
−0.265601 + 0.964083i \(0.585570\pi\)
\(440\) 0 0
\(441\) −11058.2 −1.19406
\(442\) − 1027.09i − 0.110529i
\(443\) − 9724.04i − 1.04290i −0.853283 0.521448i \(-0.825392\pi\)
0.853283 0.521448i \(-0.174608\pi\)
\(444\) 239.435 0.0255926
\(445\) 0 0
\(446\) −15374.0 −1.63224
\(447\) − 10127.8i − 1.07165i
\(448\) − 16253.3i − 1.71405i
\(449\) 10093.7 1.06091 0.530457 0.847712i \(-0.322020\pi\)
0.530457 + 0.847712i \(0.322020\pi\)
\(450\) 0 0
\(451\) −4785.66 −0.499662
\(452\) − 60.9171i − 0.00633915i
\(453\) − 6803.83i − 0.705678i
\(454\) −3179.28 −0.328658
\(455\) 0 0
\(456\) −7251.02 −0.744650
\(457\) 3561.77i 0.364578i 0.983245 + 0.182289i \(0.0583507\pi\)
−0.983245 + 0.182289i \(0.941649\pi\)
\(458\) 14475.2i 1.47682i
\(459\) 3581.82 0.364237
\(460\) 0 0
\(461\) −7492.00 −0.756914 −0.378457 0.925619i \(-0.623545\pi\)
−0.378457 + 0.925619i \(0.623545\pi\)
\(462\) 8618.13i 0.867861i
\(463\) − 15427.0i − 1.54849i −0.632884 0.774247i \(-0.718129\pi\)
0.632884 0.774247i \(-0.281871\pi\)
\(464\) −3788.25 −0.379020
\(465\) 0 0
\(466\) 20372.1 2.02515
\(467\) 11868.7i 1.17606i 0.808841 + 0.588028i \(0.200096\pi\)
−0.808841 + 0.588028i \(0.799904\pi\)
\(468\) − 50.1919i − 0.00495753i
\(469\) −16284.9 −1.60334
\(470\) 0 0
\(471\) 1737.26 0.169955
\(472\) 831.290i 0.0810662i
\(473\) 2579.23i 0.250725i
\(474\) 4399.51 0.426321
\(475\) 0 0
\(476\) 184.361 0.0177524
\(477\) 7883.38i 0.756719i
\(478\) − 4463.96i − 0.427148i
\(479\) −697.153 −0.0665005 −0.0332503 0.999447i \(-0.510586\pi\)
−0.0332503 + 0.999447i \(0.510586\pi\)
\(480\) 0 0
\(481\) 4427.95 0.419744
\(482\) 8688.20i 0.821030i
\(483\) 2587.63i 0.243770i
\(484\) 140.889 0.0132315
\(485\) 0 0
\(486\) 10358.2 0.966782
\(487\) 14414.0i 1.34119i 0.741822 + 0.670597i \(0.233962\pi\)
−0.741822 + 0.670597i \(0.766038\pi\)
\(488\) 2146.98i 0.199159i
\(489\) 8951.83 0.827844
\(490\) 0 0
\(491\) 17538.9 1.61206 0.806029 0.591876i \(-0.201612\pi\)
0.806029 + 0.591876i \(0.201612\pi\)
\(492\) − 140.467i − 0.0128714i
\(493\) 1422.72i 0.129972i
\(494\) 3934.41 0.358335
\(495\) 0 0
\(496\) −5845.12 −0.529140
\(497\) − 642.278i − 0.0579680i
\(498\) − 4941.32i − 0.444630i
\(499\) 18798.6 1.68645 0.843226 0.537559i \(-0.180653\pi\)
0.843226 + 0.537559i \(0.180653\pi\)
\(500\) 0 0
\(501\) −2905.62 −0.259109
\(502\) 4157.50i 0.369638i
\(503\) − 4634.11i − 0.410785i −0.978680 0.205392i \(-0.934153\pi\)
0.978680 0.205392i \(-0.0658470\pi\)
\(504\) −11079.6 −0.979219
\(505\) 0 0
\(506\) −1761.84 −0.154789
\(507\) − 6829.63i − 0.598254i
\(508\) 329.784i 0.0288027i
\(509\) 2193.57 0.191018 0.0955092 0.995429i \(-0.469552\pi\)
0.0955092 + 0.995429i \(0.469552\pi\)
\(510\) 0 0
\(511\) −6815.56 −0.590025
\(512\) − 11051.8i − 0.953958i
\(513\) 13720.6i 1.18086i
\(514\) 8891.13 0.762979
\(515\) 0 0
\(516\) −75.7045 −0.00645873
\(517\) 5834.60i 0.496335i
\(518\) 28678.7i 2.43257i
\(519\) −3048.41 −0.257823
\(520\) 0 0
\(521\) −4401.81 −0.370147 −0.185074 0.982725i \(-0.559252\pi\)
−0.185074 + 0.982725i \(0.559252\pi\)
\(522\) 2508.67i 0.210348i
\(523\) 9974.09i 0.833913i 0.908926 + 0.416957i \(0.136903\pi\)
−0.908926 + 0.416957i \(0.863097\pi\)
\(524\) −332.774 −0.0277429
\(525\) 0 0
\(526\) −3120.66 −0.258683
\(527\) 2195.20i 0.181451i
\(528\) 6037.55i 0.497634i
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) 566.204 0.0462734
\(532\) 706.216i 0.0575533i
\(533\) − 2597.69i − 0.211104i
\(534\) −10873.7 −0.881183
\(535\) 0 0
\(536\) −11092.2 −0.893861
\(537\) 3791.46i 0.304681i
\(538\) − 13542.0i − 1.08520i
\(539\) −19448.1 −1.55415
\(540\) 0 0
\(541\) −9161.72 −0.728083 −0.364042 0.931383i \(-0.618603\pi\)
−0.364042 + 0.931383i \(0.618603\pi\)
\(542\) 4019.15i 0.318519i
\(543\) 4126.31i 0.326109i
\(544\) 254.833 0.0200843
\(545\) 0 0
\(546\) −4677.99 −0.366666
\(547\) 1113.51i 0.0870390i 0.999053 + 0.0435195i \(0.0138571\pi\)
−0.999053 + 0.0435195i \(0.986143\pi\)
\(548\) 430.825i 0.0335838i
\(549\) 1462.34 0.113682
\(550\) 0 0
\(551\) −5449.92 −0.421369
\(552\) 1762.52i 0.135902i
\(553\) 14604.2i 1.12302i
\(554\) −11826.1 −0.906939
\(555\) 0 0
\(556\) −343.486 −0.0261998
\(557\) − 7660.96i − 0.582775i −0.956605 0.291387i \(-0.905883\pi\)
0.956605 0.291387i \(-0.0941168\pi\)
\(558\) 3870.78i 0.293661i
\(559\) −1400.03 −0.105930
\(560\) 0 0
\(561\) 2267.47 0.170647
\(562\) 2305.94i 0.173079i
\(563\) − 17217.7i − 1.28888i −0.764654 0.644441i \(-0.777090\pi\)
0.764654 0.644441i \(-0.222910\pi\)
\(564\) −171.255 −0.0127857
\(565\) 0 0
\(566\) −9028.54 −0.670491
\(567\) − 2895.02i − 0.214426i
\(568\) − 437.476i − 0.0323171i
\(569\) 2385.63 0.175766 0.0878830 0.996131i \(-0.471990\pi\)
0.0878830 + 0.996131i \(0.471990\pi\)
\(570\) 0 0
\(571\) 16927.9 1.24065 0.620323 0.784347i \(-0.287002\pi\)
0.620323 + 0.784347i \(0.287002\pi\)
\(572\) − 88.2725i − 0.00645255i
\(573\) − 8304.44i − 0.605450i
\(574\) 16824.6 1.22343
\(575\) 0 0
\(576\) −7540.39 −0.545457
\(577\) 2886.69i 0.208275i 0.994563 + 0.104137i \(0.0332081\pi\)
−0.994563 + 0.104137i \(0.966792\pi\)
\(578\) 12342.5i 0.888200i
\(579\) −800.509 −0.0574578
\(580\) 0 0
\(581\) 16402.7 1.17125
\(582\) 17889.6i 1.27414i
\(583\) 13864.5i 0.984920i
\(584\) −4642.30 −0.328938
\(585\) 0 0
\(586\) −8068.62 −0.568791
\(587\) 503.810i 0.0354250i 0.999843 + 0.0177125i \(0.00563836\pi\)
−0.999843 + 0.0177125i \(0.994362\pi\)
\(588\) − 570.832i − 0.0400353i
\(589\) −8409.00 −0.588263
\(590\) 0 0
\(591\) −4875.85 −0.339366
\(592\) 20091.3i 1.39484i
\(593\) 7654.92i 0.530101i 0.964235 + 0.265050i \(0.0853886\pi\)
−0.964235 + 0.265050i \(0.914611\pi\)
\(594\) 11107.6 0.767253
\(595\) 0 0
\(596\) −671.870 −0.0461760
\(597\) 3671.84i 0.251723i
\(598\) − 956.343i − 0.0653976i
\(599\) −17366.5 −1.18460 −0.592301 0.805717i \(-0.701780\pi\)
−0.592301 + 0.805717i \(0.701780\pi\)
\(600\) 0 0
\(601\) 3872.81 0.262854 0.131427 0.991326i \(-0.458044\pi\)
0.131427 + 0.991326i \(0.458044\pi\)
\(602\) − 9067.63i − 0.613902i
\(603\) 7555.06i 0.510225i
\(604\) −451.361 −0.0304066
\(605\) 0 0
\(606\) −13668.3 −0.916229
\(607\) − 12823.3i − 0.857464i −0.903432 0.428732i \(-0.858961\pi\)
0.903432 0.428732i \(-0.141039\pi\)
\(608\) 976.167i 0.0651132i
\(609\) 6479.92 0.431165
\(610\) 0 0
\(611\) −3167.07 −0.209699
\(612\) − 85.5304i − 0.00564928i
\(613\) 17226.4i 1.13502i 0.823367 + 0.567509i \(0.192093\pi\)
−0.823367 + 0.567509i \(0.807907\pi\)
\(614\) 22619.3 1.48671
\(615\) 0 0
\(616\) −19485.8 −1.27452
\(617\) − 5892.12i − 0.384454i −0.981351 0.192227i \(-0.938429\pi\)
0.981351 0.192227i \(-0.0615709\pi\)
\(618\) − 13531.1i − 0.880747i
\(619\) 13036.6 0.846503 0.423251 0.906012i \(-0.360889\pi\)
0.423251 + 0.906012i \(0.360889\pi\)
\(620\) 0 0
\(621\) 3335.09 0.215511
\(622\) − 5462.84i − 0.352154i
\(623\) − 36095.3i − 2.32123i
\(624\) −3277.23 −0.210247
\(625\) 0 0
\(626\) −11057.6 −0.705989
\(627\) 8685.84i 0.553236i
\(628\) − 115.248i − 0.00732310i
\(629\) 7545.52 0.478314
\(630\) 0 0
\(631\) −10044.6 −0.633707 −0.316853 0.948475i \(-0.602626\pi\)
−0.316853 + 0.948475i \(0.602626\pi\)
\(632\) 9947.37i 0.626084i
\(633\) 5285.79i 0.331898i
\(634\) −5388.95 −0.337575
\(635\) 0 0
\(636\) −406.945 −0.0253717
\(637\) − 10556.6i − 0.656620i
\(638\) 4412.00i 0.273782i
\(639\) −297.972 −0.0184469
\(640\) 0 0
\(641\) 4583.33 0.282419 0.141209 0.989980i \(-0.454901\pi\)
0.141209 + 0.989980i \(0.454901\pi\)
\(642\) 16346.1i 1.00488i
\(643\) − 19260.0i − 1.18125i −0.806948 0.590623i \(-0.798882\pi\)
0.806948 0.590623i \(-0.201118\pi\)
\(644\) 171.661 0.0105037
\(645\) 0 0
\(646\) 6704.50 0.408336
\(647\) − 1771.91i − 0.107667i −0.998550 0.0538337i \(-0.982856\pi\)
0.998550 0.0538337i \(-0.0171441\pi\)
\(648\) − 1971.89i − 0.119542i
\(649\) 995.784 0.0602279
\(650\) 0 0
\(651\) 9998.26 0.601940
\(652\) − 593.857i − 0.0356706i
\(653\) 28000.8i 1.67803i 0.544106 + 0.839017i \(0.316869\pi\)
−0.544106 + 0.839017i \(0.683131\pi\)
\(654\) 8098.66 0.484224
\(655\) 0 0
\(656\) 11786.7 0.701515
\(657\) 3161.94i 0.187761i
\(658\) − 20512.3i − 1.21528i
\(659\) 27664.0 1.63526 0.817629 0.575745i \(-0.195288\pi\)
0.817629 + 0.575745i \(0.195288\pi\)
\(660\) 0 0
\(661\) 23392.1 1.37647 0.688234 0.725489i \(-0.258386\pi\)
0.688234 + 0.725489i \(0.258386\pi\)
\(662\) 19591.4i 1.15022i
\(663\) 1230.80i 0.0720972i
\(664\) 11172.4 0.652973
\(665\) 0 0
\(666\) 13304.9 0.774107
\(667\) 1324.72i 0.0769016i
\(668\) 192.757i 0.0111646i
\(669\) 18423.2 1.06470
\(670\) 0 0
\(671\) 2571.82 0.147964
\(672\) − 1160.66i − 0.0666270i
\(673\) − 4318.41i − 0.247344i −0.992323 0.123672i \(-0.960533\pi\)
0.992323 0.123672i \(-0.0394670\pi\)
\(674\) −31693.3 −1.81124
\(675\) 0 0
\(676\) −453.072 −0.0257779
\(677\) 18272.8i 1.03734i 0.854974 + 0.518671i \(0.173573\pi\)
−0.854974 + 0.518671i \(0.826427\pi\)
\(678\) 2634.01i 0.149201i
\(679\) −59384.5 −3.35636
\(680\) 0 0
\(681\) 3809.84 0.214381
\(682\) 6807.53i 0.382220i
\(683\) 7245.38i 0.405910i 0.979188 + 0.202955i \(0.0650546\pi\)
−0.979188 + 0.202955i \(0.934945\pi\)
\(684\) 327.635 0.0183150
\(685\) 0 0
\(686\) 36169.9 2.01308
\(687\) − 17346.2i − 0.963314i
\(688\) − 6352.45i − 0.352013i
\(689\) −7525.76 −0.416123
\(690\) 0 0
\(691\) −12055.2 −0.663679 −0.331839 0.943336i \(-0.607669\pi\)
−0.331839 + 0.943336i \(0.607669\pi\)
\(692\) 202.229i 0.0111092i
\(693\) 13272.0i 0.727509i
\(694\) 20346.3 1.11288
\(695\) 0 0
\(696\) 4413.69 0.240374
\(697\) − 4426.64i − 0.240561i
\(698\) 15384.0i 0.834229i
\(699\) −24412.6 −1.32099
\(700\) 0 0
\(701\) −15301.9 −0.824455 −0.412228 0.911081i \(-0.635249\pi\)
−0.412228 + 0.911081i \(0.635249\pi\)
\(702\) 6029.27i 0.324160i
\(703\) 28904.0i 1.55069i
\(704\) −13261.3 −0.709948
\(705\) 0 0
\(706\) 33817.2 1.80273
\(707\) − 45371.8i − 2.41355i
\(708\) 29.2279i 0.00155148i
\(709\) 12173.6 0.644835 0.322418 0.946597i \(-0.395504\pi\)
0.322418 + 0.946597i \(0.395504\pi\)
\(710\) 0 0
\(711\) 6775.30 0.357375
\(712\) − 24585.7i − 1.29408i
\(713\) 2043.99i 0.107360i
\(714\) −7971.61 −0.417829
\(715\) 0 0
\(716\) 251.522 0.0131283
\(717\) 5349.32i 0.278625i
\(718\) 7588.95i 0.394453i
\(719\) −2639.63 −0.136914 −0.0684572 0.997654i \(-0.521808\pi\)
−0.0684572 + 0.997654i \(0.521808\pi\)
\(720\) 0 0
\(721\) 44916.5 2.32008
\(722\) 6007.67i 0.309671i
\(723\) − 10411.4i − 0.535551i
\(724\) 273.736 0.0140515
\(725\) 0 0
\(726\) −6091.94 −0.311423
\(727\) − 32759.5i − 1.67123i −0.549319 0.835613i \(-0.685113\pi\)
0.549319 0.835613i \(-0.314887\pi\)
\(728\) − 10577.0i − 0.538476i
\(729\) −14800.7 −0.751956
\(730\) 0 0
\(731\) −2385.74 −0.120711
\(732\) 75.4871i 0.00381159i
\(733\) − 29178.0i − 1.47028i −0.677917 0.735139i \(-0.737117\pi\)
0.677917 0.735139i \(-0.262883\pi\)
\(734\) 28041.1 1.41010
\(735\) 0 0
\(736\) 237.278 0.0118834
\(737\) 13287.1i 0.664092i
\(738\) − 7805.45i − 0.389326i
\(739\) 13704.9 0.682194 0.341097 0.940028i \(-0.389202\pi\)
0.341097 + 0.940028i \(0.389202\pi\)
\(740\) 0 0
\(741\) −4714.74 −0.233739
\(742\) − 48742.5i − 2.41158i
\(743\) 991.593i 0.0489610i 0.999700 + 0.0244805i \(0.00779317\pi\)
−0.999700 + 0.0244805i \(0.992207\pi\)
\(744\) 6810.14 0.335581
\(745\) 0 0
\(746\) 31498.9 1.54592
\(747\) − 7609.71i − 0.372724i
\(748\) − 150.422i − 0.00735292i
\(749\) −54260.9 −2.64706
\(750\) 0 0
\(751\) 9440.73 0.458718 0.229359 0.973342i \(-0.426337\pi\)
0.229359 + 0.973342i \(0.426337\pi\)
\(752\) − 14370.2i − 0.696844i
\(753\) − 4982.09i − 0.241112i
\(754\) −2394.87 −0.115671
\(755\) 0 0
\(756\) −1082.24 −0.0520643
\(757\) 10480.1i 0.503177i 0.967834 + 0.251589i \(0.0809530\pi\)
−0.967834 + 0.251589i \(0.919047\pi\)
\(758\) 6636.94i 0.318027i
\(759\) 2111.28 0.100968
\(760\) 0 0
\(761\) −31314.9 −1.49168 −0.745838 0.666128i \(-0.767951\pi\)
−0.745838 + 0.666128i \(0.767951\pi\)
\(762\) − 14259.6i − 0.677915i
\(763\) 26883.5i 1.27555i
\(764\) −550.909 −0.0260880
\(765\) 0 0
\(766\) 26445.0 1.24739
\(767\) 540.519i 0.0254459i
\(768\) − 1203.00i − 0.0565227i
\(769\) 20862.1 0.978292 0.489146 0.872202i \(-0.337309\pi\)
0.489146 + 0.872202i \(0.337309\pi\)
\(770\) 0 0
\(771\) −10654.6 −0.497684
\(772\) 53.1051i 0.00247577i
\(773\) 20340.2i 0.946426i 0.880948 + 0.473213i \(0.156906\pi\)
−0.880948 + 0.473213i \(0.843094\pi\)
\(774\) −4206.75 −0.195360
\(775\) 0 0
\(776\) −40448.8 −1.87117
\(777\) − 34366.8i − 1.58674i
\(778\) − 16857.6i − 0.776832i
\(779\) 16956.8 0.779898
\(780\) 0 0
\(781\) −524.043 −0.0240099
\(782\) − 1629.67i − 0.0745230i
\(783\) − 8351.71i − 0.381182i
\(784\) 47899.2 2.18200
\(785\) 0 0
\(786\) 14388.9 0.652970
\(787\) 31293.8i 1.41741i 0.705503 + 0.708707i \(0.250721\pi\)
−0.705503 + 0.708707i \(0.749279\pi\)
\(788\) 323.460i 0.0146228i
\(789\) 3739.60 0.168737
\(790\) 0 0
\(791\) −8743.58 −0.393029
\(792\) 9040.03i 0.405585i
\(793\) 1396.01i 0.0625140i
\(794\) −40928.9 −1.82936
\(795\) 0 0
\(796\) 243.587 0.0108464
\(797\) 32015.4i 1.42289i 0.702741 + 0.711446i \(0.251959\pi\)
−0.702741 + 0.711446i \(0.748041\pi\)
\(798\) − 30536.2i − 1.35460i
\(799\) −5396.89 −0.238959
\(800\) 0 0
\(801\) −16745.7 −0.738677
\(802\) − 33148.2i − 1.45948i
\(803\) 5560.91i 0.244384i
\(804\) −389.997 −0.0171071
\(805\) 0 0
\(806\) −3695.19 −0.161486
\(807\) 16227.9i 0.707867i
\(808\) − 30904.2i − 1.34555i
\(809\) −5234.16 −0.227470 −0.113735 0.993511i \(-0.536281\pi\)
−0.113735 + 0.993511i \(0.536281\pi\)
\(810\) 0 0
\(811\) −2377.40 −0.102937 −0.0514685 0.998675i \(-0.516390\pi\)
−0.0514685 + 0.998675i \(0.516390\pi\)
\(812\) − 429.873i − 0.0185783i
\(813\) − 4816.29i − 0.207767i
\(814\) 23399.4 1.00755
\(815\) 0 0
\(816\) −5584.62 −0.239584
\(817\) − 9138.87i − 0.391345i
\(818\) 40583.9i 1.73470i
\(819\) −7204.18 −0.307368
\(820\) 0 0
\(821\) 5174.70 0.219974 0.109987 0.993933i \(-0.464919\pi\)
0.109987 + 0.993933i \(0.464919\pi\)
\(822\) − 18628.5i − 0.790443i
\(823\) − 44178.3i − 1.87115i −0.353126 0.935576i \(-0.614881\pi\)
0.353126 0.935576i \(-0.385119\pi\)
\(824\) 30594.1 1.29344
\(825\) 0 0
\(826\) −3500.81 −0.147468
\(827\) 5766.56i 0.242470i 0.992624 + 0.121235i \(0.0386855\pi\)
−0.992624 + 0.121235i \(0.961314\pi\)
\(828\) − 79.6387i − 0.00334255i
\(829\) −38465.6 −1.61154 −0.805770 0.592229i \(-0.798248\pi\)
−0.805770 + 0.592229i \(0.798248\pi\)
\(830\) 0 0
\(831\) 14171.7 0.591589
\(832\) − 7198.33i − 0.299949i
\(833\) − 17989.1i − 0.748242i
\(834\) 14852.1 0.616650
\(835\) 0 0
\(836\) 576.211 0.0238381
\(837\) − 12886.3i − 0.532159i
\(838\) 6374.17i 0.262759i
\(839\) 17261.8 0.710301 0.355151 0.934809i \(-0.384430\pi\)
0.355151 + 0.934809i \(0.384430\pi\)
\(840\) 0 0
\(841\) −21071.6 −0.863981
\(842\) 7224.22i 0.295681i
\(843\) − 2763.29i − 0.112898i
\(844\) 350.655 0.0143010
\(845\) 0 0
\(846\) −9516.28 −0.386733
\(847\) − 20222.2i − 0.820358i
\(848\) − 34147.2i − 1.38281i
\(849\) 10819.2 0.437355
\(850\) 0 0
\(851\) 7025.75 0.283008
\(852\) − 15.3815i 0 0.000618500i
\(853\) − 29038.7i − 1.16561i −0.812612 0.582805i \(-0.801955\pi\)
0.812612 0.582805i \(-0.198045\pi\)
\(854\) −9041.59 −0.362291
\(855\) 0 0
\(856\) −36958.9 −1.47574
\(857\) − 9865.16i − 0.393217i −0.980482 0.196609i \(-0.937007\pi\)
0.980482 0.196609i \(-0.0629929\pi\)
\(858\) 3816.84i 0.151870i
\(859\) 24476.6 0.972214 0.486107 0.873899i \(-0.338416\pi\)
0.486107 + 0.873899i \(0.338416\pi\)
\(860\) 0 0
\(861\) −20161.6 −0.798030
\(862\) 28498.6i 1.12606i
\(863\) 37353.6i 1.47339i 0.676227 + 0.736693i \(0.263614\pi\)
−0.676227 + 0.736693i \(0.736386\pi\)
\(864\) −1495.92 −0.0589032
\(865\) 0 0
\(866\) −24173.8 −0.948567
\(867\) − 14790.4i − 0.579365i
\(868\) − 663.276i − 0.0259367i
\(869\) 11915.7 0.465148
\(870\) 0 0
\(871\) −7212.34 −0.280575
\(872\) 18311.2i 0.711120i
\(873\) 27550.3i 1.06808i
\(874\) 6242.66 0.241603
\(875\) 0 0
\(876\) −163.222 −0.00629538
\(877\) − 25920.7i − 0.998040i −0.866590 0.499020i \(-0.833693\pi\)
0.866590 0.499020i \(-0.166307\pi\)
\(878\) − 14015.4i − 0.538720i
\(879\) 9668.92 0.371018
\(880\) 0 0
\(881\) −9337.06 −0.357064 −0.178532 0.983934i \(-0.557135\pi\)
−0.178532 + 0.983934i \(0.557135\pi\)
\(882\) − 31720.0i − 1.21096i
\(883\) 70.8656i 0.00270081i 0.999999 + 0.00135041i \(0.000429848\pi\)
−0.999999 + 0.00135041i \(0.999570\pi\)
\(884\) 81.6505 0.00310656
\(885\) 0 0
\(886\) 27893.0 1.05765
\(887\) − 1058.85i − 0.0400819i −0.999799 0.0200409i \(-0.993620\pi\)
0.999799 0.0200409i \(-0.00637965\pi\)
\(888\) − 23408.3i − 0.884608i
\(889\) 47334.7 1.78578
\(890\) 0 0
\(891\) −2362.08 −0.0888135
\(892\) − 1222.18i − 0.0458762i
\(893\) − 20673.5i − 0.774705i
\(894\) 29051.2 1.08682
\(895\) 0 0
\(896\) 49323.1 1.83903
\(897\) 1146.02i 0.0426583i
\(898\) 28953.3i 1.07593i
\(899\) 5118.55 0.189892
\(900\) 0 0
\(901\) −12824.4 −0.474187
\(902\) − 13727.4i − 0.506734i
\(903\) 10866.1i 0.400443i
\(904\) −5955.54 −0.219113
\(905\) 0 0
\(906\) 19516.5 0.715664
\(907\) 29050.2i 1.06350i 0.846900 + 0.531751i \(0.178466\pi\)
−0.846900 + 0.531751i \(0.821534\pi\)
\(908\) − 252.742i − 0.00923736i
\(909\) −21049.3 −0.768055
\(910\) 0 0
\(911\) 16041.6 0.583404 0.291702 0.956509i \(-0.405778\pi\)
0.291702 + 0.956509i \(0.405778\pi\)
\(912\) − 21392.6i − 0.776732i
\(913\) − 13383.2i − 0.485125i
\(914\) −10216.8 −0.369738
\(915\) 0 0
\(916\) −1150.73 −0.0415078
\(917\) 47763.9i 1.72007i
\(918\) 10274.3i 0.369392i
\(919\) 30151.2 1.08226 0.541130 0.840939i \(-0.317997\pi\)
0.541130 + 0.840939i \(0.317997\pi\)
\(920\) 0 0
\(921\) −27105.5 −0.969767
\(922\) − 21490.5i − 0.767626i
\(923\) − 284.455i − 0.0101440i
\(924\) −685.112 −0.0243923
\(925\) 0 0
\(926\) 44251.6 1.57041
\(927\) − 20838.1i − 0.738311i
\(928\) − 594.192i − 0.0210186i
\(929\) −43339.8 −1.53061 −0.765303 0.643670i \(-0.777411\pi\)
−0.765303 + 0.643670i \(0.777411\pi\)
\(930\) 0 0
\(931\) 68909.5 2.42580
\(932\) 1619.51i 0.0569194i
\(933\) 6546.32i 0.229707i
\(934\) −34044.8 −1.19270
\(935\) 0 0
\(936\) −4907.00 −0.171357
\(937\) 27291.9i 0.951533i 0.879572 + 0.475766i \(0.157829\pi\)
−0.879572 + 0.475766i \(0.842171\pi\)
\(938\) − 46712.5i − 1.62603i
\(939\) 13250.7 0.460511
\(940\) 0 0
\(941\) −4358.15 −0.150980 −0.0754898 0.997147i \(-0.524052\pi\)
−0.0754898 + 0.997147i \(0.524052\pi\)
\(942\) 4983.25i 0.172360i
\(943\) − 4121.72i − 0.142335i
\(944\) −2452.54 −0.0845587
\(945\) 0 0
\(946\) −7398.40 −0.254274
\(947\) 39067.8i 1.34059i 0.742097 + 0.670293i \(0.233831\pi\)
−0.742097 + 0.670293i \(0.766169\pi\)
\(948\) 349.746i 0.0119823i
\(949\) −3018.51 −0.103251
\(950\) 0 0
\(951\) 6457.78 0.220197
\(952\) − 18024.0i − 0.613614i
\(953\) 52563.8i 1.78668i 0.449379 + 0.893341i \(0.351645\pi\)
−0.449379 + 0.893341i \(0.648355\pi\)
\(954\) −22613.1 −0.767428
\(955\) 0 0
\(956\) 354.869 0.0120055
\(957\) − 5287.06i − 0.178585i
\(958\) − 1999.75i − 0.0674416i
\(959\) 61837.4 2.08220
\(960\) 0 0
\(961\) −21893.3 −0.734896
\(962\) 12701.4i 0.425684i
\(963\) 25173.3i 0.842365i
\(964\) −690.682 −0.0230761
\(965\) 0 0
\(966\) −7422.49 −0.247220
\(967\) − 2440.46i − 0.0811580i −0.999176 0.0405790i \(-0.987080\pi\)
0.999176 0.0405790i \(-0.0129203\pi\)
\(968\) − 13774.0i − 0.457348i
\(969\) −8034.24 −0.266354
\(970\) 0 0
\(971\) 45490.7 1.50347 0.751733 0.659468i \(-0.229218\pi\)
0.751733 + 0.659468i \(0.229218\pi\)
\(972\) 823.439i 0.0271727i
\(973\) 49301.5i 1.62439i
\(974\) −41345.9 −1.36017
\(975\) 0 0
\(976\) −6334.21 −0.207739
\(977\) − 33244.4i − 1.08862i −0.838884 0.544311i \(-0.816791\pi\)
0.838884 0.544311i \(-0.183209\pi\)
\(978\) 25677.9i 0.839559i
\(979\) −29450.6 −0.961437
\(980\) 0 0
\(981\) 12472.1 0.405914
\(982\) 50309.6i 1.63487i
\(983\) − 1171.32i − 0.0380053i −0.999819 0.0190027i \(-0.993951\pi\)
0.999819 0.0190027i \(-0.00604910\pi\)
\(984\) −13732.7 −0.444901
\(985\) 0 0
\(986\) −4081.02 −0.131811
\(987\) 24580.6i 0.792716i
\(988\) 312.772i 0.0100715i
\(989\) −2221.40 −0.0714220
\(990\) 0 0
\(991\) −3714.32 −0.119061 −0.0595304 0.998226i \(-0.518960\pi\)
−0.0595304 + 0.998226i \(0.518960\pi\)
\(992\) − 916.814i − 0.0293436i
\(993\) − 23477.1i − 0.750276i
\(994\) 1842.34 0.0587883
\(995\) 0 0
\(996\) 392.818 0.0124969
\(997\) 19521.0i 0.620098i 0.950721 + 0.310049i \(0.100345\pi\)
−0.950721 + 0.310049i \(0.899655\pi\)
\(998\) 53922.9i 1.71032i
\(999\) −44293.9 −1.40280
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 575.4.b.g.24.6 8
5.2 odd 4 575.4.a.i.1.2 4
5.3 odd 4 23.4.a.b.1.3 4
5.4 even 2 inner 575.4.b.g.24.3 8
15.8 even 4 207.4.a.e.1.2 4
20.3 even 4 368.4.a.l.1.2 4
35.13 even 4 1127.4.a.c.1.3 4
40.3 even 4 1472.4.a.bf.1.3 4
40.13 odd 4 1472.4.a.y.1.2 4
115.68 even 4 529.4.a.g.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.a.b.1.3 4 5.3 odd 4
207.4.a.e.1.2 4 15.8 even 4
368.4.a.l.1.2 4 20.3 even 4
529.4.a.g.1.3 4 115.68 even 4
575.4.a.i.1.2 4 5.2 odd 4
575.4.b.g.24.3 8 5.4 even 2 inner
575.4.b.g.24.6 8 1.1 even 1 trivial
1127.4.a.c.1.3 4 35.13 even 4
1472.4.a.y.1.2 4 40.13 odd 4
1472.4.a.bf.1.3 4 40.3 even 4