Properties

Label 1472.4.a.y.1.2
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,4,Mod(1,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.334189.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 16x^{2} - 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.83969\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.43737 q^{3} +17.9704 q^{5} +32.7301 q^{7} -15.1845 q^{9} -26.7049 q^{11} +14.4956 q^{13} -61.7710 q^{15} +24.7016 q^{17} -94.6224 q^{19} -112.505 q^{21} -23.0000 q^{23} +197.935 q^{25} +145.004 q^{27} +57.5965 q^{29} +88.8691 q^{31} +91.7948 q^{33} +588.173 q^{35} +305.467 q^{37} -49.8269 q^{39} -179.205 q^{41} +96.5826 q^{43} -272.871 q^{45} +218.484 q^{47} +728.258 q^{49} -84.9085 q^{51} +519.174 q^{53} -479.898 q^{55} +325.252 q^{57} +37.2884 q^{59} -96.3052 q^{61} -496.989 q^{63} +260.493 q^{65} -497.552 q^{67} +79.0596 q^{69} -19.6235 q^{71} -208.235 q^{73} -680.378 q^{75} -874.054 q^{77} -446.200 q^{79} -88.4513 q^{81} -501.151 q^{83} +443.897 q^{85} -197.981 q^{87} +1102.82 q^{89} +474.444 q^{91} -305.476 q^{93} -1700.40 q^{95} +1814.37 q^{97} +405.500 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 7 q^{3} - 14 q^{5} + 16 q^{7} - 33 q^{9} - 8 q^{11} - 111 q^{13} + 10 q^{15} + 98 q^{17} - 96 q^{19} - 180 q^{21} - 92 q^{23} + 184 q^{25} + 155 q^{27} - 21 q^{29} - 193 q^{31} - 418 q^{33} + 752 q^{35}+ \cdots + 1498 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.43737 −0.661523 −0.330761 0.943714i \(-0.607306\pi\)
−0.330761 + 0.943714i \(0.607306\pi\)
\(4\) 0 0
\(5\) 17.9704 1.60732 0.803661 0.595087i \(-0.202883\pi\)
0.803661 + 0.595087i \(0.202883\pi\)
\(6\) 0 0
\(7\) 32.7301 1.76726 0.883629 0.468187i \(-0.155093\pi\)
0.883629 + 0.468187i \(0.155093\pi\)
\(8\) 0 0
\(9\) −15.1845 −0.562388
\(10\) 0 0
\(11\) −26.7049 −0.731985 −0.365993 0.930618i \(-0.619270\pi\)
−0.365993 + 0.930618i \(0.619270\pi\)
\(12\) 0 0
\(13\) 14.4956 0.309259 0.154630 0.987973i \(-0.450582\pi\)
0.154630 + 0.987973i \(0.450582\pi\)
\(14\) 0 0
\(15\) −61.7710 −1.06328
\(16\) 0 0
\(17\) 24.7016 0.352412 0.176206 0.984353i \(-0.443617\pi\)
0.176206 + 0.984353i \(0.443617\pi\)
\(18\) 0 0
\(19\) −94.6224 −1.14252 −0.571259 0.820770i \(-0.693545\pi\)
−0.571259 + 0.820770i \(0.693545\pi\)
\(20\) 0 0
\(21\) −112.505 −1.16908
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 197.935 1.58348
\(26\) 0 0
\(27\) 145.004 1.03355
\(28\) 0 0
\(29\) 57.5965 0.368807 0.184403 0.982851i \(-0.440965\pi\)
0.184403 + 0.982851i \(0.440965\pi\)
\(30\) 0 0
\(31\) 88.8691 0.514882 0.257441 0.966294i \(-0.417121\pi\)
0.257441 + 0.966294i \(0.417121\pi\)
\(32\) 0 0
\(33\) 91.7948 0.484225
\(34\) 0 0
\(35\) 588.173 2.84055
\(36\) 0 0
\(37\) 305.467 1.35726 0.678629 0.734482i \(-0.262575\pi\)
0.678629 + 0.734482i \(0.262575\pi\)
\(38\) 0 0
\(39\) −49.8269 −0.204582
\(40\) 0 0
\(41\) −179.205 −0.682613 −0.341306 0.939952i \(-0.610869\pi\)
−0.341306 + 0.939952i \(0.610869\pi\)
\(42\) 0 0
\(43\) 96.5826 0.342528 0.171264 0.985225i \(-0.445215\pi\)
0.171264 + 0.985225i \(0.445215\pi\)
\(44\) 0 0
\(45\) −272.871 −0.903938
\(46\) 0 0
\(47\) 218.484 0.678067 0.339034 0.940774i \(-0.389900\pi\)
0.339034 + 0.940774i \(0.389900\pi\)
\(48\) 0 0
\(49\) 728.258 2.12320
\(50\) 0 0
\(51\) −84.9085 −0.233129
\(52\) 0 0
\(53\) 519.174 1.34555 0.672774 0.739848i \(-0.265103\pi\)
0.672774 + 0.739848i \(0.265103\pi\)
\(54\) 0 0
\(55\) −479.898 −1.17654
\(56\) 0 0
\(57\) 325.252 0.755802
\(58\) 0 0
\(59\) 37.2884 0.0822803 0.0411401 0.999153i \(-0.486901\pi\)
0.0411401 + 0.999153i \(0.486901\pi\)
\(60\) 0 0
\(61\) −96.3052 −0.202141 −0.101071 0.994879i \(-0.532227\pi\)
−0.101071 + 0.994879i \(0.532227\pi\)
\(62\) 0 0
\(63\) −496.989 −0.993884
\(64\) 0 0
\(65\) 260.493 0.497079
\(66\) 0 0
\(67\) −497.552 −0.907248 −0.453624 0.891193i \(-0.649869\pi\)
−0.453624 + 0.891193i \(0.649869\pi\)
\(68\) 0 0
\(69\) 79.0596 0.137937
\(70\) 0 0
\(71\) −19.6235 −0.0328011 −0.0164005 0.999866i \(-0.505221\pi\)
−0.0164005 + 0.999866i \(0.505221\pi\)
\(72\) 0 0
\(73\) −208.235 −0.333865 −0.166932 0.985968i \(-0.553386\pi\)
−0.166932 + 0.985968i \(0.553386\pi\)
\(74\) 0 0
\(75\) −680.378 −1.04751
\(76\) 0 0
\(77\) −874.054 −1.29361
\(78\) 0 0
\(79\) −446.200 −0.635461 −0.317730 0.948181i \(-0.602921\pi\)
−0.317730 + 0.948181i \(0.602921\pi\)
\(80\) 0 0
\(81\) −88.4513 −0.121332
\(82\) 0 0
\(83\) −501.151 −0.662752 −0.331376 0.943499i \(-0.607513\pi\)
−0.331376 + 0.943499i \(0.607513\pi\)
\(84\) 0 0
\(85\) 443.897 0.566440
\(86\) 0 0
\(87\) −197.981 −0.243974
\(88\) 0 0
\(89\) 1102.82 1.31347 0.656733 0.754124i \(-0.271938\pi\)
0.656733 + 0.754124i \(0.271938\pi\)
\(90\) 0 0
\(91\) 474.444 0.546541
\(92\) 0 0
\(93\) −305.476 −0.340606
\(94\) 0 0
\(95\) −1700.40 −1.83640
\(96\) 0 0
\(97\) 1814.37 1.89919 0.949595 0.313478i \(-0.101494\pi\)
0.949595 + 0.313478i \(0.101494\pi\)
\(98\) 0 0
\(99\) 405.500 0.411659
\(100\) 0 0
\(101\) 1386.24 1.36570 0.682852 0.730557i \(-0.260739\pi\)
0.682852 + 0.730557i \(0.260739\pi\)
\(102\) 0 0
\(103\) 1372.33 1.31281 0.656407 0.754407i \(-0.272075\pi\)
0.656407 + 0.754407i \(0.272075\pi\)
\(104\) 0 0
\(105\) −2021.77 −1.87909
\(106\) 0 0
\(107\) −1657.83 −1.49784 −0.748919 0.662662i \(-0.769427\pi\)
−0.748919 + 0.662662i \(0.769427\pi\)
\(108\) 0 0
\(109\) 821.369 0.721770 0.360885 0.932610i \(-0.382475\pi\)
0.360885 + 0.932610i \(0.382475\pi\)
\(110\) 0 0
\(111\) −1050.01 −0.897857
\(112\) 0 0
\(113\) −267.142 −0.222395 −0.111197 0.993798i \(-0.535469\pi\)
−0.111197 + 0.993798i \(0.535469\pi\)
\(114\) 0 0
\(115\) −413.319 −0.335150
\(116\) 0 0
\(117\) −220.109 −0.173924
\(118\) 0 0
\(119\) 808.484 0.622803
\(120\) 0 0
\(121\) −617.847 −0.464198
\(122\) 0 0
\(123\) 615.995 0.451564
\(124\) 0 0
\(125\) 1310.68 0.937846
\(126\) 0 0
\(127\) −1446.21 −1.01048 −0.505239 0.862979i \(-0.668596\pi\)
−0.505239 + 0.862979i \(0.668596\pi\)
\(128\) 0 0
\(129\) −331.990 −0.226590
\(130\) 0 0
\(131\) −1459.33 −0.973297 −0.486649 0.873598i \(-0.661781\pi\)
−0.486649 + 0.873598i \(0.661781\pi\)
\(132\) 0 0
\(133\) −3097.00 −2.01913
\(134\) 0 0
\(135\) 2605.78 1.66126
\(136\) 0 0
\(137\) −1889.31 −1.17821 −0.589105 0.808056i \(-0.700520\pi\)
−0.589105 + 0.808056i \(0.700520\pi\)
\(138\) 0 0
\(139\) 1506.31 0.919159 0.459580 0.888137i \(-0.348000\pi\)
0.459580 + 0.888137i \(0.348000\pi\)
\(140\) 0 0
\(141\) −751.011 −0.448557
\(142\) 0 0
\(143\) −387.105 −0.226373
\(144\) 0 0
\(145\) 1035.03 0.592791
\(146\) 0 0
\(147\) −2503.30 −1.40455
\(148\) 0 0
\(149\) 2946.38 1.61998 0.809989 0.586444i \(-0.199473\pi\)
0.809989 + 0.586444i \(0.199473\pi\)
\(150\) 0 0
\(151\) 1979.37 1.06675 0.533374 0.845880i \(-0.320924\pi\)
0.533374 + 0.845880i \(0.320924\pi\)
\(152\) 0 0
\(153\) −375.080 −0.198192
\(154\) 0 0
\(155\) 1597.01 0.827582
\(156\) 0 0
\(157\) −505.403 −0.256915 −0.128457 0.991715i \(-0.541003\pi\)
−0.128457 + 0.991715i \(0.541003\pi\)
\(158\) 0 0
\(159\) −1784.59 −0.890110
\(160\) 0 0
\(161\) −752.792 −0.368499
\(162\) 0 0
\(163\) 2604.26 1.25142 0.625711 0.780055i \(-0.284809\pi\)
0.625711 + 0.780055i \(0.284809\pi\)
\(164\) 0 0
\(165\) 1649.59 0.778305
\(166\) 0 0
\(167\) −845.304 −0.391686 −0.195843 0.980635i \(-0.562744\pi\)
−0.195843 + 0.980635i \(0.562744\pi\)
\(168\) 0 0
\(169\) −1986.88 −0.904359
\(170\) 0 0
\(171\) 1436.79 0.642539
\(172\) 0 0
\(173\) −886.843 −0.389742 −0.194871 0.980829i \(-0.562429\pi\)
−0.194871 + 0.980829i \(0.562429\pi\)
\(174\) 0 0
\(175\) 6478.44 2.79842
\(176\) 0 0
\(177\) −128.174 −0.0544303
\(178\) 0 0
\(179\) −1103.01 −0.460575 −0.230288 0.973123i \(-0.573967\pi\)
−0.230288 + 0.973123i \(0.573967\pi\)
\(180\) 0 0
\(181\) 1200.43 0.492967 0.246483 0.969147i \(-0.420725\pi\)
0.246483 + 0.969147i \(0.420725\pi\)
\(182\) 0 0
\(183\) 331.037 0.133721
\(184\) 0 0
\(185\) 5489.37 2.18155
\(186\) 0 0
\(187\) −659.653 −0.257961
\(188\) 0 0
\(189\) 4745.98 1.82656
\(190\) 0 0
\(191\) 2415.93 0.915237 0.457618 0.889149i \(-0.348703\pi\)
0.457618 + 0.889149i \(0.348703\pi\)
\(192\) 0 0
\(193\) 232.884 0.0868568 0.0434284 0.999057i \(-0.486172\pi\)
0.0434284 + 0.999057i \(0.486172\pi\)
\(194\) 0 0
\(195\) −895.410 −0.328829
\(196\) 0 0
\(197\) 1418.48 0.513008 0.256504 0.966543i \(-0.417429\pi\)
0.256504 + 0.966543i \(0.417429\pi\)
\(198\) 0 0
\(199\) 1068.21 0.380520 0.190260 0.981734i \(-0.439067\pi\)
0.190260 + 0.981734i \(0.439067\pi\)
\(200\) 0 0
\(201\) 1710.27 0.600165
\(202\) 0 0
\(203\) 1885.14 0.651777
\(204\) 0 0
\(205\) −3220.39 −1.09718
\(206\) 0 0
\(207\) 349.243 0.117266
\(208\) 0 0
\(209\) 2526.88 0.836307
\(210\) 0 0
\(211\) 1537.74 0.501717 0.250859 0.968024i \(-0.419287\pi\)
0.250859 + 0.968024i \(0.419287\pi\)
\(212\) 0 0
\(213\) 67.4532 0.0216987
\(214\) 0 0
\(215\) 1735.63 0.550553
\(216\) 0 0
\(217\) 2908.69 0.909930
\(218\) 0 0
\(219\) 715.783 0.220859
\(220\) 0 0
\(221\) 358.065 0.108987
\(222\) 0 0
\(223\) −5359.68 −1.60946 −0.804732 0.593638i \(-0.797691\pi\)
−0.804732 + 0.593638i \(0.797691\pi\)
\(224\) 0 0
\(225\) −3005.54 −0.890532
\(226\) 0 0
\(227\) −1108.36 −0.324072 −0.162036 0.986785i \(-0.551806\pi\)
−0.162036 + 0.986785i \(0.551806\pi\)
\(228\) 0 0
\(229\) 5046.34 1.45621 0.728104 0.685467i \(-0.240402\pi\)
0.728104 + 0.685467i \(0.240402\pi\)
\(230\) 0 0
\(231\) 3004.45 0.855750
\(232\) 0 0
\(233\) 7102.11 1.99689 0.998444 0.0557635i \(-0.0177593\pi\)
0.998444 + 0.0557635i \(0.0177593\pi\)
\(234\) 0 0
\(235\) 3926.25 1.08987
\(236\) 0 0
\(237\) 1533.75 0.420372
\(238\) 0 0
\(239\) 1556.22 0.421187 0.210594 0.977574i \(-0.432460\pi\)
0.210594 + 0.977574i \(0.432460\pi\)
\(240\) 0 0
\(241\) 3028.88 0.809573 0.404787 0.914411i \(-0.367346\pi\)
0.404787 + 0.914411i \(0.367346\pi\)
\(242\) 0 0
\(243\) −3611.06 −0.953291
\(244\) 0 0
\(245\) 13087.1 3.41267
\(246\) 0 0
\(247\) −1371.61 −0.353334
\(248\) 0 0
\(249\) 1722.64 0.438426
\(250\) 0 0
\(251\) −1449.39 −0.364480 −0.182240 0.983254i \(-0.558335\pi\)
−0.182240 + 0.983254i \(0.558335\pi\)
\(252\) 0 0
\(253\) 614.213 0.152629
\(254\) 0 0
\(255\) −1525.84 −0.374713
\(256\) 0 0
\(257\) −3099.62 −0.752332 −0.376166 0.926552i \(-0.622758\pi\)
−0.376166 + 0.926552i \(0.622758\pi\)
\(258\) 0 0
\(259\) 9997.97 2.39862
\(260\) 0 0
\(261\) −874.572 −0.207412
\(262\) 0 0
\(263\) −1087.92 −0.255073 −0.127537 0.991834i \(-0.540707\pi\)
−0.127537 + 0.991834i \(0.540707\pi\)
\(264\) 0 0
\(265\) 9329.76 2.16273
\(266\) 0 0
\(267\) −3790.79 −0.868887
\(268\) 0 0
\(269\) −4721.01 −1.07006 −0.535028 0.844834i \(-0.679699\pi\)
−0.535028 + 0.844834i \(0.679699\pi\)
\(270\) 0 0
\(271\) 1401.15 0.314074 0.157037 0.987593i \(-0.449806\pi\)
0.157037 + 0.987593i \(0.449806\pi\)
\(272\) 0 0
\(273\) −1630.84 −0.361549
\(274\) 0 0
\(275\) −5285.85 −1.15909
\(276\) 0 0
\(277\) −4122.82 −0.894283 −0.447142 0.894463i \(-0.647558\pi\)
−0.447142 + 0.894463i \(0.647558\pi\)
\(278\) 0 0
\(279\) −1349.43 −0.289564
\(280\) 0 0
\(281\) 803.897 0.170664 0.0853318 0.996353i \(-0.472805\pi\)
0.0853318 + 0.996353i \(0.472805\pi\)
\(282\) 0 0
\(283\) 3147.53 0.661134 0.330567 0.943782i \(-0.392760\pi\)
0.330567 + 0.943782i \(0.392760\pi\)
\(284\) 0 0
\(285\) 5844.92 1.21482
\(286\) 0 0
\(287\) −5865.40 −1.20635
\(288\) 0 0
\(289\) −4302.83 −0.875806
\(290\) 0 0
\(291\) −6236.67 −1.25636
\(292\) 0 0
\(293\) 2812.88 0.560854 0.280427 0.959875i \(-0.409524\pi\)
0.280427 + 0.959875i \(0.409524\pi\)
\(294\) 0 0
\(295\) 670.088 0.132251
\(296\) 0 0
\(297\) −3872.31 −0.756547
\(298\) 0 0
\(299\) −333.400 −0.0644850
\(300\) 0 0
\(301\) 3161.15 0.605335
\(302\) 0 0
\(303\) −4765.02 −0.903444
\(304\) 0 0
\(305\) −1730.64 −0.324906
\(306\) 0 0
\(307\) 7885.52 1.46596 0.732981 0.680249i \(-0.238128\pi\)
0.732981 + 0.680249i \(0.238128\pi\)
\(308\) 0 0
\(309\) −4717.22 −0.868457
\(310\) 0 0
\(311\) −1904.46 −0.347240 −0.173620 0.984813i \(-0.555547\pi\)
−0.173620 + 0.984813i \(0.555547\pi\)
\(312\) 0 0
\(313\) −3854.89 −0.696137 −0.348069 0.937469i \(-0.613162\pi\)
−0.348069 + 0.937469i \(0.613162\pi\)
\(314\) 0 0
\(315\) −8931.09 −1.59749
\(316\) 0 0
\(317\) −1878.70 −0.332865 −0.166432 0.986053i \(-0.553225\pi\)
−0.166432 + 0.986053i \(0.553225\pi\)
\(318\) 0 0
\(319\) −1538.11 −0.269961
\(320\) 0 0
\(321\) 5698.58 0.990853
\(322\) 0 0
\(323\) −2337.32 −0.402638
\(324\) 0 0
\(325\) 2869.20 0.489707
\(326\) 0 0
\(327\) −2823.35 −0.477467
\(328\) 0 0
\(329\) 7151.00 1.19832
\(330\) 0 0
\(331\) −6829.96 −1.13417 −0.567083 0.823661i \(-0.691928\pi\)
−0.567083 + 0.823661i \(0.691928\pi\)
\(332\) 0 0
\(333\) −4638.36 −0.763305
\(334\) 0 0
\(335\) −8941.21 −1.45824
\(336\) 0 0
\(337\) 11048.9 1.78597 0.892985 0.450087i \(-0.148607\pi\)
0.892985 + 0.450087i \(0.148607\pi\)
\(338\) 0 0
\(339\) 918.267 0.147119
\(340\) 0 0
\(341\) −2373.24 −0.376886
\(342\) 0 0
\(343\) 12609.5 1.98499
\(344\) 0 0
\(345\) 1420.73 0.221709
\(346\) 0 0
\(347\) 7093.14 1.09735 0.548674 0.836037i \(-0.315133\pi\)
0.548674 + 0.836037i \(0.315133\pi\)
\(348\) 0 0
\(349\) 5363.16 0.822588 0.411294 0.911503i \(-0.365077\pi\)
0.411294 + 0.911503i \(0.365077\pi\)
\(350\) 0 0
\(351\) 2101.92 0.319636
\(352\) 0 0
\(353\) 11789.3 1.77757 0.888787 0.458320i \(-0.151549\pi\)
0.888787 + 0.458320i \(0.151549\pi\)
\(354\) 0 0
\(355\) −352.642 −0.0527219
\(356\) 0 0
\(357\) −2779.06 −0.411999
\(358\) 0 0
\(359\) −2645.66 −0.388949 −0.194474 0.980908i \(-0.562300\pi\)
−0.194474 + 0.980908i \(0.562300\pi\)
\(360\) 0 0
\(361\) 2094.39 0.305349
\(362\) 0 0
\(363\) 2123.77 0.307077
\(364\) 0 0
\(365\) −3742.07 −0.536628
\(366\) 0 0
\(367\) −9775.68 −1.39043 −0.695213 0.718804i \(-0.744690\pi\)
−0.695213 + 0.718804i \(0.744690\pi\)
\(368\) 0 0
\(369\) 2721.13 0.383893
\(370\) 0 0
\(371\) 16992.6 2.37793
\(372\) 0 0
\(373\) −10981.1 −1.52435 −0.762174 0.647373i \(-0.775868\pi\)
−0.762174 + 0.647373i \(0.775868\pi\)
\(374\) 0 0
\(375\) −4505.30 −0.620407
\(376\) 0 0
\(377\) 834.899 0.114057
\(378\) 0 0
\(379\) 2313.77 0.313589 0.156795 0.987631i \(-0.449884\pi\)
0.156795 + 0.987631i \(0.449884\pi\)
\(380\) 0 0
\(381\) 4971.18 0.668455
\(382\) 0 0
\(383\) 9219.25 1.22998 0.614989 0.788535i \(-0.289160\pi\)
0.614989 + 0.788535i \(0.289160\pi\)
\(384\) 0 0
\(385\) −15707.1 −2.07924
\(386\) 0 0
\(387\) −1466.55 −0.192633
\(388\) 0 0
\(389\) −5876.90 −0.765991 −0.382996 0.923750i \(-0.625108\pi\)
−0.382996 + 0.923750i \(0.625108\pi\)
\(390\) 0 0
\(391\) −568.136 −0.0734830
\(392\) 0 0
\(393\) 5016.25 0.643858
\(394\) 0 0
\(395\) −8018.39 −1.02139
\(396\) 0 0
\(397\) −14268.6 −1.80383 −0.901916 0.431911i \(-0.857840\pi\)
−0.901916 + 0.431911i \(0.857840\pi\)
\(398\) 0 0
\(399\) 10645.5 1.33570
\(400\) 0 0
\(401\) −11556.1 −1.43911 −0.719557 0.694434i \(-0.755655\pi\)
−0.719557 + 0.694434i \(0.755655\pi\)
\(402\) 0 0
\(403\) 1288.21 0.159232
\(404\) 0 0
\(405\) −1589.51 −0.195020
\(406\) 0 0
\(407\) −8157.48 −0.993492
\(408\) 0 0
\(409\) −14148.3 −1.71049 −0.855245 0.518223i \(-0.826594\pi\)
−0.855245 + 0.518223i \(0.826594\pi\)
\(410\) 0 0
\(411\) 6494.27 0.779413
\(412\) 0 0
\(413\) 1220.45 0.145410
\(414\) 0 0
\(415\) −9005.88 −1.06526
\(416\) 0 0
\(417\) −5177.73 −0.608045
\(418\) 0 0
\(419\) 2222.16 0.259092 0.129546 0.991573i \(-0.458648\pi\)
0.129546 + 0.991573i \(0.458648\pi\)
\(420\) 0 0
\(421\) −2518.51 −0.291555 −0.145777 0.989317i \(-0.546568\pi\)
−0.145777 + 0.989317i \(0.546568\pi\)
\(422\) 0 0
\(423\) −3317.56 −0.381337
\(424\) 0 0
\(425\) 4889.31 0.558039
\(426\) 0 0
\(427\) −3152.08 −0.357236
\(428\) 0 0
\(429\) 1330.62 0.149751
\(430\) 0 0
\(431\) 9935.17 1.11035 0.555174 0.831734i \(-0.312652\pi\)
0.555174 + 0.831734i \(0.312652\pi\)
\(432\) 0 0
\(433\) −8427.47 −0.935331 −0.467665 0.883906i \(-0.654905\pi\)
−0.467665 + 0.883906i \(0.654905\pi\)
\(434\) 0 0
\(435\) −3557.79 −0.392145
\(436\) 0 0
\(437\) 2176.31 0.238232
\(438\) 0 0
\(439\) 4886.04 0.531203 0.265601 0.964083i \(-0.414430\pi\)
0.265601 + 0.964083i \(0.414430\pi\)
\(440\) 0 0
\(441\) −11058.2 −1.19406
\(442\) 0 0
\(443\) −9724.04 −1.04290 −0.521448 0.853283i \(-0.674608\pi\)
−0.521448 + 0.853283i \(0.674608\pi\)
\(444\) 0 0
\(445\) 19818.1 2.11116
\(446\) 0 0
\(447\) −10127.8 −1.07165
\(448\) 0 0
\(449\) −10093.7 −1.06091 −0.530457 0.847712i \(-0.677980\pi\)
−0.530457 + 0.847712i \(0.677980\pi\)
\(450\) 0 0
\(451\) 4785.66 0.499662
\(452\) 0 0
\(453\) −6803.83 −0.705678
\(454\) 0 0
\(455\) 8525.95 0.878467
\(456\) 0 0
\(457\) 3561.77 0.364578 0.182289 0.983245i \(-0.441649\pi\)
0.182289 + 0.983245i \(0.441649\pi\)
\(458\) 0 0
\(459\) 3581.82 0.364237
\(460\) 0 0
\(461\) 7492.00 0.756914 0.378457 0.925619i \(-0.376455\pi\)
0.378457 + 0.925619i \(0.376455\pi\)
\(462\) 0 0
\(463\) 15427.0 1.54849 0.774247 0.632884i \(-0.218129\pi\)
0.774247 + 0.632884i \(0.218129\pi\)
\(464\) 0 0
\(465\) −5489.53 −0.547464
\(466\) 0 0
\(467\) −11868.7 −1.17606 −0.588028 0.808841i \(-0.700096\pi\)
−0.588028 + 0.808841i \(0.700096\pi\)
\(468\) 0 0
\(469\) −16284.9 −1.60334
\(470\) 0 0
\(471\) 1737.26 0.169955
\(472\) 0 0
\(473\) −2579.23 −0.250725
\(474\) 0 0
\(475\) −18729.1 −1.80916
\(476\) 0 0
\(477\) −7883.38 −0.756719
\(478\) 0 0
\(479\) 697.153 0.0665005 0.0332503 0.999447i \(-0.489414\pi\)
0.0332503 + 0.999447i \(0.489414\pi\)
\(480\) 0 0
\(481\) 4427.95 0.419744
\(482\) 0 0
\(483\) 2587.63 0.243770
\(484\) 0 0
\(485\) 32605.0 3.05261
\(486\) 0 0
\(487\) 14414.0 1.34119 0.670597 0.741822i \(-0.266038\pi\)
0.670597 + 0.741822i \(0.266038\pi\)
\(488\) 0 0
\(489\) −8951.83 −0.827844
\(490\) 0 0
\(491\) −17538.9 −1.61206 −0.806029 0.591876i \(-0.798388\pi\)
−0.806029 + 0.591876i \(0.798388\pi\)
\(492\) 0 0
\(493\) 1422.72 0.129972
\(494\) 0 0
\(495\) 7287.00 0.661669
\(496\) 0 0
\(497\) −642.278 −0.0579680
\(498\) 0 0
\(499\) 18798.6 1.68645 0.843226 0.537559i \(-0.180653\pi\)
0.843226 + 0.537559i \(0.180653\pi\)
\(500\) 0 0
\(501\) 2905.62 0.259109
\(502\) 0 0
\(503\) 4634.11 0.410785 0.205392 0.978680i \(-0.434153\pi\)
0.205392 + 0.978680i \(0.434153\pi\)
\(504\) 0 0
\(505\) 24911.3 2.19513
\(506\) 0 0
\(507\) 6829.63 0.598254
\(508\) 0 0
\(509\) 2193.57 0.191018 0.0955092 0.995429i \(-0.469552\pi\)
0.0955092 + 0.995429i \(0.469552\pi\)
\(510\) 0 0
\(511\) −6815.56 −0.590025
\(512\) 0 0
\(513\) −13720.6 −1.18086
\(514\) 0 0
\(515\) 24661.4 2.11012
\(516\) 0 0
\(517\) −5834.60 −0.496335
\(518\) 0 0
\(519\) 3048.41 0.257823
\(520\) 0 0
\(521\) −4401.81 −0.370147 −0.185074 0.982725i \(-0.559252\pi\)
−0.185074 + 0.982725i \(0.559252\pi\)
\(522\) 0 0
\(523\) 9974.09 0.833913 0.416957 0.908926i \(-0.363097\pi\)
0.416957 + 0.908926i \(0.363097\pi\)
\(524\) 0 0
\(525\) −22268.8 −1.85122
\(526\) 0 0
\(527\) 2195.20 0.181451
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −566.204 −0.0462734
\(532\) 0 0
\(533\) −2597.69 −0.211104
\(534\) 0 0
\(535\) −29791.9 −2.40751
\(536\) 0 0
\(537\) 3791.46 0.304681
\(538\) 0 0
\(539\) −19448.1 −1.55415
\(540\) 0 0
\(541\) 9161.72 0.728083 0.364042 0.931383i \(-0.381397\pi\)
0.364042 + 0.931383i \(0.381397\pi\)
\(542\) 0 0
\(543\) −4126.31 −0.326109
\(544\) 0 0
\(545\) 14760.3 1.16012
\(546\) 0 0
\(547\) −1113.51 −0.0870390 −0.0435195 0.999053i \(-0.513857\pi\)
−0.0435195 + 0.999053i \(0.513857\pi\)
\(548\) 0 0
\(549\) 1462.34 0.113682
\(550\) 0 0
\(551\) −5449.92 −0.421369
\(552\) 0 0
\(553\) −14604.2 −1.12302
\(554\) 0 0
\(555\) −18869.0 −1.44314
\(556\) 0 0
\(557\) 7660.96 0.582775 0.291387 0.956605i \(-0.405883\pi\)
0.291387 + 0.956605i \(0.405883\pi\)
\(558\) 0 0
\(559\) 1400.03 0.105930
\(560\) 0 0
\(561\) 2267.47 0.170647
\(562\) 0 0
\(563\) −17217.7 −1.28888 −0.644441 0.764654i \(-0.722910\pi\)
−0.644441 + 0.764654i \(0.722910\pi\)
\(564\) 0 0
\(565\) −4800.65 −0.357460
\(566\) 0 0
\(567\) −2895.02 −0.214426
\(568\) 0 0
\(569\) −2385.63 −0.175766 −0.0878830 0.996131i \(-0.528010\pi\)
−0.0878830 + 0.996131i \(0.528010\pi\)
\(570\) 0 0
\(571\) −16927.9 −1.24065 −0.620323 0.784347i \(-0.712998\pi\)
−0.620323 + 0.784347i \(0.712998\pi\)
\(572\) 0 0
\(573\) −8304.44 −0.605450
\(574\) 0 0
\(575\) −4552.52 −0.330179
\(576\) 0 0
\(577\) 2886.69 0.208275 0.104137 0.994563i \(-0.466792\pi\)
0.104137 + 0.994563i \(0.466792\pi\)
\(578\) 0 0
\(579\) −800.509 −0.0574578
\(580\) 0 0
\(581\) −16402.7 −1.17125
\(582\) 0 0
\(583\) −13864.5 −0.984920
\(584\) 0 0
\(585\) −3955.44 −0.279551
\(586\) 0 0
\(587\) −503.810 −0.0354250 −0.0177125 0.999843i \(-0.505638\pi\)
−0.0177125 + 0.999843i \(0.505638\pi\)
\(588\) 0 0
\(589\) −8409.00 −0.588263
\(590\) 0 0
\(591\) −4875.85 −0.339366
\(592\) 0 0
\(593\) −7654.92 −0.530101 −0.265050 0.964235i \(-0.585389\pi\)
−0.265050 + 0.964235i \(0.585389\pi\)
\(594\) 0 0
\(595\) 14528.8 1.00105
\(596\) 0 0
\(597\) −3671.84 −0.251723
\(598\) 0 0
\(599\) 17366.5 1.18460 0.592301 0.805717i \(-0.298220\pi\)
0.592301 + 0.805717i \(0.298220\pi\)
\(600\) 0 0
\(601\) 3872.81 0.262854 0.131427 0.991326i \(-0.458044\pi\)
0.131427 + 0.991326i \(0.458044\pi\)
\(602\) 0 0
\(603\) 7555.06 0.510225
\(604\) 0 0
\(605\) −11103.0 −0.746115
\(606\) 0 0
\(607\) −12823.3 −0.857464 −0.428732 0.903432i \(-0.641039\pi\)
−0.428732 + 0.903432i \(0.641039\pi\)
\(608\) 0 0
\(609\) −6479.92 −0.431165
\(610\) 0 0
\(611\) 3167.07 0.209699
\(612\) 0 0
\(613\) 17226.4 1.13502 0.567509 0.823367i \(-0.307907\pi\)
0.567509 + 0.823367i \(0.307907\pi\)
\(614\) 0 0
\(615\) 11069.7 0.725809
\(616\) 0 0
\(617\) −5892.12 −0.384454 −0.192227 0.981351i \(-0.561571\pi\)
−0.192227 + 0.981351i \(0.561571\pi\)
\(618\) 0 0
\(619\) 13036.6 0.846503 0.423251 0.906012i \(-0.360889\pi\)
0.423251 + 0.906012i \(0.360889\pi\)
\(620\) 0 0
\(621\) −3335.09 −0.215511
\(622\) 0 0
\(623\) 36095.3 2.32123
\(624\) 0 0
\(625\) −1188.48 −0.0760630
\(626\) 0 0
\(627\) −8685.84 −0.553236
\(628\) 0 0
\(629\) 7545.52 0.478314
\(630\) 0 0
\(631\) −10044.6 −0.633707 −0.316853 0.948475i \(-0.602626\pi\)
−0.316853 + 0.948475i \(0.602626\pi\)
\(632\) 0 0
\(633\) −5285.79 −0.331898
\(634\) 0 0
\(635\) −25989.1 −1.62416
\(636\) 0 0
\(637\) 10556.6 0.656620
\(638\) 0 0
\(639\) 297.972 0.0184469
\(640\) 0 0
\(641\) 4583.33 0.282419 0.141209 0.989980i \(-0.454901\pi\)
0.141209 + 0.989980i \(0.454901\pi\)
\(642\) 0 0
\(643\) −19260.0 −1.18125 −0.590623 0.806948i \(-0.701118\pi\)
−0.590623 + 0.806948i \(0.701118\pi\)
\(644\) 0 0
\(645\) −5966.00 −0.364203
\(646\) 0 0
\(647\) −1771.91 −0.107667 −0.0538337 0.998550i \(-0.517144\pi\)
−0.0538337 + 0.998550i \(0.517144\pi\)
\(648\) 0 0
\(649\) −995.784 −0.0602279
\(650\) 0 0
\(651\) −9998.26 −0.601940
\(652\) 0 0
\(653\) 28000.8 1.67803 0.839017 0.544106i \(-0.183131\pi\)
0.839017 + 0.544106i \(0.183131\pi\)
\(654\) 0 0
\(655\) −26224.7 −1.56440
\(656\) 0 0
\(657\) 3161.94 0.187761
\(658\) 0 0
\(659\) 27664.0 1.63526 0.817629 0.575745i \(-0.195288\pi\)
0.817629 + 0.575745i \(0.195288\pi\)
\(660\) 0 0
\(661\) −23392.1 −1.37647 −0.688234 0.725489i \(-0.741614\pi\)
−0.688234 + 0.725489i \(0.741614\pi\)
\(662\) 0 0
\(663\) −1230.80 −0.0720972
\(664\) 0 0
\(665\) −55654.3 −3.24539
\(666\) 0 0
\(667\) −1324.72 −0.0769016
\(668\) 0 0
\(669\) 18423.2 1.06470
\(670\) 0 0
\(671\) 2571.82 0.147964
\(672\) 0 0
\(673\) 4318.41 0.247344 0.123672 0.992323i \(-0.460533\pi\)
0.123672 + 0.992323i \(0.460533\pi\)
\(674\) 0 0
\(675\) 28701.4 1.63662
\(676\) 0 0
\(677\) −18272.8 −1.03734 −0.518671 0.854974i \(-0.673573\pi\)
−0.518671 + 0.854974i \(0.673573\pi\)
\(678\) 0 0
\(679\) 59384.5 3.35636
\(680\) 0 0
\(681\) 3809.84 0.214381
\(682\) 0 0
\(683\) 7245.38 0.405910 0.202955 0.979188i \(-0.434945\pi\)
0.202955 + 0.979188i \(0.434945\pi\)
\(684\) 0 0
\(685\) −33951.7 −1.89376
\(686\) 0 0
\(687\) −17346.2 −0.963314
\(688\) 0 0
\(689\) 7525.76 0.416123
\(690\) 0 0
\(691\) 12055.2 0.663679 0.331839 0.943336i \(-0.392331\pi\)
0.331839 + 0.943336i \(0.392331\pi\)
\(692\) 0 0
\(693\) 13272.0 0.727509
\(694\) 0 0
\(695\) 27068.9 1.47738
\(696\) 0 0
\(697\) −4426.64 −0.240561
\(698\) 0 0
\(699\) −24412.6 −1.32099
\(700\) 0 0
\(701\) 15301.9 0.824455 0.412228 0.911081i \(-0.364751\pi\)
0.412228 + 0.911081i \(0.364751\pi\)
\(702\) 0 0
\(703\) −28904.0 −1.55069
\(704\) 0 0
\(705\) −13496.0 −0.720975
\(706\) 0 0
\(707\) 45371.8 2.41355
\(708\) 0 0
\(709\) 12173.6 0.644835 0.322418 0.946597i \(-0.395504\pi\)
0.322418 + 0.946597i \(0.395504\pi\)
\(710\) 0 0
\(711\) 6775.30 0.357375
\(712\) 0 0
\(713\) −2043.99 −0.107360
\(714\) 0 0
\(715\) −6956.44 −0.363854
\(716\) 0 0
\(717\) −5349.32 −0.278625
\(718\) 0 0
\(719\) 2639.63 0.136914 0.0684572 0.997654i \(-0.478192\pi\)
0.0684572 + 0.997654i \(0.478192\pi\)
\(720\) 0 0
\(721\) 44916.5 2.32008
\(722\) 0 0
\(723\) −10411.4 −0.535551
\(724\) 0 0
\(725\) 11400.4 0.584000
\(726\) 0 0
\(727\) −32759.5 −1.67123 −0.835613 0.549319i \(-0.814887\pi\)
−0.835613 + 0.549319i \(0.814887\pi\)
\(728\) 0 0
\(729\) 14800.7 0.751956
\(730\) 0 0
\(731\) 2385.74 0.120711
\(732\) 0 0
\(733\) −29178.0 −1.47028 −0.735139 0.677917i \(-0.762883\pi\)
−0.735139 + 0.677917i \(0.762883\pi\)
\(734\) 0 0
\(735\) −44985.2 −2.25756
\(736\) 0 0
\(737\) 13287.1 0.664092
\(738\) 0 0
\(739\) 13704.9 0.682194 0.341097 0.940028i \(-0.389202\pi\)
0.341097 + 0.940028i \(0.389202\pi\)
\(740\) 0 0
\(741\) 4714.74 0.233739
\(742\) 0 0
\(743\) −991.593 −0.0489610 −0.0244805 0.999700i \(-0.507793\pi\)
−0.0244805 + 0.999700i \(0.507793\pi\)
\(744\) 0 0
\(745\) 52947.6 2.60383
\(746\) 0 0
\(747\) 7609.71 0.372724
\(748\) 0 0
\(749\) −54260.9 −2.64706
\(750\) 0 0
\(751\) 9440.73 0.458718 0.229359 0.973342i \(-0.426337\pi\)
0.229359 + 0.973342i \(0.426337\pi\)
\(752\) 0 0
\(753\) 4982.09 0.241112
\(754\) 0 0
\(755\) 35570.1 1.71461
\(756\) 0 0
\(757\) −10480.1 −0.503177 −0.251589 0.967834i \(-0.580953\pi\)
−0.251589 + 0.967834i \(0.580953\pi\)
\(758\) 0 0
\(759\) −2111.28 −0.100968
\(760\) 0 0
\(761\) −31314.9 −1.49168 −0.745838 0.666128i \(-0.767951\pi\)
−0.745838 + 0.666128i \(0.767951\pi\)
\(762\) 0 0
\(763\) 26883.5 1.27555
\(764\) 0 0
\(765\) −6740.34 −0.318559
\(766\) 0 0
\(767\) 540.519 0.0254459
\(768\) 0 0
\(769\) −20862.1 −0.978292 −0.489146 0.872202i \(-0.662691\pi\)
−0.489146 + 0.872202i \(0.662691\pi\)
\(770\) 0 0
\(771\) 10654.6 0.497684
\(772\) 0 0
\(773\) 20340.2 0.946426 0.473213 0.880948i \(-0.343094\pi\)
0.473213 + 0.880948i \(0.343094\pi\)
\(774\) 0 0
\(775\) 17590.3 0.815308
\(776\) 0 0
\(777\) −34366.8 −1.58674
\(778\) 0 0
\(779\) 16956.8 0.779898
\(780\) 0 0
\(781\) 524.043 0.0240099
\(782\) 0 0
\(783\) 8351.71 0.381182
\(784\) 0 0
\(785\) −9082.30 −0.412944
\(786\) 0 0
\(787\) −31293.8 −1.41741 −0.708707 0.705503i \(-0.750721\pi\)
−0.708707 + 0.705503i \(0.750721\pi\)
\(788\) 0 0
\(789\) 3739.60 0.168737
\(790\) 0 0
\(791\) −8743.58 −0.393029
\(792\) 0 0
\(793\) −1396.01 −0.0625140
\(794\) 0 0
\(795\) −32069.9 −1.43069
\(796\) 0 0
\(797\) −32015.4 −1.42289 −0.711446 0.702741i \(-0.751959\pi\)
−0.711446 + 0.702741i \(0.751959\pi\)
\(798\) 0 0
\(799\) 5396.89 0.238959
\(800\) 0 0
\(801\) −16745.7 −0.738677
\(802\) 0 0
\(803\) 5560.91 0.244384
\(804\) 0 0
\(805\) −13528.0 −0.592296
\(806\) 0 0
\(807\) 16227.9 0.707867
\(808\) 0 0
\(809\) 5234.16 0.227470 0.113735 0.993511i \(-0.463719\pi\)
0.113735 + 0.993511i \(0.463719\pi\)
\(810\) 0 0
\(811\) 2377.40 0.102937 0.0514685 0.998675i \(-0.483610\pi\)
0.0514685 + 0.998675i \(0.483610\pi\)
\(812\) 0 0
\(813\) −4816.29 −0.207767
\(814\) 0 0
\(815\) 46799.7 2.01144
\(816\) 0 0
\(817\) −9138.87 −0.391345
\(818\) 0 0
\(819\) −7204.18 −0.307368
\(820\) 0 0
\(821\) −5174.70 −0.219974 −0.109987 0.993933i \(-0.535081\pi\)
−0.109987 + 0.993933i \(0.535081\pi\)
\(822\) 0 0
\(823\) 44178.3 1.87115 0.935576 0.353126i \(-0.114881\pi\)
0.935576 + 0.353126i \(0.114881\pi\)
\(824\) 0 0
\(825\) 18169.4 0.766762
\(826\) 0 0
\(827\) −5766.56 −0.242470 −0.121235 0.992624i \(-0.538686\pi\)
−0.121235 + 0.992624i \(0.538686\pi\)
\(828\) 0 0
\(829\) −38465.6 −1.61154 −0.805770 0.592229i \(-0.798248\pi\)
−0.805770 + 0.592229i \(0.798248\pi\)
\(830\) 0 0
\(831\) 14171.7 0.591589
\(832\) 0 0
\(833\) 17989.1 0.748242
\(834\) 0 0
\(835\) −15190.5 −0.629566
\(836\) 0 0
\(837\) 12886.3 0.532159
\(838\) 0 0
\(839\) −17261.8 −0.710301 −0.355151 0.934809i \(-0.615570\pi\)
−0.355151 + 0.934809i \(0.615570\pi\)
\(840\) 0 0
\(841\) −21071.6 −0.863981
\(842\) 0 0
\(843\) −2763.29 −0.112898
\(844\) 0 0
\(845\) −35705.0 −1.45360
\(846\) 0 0
\(847\) −20222.2 −0.820358
\(848\) 0 0
\(849\) −10819.2 −0.437355
\(850\) 0 0
\(851\) −7025.75 −0.283008
\(852\) 0 0
\(853\) −29038.7 −1.16561 −0.582805 0.812612i \(-0.698045\pi\)
−0.582805 + 0.812612i \(0.698045\pi\)
\(854\) 0 0
\(855\) 25819.7 1.03277
\(856\) 0 0
\(857\) −9865.16 −0.393217 −0.196609 0.980482i \(-0.562993\pi\)
−0.196609 + 0.980482i \(0.562993\pi\)
\(858\) 0 0
\(859\) 24476.6 0.972214 0.486107 0.873899i \(-0.338416\pi\)
0.486107 + 0.873899i \(0.338416\pi\)
\(860\) 0 0
\(861\) 20161.6 0.798030
\(862\) 0 0
\(863\) −37353.6 −1.47339 −0.736693 0.676227i \(-0.763614\pi\)
−0.736693 + 0.676227i \(0.763614\pi\)
\(864\) 0 0
\(865\) −15936.9 −0.626442
\(866\) 0 0
\(867\) 14790.4 0.579365
\(868\) 0 0
\(869\) 11915.7 0.465148
\(870\) 0 0
\(871\) −7212.34 −0.280575
\(872\) 0 0
\(873\) −27550.3 −1.06808
\(874\) 0 0
\(875\) 42898.7 1.65742
\(876\) 0 0
\(877\) 25920.7 0.998040 0.499020 0.866590i \(-0.333693\pi\)
0.499020 + 0.866590i \(0.333693\pi\)
\(878\) 0 0
\(879\) −9668.92 −0.371018
\(880\) 0 0
\(881\) −9337.06 −0.357064 −0.178532 0.983934i \(-0.557135\pi\)
−0.178532 + 0.983934i \(0.557135\pi\)
\(882\) 0 0
\(883\) 70.8656 0.00270081 0.00135041 0.999999i \(-0.499570\pi\)
0.00135041 + 0.999999i \(0.499570\pi\)
\(884\) 0 0
\(885\) −2303.34 −0.0874870
\(886\) 0 0
\(887\) −1058.85 −0.0400819 −0.0200409 0.999799i \(-0.506380\pi\)
−0.0200409 + 0.999799i \(0.506380\pi\)
\(888\) 0 0
\(889\) −47334.7 −1.78578
\(890\) 0 0
\(891\) 2362.08 0.0888135
\(892\) 0 0
\(893\) −20673.5 −0.774705
\(894\) 0 0
\(895\) −19821.6 −0.740293
\(896\) 0 0
\(897\) 1146.02 0.0426583
\(898\) 0 0
\(899\) 5118.55 0.189892
\(900\) 0 0
\(901\) 12824.4 0.474187
\(902\) 0 0
\(903\) −10866.1 −0.400443
\(904\) 0 0
\(905\) 21572.1 0.792356
\(906\) 0 0
\(907\) −29050.2 −1.06350 −0.531751 0.846900i \(-0.678466\pi\)
−0.531751 + 0.846900i \(0.678466\pi\)
\(908\) 0 0
\(909\) −21049.3 −0.768055
\(910\) 0 0
\(911\) 16041.6 0.583404 0.291702 0.956509i \(-0.405778\pi\)
0.291702 + 0.956509i \(0.405778\pi\)
\(912\) 0 0
\(913\) 13383.2 0.485125
\(914\) 0 0
\(915\) 5948.87 0.214933
\(916\) 0 0
\(917\) −47763.9 −1.72007
\(918\) 0 0
\(919\) −30151.2 −1.08226 −0.541130 0.840939i \(-0.682003\pi\)
−0.541130 + 0.840939i \(0.682003\pi\)
\(920\) 0 0
\(921\) −27105.5 −0.969767
\(922\) 0 0
\(923\) −284.455 −0.0101440
\(924\) 0 0
\(925\) 60462.8 2.14919
\(926\) 0 0
\(927\) −20838.1 −0.738311
\(928\) 0 0
\(929\) 43339.8 1.53061 0.765303 0.643670i \(-0.222589\pi\)
0.765303 + 0.643670i \(0.222589\pi\)
\(930\) 0 0
\(931\) −68909.5 −2.42580
\(932\) 0 0
\(933\) 6546.32 0.229707
\(934\) 0 0
\(935\) −11854.2 −0.414626
\(936\) 0 0
\(937\) 27291.9 0.951533 0.475766 0.879572i \(-0.342171\pi\)
0.475766 + 0.879572i \(0.342171\pi\)
\(938\) 0 0
\(939\) 13250.7 0.460511
\(940\) 0 0
\(941\) 4358.15 0.150980 0.0754898 0.997147i \(-0.475948\pi\)
0.0754898 + 0.997147i \(0.475948\pi\)
\(942\) 0 0
\(943\) 4121.72 0.142335
\(944\) 0 0
\(945\) 85287.3 2.93587
\(946\) 0 0
\(947\) −39067.8 −1.34059 −0.670293 0.742097i \(-0.733831\pi\)
−0.670293 + 0.742097i \(0.733831\pi\)
\(948\) 0 0
\(949\) −3018.51 −0.103251
\(950\) 0 0
\(951\) 6457.78 0.220197
\(952\) 0 0
\(953\) −52563.8 −1.78668 −0.893341 0.449379i \(-0.851645\pi\)
−0.893341 + 0.449379i \(0.851645\pi\)
\(954\) 0 0
\(955\) 43415.2 1.47108
\(956\) 0 0
\(957\) 5287.06 0.178585
\(958\) 0 0
\(959\) −61837.4 −2.08220
\(960\) 0 0
\(961\) −21893.3 −0.734896
\(962\) 0 0
\(963\) 25173.3 0.842365
\(964\) 0 0
\(965\) 4185.02 0.139607
\(966\) 0 0
\(967\) −2440.46 −0.0811580 −0.0405790 0.999176i \(-0.512920\pi\)
−0.0405790 + 0.999176i \(0.512920\pi\)
\(968\) 0 0
\(969\) 8034.24 0.266354
\(970\) 0 0
\(971\) −45490.7 −1.50347 −0.751733 0.659468i \(-0.770782\pi\)
−0.751733 + 0.659468i \(0.770782\pi\)
\(972\) 0 0
\(973\) 49301.5 1.62439
\(974\) 0 0
\(975\) −9862.52 −0.323952
\(976\) 0 0
\(977\) −33244.4 −1.08862 −0.544311 0.838884i \(-0.683209\pi\)
−0.544311 + 0.838884i \(0.683209\pi\)
\(978\) 0 0
\(979\) −29450.6 −0.961437
\(980\) 0 0
\(981\) −12472.1 −0.405914
\(982\) 0 0
\(983\) 1171.32 0.0380053 0.0190027 0.999819i \(-0.493951\pi\)
0.0190027 + 0.999819i \(0.493951\pi\)
\(984\) 0 0
\(985\) 25490.7 0.824569
\(986\) 0 0
\(987\) −24580.6 −0.792716
\(988\) 0 0
\(989\) −2221.40 −0.0714220
\(990\) 0 0
\(991\) −3714.32 −0.119061 −0.0595304 0.998226i \(-0.518960\pi\)
−0.0595304 + 0.998226i \(0.518960\pi\)
\(992\) 0 0
\(993\) 23477.1 0.750276
\(994\) 0 0
\(995\) 19196.2 0.611618
\(996\) 0 0
\(997\) −19521.0 −0.620098 −0.310049 0.950721i \(-0.600345\pi\)
−0.310049 + 0.950721i \(0.600345\pi\)
\(998\) 0 0
\(999\) 44293.9 1.40280
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.y.1.2 4
4.3 odd 2 1472.4.a.bf.1.3 4
8.3 odd 2 368.4.a.l.1.2 4
8.5 even 2 23.4.a.b.1.3 4
24.5 odd 2 207.4.a.e.1.2 4
40.13 odd 4 575.4.b.g.24.3 8
40.29 even 2 575.4.a.i.1.2 4
40.37 odd 4 575.4.b.g.24.6 8
56.13 odd 2 1127.4.a.c.1.3 4
184.45 odd 2 529.4.a.g.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.a.b.1.3 4 8.5 even 2
207.4.a.e.1.2 4 24.5 odd 2
368.4.a.l.1.2 4 8.3 odd 2
529.4.a.g.1.3 4 184.45 odd 2
575.4.a.i.1.2 4 40.29 even 2
575.4.b.g.24.3 8 40.13 odd 4
575.4.b.g.24.6 8 40.37 odd 4
1127.4.a.c.1.3 4 56.13 odd 2
1472.4.a.y.1.2 4 1.1 even 1 trivial
1472.4.a.bf.1.3 4 4.3 odd 2