Properties

Label 1134.2.k.b.647.5
Level $1134$
Weight $2$
Character 1134.647
Analytic conductor $9.055$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(647,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.647");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 647.5
Root \(1.27866 + 1.16834i\) of defining polynomial
Character \(\chi\) \(=\) 1134.647
Dual form 1134.2.k.b.971.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(-1.77612 - 3.07634i) q^{5} +(-1.14420 - 2.38554i) q^{7} -1.00000i q^{8} +(-3.07634 - 1.77612i) q^{10} +(2.61745 + 1.51119i) q^{11} -1.02646i q^{13} +(-2.18368 - 1.49384i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(0.809204 - 1.40158i) q^{17} +(-7.12643 + 4.11444i) q^{19} -3.55225 q^{20} +3.02237 q^{22} +(2.90837 - 1.67915i) q^{23} +(-3.80924 + 6.59779i) q^{25} +(-0.513232 - 0.888944i) q^{26} +(-2.63804 - 0.201867i) q^{28} -4.27608i q^{29} +(-5.18382 - 2.99288i) q^{31} +(-0.866025 - 0.500000i) q^{32} -1.61841i q^{34} +(-5.30650 + 7.75696i) q^{35} +(2.92323 + 5.06319i) q^{37} +(-4.11444 + 7.12643i) q^{38} +(-3.07634 + 1.77612i) q^{40} +0.0944452 q^{41} -6.11799 q^{43} +(2.61745 - 1.51119i) q^{44} +(1.67915 - 2.90837i) q^{46} +(-2.57023 - 4.45176i) q^{47} +(-4.38163 + 5.45906i) q^{49} +7.61848i q^{50} +(-0.888944 - 0.513232i) q^{52} +(2.76235 + 1.59484i) q^{53} -10.7362i q^{55} +(-2.38554 + 1.14420i) q^{56} +(-2.13804 - 3.70319i) q^{58} +(-4.42036 + 7.65628i) q^{59} +(4.06195 - 2.34517i) q^{61} -5.98576 q^{62} -1.00000 q^{64} +(-3.15775 + 1.82313i) q^{65} +(0.187838 - 0.325345i) q^{67} +(-0.809204 - 1.40158i) q^{68} +(-0.717083 + 9.37097i) q^{70} -13.9868i q^{71} +(1.13546 + 0.655556i) q^{73} +(5.06319 + 2.92323i) q^{74} +8.22889i q^{76} +(0.610118 - 7.97313i) q^{77} +(-0.462067 - 0.800324i) q^{79} +(-1.77612 + 3.07634i) q^{80} +(0.0817920 - 0.0472226i) q^{82} +10.8642 q^{83} -5.74899 q^{85} +(-5.29833 + 3.05899i) q^{86} +(1.51119 - 2.61745i) q^{88} +(2.35495 + 4.07888i) q^{89} +(-2.44867 + 1.17448i) q^{91} -3.35830i q^{92} +(-4.45176 - 2.57023i) q^{94} +(25.3148 + 14.6155i) q^{95} -15.3956i q^{97} +(-1.06507 + 6.91850i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 4 q^{7} + 12 q^{11} - 8 q^{16} + 18 q^{17} - 6 q^{23} - 8 q^{25} - 12 q^{26} - 2 q^{28} - 6 q^{31} - 30 q^{35} - 2 q^{37} - 12 q^{41} + 4 q^{43} + 12 q^{44} + 6 q^{46} - 18 q^{47} - 2 q^{49}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −1.77612 3.07634i −0.794307 1.37578i −0.923278 0.384132i \(-0.874501\pi\)
0.128971 0.991648i \(-0.458833\pi\)
\(6\) 0 0
\(7\) −1.14420 2.38554i −0.432466 0.901650i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −3.07634 1.77612i −0.972824 0.561660i
\(11\) 2.61745 + 1.51119i 0.789191 + 0.455639i 0.839678 0.543085i \(-0.182744\pi\)
−0.0504869 + 0.998725i \(0.516077\pi\)
\(12\) 0 0
\(13\) 1.02646i 0.284690i −0.989817 0.142345i \(-0.954536\pi\)
0.989817 0.142345i \(-0.0454642\pi\)
\(14\) −2.18368 1.49384i −0.583612 0.399246i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.809204 1.40158i 0.196261 0.339934i −0.751052 0.660243i \(-0.770453\pi\)
0.947313 + 0.320309i \(0.103787\pi\)
\(18\) 0 0
\(19\) −7.12643 + 4.11444i −1.63491 + 0.943918i −0.652368 + 0.757903i \(0.726224\pi\)
−0.982547 + 0.186016i \(0.940442\pi\)
\(20\) −3.55225 −0.794307
\(21\) 0 0
\(22\) 3.02237 0.644371
\(23\) 2.90837 1.67915i 0.606438 0.350127i −0.165132 0.986271i \(-0.552805\pi\)
0.771570 + 0.636144i \(0.219472\pi\)
\(24\) 0 0
\(25\) −3.80924 + 6.59779i −0.761848 + 1.31956i
\(26\) −0.513232 0.888944i −0.100653 0.174336i
\(27\) 0 0
\(28\) −2.63804 0.201867i −0.498543 0.0381493i
\(29\) 4.27608i 0.794048i −0.917808 0.397024i \(-0.870043\pi\)
0.917808 0.397024i \(-0.129957\pi\)
\(30\) 0 0
\(31\) −5.18382 2.99288i −0.931041 0.537537i −0.0439006 0.999036i \(-0.513978\pi\)
−0.887141 + 0.461499i \(0.847312\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) 1.61841i 0.277555i
\(35\) −5.30650 + 7.75696i −0.896962 + 1.31117i
\(36\) 0 0
\(37\) 2.92323 + 5.06319i 0.480577 + 0.832384i 0.999752 0.0222846i \(-0.00709398\pi\)
−0.519175 + 0.854668i \(0.673761\pi\)
\(38\) −4.11444 + 7.12643i −0.667451 + 1.15606i
\(39\) 0 0
\(40\) −3.07634 + 1.77612i −0.486412 + 0.280830i
\(41\) 0.0944452 0.0147499 0.00737493 0.999973i \(-0.497652\pi\)
0.00737493 + 0.999973i \(0.497652\pi\)
\(42\) 0 0
\(43\) −6.11799 −0.932985 −0.466492 0.884525i \(-0.654482\pi\)
−0.466492 + 0.884525i \(0.654482\pi\)
\(44\) 2.61745 1.51119i 0.394595 0.227820i
\(45\) 0 0
\(46\) 1.67915 2.90837i 0.247577 0.428816i
\(47\) −2.57023 4.45176i −0.374906 0.649356i 0.615407 0.788210i \(-0.288992\pi\)
−0.990313 + 0.138853i \(0.955658\pi\)
\(48\) 0 0
\(49\) −4.38163 + 5.45906i −0.625946 + 0.779866i
\(50\) 7.61848i 1.07742i
\(51\) 0 0
\(52\) −0.888944 0.513232i −0.123274 0.0711725i
\(53\) 2.76235 + 1.59484i 0.379438 + 0.219068i 0.677574 0.735455i \(-0.263032\pi\)
−0.298136 + 0.954523i \(0.596365\pi\)
\(54\) 0 0
\(55\) 10.7362i 1.44767i
\(56\) −2.38554 + 1.14420i −0.318782 + 0.152900i
\(57\) 0 0
\(58\) −2.13804 3.70319i −0.280738 0.486253i
\(59\) −4.42036 + 7.65628i −0.575481 + 0.996763i 0.420508 + 0.907289i \(0.361852\pi\)
−0.995989 + 0.0894739i \(0.971481\pi\)
\(60\) 0 0
\(61\) 4.06195 2.34517i 0.520080 0.300268i −0.216887 0.976197i \(-0.569590\pi\)
0.736967 + 0.675928i \(0.236257\pi\)
\(62\) −5.98576 −0.760192
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −3.15775 + 1.82313i −0.391671 + 0.226131i
\(66\) 0 0
\(67\) 0.187838 0.325345i 0.0229480 0.0397472i −0.854323 0.519742i \(-0.826028\pi\)
0.877271 + 0.479995i \(0.159361\pi\)
\(68\) −0.809204 1.40158i −0.0981304 0.169967i
\(69\) 0 0
\(70\) −0.717083 + 9.37097i −0.0857078 + 1.12005i
\(71\) 13.9868i 1.65993i −0.557815 0.829966i \(-0.688360\pi\)
0.557815 0.829966i \(-0.311640\pi\)
\(72\) 0 0
\(73\) 1.13546 + 0.655556i 0.132895 + 0.0767270i 0.564974 0.825109i \(-0.308886\pi\)
−0.432079 + 0.901836i \(0.642220\pi\)
\(74\) 5.06319 + 2.92323i 0.588584 + 0.339819i
\(75\) 0 0
\(76\) 8.22889i 0.943918i
\(77\) 0.610118 7.97313i 0.0695294 0.908623i
\(78\) 0 0
\(79\) −0.462067 0.800324i −0.0519866 0.0900434i 0.838861 0.544346i \(-0.183222\pi\)
−0.890848 + 0.454302i \(0.849889\pi\)
\(80\) −1.77612 + 3.07634i −0.198577 + 0.343945i
\(81\) 0 0
\(82\) 0.0817920 0.0472226i 0.00903241 0.00521487i
\(83\) 10.8642 1.19250 0.596250 0.802799i \(-0.296657\pi\)
0.596250 + 0.802799i \(0.296657\pi\)
\(84\) 0 0
\(85\) −5.74899 −0.623566
\(86\) −5.29833 + 3.05899i −0.571334 + 0.329860i
\(87\) 0 0
\(88\) 1.51119 2.61745i 0.161093 0.279021i
\(89\) 2.35495 + 4.07888i 0.249624 + 0.432361i 0.963421 0.267991i \(-0.0863598\pi\)
−0.713798 + 0.700352i \(0.753026\pi\)
\(90\) 0 0
\(91\) −2.44867 + 1.17448i −0.256691 + 0.123119i
\(92\) 3.35830i 0.350127i
\(93\) 0 0
\(94\) −4.45176 2.57023i −0.459164 0.265099i
\(95\) 25.3148 + 14.6155i 2.59725 + 1.49952i
\(96\) 0 0
\(97\) 15.3956i 1.56319i −0.623786 0.781595i \(-0.714406\pi\)
0.623786 0.781595i \(-0.285594\pi\)
\(98\) −1.06507 + 6.91850i −0.107588 + 0.698874i
\(99\) 0 0
\(100\) 3.80924 + 6.59779i 0.380924 + 0.659779i
\(101\) 6.85234 11.8686i 0.681833 1.18097i −0.292588 0.956239i \(-0.594516\pi\)
0.974421 0.224731i \(-0.0721503\pi\)
\(102\) 0 0
\(103\) −2.64014 + 1.52429i −0.260141 + 0.150192i −0.624399 0.781106i \(-0.714656\pi\)
0.364258 + 0.931298i \(0.381323\pi\)
\(104\) −1.02646 −0.100653
\(105\) 0 0
\(106\) 3.18968 0.309810
\(107\) 11.3681 6.56336i 1.09899 0.634504i 0.163037 0.986620i \(-0.447871\pi\)
0.935956 + 0.352116i \(0.114538\pi\)
\(108\) 0 0
\(109\) 5.28574 9.15516i 0.506282 0.876906i −0.493692 0.869637i \(-0.664353\pi\)
0.999974 0.00726875i \(-0.00231373\pi\)
\(110\) −5.36811 9.29783i −0.511829 0.886514i
\(111\) 0 0
\(112\) −1.49384 + 2.18368i −0.141155 + 0.206338i
\(113\) 12.2999i 1.15707i −0.815656 0.578537i \(-0.803624\pi\)
0.815656 0.578537i \(-0.196376\pi\)
\(114\) 0 0
\(115\) −10.3313 5.96476i −0.963396 0.556217i
\(116\) −3.70319 2.13804i −0.343833 0.198512i
\(117\) 0 0
\(118\) 8.84071i 0.813853i
\(119\) −4.26942 0.326704i −0.391377 0.0299489i
\(120\) 0 0
\(121\) −0.932639 1.61538i −0.0847854 0.146853i
\(122\) 2.34517 4.06195i 0.212322 0.367752i
\(123\) 0 0
\(124\) −5.18382 + 2.99288i −0.465521 + 0.268768i
\(125\) 9.30148 0.831950
\(126\) 0 0
\(127\) 0.287164 0.0254817 0.0127408 0.999919i \(-0.495944\pi\)
0.0127408 + 0.999919i \(0.495944\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −1.82313 + 3.15775i −0.159899 + 0.276953i
\(131\) −0.186474 0.322983i −0.0162923 0.0282192i 0.857764 0.514043i \(-0.171853\pi\)
−0.874057 + 0.485824i \(0.838520\pi\)
\(132\) 0 0
\(133\) 17.9692 + 12.2927i 1.55813 + 1.06591i
\(134\) 0.375675i 0.0324534i
\(135\) 0 0
\(136\) −1.40158 0.809204i −0.120185 0.0693887i
\(137\) 6.11607 + 3.53111i 0.522531 + 0.301683i 0.737969 0.674834i \(-0.235785\pi\)
−0.215439 + 0.976517i \(0.569118\pi\)
\(138\) 0 0
\(139\) 14.5862i 1.23718i −0.785713 0.618591i \(-0.787704\pi\)
0.785713 0.618591i \(-0.212296\pi\)
\(140\) 4.06447 + 8.47404i 0.343511 + 0.716187i
\(141\) 0 0
\(142\) −6.99341 12.1129i −0.586874 1.01650i
\(143\) 1.55118 2.68672i 0.129716 0.224675i
\(144\) 0 0
\(145\) −13.1547 + 7.59485i −1.09244 + 0.630718i
\(146\) 1.31111 0.108508
\(147\) 0 0
\(148\) 5.84647 0.480577
\(149\) −9.26832 + 5.35107i −0.759290 + 0.438376i −0.829041 0.559188i \(-0.811113\pi\)
0.0697505 + 0.997564i \(0.477780\pi\)
\(150\) 0 0
\(151\) −8.00065 + 13.8575i −0.651084 + 1.12771i 0.331777 + 0.943358i \(0.392352\pi\)
−0.982860 + 0.184352i \(0.940981\pi\)
\(152\) 4.11444 + 7.12643i 0.333726 + 0.578030i
\(153\) 0 0
\(154\) −3.45819 7.20999i −0.278669 0.580998i
\(155\) 21.2629i 1.70788i
\(156\) 0 0
\(157\) 9.98239 + 5.76334i 0.796681 + 0.459964i 0.842309 0.538994i \(-0.181196\pi\)
−0.0456280 + 0.998958i \(0.514529\pi\)
\(158\) −0.800324 0.462067i −0.0636703 0.0367601i
\(159\) 0 0
\(160\) 3.55225i 0.280830i
\(161\) −7.33344 5.01677i −0.577956 0.395377i
\(162\) 0 0
\(163\) 1.37386 + 2.37960i 0.107609 + 0.186385i 0.914801 0.403904i \(-0.132347\pi\)
−0.807192 + 0.590289i \(0.799014\pi\)
\(164\) 0.0472226 0.0817920i 0.00368747 0.00638688i
\(165\) 0 0
\(166\) 9.40866 5.43209i 0.730254 0.421612i
\(167\) −5.53892 −0.428614 −0.214307 0.976766i \(-0.568749\pi\)
−0.214307 + 0.976766i \(0.568749\pi\)
\(168\) 0 0
\(169\) 11.9464 0.918952
\(170\) −4.97877 + 2.87450i −0.381854 + 0.220464i
\(171\) 0 0
\(172\) −3.05899 + 5.29833i −0.233246 + 0.403994i
\(173\) 5.60253 + 9.70387i 0.425953 + 0.737772i 0.996509 0.0834869i \(-0.0266057\pi\)
−0.570556 + 0.821259i \(0.693272\pi\)
\(174\) 0 0
\(175\) 20.0978 + 1.53792i 1.51925 + 0.116256i
\(176\) 3.02237i 0.227820i
\(177\) 0 0
\(178\) 4.07888 + 2.35495i 0.305725 + 0.176511i
\(179\) 2.37445 + 1.37089i 0.177475 + 0.102465i 0.586106 0.810235i \(-0.300660\pi\)
−0.408631 + 0.912700i \(0.633994\pi\)
\(180\) 0 0
\(181\) 22.2899i 1.65679i −0.560142 0.828397i \(-0.689253\pi\)
0.560142 0.828397i \(-0.310747\pi\)
\(182\) −1.53338 + 2.24146i −0.113661 + 0.166148i
\(183\) 0 0
\(184\) −1.67915 2.90837i −0.123789 0.214408i
\(185\) 10.3841 17.9857i 0.763451 1.32234i
\(186\) 0 0
\(187\) 4.23610 2.44571i 0.309774 0.178848i
\(188\) −5.14045 −0.374906
\(189\) 0 0
\(190\) 29.2311 2.12064
\(191\) −4.44499 + 2.56632i −0.321628 + 0.185692i −0.652118 0.758117i \(-0.726119\pi\)
0.330490 + 0.943810i \(0.392786\pi\)
\(192\) 0 0
\(193\) −7.99235 + 13.8432i −0.575302 + 0.996452i 0.420707 + 0.907197i \(0.361782\pi\)
−0.996009 + 0.0892557i \(0.971551\pi\)
\(194\) −7.69782 13.3330i −0.552671 0.957254i
\(195\) 0 0
\(196\) 2.53687 + 6.52413i 0.181205 + 0.466009i
\(197\) 4.72572i 0.336694i 0.985728 + 0.168347i \(0.0538428\pi\)
−0.985728 + 0.168347i \(0.946157\pi\)
\(198\) 0 0
\(199\) 1.83679 + 1.06047i 0.130207 + 0.0751749i 0.563689 0.825987i \(-0.309382\pi\)
−0.433482 + 0.901162i \(0.642715\pi\)
\(200\) 6.59779 + 3.80924i 0.466534 + 0.269354i
\(201\) 0 0
\(202\) 13.7047i 0.964258i
\(203\) −10.2008 + 4.89268i −0.715953 + 0.343399i
\(204\) 0 0
\(205\) −0.167747 0.290545i −0.0117159 0.0202926i
\(206\) −1.52429 + 2.64014i −0.106202 + 0.183947i
\(207\) 0 0
\(208\) −0.888944 + 0.513232i −0.0616372 + 0.0355863i
\(209\) −24.8707 −1.72035
\(210\) 0 0
\(211\) 27.6159 1.90116 0.950578 0.310487i \(-0.100492\pi\)
0.950578 + 0.310487i \(0.100492\pi\)
\(212\) 2.76235 1.59484i 0.189719 0.109534i
\(213\) 0 0
\(214\) 6.56336 11.3681i 0.448662 0.777105i
\(215\) 10.8663 + 18.8210i 0.741076 + 1.28358i
\(216\) 0 0
\(217\) −1.20833 + 15.7907i −0.0820267 + 1.07194i
\(218\) 10.5715i 0.715990i
\(219\) 0 0
\(220\) −9.29783 5.36811i −0.626860 0.361918i
\(221\) −1.43867 0.830619i −0.0967757 0.0558735i
\(222\) 0 0
\(223\) 20.3469i 1.36253i 0.732037 + 0.681264i \(0.238570\pi\)
−0.732037 + 0.681264i \(0.761430\pi\)
\(224\) −0.201867 + 2.63804i −0.0134878 + 0.176261i
\(225\) 0 0
\(226\) −6.14993 10.6520i −0.409087 0.708560i
\(227\) 2.08000 3.60266i 0.138054 0.239117i −0.788706 0.614771i \(-0.789248\pi\)
0.926760 + 0.375654i \(0.122582\pi\)
\(228\) 0 0
\(229\) 5.16986 2.98482i 0.341634 0.197242i −0.319361 0.947633i \(-0.603468\pi\)
0.660994 + 0.750391i \(0.270135\pi\)
\(230\) −11.9295 −0.786609
\(231\) 0 0
\(232\) −4.27608 −0.280738
\(233\) 3.88603 2.24360i 0.254582 0.146983i −0.367278 0.930111i \(-0.619710\pi\)
0.621861 + 0.783128i \(0.286377\pi\)
\(234\) 0 0
\(235\) −9.13009 + 15.8138i −0.595581 + 1.03158i
\(236\) 4.42036 + 7.65628i 0.287741 + 0.498381i
\(237\) 0 0
\(238\) −3.86078 + 1.85178i −0.250257 + 0.120033i
\(239\) 3.49809i 0.226273i 0.993579 + 0.113136i \(0.0360897\pi\)
−0.993579 + 0.113136i \(0.963910\pi\)
\(240\) 0 0
\(241\) −10.0170 5.78332i −0.645252 0.372537i 0.141383 0.989955i \(-0.454845\pi\)
−0.786635 + 0.617419i \(0.788179\pi\)
\(242\) −1.61538 0.932639i −0.103840 0.0599523i
\(243\) 0 0
\(244\) 4.69034i 0.300268i
\(245\) 24.5762 + 3.78339i 1.57012 + 0.241712i
\(246\) 0 0
\(247\) 4.22333 + 7.31502i 0.268724 + 0.465444i
\(248\) −2.99288 + 5.18382i −0.190048 + 0.329173i
\(249\) 0 0
\(250\) 8.05532 4.65074i 0.509463 0.294139i
\(251\) −26.7426 −1.68798 −0.843988 0.536361i \(-0.819798\pi\)
−0.843988 + 0.536361i \(0.819798\pi\)
\(252\) 0 0
\(253\) 10.1500 0.638127
\(254\) 0.248691 0.143582i 0.0156043 0.00900913i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −2.60614 4.51396i −0.162566 0.281573i 0.773222 0.634135i \(-0.218644\pi\)
−0.935788 + 0.352562i \(0.885310\pi\)
\(258\) 0 0
\(259\) 8.73370 12.7668i 0.542686 0.793290i
\(260\) 3.64626i 0.226131i
\(261\) 0 0
\(262\) −0.322983 0.186474i −0.0199540 0.0115204i
\(263\) −13.0228 7.51869i −0.803018 0.463622i 0.0415076 0.999138i \(-0.486784\pi\)
−0.844525 + 0.535516i \(0.820117\pi\)
\(264\) 0 0
\(265\) 11.3306i 0.696030i
\(266\) 21.7081 + 1.66114i 1.33101 + 0.101851i
\(267\) 0 0
\(268\) −0.187838 0.325345i −0.0114740 0.0198736i
\(269\) 11.5657 20.0323i 0.705170 1.22139i −0.261460 0.965214i \(-0.584204\pi\)
0.966630 0.256177i \(-0.0824628\pi\)
\(270\) 0 0
\(271\) 8.58661 4.95748i 0.521599 0.301146i −0.215989 0.976396i \(-0.569298\pi\)
0.737589 + 0.675250i \(0.235964\pi\)
\(272\) −1.61841 −0.0981304
\(273\) 0 0
\(274\) 7.06222 0.426645
\(275\) −19.9410 + 11.5129i −1.20249 + 0.694256i
\(276\) 0 0
\(277\) 4.29721 7.44299i 0.258195 0.447206i −0.707564 0.706650i \(-0.750206\pi\)
0.965758 + 0.259443i \(0.0835391\pi\)
\(278\) −7.29308 12.6320i −0.437410 0.757616i
\(279\) 0 0
\(280\) 7.75696 + 5.30650i 0.463567 + 0.317124i
\(281\) 20.7278i 1.23652i −0.785975 0.618258i \(-0.787839\pi\)
0.785975 0.618258i \(-0.212161\pi\)
\(282\) 0 0
\(283\) 2.04997 + 1.18355i 0.121858 + 0.0703547i 0.559690 0.828702i \(-0.310920\pi\)
−0.437832 + 0.899057i \(0.644254\pi\)
\(284\) −12.1129 6.99341i −0.718771 0.414983i
\(285\) 0 0
\(286\) 3.10236i 0.183446i
\(287\) −0.108064 0.225303i −0.00637882 0.0132992i
\(288\) 0 0
\(289\) 7.19038 + 12.4541i 0.422963 + 0.732594i
\(290\) −7.59485 + 13.1547i −0.445985 + 0.772468i
\(291\) 0 0
\(292\) 1.13546 0.655556i 0.0664475 0.0383635i
\(293\) 17.6755 1.03261 0.516306 0.856404i \(-0.327307\pi\)
0.516306 + 0.856404i \(0.327307\pi\)
\(294\) 0 0
\(295\) 31.4044 1.82844
\(296\) 5.06319 2.92323i 0.294292 0.169910i
\(297\) 0 0
\(298\) −5.35107 + 9.26832i −0.309979 + 0.536899i
\(299\) −1.72359 2.98534i −0.0996777 0.172647i
\(300\) 0 0
\(301\) 7.00019 + 14.5947i 0.403484 + 0.841226i
\(302\) 16.0013i 0.920771i
\(303\) 0 0
\(304\) 7.12643 + 4.11444i 0.408729 + 0.235980i
\(305\) −14.4291 8.33063i −0.826206 0.477011i
\(306\) 0 0
\(307\) 1.28155i 0.0731422i 0.999331 + 0.0365711i \(0.0116435\pi\)
−0.999331 + 0.0365711i \(0.988356\pi\)
\(308\) −6.59987 4.51494i −0.376063 0.257263i
\(309\) 0 0
\(310\) 10.6315 + 18.4142i 0.603826 + 1.04586i
\(311\) 6.26643 10.8538i 0.355336 0.615461i −0.631839 0.775100i \(-0.717700\pi\)
0.987175 + 0.159639i \(0.0510330\pi\)
\(312\) 0 0
\(313\) −7.58105 + 4.37692i −0.428507 + 0.247398i −0.698710 0.715405i \(-0.746242\pi\)
0.270204 + 0.962803i \(0.412909\pi\)
\(314\) 11.5267 0.650488
\(315\) 0 0
\(316\) −0.924134 −0.0519866
\(317\) −11.8458 + 6.83920i −0.665329 + 0.384128i −0.794304 0.607520i \(-0.792164\pi\)
0.128976 + 0.991648i \(0.458831\pi\)
\(318\) 0 0
\(319\) 6.46195 11.1924i 0.361799 0.626655i
\(320\) 1.77612 + 3.07634i 0.0992884 + 0.171973i
\(321\) 0 0
\(322\) −8.85933 0.677931i −0.493711 0.0377796i
\(323\) 13.3177i 0.741017i
\(324\) 0 0
\(325\) 6.77240 + 3.91005i 0.375665 + 0.216890i
\(326\) 2.37960 + 1.37386i 0.131794 + 0.0760912i
\(327\) 0 0
\(328\) 0.0944452i 0.00521487i
\(329\) −7.67902 + 11.2251i −0.423358 + 0.618859i
\(330\) 0 0
\(331\) 5.44858 + 9.43721i 0.299481 + 0.518716i 0.976017 0.217693i \(-0.0698532\pi\)
−0.676536 + 0.736409i \(0.736520\pi\)
\(332\) 5.43209 9.40866i 0.298125 0.516367i
\(333\) 0 0
\(334\) −4.79685 + 2.76946i −0.262472 + 0.151538i
\(335\) −1.33449 −0.0729111
\(336\) 0 0
\(337\) −25.6180 −1.39550 −0.697749 0.716342i \(-0.745815\pi\)
−0.697749 + 0.716342i \(0.745815\pi\)
\(338\) 10.3459 5.97319i 0.562741 0.324898i
\(339\) 0 0
\(340\) −2.87450 + 4.97877i −0.155891 + 0.270012i
\(341\) −9.04559 15.6674i −0.489846 0.848438i
\(342\) 0 0
\(343\) 18.0363 + 4.20631i 0.973867 + 0.227119i
\(344\) 6.11799i 0.329860i
\(345\) 0 0
\(346\) 9.70387 + 5.60253i 0.521683 + 0.301194i
\(347\) −14.5166 8.38116i −0.779291 0.449924i 0.0568878 0.998381i \(-0.481882\pi\)
−0.836179 + 0.548457i \(0.815216\pi\)
\(348\) 0 0
\(349\) 16.6802i 0.892871i −0.894816 0.446435i \(-0.852693\pi\)
0.894816 0.446435i \(-0.147307\pi\)
\(350\) 18.1742 8.71704i 0.971452 0.465945i
\(351\) 0 0
\(352\) −1.51119 2.61745i −0.0805464 0.139511i
\(353\) 17.9568 31.1021i 0.955746 1.65540i 0.223093 0.974797i \(-0.428385\pi\)
0.732653 0.680603i \(-0.238282\pi\)
\(354\) 0 0
\(355\) −43.0282 + 24.8424i −2.28370 + 1.31850i
\(356\) 4.70989 0.249624
\(357\) 0 0
\(358\) 2.74178 0.144908
\(359\) −24.7248 + 14.2749i −1.30493 + 0.753399i −0.981245 0.192767i \(-0.938254\pi\)
−0.323681 + 0.946166i \(0.604921\pi\)
\(360\) 0 0
\(361\) 24.3573 42.1881i 1.28196 2.22043i
\(362\) −11.1449 19.3036i −0.585765 1.01457i
\(363\) 0 0
\(364\) −0.207210 + 2.70785i −0.0108607 + 0.141930i
\(365\) 4.65739i 0.243779i
\(366\) 0 0
\(367\) −0.310665 0.179362i −0.0162166 0.00936264i 0.491870 0.870669i \(-0.336314\pi\)
−0.508086 + 0.861306i \(0.669647\pi\)
\(368\) −2.90837 1.67915i −0.151609 0.0875317i
\(369\) 0 0
\(370\) 20.7681i 1.07968i
\(371\) 0.643893 8.41451i 0.0334293 0.436860i
\(372\) 0 0
\(373\) −12.6854 21.9718i −0.656826 1.13766i −0.981433 0.191807i \(-0.938565\pi\)
0.324606 0.945849i \(-0.394768\pi\)
\(374\) 2.44571 4.23610i 0.126465 0.219044i
\(375\) 0 0
\(376\) −4.45176 + 2.57023i −0.229582 + 0.132549i
\(377\) −4.38924 −0.226057
\(378\) 0 0
\(379\) 26.9063 1.38209 0.691043 0.722814i \(-0.257152\pi\)
0.691043 + 0.722814i \(0.257152\pi\)
\(380\) 25.3148 14.6155i 1.29862 0.749761i
\(381\) 0 0
\(382\) −2.56632 + 4.44499i −0.131304 + 0.227426i
\(383\) 6.28586 + 10.8874i 0.321192 + 0.556322i 0.980734 0.195346i \(-0.0625830\pi\)
−0.659542 + 0.751668i \(0.729250\pi\)
\(384\) 0 0
\(385\) −25.6117 + 12.2843i −1.30529 + 0.626068i
\(386\) 15.9847i 0.813600i
\(387\) 0 0
\(388\) −13.3330 7.69782i −0.676881 0.390798i
\(389\) −14.0805 8.12937i −0.713909 0.412175i 0.0985980 0.995127i \(-0.468564\pi\)
−0.812507 + 0.582952i \(0.801898\pi\)
\(390\) 0 0
\(391\) 5.43510i 0.274865i
\(392\) 5.45906 + 4.38163i 0.275724 + 0.221305i
\(393\) 0 0
\(394\) 2.36286 + 4.09259i 0.119039 + 0.206182i
\(395\) −1.64138 + 2.84295i −0.0825866 + 0.143044i
\(396\) 0 0
\(397\) −12.7252 + 7.34692i −0.638662 + 0.368732i −0.784099 0.620636i \(-0.786875\pi\)
0.145437 + 0.989368i \(0.453541\pi\)
\(398\) 2.12095 0.106313
\(399\) 0 0
\(400\) 7.61848 0.380924
\(401\) 14.4162 8.32318i 0.719909 0.415640i −0.0948099 0.995495i \(-0.530224\pi\)
0.814719 + 0.579855i \(0.196891\pi\)
\(402\) 0 0
\(403\) −3.07208 + 5.32101i −0.153031 + 0.265058i
\(404\) −6.85234 11.8686i −0.340917 0.590485i
\(405\) 0 0
\(406\) −6.38778 + 9.33756i −0.317020 + 0.463416i
\(407\) 17.6702i 0.875879i
\(408\) 0 0
\(409\) 2.43254 + 1.40443i 0.120282 + 0.0694446i 0.558934 0.829212i \(-0.311211\pi\)
−0.438652 + 0.898657i \(0.644544\pi\)
\(410\) −0.290545 0.167747i −0.0143490 0.00828441i
\(411\) 0 0
\(412\) 3.04857i 0.150192i
\(413\) 23.3221 + 1.78465i 1.14761 + 0.0878169i
\(414\) 0 0
\(415\) −19.2962 33.4219i −0.947211 1.64062i
\(416\) −0.513232 + 0.888944i −0.0251633 + 0.0435841i
\(417\) 0 0
\(418\) −21.5387 + 12.4354i −1.05349 + 0.608234i
\(419\) 14.9472 0.730221 0.365110 0.930964i \(-0.381031\pi\)
0.365110 + 0.930964i \(0.381031\pi\)
\(420\) 0 0
\(421\) 15.6067 0.760625 0.380312 0.924858i \(-0.375816\pi\)
0.380312 + 0.924858i \(0.375816\pi\)
\(422\) 23.9160 13.8079i 1.16421 0.672160i
\(423\) 0 0
\(424\) 1.59484 2.76235i 0.0774524 0.134151i
\(425\) 6.16490 + 10.6779i 0.299042 + 0.517955i
\(426\) 0 0
\(427\) −10.2422 7.00663i −0.495654 0.339074i
\(428\) 13.1267i 0.634504i
\(429\) 0 0
\(430\) 18.8210 + 10.8663i 0.907629 + 0.524020i
\(431\) 14.0087 + 8.08792i 0.674775 + 0.389581i 0.797883 0.602812i \(-0.205953\pi\)
−0.123109 + 0.992393i \(0.539286\pi\)
\(432\) 0 0
\(433\) 27.2499i 1.30955i 0.755824 + 0.654774i \(0.227236\pi\)
−0.755824 + 0.654774i \(0.772764\pi\)
\(434\) 6.84889 + 14.2793i 0.328757 + 0.685427i
\(435\) 0 0
\(436\) −5.28574 9.15516i −0.253141 0.438453i
\(437\) −13.8175 + 23.9327i −0.660983 + 1.14486i
\(438\) 0 0
\(439\) −28.6955 + 16.5674i −1.36956 + 0.790717i −0.990872 0.134806i \(-0.956959\pi\)
−0.378690 + 0.925523i \(0.623625\pi\)
\(440\) −10.7362 −0.511829
\(441\) 0 0
\(442\) −1.66124 −0.0790171
\(443\) −19.2808 + 11.1318i −0.916060 + 0.528887i −0.882376 0.470545i \(-0.844057\pi\)
−0.0336837 + 0.999433i \(0.510724\pi\)
\(444\) 0 0
\(445\) 8.36535 14.4892i 0.396556 0.686855i
\(446\) 10.1734 + 17.6209i 0.481727 + 0.834375i
\(447\) 0 0
\(448\) 1.14420 + 2.38554i 0.0540582 + 0.112706i
\(449\) 6.80819i 0.321298i −0.987012 0.160649i \(-0.948641\pi\)
0.987012 0.160649i \(-0.0513588\pi\)
\(450\) 0 0
\(451\) 0.247206 + 0.142724i 0.0116405 + 0.00672062i
\(452\) −10.6520 6.14993i −0.501027 0.289268i
\(453\) 0 0
\(454\) 4.16000i 0.195238i
\(455\) 7.96224 + 5.44693i 0.373276 + 0.255356i
\(456\) 0 0
\(457\) −7.61298 13.1861i −0.356120 0.616818i 0.631189 0.775629i \(-0.282567\pi\)
−0.987309 + 0.158811i \(0.949234\pi\)
\(458\) 2.98482 5.16986i 0.139471 0.241572i
\(459\) 0 0
\(460\) −10.3313 + 5.96476i −0.481698 + 0.278108i
\(461\) 0.206761 0.00962983 0.00481492 0.999988i \(-0.498467\pi\)
0.00481492 + 0.999988i \(0.498467\pi\)
\(462\) 0 0
\(463\) 15.2043 0.706605 0.353303 0.935509i \(-0.385059\pi\)
0.353303 + 0.935509i \(0.385059\pi\)
\(464\) −3.70319 + 2.13804i −0.171916 + 0.0992560i
\(465\) 0 0
\(466\) 2.24360 3.88603i 0.103933 0.180017i
\(467\) −1.15424 1.99921i −0.0534120 0.0925123i 0.838083 0.545542i \(-0.183676\pi\)
−0.891495 + 0.453030i \(0.850343\pi\)
\(468\) 0 0
\(469\) −0.991047 0.0758366i −0.0457623 0.00350181i
\(470\) 18.2602i 0.842279i
\(471\) 0 0
\(472\) 7.65628 + 4.42036i 0.352409 + 0.203463i
\(473\) −16.0135 9.24541i −0.736303 0.425105i
\(474\) 0 0
\(475\) 62.6916i 2.87649i
\(476\) −2.41765 + 3.53408i −0.110813 + 0.161984i
\(477\) 0 0
\(478\) 1.74905 + 3.02944i 0.0799996 + 0.138563i
\(479\) −6.21659 + 10.7674i −0.284043 + 0.491977i −0.972377 0.233417i \(-0.925009\pi\)
0.688334 + 0.725394i \(0.258343\pi\)
\(480\) 0 0
\(481\) 5.19719 3.00060i 0.236971 0.136815i
\(482\) −11.5666 −0.526846
\(483\) 0 0
\(484\) −1.86528 −0.0847854
\(485\) −47.3622 + 27.3446i −2.15061 + 1.24165i
\(486\) 0 0
\(487\) −18.6503 + 32.3033i −0.845128 + 1.46380i 0.0403829 + 0.999184i \(0.487142\pi\)
−0.885510 + 0.464620i \(0.846191\pi\)
\(488\) −2.34517 4.06195i −0.106161 0.183876i
\(489\) 0 0
\(490\) 23.1753 9.01161i 1.04695 0.407103i
\(491\) 13.6475i 0.615905i 0.951402 + 0.307952i \(0.0996438\pi\)
−0.951402 + 0.307952i \(0.900356\pi\)
\(492\) 0 0
\(493\) −5.99328 3.46022i −0.269924 0.155840i
\(494\) 7.31502 + 4.22333i 0.329118 + 0.190017i
\(495\) 0 0
\(496\) 5.98576i 0.268768i
\(497\) −33.3662 + 16.0037i −1.49668 + 0.717864i
\(498\) 0 0
\(499\) 10.5010 + 18.1882i 0.470088 + 0.814216i 0.999415 0.0342021i \(-0.0108890\pi\)
−0.529327 + 0.848418i \(0.677556\pi\)
\(500\) 4.65074 8.05532i 0.207987 0.360245i
\(501\) 0 0
\(502\) −23.1598 + 13.3713i −1.03367 + 0.596790i
\(503\) 22.3018 0.994388 0.497194 0.867639i \(-0.334364\pi\)
0.497194 + 0.867639i \(0.334364\pi\)
\(504\) 0 0
\(505\) −48.6824 −2.16634
\(506\) 8.79018 5.07501i 0.390771 0.225612i
\(507\) 0 0
\(508\) 0.143582 0.248691i 0.00637042 0.0110339i
\(509\) 10.9589 + 18.9814i 0.485746 + 0.841337i 0.999866 0.0163813i \(-0.00521458\pi\)
−0.514120 + 0.857719i \(0.671881\pi\)
\(510\) 0 0
\(511\) 0.264671 3.45876i 0.0117083 0.153007i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −4.51396 2.60614i −0.199102 0.114952i
\(515\) 9.37844 + 5.41465i 0.413264 + 0.238598i
\(516\) 0 0
\(517\) 15.5364i 0.683288i
\(518\) 1.18021 15.4232i 0.0518555 0.677657i
\(519\) 0 0
\(520\) 1.82313 + 3.15775i 0.0799495 + 0.138477i
\(521\) −13.3839 + 23.1816i −0.586358 + 1.01560i 0.408346 + 0.912827i \(0.366106\pi\)
−0.994705 + 0.102775i \(0.967228\pi\)
\(522\) 0 0
\(523\) 14.8576 8.57805i 0.649678 0.375092i −0.138655 0.990341i \(-0.544278\pi\)
0.788333 + 0.615249i \(0.210945\pi\)
\(524\) −0.372949 −0.0162923
\(525\) 0 0
\(526\) −15.0374 −0.655661
\(527\) −8.38954 + 4.84370i −0.365454 + 0.210995i
\(528\) 0 0
\(529\) −5.86091 + 10.1514i −0.254822 + 0.441365i
\(530\) −5.66528 9.81255i −0.246084 0.426230i
\(531\) 0 0
\(532\) 19.6304 9.41547i 0.851084 0.408212i
\(533\) 0.0969447i 0.00419914i
\(534\) 0 0
\(535\) −40.3822 23.3147i −1.74588 1.00798i
\(536\) −0.325345 0.187838i −0.0140527 0.00811336i
\(537\) 0 0
\(538\) 23.1313i 0.997262i
\(539\) −19.7183 + 7.66737i −0.849329 + 0.330257i
\(540\) 0 0
\(541\) −14.4091 24.9573i −0.619496 1.07300i −0.989578 0.144000i \(-0.954004\pi\)
0.370081 0.928999i \(-0.379330\pi\)
\(542\) 4.95748 8.58661i 0.212942 0.368827i
\(543\) 0 0
\(544\) −1.40158 + 0.809204i −0.0600924 + 0.0346943i
\(545\) −37.5525 −1.60857
\(546\) 0 0
\(547\) 32.8091 1.40281 0.701407 0.712761i \(-0.252555\pi\)
0.701407 + 0.712761i \(0.252555\pi\)
\(548\) 6.11607 3.53111i 0.261265 0.150842i
\(549\) 0 0
\(550\) −11.5129 + 19.9410i −0.490913 + 0.850286i
\(551\) 17.5937 + 30.4732i 0.749516 + 1.29820i
\(552\) 0 0
\(553\) −1.38051 + 2.01801i −0.0587053 + 0.0858144i
\(554\) 8.59443i 0.365142i
\(555\) 0 0
\(556\) −12.6320 7.29308i −0.535715 0.309295i
\(557\) 40.0544 + 23.1254i 1.69716 + 0.979855i 0.948434 + 0.316975i \(0.102667\pi\)
0.748725 + 0.662880i \(0.230666\pi\)
\(558\) 0 0
\(559\) 6.27990i 0.265611i
\(560\) 9.37097 + 0.717083i 0.395996 + 0.0303023i
\(561\) 0 0
\(562\) −10.3639 17.9508i −0.437174 0.757208i
\(563\) 0.988637 1.71237i 0.0416661 0.0721678i −0.844440 0.535650i \(-0.820067\pi\)
0.886106 + 0.463482i \(0.153400\pi\)
\(564\) 0 0
\(565\) −37.8385 + 21.8461i −1.59188 + 0.919071i
\(566\) 2.36710 0.0994966
\(567\) 0 0
\(568\) −13.9868 −0.586874
\(569\) 28.5702 16.4950i 1.19773 0.691508i 0.237679 0.971344i \(-0.423613\pi\)
0.960048 + 0.279836i \(0.0902800\pi\)
\(570\) 0 0
\(571\) −7.40326 + 12.8228i −0.309817 + 0.536618i −0.978322 0.207089i \(-0.933601\pi\)
0.668505 + 0.743707i \(0.266934\pi\)
\(572\) −1.55118 2.68672i −0.0648580 0.112337i
\(573\) 0 0
\(574\) −0.206238 0.141086i −0.00860820 0.00588883i
\(575\) 25.5851i 1.06697i
\(576\) 0 0
\(577\) −15.9505 9.20901i −0.664027 0.383376i 0.129783 0.991542i \(-0.458572\pi\)
−0.793810 + 0.608166i \(0.791905\pi\)
\(578\) 12.4541 + 7.19038i 0.518022 + 0.299080i
\(579\) 0 0
\(580\) 15.1897i 0.630718i
\(581\) −12.4308 25.9170i −0.515715 1.07522i
\(582\) 0 0
\(583\) 4.82020 + 8.34884i 0.199632 + 0.345774i
\(584\) 0.655556 1.13546i 0.0271271 0.0469855i
\(585\) 0 0
\(586\) 15.3074 8.83774i 0.632343 0.365084i
\(587\) 46.2130 1.90741 0.953707 0.300739i \(-0.0972333\pi\)
0.953707 + 0.300739i \(0.0972333\pi\)
\(588\) 0 0
\(589\) 49.2561 2.02956
\(590\) 27.1970 15.7022i 1.11968 0.646450i
\(591\) 0 0
\(592\) 2.92323 5.06319i 0.120144 0.208096i
\(593\) −6.80465 11.7860i −0.279434 0.483993i 0.691810 0.722079i \(-0.256813\pi\)
−0.971244 + 0.238086i \(0.923480\pi\)
\(594\) 0 0
\(595\) 6.57798 + 13.7145i 0.269671 + 0.562238i
\(596\) 10.7021i 0.438376i
\(597\) 0 0
\(598\) −2.98534 1.72359i −0.122080 0.0704827i
\(599\) −20.4214 11.7903i −0.834396 0.481739i 0.0209595 0.999780i \(-0.493328\pi\)
−0.855355 + 0.518042i \(0.826661\pi\)
\(600\) 0 0
\(601\) 35.8841i 1.46374i 0.681443 + 0.731871i \(0.261353\pi\)
−0.681443 + 0.731871i \(0.738647\pi\)
\(602\) 13.3597 + 9.13931i 0.544501 + 0.372490i
\(603\) 0 0
\(604\) 8.00065 + 13.8575i 0.325542 + 0.563855i
\(605\) −3.31297 + 5.73823i −0.134691 + 0.233292i
\(606\) 0 0
\(607\) 16.8502 9.72845i 0.683928 0.394866i −0.117406 0.993084i \(-0.537458\pi\)
0.801333 + 0.598218i \(0.204124\pi\)
\(608\) 8.22889 0.333726
\(609\) 0 0
\(610\) −16.6613 −0.674595
\(611\) −4.56958 + 2.63825i −0.184865 + 0.106732i
\(612\) 0 0
\(613\) −21.1210 + 36.5827i −0.853071 + 1.47756i 0.0253526 + 0.999679i \(0.491929\pi\)
−0.878423 + 0.477883i \(0.841404\pi\)
\(614\) 0.640777 + 1.10986i 0.0258597 + 0.0447902i
\(615\) 0 0
\(616\) −7.97313 0.610118i −0.321247 0.0245823i
\(617\) 11.1274i 0.447972i −0.974592 0.223986i \(-0.928093\pi\)
0.974592 0.223986i \(-0.0719069\pi\)
\(618\) 0 0
\(619\) −8.71387 5.03096i −0.350240 0.202211i 0.314551 0.949241i \(-0.398146\pi\)
−0.664791 + 0.747029i \(0.731479\pi\)
\(620\) 18.4142 + 10.6315i 0.739533 + 0.426969i
\(621\) 0 0
\(622\) 12.5329i 0.502522i
\(623\) 7.03583 10.2849i 0.281885 0.412055i
\(624\) 0 0
\(625\) 2.52560 + 4.37447i 0.101024 + 0.174979i
\(626\) −4.37692 + 7.58105i −0.174937 + 0.303000i
\(627\) 0 0
\(628\) 9.98239 5.76334i 0.398341 0.229982i
\(629\) 9.46198 0.377274
\(630\) 0 0
\(631\) 10.3528 0.412139 0.206070 0.978537i \(-0.433933\pi\)
0.206070 + 0.978537i \(0.433933\pi\)
\(632\) −0.800324 + 0.462067i −0.0318352 + 0.0183800i
\(633\) 0 0
\(634\) −6.83920 + 11.8458i −0.271619 + 0.470459i
\(635\) −0.510039 0.883413i −0.0202403 0.0350572i
\(636\) 0 0
\(637\) 5.60353 + 4.49758i 0.222020 + 0.178201i
\(638\) 12.9239i 0.511662i
\(639\) 0 0
\(640\) 3.07634 + 1.77612i 0.121603 + 0.0702075i
\(641\) −23.0678 13.3182i −0.911123 0.526037i −0.0303310 0.999540i \(-0.509656\pi\)
−0.880792 + 0.473503i \(0.842989\pi\)
\(642\) 0 0
\(643\) 46.2449i 1.82372i 0.410498 + 0.911861i \(0.365355\pi\)
−0.410498 + 0.911861i \(0.634645\pi\)
\(644\) −8.01137 + 3.84256i −0.315692 + 0.151418i
\(645\) 0 0
\(646\) 6.65885 + 11.5335i 0.261989 + 0.453778i
\(647\) 15.7032 27.1987i 0.617355 1.06929i −0.372611 0.927988i \(-0.621537\pi\)
0.989966 0.141303i \(-0.0451293\pi\)
\(648\) 0 0
\(649\) −23.1401 + 13.3600i −0.908329 + 0.524424i
\(650\) 7.82009 0.306729
\(651\) 0 0
\(652\) 2.74773 0.107609
\(653\) 39.9639 23.0732i 1.56391 0.902924i 0.567054 0.823681i \(-0.308083\pi\)
0.996855 0.0792429i \(-0.0252503\pi\)
\(654\) 0 0
\(655\) −0.662404 + 1.14732i −0.0258823 + 0.0448294i
\(656\) −0.0472226 0.0817920i −0.00184373 0.00319344i
\(657\) 0 0
\(658\) −1.03769 + 13.5607i −0.0404534 + 0.528652i
\(659\) 1.36315i 0.0531008i 0.999647 + 0.0265504i \(0.00845225\pi\)
−0.999647 + 0.0265504i \(0.991548\pi\)
\(660\) 0 0
\(661\) −6.23888 3.60202i −0.242664 0.140102i 0.373736 0.927535i \(-0.378076\pi\)
−0.616401 + 0.787433i \(0.711410\pi\)
\(662\) 9.43721 + 5.44858i 0.366788 + 0.211765i
\(663\) 0 0
\(664\) 10.8642i 0.421612i
\(665\) 5.90080 77.1127i 0.228823 2.99030i
\(666\) 0 0
\(667\) −7.18018 12.4364i −0.278018 0.481541i
\(668\) −2.76946 + 4.79685i −0.107154 + 0.185596i
\(669\) 0 0
\(670\) −1.15570 + 0.667247i −0.0446488 + 0.0257780i
\(671\) 14.1759 0.547256
\(672\) 0 0
\(673\) −38.9418 −1.50110 −0.750548 0.660816i \(-0.770210\pi\)
−0.750548 + 0.660816i \(0.770210\pi\)
\(674\) −22.1858 + 12.8090i −0.854565 + 0.493383i
\(675\) 0 0
\(676\) 5.97319 10.3459i 0.229738 0.397918i
\(677\) 1.20505 + 2.08722i 0.0463140 + 0.0802182i 0.888253 0.459354i \(-0.151919\pi\)
−0.841939 + 0.539573i \(0.818586\pi\)
\(678\) 0 0
\(679\) −36.7269 + 17.6156i −1.40945 + 0.676026i
\(680\) 5.74899i 0.220464i
\(681\) 0 0
\(682\) −15.6674 9.04559i −0.599937 0.346374i
\(683\) −24.5302 14.1625i −0.938624 0.541915i −0.0490952 0.998794i \(-0.515634\pi\)
−0.889529 + 0.456879i \(0.848967\pi\)
\(684\) 0 0
\(685\) 25.0868i 0.958517i
\(686\) 17.7230 5.37536i 0.676668 0.205232i
\(687\) 0 0
\(688\) 3.05899 + 5.29833i 0.116623 + 0.201997i
\(689\) 1.63705 2.83545i 0.0623666 0.108022i
\(690\) 0 0
\(691\) 2.95334 1.70511i 0.112350 0.0648655i −0.442772 0.896634i \(-0.646005\pi\)
0.555122 + 0.831769i \(0.312672\pi\)
\(692\) 11.2051 0.425953
\(693\) 0 0
\(694\) −16.7623 −0.636289
\(695\) −44.8719 + 25.9068i −1.70209 + 0.982702i
\(696\) 0 0
\(697\) 0.0764255 0.132373i 0.00289482 0.00501398i
\(698\) −8.34010 14.4455i −0.315678 0.546769i
\(699\) 0 0
\(700\) 11.3808 16.6363i 0.430154 0.628792i
\(701\) 51.4943i 1.94491i −0.233087 0.972456i \(-0.574883\pi\)
0.233087 0.972456i \(-0.425117\pi\)
\(702\) 0 0
\(703\) −41.6644 24.0550i −1.57140 0.907251i
\(704\) −2.61745 1.51119i −0.0986488 0.0569549i
\(705\) 0 0
\(706\) 35.9137i 1.35163i
\(707\) −36.1535 2.76653i −1.35969 0.104046i
\(708\) 0 0
\(709\) −5.04218 8.73331i −0.189363 0.327986i 0.755675 0.654947i \(-0.227309\pi\)
−0.945038 + 0.326960i \(0.893976\pi\)
\(710\) −24.8424 + 43.0282i −0.932317 + 1.61482i
\(711\) 0 0
\(712\) 4.07888 2.35495i 0.152863 0.0882553i
\(713\) −20.1020 −0.752825
\(714\) 0 0
\(715\) −11.0203 −0.412137
\(716\) 2.37445 1.37089i 0.0887375 0.0512326i
\(717\) 0 0
\(718\) −14.2749 + 24.7248i −0.532734 + 0.922722i
\(719\) 15.9584 + 27.6408i 0.595148 + 1.03083i 0.993526 + 0.113605i \(0.0362399\pi\)
−0.398378 + 0.917221i \(0.630427\pi\)
\(720\) 0 0
\(721\) 6.65709 + 4.55409i 0.247923 + 0.169603i
\(722\) 48.7146i 1.81297i
\(723\) 0 0
\(724\) −19.3036 11.1449i −0.717413 0.414198i
\(725\) 28.2127 + 16.2886i 1.04779 + 0.604943i
\(726\) 0 0
\(727\) 20.7079i 0.768014i 0.923330 + 0.384007i \(0.125456\pi\)
−0.923330 + 0.384007i \(0.874544\pi\)
\(728\) 1.17448 + 2.44867i 0.0435290 + 0.0907539i
\(729\) 0 0
\(730\) −2.32870 4.03342i −0.0861889 0.149284i
\(731\) −4.95070 + 8.57487i −0.183108 + 0.317153i
\(732\) 0 0
\(733\) −7.69996 + 4.44558i −0.284405 + 0.164201i −0.635416 0.772170i \(-0.719171\pi\)
0.351011 + 0.936371i \(0.385838\pi\)
\(734\) −0.358725 −0.0132408
\(735\) 0 0
\(736\) −3.35830 −0.123789
\(737\) 0.983312 0.567715i 0.0362207 0.0209121i
\(738\) 0 0
\(739\) −16.3882 + 28.3851i −0.602848 + 1.04416i 0.389539 + 0.921010i \(0.372634\pi\)
−0.992388 + 0.123154i \(0.960699\pi\)
\(740\) −10.3841 17.9857i −0.381726 0.661168i
\(741\) 0 0
\(742\) −3.64963 7.60913i −0.133982 0.279340i
\(743\) 7.71403i 0.283000i 0.989938 + 0.141500i \(0.0451926\pi\)
−0.989938 + 0.141500i \(0.954807\pi\)
\(744\) 0 0
\(745\) 32.9234 + 19.0083i 1.20622 + 0.696411i
\(746\) −21.9718 12.6854i −0.804445 0.464446i
\(747\) 0 0
\(748\) 4.89143i 0.178848i
\(749\) −28.6645 19.6092i −1.04738 0.716506i
\(750\) 0 0
\(751\) −15.3804 26.6397i −0.561239 0.972095i −0.997389 0.0722207i \(-0.976991\pi\)
0.436149 0.899874i \(-0.356342\pi\)
\(752\) −2.57023 + 4.45176i −0.0937265 + 0.162339i
\(753\) 0 0
\(754\) −3.80120 + 2.19462i −0.138431 + 0.0799234i
\(755\) 56.8406 2.06864
\(756\) 0 0
\(757\) 46.4611 1.68866 0.844328 0.535827i \(-0.180000\pi\)
0.844328 + 0.535827i \(0.180000\pi\)
\(758\) 23.3016 13.4532i 0.846351 0.488641i
\(759\) 0 0
\(760\) 14.6155 25.3148i 0.530161 0.918266i
\(761\) 18.5959 + 32.2090i 0.674099 + 1.16757i 0.976731 + 0.214467i \(0.0688013\pi\)
−0.302632 + 0.953107i \(0.597865\pi\)
\(762\) 0 0
\(763\) −27.8880 2.13403i −1.00961 0.0772572i
\(764\) 5.13264i 0.185692i
\(765\) 0 0
\(766\) 10.8874 + 6.28586i 0.393379 + 0.227117i
\(767\) 7.85890 + 4.53734i 0.283768 + 0.163834i
\(768\) 0 0
\(769\) 14.1233i 0.509300i −0.967033 0.254650i \(-0.918040\pi\)
0.967033 0.254650i \(-0.0819603\pi\)
\(770\) −16.0382 + 23.4444i −0.577977 + 0.844878i
\(771\) 0 0
\(772\) 7.99235 + 13.8432i 0.287651 + 0.498226i
\(773\) −15.4728 + 26.7996i −0.556517 + 0.963915i 0.441267 + 0.897376i \(0.354529\pi\)
−0.997784 + 0.0665393i \(0.978804\pi\)
\(774\) 0 0
\(775\) 39.4928 22.8012i 1.41862 0.819043i
\(776\) −15.3956 −0.552671
\(777\) 0 0
\(778\) −16.2587 −0.582904
\(779\) −0.673057 + 0.388590i −0.0241148 + 0.0139227i
\(780\) 0 0
\(781\) 21.1367 36.6098i 0.756330 1.31000i
\(782\) −2.71755 4.70694i −0.0971794 0.168320i
\(783\) 0 0
\(784\) 6.91850 + 1.06507i 0.247089 + 0.0380381i
\(785\) 40.9456i 1.46141i
\(786\) 0 0
\(787\) 15.8704 + 9.16280i 0.565720 + 0.326619i 0.755438 0.655220i \(-0.227424\pi\)
−0.189718 + 0.981839i \(0.560757\pi\)
\(788\) 4.09259 + 2.36286i 0.145793 + 0.0841734i
\(789\) 0 0
\(790\) 3.28275i 0.116795i
\(791\) −29.3418 + 14.0735i −1.04328 + 0.500395i
\(792\) 0 0
\(793\) −2.40723 4.16945i −0.0854834 0.148062i
\(794\) −7.34692 + 12.7252i −0.260733 + 0.451602i
\(795\) 0 0
\(796\) 1.83679 1.06047i 0.0651034 0.0375875i
\(797\) −2.15361 −0.0762849 −0.0381424 0.999272i \(-0.512144\pi\)
−0.0381424 + 0.999272i \(0.512144\pi\)
\(798\) 0 0
\(799\) −8.31935 −0.294318
\(800\) 6.59779 3.80924i 0.233267 0.134677i
\(801\) 0 0
\(802\) 8.32318 14.4162i 0.293902 0.509053i
\(803\) 1.98133 + 3.43177i 0.0699197 + 0.121104i
\(804\) 0 0
\(805\) −2.40818 + 31.4705i −0.0848772 + 1.10919i
\(806\) 6.14417i 0.216419i
\(807\) 0 0
\(808\) −11.8686 6.85234i −0.417536 0.241064i
\(809\) −17.0147 9.82342i −0.598204 0.345373i 0.170131 0.985421i \(-0.445581\pi\)
−0.768335 + 0.640048i \(0.778914\pi\)
\(810\) 0 0
\(811\) 12.3340i 0.433105i −0.976271 0.216552i \(-0.930519\pi\)
0.976271 0.216552i \(-0.0694812\pi\)
\(812\) −0.863200 + 11.2805i −0.0302924 + 0.395867i
\(813\) 0 0
\(814\) 8.83510 + 15.3028i 0.309670 + 0.536364i
\(815\) 4.88030 8.45293i 0.170950 0.296093i
\(816\) 0 0
\(817\) 43.5994 25.1721i 1.52535 0.880661i
\(818\) 2.80886 0.0982095
\(819\) 0 0
\(820\) −0.335493 −0.0117159
\(821\) 19.3763 11.1869i 0.676238 0.390426i −0.122198 0.992506i \(-0.538994\pi\)
0.798436 + 0.602079i \(0.205661\pi\)
\(822\) 0 0
\(823\) −13.5033 + 23.3883i −0.470694 + 0.815266i −0.999438 0.0335154i \(-0.989330\pi\)
0.528744 + 0.848781i \(0.322663\pi\)
\(824\) 1.52429 + 2.64014i 0.0531010 + 0.0919737i
\(825\) 0 0
\(826\) 21.0899 10.1155i 0.733811 0.351964i
\(827\) 26.3189i 0.915196i 0.889159 + 0.457598i \(0.151290\pi\)
−0.889159 + 0.457598i \(0.848710\pi\)
\(828\) 0 0
\(829\) 28.8691 + 16.6676i 1.00266 + 0.578888i 0.909035 0.416719i \(-0.136820\pi\)
0.0936287 + 0.995607i \(0.470153\pi\)
\(830\) −33.4219 19.2962i −1.16009 0.669779i
\(831\) 0 0
\(832\) 1.02646i 0.0355863i
\(833\) 4.10570 + 10.5587i 0.142254 + 0.365838i
\(834\) 0 0
\(835\) 9.83781 + 17.0396i 0.340452 + 0.589679i
\(836\) −12.4354 + 21.5387i −0.430086 + 0.744932i
\(837\) 0 0
\(838\) 12.9447 7.47362i 0.447167 0.258172i
\(839\) −37.3792 −1.29047 −0.645236 0.763983i \(-0.723241\pi\)
−0.645236 + 0.763983i \(0.723241\pi\)
\(840\) 0 0
\(841\) 10.7152 0.369488
\(842\) 13.5158 7.80336i 0.465786 0.268922i
\(843\) 0 0
\(844\) 13.8079 23.9160i 0.475289 0.823224i
\(845\) −21.2182 36.7511i −0.729930 1.26428i
\(846\) 0 0
\(847\) −2.78643 + 4.07316i −0.0957429 + 0.139956i
\(848\) 3.18968i 0.109534i
\(849\) 0 0
\(850\) 10.6779 + 6.16490i 0.366250 + 0.211454i
\(851\) 17.0037 + 9.81710i 0.582880 + 0.336526i
\(852\) 0 0
\(853\) 5.37858i 0.184159i 0.995752 + 0.0920795i \(0.0293514\pi\)
−0.995752 + 0.0920795i \(0.970649\pi\)
\(854\) −12.3733 0.946827i −0.423406 0.0323997i
\(855\) 0 0
\(856\) −6.56336 11.3681i −0.224331 0.388553i
\(857\) −22.7000 + 39.3176i −0.775418 + 1.34306i 0.159142 + 0.987256i \(0.449127\pi\)
−0.934559 + 0.355807i \(0.884206\pi\)
\(858\) 0 0
\(859\) −3.36261 + 1.94141i −0.114731 + 0.0662399i −0.556267 0.831003i \(-0.687767\pi\)
0.441536 + 0.897243i \(0.354434\pi\)
\(860\) 21.7326 0.741076
\(861\) 0 0
\(862\) 16.1758 0.550951
\(863\) 20.3332 11.7394i 0.692152 0.399614i −0.112266 0.993678i \(-0.535811\pi\)
0.804418 + 0.594064i \(0.202478\pi\)
\(864\) 0 0
\(865\) 19.9016 34.4706i 0.676674 1.17203i
\(866\) 13.6250 + 23.5991i 0.462995 + 0.801931i
\(867\) 0 0
\(868\) 13.0710 + 8.94178i 0.443657 + 0.303504i
\(869\) 2.79307i 0.0947486i
\(870\) 0 0
\(871\) −0.333955 0.192809i −0.0113156 0.00653308i
\(872\) −9.15516 5.28574i −0.310033 0.178998i
\(873\) 0 0
\(874\) 27.6351i 0.934770i
\(875\) −10.6427 22.1891i −0.359790 0.750128i
\(876\) 0 0
\(877\) −16.4796 28.5434i −0.556475 0.963843i −0.997787 0.0664896i \(-0.978820\pi\)
0.441312 0.897354i \(-0.354513\pi\)
\(878\) −16.5674 + 28.6955i −0.559121 + 0.968427i
\(879\) 0 0
\(880\) −9.29783 + 5.36811i −0.313430 + 0.180959i
\(881\) −7.44403 −0.250796 −0.125398 0.992107i \(-0.540021\pi\)
−0.125398 + 0.992107i \(0.540021\pi\)
\(882\) 0 0
\(883\) −28.2839 −0.951828 −0.475914 0.879492i \(-0.657883\pi\)
−0.475914 + 0.879492i \(0.657883\pi\)
\(884\) −1.43867 + 0.830619i −0.0483879 + 0.0279368i
\(885\) 0 0
\(886\) −11.1318 + 19.2808i −0.373980 + 0.647752i
\(887\) −6.06377 10.5028i −0.203602 0.352648i 0.746085 0.665851i \(-0.231931\pi\)
−0.949686 + 0.313203i \(0.898598\pi\)
\(888\) 0 0
\(889\) −0.328572 0.685042i −0.0110200 0.0229756i
\(890\) 16.7307i 0.560814i
\(891\) 0 0
\(892\) 17.6209 + 10.1734i 0.589992 + 0.340632i
\(893\) 36.6331 + 21.1501i 1.22588 + 0.707761i
\(894\) 0 0
\(895\) 9.73949i 0.325555i
\(896\) 2.18368 + 1.49384i 0.0729515 + 0.0499057i
\(897\) 0 0
\(898\) −3.40409 5.89606i −0.113596 0.196754i
\(899\) −12.7978 + 22.1664i −0.426830 + 0.739291i
\(900\) 0 0
\(901\) 4.47061 2.58111i 0.148938 0.0859891i
\(902\) 0.285448 0.00950439
\(903\) 0 0
\(904\) −12.2999 −0.409087
\(905\) −68.5712 + 39.5896i −2.27938 + 1.31600i
\(906\) 0 0
\(907\) 23.0890 39.9913i 0.766657 1.32789i −0.172709 0.984973i \(-0.555252\pi\)
0.939366 0.342916i \(-0.111415\pi\)
\(908\) −2.08000 3.60266i −0.0690272 0.119559i
\(909\) 0 0
\(910\) 9.61897 + 0.736060i 0.318866 + 0.0244002i
\(911\) 14.6975i 0.486949i −0.969907 0.243475i \(-0.921713\pi\)
0.969907 0.243475i \(-0.0782872\pi\)
\(912\) 0 0
\(913\) 28.4365 + 16.4178i 0.941110 + 0.543350i
\(914\) −13.1861 7.61298i −0.436156 0.251815i
\(915\) 0 0
\(916\) 5.96964i 0.197242i
\(917\) −0.557126 + 0.814399i −0.0183979 + 0.0268938i
\(918\) 0 0
\(919\) −12.9345 22.4033i −0.426671 0.739015i 0.569904 0.821711i \(-0.306980\pi\)
−0.996575 + 0.0826958i \(0.973647\pi\)
\(920\) −5.96476 + 10.3313i −0.196652 + 0.340612i
\(921\) 0 0
\(922\) 0.179060 0.103381i 0.00589704 0.00340466i
\(923\) −14.3570 −0.472566
\(924\) 0 0
\(925\) −44.5412 −1.46451
\(926\) 13.1673 7.60217i 0.432706 0.249823i
\(927\) 0 0
\(928\) −2.13804 + 3.70319i −0.0701846 + 0.121563i
\(929\) 6.59673 + 11.4259i 0.216432 + 0.374870i 0.953714 0.300714i \(-0.0972248\pi\)
−0.737283 + 0.675584i \(0.763892\pi\)
\(930\) 0 0
\(931\) 8.76432 56.9316i 0.287239 1.86586i
\(932\) 4.48720i 0.146983i
\(933\) 0 0
\(934\) −1.99921 1.15424i −0.0654161 0.0377680i
\(935\) −15.0477 8.68779i −0.492112 0.284121i
\(936\) 0 0
\(937\) 8.86021i 0.289451i −0.989472 0.144725i \(-0.953770\pi\)
0.989472 0.144725i \(-0.0462298\pi\)
\(938\) −0.896190 + 0.429847i −0.0292616 + 0.0140350i
\(939\) 0 0
\(940\) 9.13009 + 15.8138i 0.297791 + 0.515788i
\(941\) −2.05919 + 3.56663i −0.0671278 + 0.116269i −0.897636 0.440738i \(-0.854717\pi\)
0.830508 + 0.557007i \(0.188050\pi\)
\(942\) 0 0
\(943\) 0.274682 0.158588i 0.00894488 0.00516433i
\(944\) 8.84071 0.287741
\(945\) 0 0
\(946\) −18.4908 −0.601189
\(947\) 21.4498 12.3840i 0.697024 0.402427i −0.109214 0.994018i \(-0.534833\pi\)
0.806238 + 0.591591i \(0.201500\pi\)
\(948\) 0 0
\(949\) 0.672905 1.16550i 0.0218434 0.0378339i
\(950\) −31.3458 54.2925i −1.01699 1.76148i
\(951\) 0 0
\(952\) −0.326704 + 4.26942i −0.0105885 + 0.138373i
\(953\) 9.62625i 0.311825i −0.987771 0.155912i \(-0.950168\pi\)
0.987771 0.155912i \(-0.0498317\pi\)
\(954\) 0 0
\(955\) 15.7897 + 9.11620i 0.510944 + 0.294993i
\(956\) 3.02944 + 1.74905i 0.0979790 + 0.0565682i
\(957\) 0 0
\(958\) 12.4332i 0.401698i
\(959\) 1.42563 18.6304i 0.0460361 0.601608i
\(960\) 0 0
\(961\) 2.41465 + 4.18230i 0.0778920 + 0.134913i
\(962\) 3.00060 5.19719i 0.0967431 0.167564i
\(963\) 0 0
\(964\) −10.0170 + 5.78332i −0.322626 + 0.186268i
\(965\) 56.7817 1.82787
\(966\) 0 0
\(967\) −10.1112 −0.325153 −0.162576 0.986696i \(-0.551980\pi\)
−0.162576 + 0.986696i \(0.551980\pi\)
\(968\) −1.61538 + 0.932639i −0.0519202 + 0.0299762i
\(969\) 0 0
\(970\) −27.3446 + 47.3622i −0.877981 + 1.52071i
\(971\) 12.6574 + 21.9233i 0.406196 + 0.703552i 0.994460 0.105117i \(-0.0335216\pi\)
−0.588264 + 0.808669i \(0.700188\pi\)
\(972\) 0 0
\(973\) −34.7959 + 16.6894i −1.11550 + 0.535039i
\(974\) 37.3007i 1.19519i
\(975\) 0 0
\(976\) −4.06195 2.34517i −0.130020 0.0750671i
\(977\) −7.84008 4.52647i −0.250826 0.144815i 0.369316 0.929304i \(-0.379592\pi\)
−0.620143 + 0.784489i \(0.712925\pi\)
\(978\) 0 0
\(979\) 14.2350i 0.454954i
\(980\) 15.5646 19.3920i 0.497194 0.619453i
\(981\) 0 0
\(982\) 6.82377 + 11.8191i 0.217755 + 0.377163i
\(983\) 3.19651 5.53653i 0.101953 0.176588i −0.810536 0.585688i \(-0.800824\pi\)
0.912489 + 0.409101i \(0.134158\pi\)
\(984\) 0 0
\(985\) 14.5379 8.39347i 0.463216 0.267438i
\(986\) −6.92044 −0.220392
\(987\) 0 0
\(988\) 8.44666 0.268724
\(989\) −17.7934 + 10.2730i −0.565797 + 0.326663i
\(990\) 0 0
\(991\) 6.92230 11.9898i 0.219894 0.380868i −0.734881 0.678196i \(-0.762762\pi\)
0.954775 + 0.297328i \(0.0960954\pi\)
\(992\) 2.99288 + 5.18382i 0.0950240 + 0.164586i
\(993\) 0 0
\(994\) −20.8941 + 30.5427i −0.662721 + 0.968755i
\(995\) 7.53413i 0.238848i
\(996\) 0 0
\(997\) 5.99391 + 3.46059i 0.189829 + 0.109598i 0.591903 0.806010i \(-0.298377\pi\)
−0.402073 + 0.915607i \(0.631710\pi\)
\(998\) 18.1882 + 10.5010i 0.575737 + 0.332402i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.k.b.647.5 16
3.2 odd 2 1134.2.k.a.647.4 16
7.5 odd 6 1134.2.k.a.971.4 16
9.2 odd 6 378.2.t.a.17.5 16
9.4 even 3 378.2.l.a.143.5 16
9.5 odd 6 126.2.l.a.101.2 yes 16
9.7 even 3 126.2.t.a.59.4 yes 16
21.5 even 6 inner 1134.2.k.b.971.5 16
36.7 odd 6 1008.2.df.c.689.3 16
36.11 even 6 3024.2.df.c.17.1 16
36.23 even 6 1008.2.ca.c.353.7 16
36.31 odd 6 3024.2.ca.c.2033.1 16
63.2 odd 6 2646.2.l.a.1097.4 16
63.4 even 3 2646.2.m.b.1763.1 16
63.5 even 6 126.2.t.a.47.4 yes 16
63.11 odd 6 2646.2.m.a.881.4 16
63.13 odd 6 2646.2.l.a.521.8 16
63.16 even 3 882.2.l.b.509.7 16
63.20 even 6 2646.2.t.b.2285.8 16
63.23 odd 6 882.2.t.a.803.1 16
63.25 even 3 882.2.m.a.293.5 16
63.31 odd 6 2646.2.m.a.1763.4 16
63.32 odd 6 882.2.m.b.587.8 16
63.34 odd 6 882.2.t.a.815.1 16
63.38 even 6 2646.2.m.b.881.1 16
63.40 odd 6 378.2.t.a.89.5 16
63.41 even 6 882.2.l.b.227.3 16
63.47 even 6 378.2.l.a.341.1 16
63.52 odd 6 882.2.m.b.293.8 16
63.58 even 3 2646.2.t.b.1979.8 16
63.59 even 6 882.2.m.a.587.5 16
63.61 odd 6 126.2.l.a.5.6 16
252.47 odd 6 3024.2.ca.c.2609.1 16
252.103 even 6 3024.2.df.c.1601.1 16
252.131 odd 6 1008.2.df.c.929.3 16
252.187 even 6 1008.2.ca.c.257.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.6 16 63.61 odd 6
126.2.l.a.101.2 yes 16 9.5 odd 6
126.2.t.a.47.4 yes 16 63.5 even 6
126.2.t.a.59.4 yes 16 9.7 even 3
378.2.l.a.143.5 16 9.4 even 3
378.2.l.a.341.1 16 63.47 even 6
378.2.t.a.17.5 16 9.2 odd 6
378.2.t.a.89.5 16 63.40 odd 6
882.2.l.b.227.3 16 63.41 even 6
882.2.l.b.509.7 16 63.16 even 3
882.2.m.a.293.5 16 63.25 even 3
882.2.m.a.587.5 16 63.59 even 6
882.2.m.b.293.8 16 63.52 odd 6
882.2.m.b.587.8 16 63.32 odd 6
882.2.t.a.803.1 16 63.23 odd 6
882.2.t.a.815.1 16 63.34 odd 6
1008.2.ca.c.257.7 16 252.187 even 6
1008.2.ca.c.353.7 16 36.23 even 6
1008.2.df.c.689.3 16 36.7 odd 6
1008.2.df.c.929.3 16 252.131 odd 6
1134.2.k.a.647.4 16 3.2 odd 2
1134.2.k.a.971.4 16 7.5 odd 6
1134.2.k.b.647.5 16 1.1 even 1 trivial
1134.2.k.b.971.5 16 21.5 even 6 inner
2646.2.l.a.521.8 16 63.13 odd 6
2646.2.l.a.1097.4 16 63.2 odd 6
2646.2.m.a.881.4 16 63.11 odd 6
2646.2.m.a.1763.4 16 63.31 odd 6
2646.2.m.b.881.1 16 63.38 even 6
2646.2.m.b.1763.1 16 63.4 even 3
2646.2.t.b.1979.8 16 63.58 even 3
2646.2.t.b.2285.8 16 63.20 even 6
3024.2.ca.c.2033.1 16 36.31 odd 6
3024.2.ca.c.2609.1 16 252.47 odd 6
3024.2.df.c.17.1 16 36.11 even 6
3024.2.df.c.1601.1 16 252.103 even 6