Properties

Label 882.2.m.a.293.5
Level $882$
Weight $2$
Character 882.293
Analytic conductor $7.043$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(293,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.293");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.m (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 293.5
Root \(1.27866 - 1.16834i\) of defining polynomial
Character \(\chi\) \(=\) 882.293
Dual form 882.2.m.a.587.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-1.71170 + 0.264701i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.77612 + 3.07634i) q^{5} +(-1.35003 + 1.08509i) q^{6} -1.00000i q^{8} +(2.85987 - 0.906179i) q^{9} +3.55225i q^{10} +(-2.61745 + 1.51119i) q^{11} +(-0.626615 + 1.61473i) q^{12} +(0.888944 + 0.513232i) q^{13} +(2.22589 - 5.73592i) q^{15} +(-0.500000 - 0.866025i) q^{16} -1.61841 q^{17} +(2.02363 - 2.21471i) q^{18} -8.22889i q^{19} +(1.77612 + 3.07634i) q^{20} +(-1.51119 + 2.61745i) q^{22} +(-2.90837 - 1.67915i) q^{23} +(0.264701 + 1.71170i) q^{24} +(-3.80924 - 6.59779i) q^{25} +1.02646 q^{26} +(-4.65538 + 2.30812i) q^{27} +(-3.70319 + 2.13804i) q^{29} +(-0.940283 - 6.08040i) q^{30} +(-5.18382 - 2.99288i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(4.08029 - 3.27954i) q^{33} +(-1.40158 + 0.809204i) q^{34} +(0.645160 - 2.92981i) q^{36} -5.84647 q^{37} +(-4.11444 - 7.12643i) q^{38} +(-1.65746 - 0.643198i) q^{39} +(3.07634 + 1.77612i) q^{40} +(-0.0472226 + 0.0817920i) q^{41} +(3.05899 + 5.29833i) q^{43} +3.02237i q^{44} +(-2.29177 + 10.4074i) q^{45} -3.35830 q^{46} +(-2.57023 - 4.45176i) q^{47} +(1.08509 + 1.35003i) q^{48} +(-6.59779 - 3.80924i) q^{50} +(2.77024 - 0.428394i) q^{51} +(0.888944 - 0.513232i) q^{52} -3.18968i q^{53} +(-2.87762 + 4.32658i) q^{54} -10.7362i q^{55} +(2.17819 + 14.0854i) q^{57} +(-2.13804 + 3.70319i) q^{58} +(-4.42036 + 7.65628i) q^{59} +(-3.85451 - 4.79564i) q^{60} +(4.06195 - 2.34517i) q^{61} -5.98576 q^{62} -1.00000 q^{64} +(-3.15775 + 1.82313i) q^{65} +(1.89386 - 4.88031i) q^{66} +(0.187838 - 0.325345i) q^{67} +(-0.809204 + 1.40158i) q^{68} +(5.42275 + 2.10436i) q^{69} -13.9868i q^{71} +(-0.906179 - 2.85987i) q^{72} -1.31111i q^{73} +(-5.06319 + 2.92323i) q^{74} +(8.26673 + 10.2852i) q^{75} +(-7.12643 - 4.11444i) q^{76} +(-1.75700 + 0.271706i) q^{78} +(-0.462067 - 0.800324i) q^{79} +3.55225 q^{80} +(7.35768 - 5.18310i) q^{81} +0.0944452i q^{82} +(-5.43209 - 9.40866i) q^{83} +(2.87450 - 4.97877i) q^{85} +(5.29833 + 3.05899i) q^{86} +(5.77283 - 4.63993i) q^{87} +(1.51119 + 2.61745i) q^{88} -4.70989 q^{89} +(3.21897 + 10.1590i) q^{90} +(-2.90837 + 1.67915i) q^{92} +(9.66539 + 3.75077i) q^{93} +(-4.45176 - 2.57023i) q^{94} +(25.3148 + 14.6155i) q^{95} +(1.61473 + 0.626615i) q^{96} +(-13.3330 + 7.69782i) q^{97} +(-6.11615 + 6.69367i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 6 q^{9} - 12 q^{11} - 6 q^{13} - 18 q^{15} - 8 q^{16} - 36 q^{17} + 6 q^{23} + 6 q^{24} - 8 q^{25} + 24 q^{26} - 36 q^{27} + 6 q^{29} + 18 q^{30} - 6 q^{31} - 18 q^{33} + 4 q^{37} + 42 q^{39}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) −1.71170 + 0.264701i −0.988253 + 0.152825i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −1.77612 + 3.07634i −0.794307 + 1.37578i 0.128971 + 0.991648i \(0.458833\pi\)
−0.923278 + 0.384132i \(0.874501\pi\)
\(6\) −1.35003 + 1.08509i −0.551147 + 0.442986i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 2.85987 0.906179i 0.953289 0.302060i
\(10\) 3.55225i 1.12332i
\(11\) −2.61745 + 1.51119i −0.789191 + 0.455639i −0.839678 0.543085i \(-0.817256\pi\)
0.0504869 + 0.998725i \(0.483923\pi\)
\(12\) −0.626615 + 1.61473i −0.180888 + 0.466132i
\(13\) 0.888944 + 0.513232i 0.246549 + 0.142345i 0.618183 0.786034i \(-0.287869\pi\)
−0.371634 + 0.928379i \(0.621202\pi\)
\(14\) 0 0
\(15\) 2.22589 5.73592i 0.574723 1.48101i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.61841 −0.392522 −0.196261 0.980552i \(-0.562880\pi\)
−0.196261 + 0.980552i \(0.562880\pi\)
\(18\) 2.02363 2.21471i 0.476974 0.522012i
\(19\) 8.22889i 1.88784i −0.330179 0.943918i \(-0.607109\pi\)
0.330179 0.943918i \(-0.392891\pi\)
\(20\) 1.77612 + 3.07634i 0.397154 + 0.687890i
\(21\) 0 0
\(22\) −1.51119 + 2.61745i −0.322186 + 0.558042i
\(23\) −2.90837 1.67915i −0.606438 0.350127i 0.165132 0.986271i \(-0.447195\pi\)
−0.771570 + 0.636144i \(0.780528\pi\)
\(24\) 0.264701 + 1.71170i 0.0540318 + 0.349400i
\(25\) −3.80924 6.59779i −0.761848 1.31956i
\(26\) 1.02646 0.201306
\(27\) −4.65538 + 2.30812i −0.895929 + 0.444198i
\(28\) 0 0
\(29\) −3.70319 + 2.13804i −0.687666 + 0.397024i −0.802737 0.596333i \(-0.796624\pi\)
0.115071 + 0.993357i \(0.463290\pi\)
\(30\) −0.940283 6.08040i −0.171671 1.11012i
\(31\) −5.18382 2.99288i −0.931041 0.537537i −0.0439006 0.999036i \(-0.513978\pi\)
−0.887141 + 0.461499i \(0.847312\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 4.08029 3.27954i 0.710287 0.570895i
\(34\) −1.40158 + 0.809204i −0.240369 + 0.138777i
\(35\) 0 0
\(36\) 0.645160 2.92981i 0.107527 0.488301i
\(37\) −5.84647 −0.961154 −0.480577 0.876953i \(-0.659573\pi\)
−0.480577 + 0.876953i \(0.659573\pi\)
\(38\) −4.11444 7.12643i −0.667451 1.15606i
\(39\) −1.65746 0.643198i −0.265407 0.102994i
\(40\) 3.07634 + 1.77612i 0.486412 + 0.280830i
\(41\) −0.0472226 + 0.0817920i −0.00737493 + 0.0127738i −0.869689 0.493600i \(-0.835681\pi\)
0.862314 + 0.506373i \(0.169014\pi\)
\(42\) 0 0
\(43\) 3.05899 + 5.29833i 0.466492 + 0.807988i 0.999267 0.0382684i \(-0.0121842\pi\)
−0.532775 + 0.846257i \(0.678851\pi\)
\(44\) 3.02237i 0.455639i
\(45\) −2.29177 + 10.4074i −0.341637 + 1.55144i
\(46\) −3.35830 −0.495154
\(47\) −2.57023 4.45176i −0.374906 0.649356i 0.615407 0.788210i \(-0.288992\pi\)
−0.990313 + 0.138853i \(0.955658\pi\)
\(48\) 1.08509 + 1.35003i 0.156619 + 0.194860i
\(49\) 0 0
\(50\) −6.59779 3.80924i −0.933069 0.538708i
\(51\) 2.77024 0.428394i 0.387911 0.0599871i
\(52\) 0.888944 0.513232i 0.123274 0.0711725i
\(53\) 3.18968i 0.438137i −0.975709 0.219068i \(-0.929698\pi\)
0.975709 0.219068i \(-0.0703018\pi\)
\(54\) −2.87762 + 4.32658i −0.391594 + 0.588773i
\(55\) 10.7362i 1.44767i
\(56\) 0 0
\(57\) 2.17819 + 14.0854i 0.288509 + 1.86566i
\(58\) −2.13804 + 3.70319i −0.280738 + 0.486253i
\(59\) −4.42036 + 7.65628i −0.575481 + 0.996763i 0.420508 + 0.907289i \(0.361852\pi\)
−0.995989 + 0.0894739i \(0.971481\pi\)
\(60\) −3.85451 4.79564i −0.497615 0.619115i
\(61\) 4.06195 2.34517i 0.520080 0.300268i −0.216887 0.976197i \(-0.569590\pi\)
0.736967 + 0.675928i \(0.236257\pi\)
\(62\) −5.98576 −0.760192
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −3.15775 + 1.82313i −0.391671 + 0.226131i
\(66\) 1.89386 4.88031i 0.233118 0.600725i
\(67\) 0.187838 0.325345i 0.0229480 0.0397472i −0.854323 0.519742i \(-0.826028\pi\)
0.877271 + 0.479995i \(0.159361\pi\)
\(68\) −0.809204 + 1.40158i −0.0981304 + 0.169967i
\(69\) 5.42275 + 2.10436i 0.652822 + 0.253335i
\(70\) 0 0
\(71\) 13.9868i 1.65993i −0.557815 0.829966i \(-0.688360\pi\)
0.557815 0.829966i \(-0.311640\pi\)
\(72\) −0.906179 2.85987i −0.106794 0.337039i
\(73\) 1.31111i 0.153454i −0.997052 0.0767270i \(-0.975553\pi\)
0.997052 0.0767270i \(-0.0244470\pi\)
\(74\) −5.06319 + 2.92323i −0.588584 + 0.339819i
\(75\) 8.26673 + 10.2852i 0.954560 + 1.18763i
\(76\) −7.12643 4.11444i −0.817457 0.471959i
\(77\) 0 0
\(78\) −1.75700 + 0.271706i −0.198942 + 0.0307646i
\(79\) −0.462067 0.800324i −0.0519866 0.0900434i 0.838861 0.544346i \(-0.183222\pi\)
−0.890848 + 0.454302i \(0.849889\pi\)
\(80\) 3.55225 0.397154
\(81\) 7.35768 5.18310i 0.817520 0.575900i
\(82\) 0.0944452i 0.0104297i
\(83\) −5.43209 9.40866i −0.596250 1.03273i −0.993369 0.114968i \(-0.963323\pi\)
0.397119 0.917767i \(-0.370010\pi\)
\(84\) 0 0
\(85\) 2.87450 4.97877i 0.311783 0.540024i
\(86\) 5.29833 + 3.05899i 0.571334 + 0.329860i
\(87\) 5.77283 4.63993i 0.618913 0.497453i
\(88\) 1.51119 + 2.61745i 0.161093 + 0.279021i
\(89\) −4.70989 −0.499247 −0.249624 0.968343i \(-0.580307\pi\)
−0.249624 + 0.968343i \(0.580307\pi\)
\(90\) 3.21897 + 10.1590i 0.339310 + 1.07085i
\(91\) 0 0
\(92\) −2.90837 + 1.67915i −0.303219 + 0.175063i
\(93\) 9.66539 + 3.75077i 1.00225 + 0.388936i
\(94\) −4.45176 2.57023i −0.459164 0.265099i
\(95\) 25.3148 + 14.6155i 2.59725 + 1.49952i
\(96\) 1.61473 + 0.626615i 0.164803 + 0.0639536i
\(97\) −13.3330 + 7.69782i −1.35376 + 0.781595i −0.988774 0.149417i \(-0.952260\pi\)
−0.364988 + 0.931012i \(0.618927\pi\)
\(98\) 0 0
\(99\) −6.11615 + 6.69367i −0.614697 + 0.672739i
\(100\) −7.61848 −0.761848
\(101\) 6.85234 + 11.8686i 0.681833 + 1.18097i 0.974421 + 0.224731i \(0.0721503\pi\)
−0.292588 + 0.956239i \(0.594516\pi\)
\(102\) 2.18490 1.75612i 0.216337 0.173882i
\(103\) 2.64014 + 1.52429i 0.260141 + 0.150192i 0.624399 0.781106i \(-0.285344\pi\)
−0.364258 + 0.931298i \(0.618677\pi\)
\(104\) 0.513232 0.888944i 0.0503266 0.0871682i
\(105\) 0 0
\(106\) −1.59484 2.76235i −0.154905 0.268303i
\(107\) 13.1267i 1.26901i 0.772920 + 0.634504i \(0.218796\pi\)
−0.772920 + 0.634504i \(0.781204\pi\)
\(108\) −0.328801 + 5.18574i −0.0316389 + 0.498998i
\(109\) −10.5715 −1.01256 −0.506282 0.862368i \(-0.668980\pi\)
−0.506282 + 0.862368i \(0.668980\pi\)
\(110\) −5.36811 9.29783i −0.511829 0.886514i
\(111\) 10.0074 1.54756i 0.949863 0.146888i
\(112\) 0 0
\(113\) 10.6520 + 6.14993i 1.00205 + 0.578537i 0.908856 0.417111i \(-0.136957\pi\)
0.0931992 + 0.995647i \(0.470291\pi\)
\(114\) 8.92908 + 11.1092i 0.836285 + 1.04048i
\(115\) 10.3313 5.96476i 0.963396 0.556217i
\(116\) 4.27608i 0.397024i
\(117\) 3.00734 + 0.662233i 0.278029 + 0.0612235i
\(118\) 8.84071i 0.813853i
\(119\) 0 0
\(120\) −5.73592 2.22589i −0.523616 0.203195i
\(121\) −0.932639 + 1.61538i −0.0847854 + 0.146853i
\(122\) 2.34517 4.06195i 0.212322 0.367752i
\(123\) 0.0591808 0.152504i 0.00533615 0.0137508i
\(124\) −5.18382 + 2.99288i −0.465521 + 0.268768i
\(125\) 9.30148 0.831950
\(126\) 0 0
\(127\) 0.287164 0.0254817 0.0127408 0.999919i \(-0.495944\pi\)
0.0127408 + 0.999919i \(0.495944\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) −6.63857 8.25947i −0.584493 0.727206i
\(130\) −1.82313 + 3.15775i −0.159899 + 0.276953i
\(131\) −0.186474 + 0.322983i −0.0162923 + 0.0282192i −0.874057 0.485824i \(-0.838520\pi\)
0.857764 + 0.514043i \(0.171853\pi\)
\(132\) −0.800023 5.17341i −0.0696331 0.450287i
\(133\) 0 0
\(134\) 0.375675i 0.0324534i
\(135\) 1.16798 18.4210i 0.100524 1.58543i
\(136\) 1.61841i 0.138777i
\(137\) −6.11607 + 3.53111i −0.522531 + 0.301683i −0.737969 0.674834i \(-0.764215\pi\)
0.215439 + 0.976517i \(0.430882\pi\)
\(138\) 5.74842 0.888944i 0.489338 0.0756720i
\(139\) 12.6320 + 7.29308i 1.07143 + 0.618591i 0.928572 0.371152i \(-0.121037\pi\)
0.142858 + 0.989743i \(0.454371\pi\)
\(140\) 0 0
\(141\) 5.57785 + 6.93976i 0.469740 + 0.584434i
\(142\) −6.99341 12.1129i −0.586874 1.01650i
\(143\) −3.10236 −0.259432
\(144\) −2.21471 2.02363i −0.184559 0.168636i
\(145\) 15.1897i 1.26144i
\(146\) −0.655556 1.13546i −0.0542542 0.0939710i
\(147\) 0 0
\(148\) −2.92323 + 5.06319i −0.240288 + 0.416192i
\(149\) 9.26832 + 5.35107i 0.759290 + 0.438376i 0.829041 0.559188i \(-0.188887\pi\)
−0.0697505 + 0.997564i \(0.522220\pi\)
\(150\) 12.3018 + 4.77385i 1.00444 + 0.389783i
\(151\) −8.00065 13.8575i −0.651084 1.12771i −0.982860 0.184352i \(-0.940981\pi\)
0.331777 0.943358i \(-0.392352\pi\)
\(152\) −8.22889 −0.667451
\(153\) −4.62843 + 1.46657i −0.374187 + 0.118565i
\(154\) 0 0
\(155\) 18.4142 10.6315i 1.47907 0.853939i
\(156\) −1.38576 + 1.11381i −0.110949 + 0.0891759i
\(157\) 9.98239 + 5.76334i 0.796681 + 0.459964i 0.842309 0.538994i \(-0.181196\pi\)
−0.0456280 + 0.998958i \(0.514529\pi\)
\(158\) −0.800324 0.462067i −0.0636703 0.0367601i
\(159\) 0.844312 + 5.45980i 0.0669583 + 0.432990i
\(160\) 3.07634 1.77612i 0.243206 0.140415i
\(161\) 0 0
\(162\) 3.78039 8.16754i 0.297015 0.641702i
\(163\) −2.74773 −0.215219 −0.107609 0.994193i \(-0.534320\pi\)
−0.107609 + 0.994193i \(0.534320\pi\)
\(164\) 0.0472226 + 0.0817920i 0.00368747 + 0.00638688i
\(165\) 2.84188 + 18.3772i 0.221240 + 1.43067i
\(166\) −9.40866 5.43209i −0.730254 0.421612i
\(167\) 2.76946 4.79685i 0.214307 0.371191i −0.738751 0.673979i \(-0.764584\pi\)
0.953058 + 0.302788i \(0.0979173\pi\)
\(168\) 0 0
\(169\) −5.97319 10.3459i −0.459476 0.795835i
\(170\) 5.74899i 0.440927i
\(171\) −7.45685 23.5335i −0.570239 1.79965i
\(172\) 6.11799 0.466492
\(173\) 5.60253 + 9.70387i 0.425953 + 0.737772i 0.996509 0.0834869i \(-0.0266057\pi\)
−0.570556 + 0.821259i \(0.693272\pi\)
\(174\) 2.67945 6.90471i 0.203129 0.523445i
\(175\) 0 0
\(176\) 2.61745 + 1.51119i 0.197298 + 0.113910i
\(177\) 5.53972 14.2754i 0.416391 1.07300i
\(178\) −4.07888 + 2.35495i −0.305725 + 0.176511i
\(179\) 2.74178i 0.204930i −0.994737 0.102465i \(-0.967327\pi\)
0.994737 0.102465i \(-0.0326730\pi\)
\(180\) 7.86719 + 7.18843i 0.586386 + 0.535794i
\(181\) 22.2899i 1.65679i −0.560142 0.828397i \(-0.689253\pi\)
0.560142 0.828397i \(-0.310747\pi\)
\(182\) 0 0
\(183\) −6.33210 + 5.08944i −0.468082 + 0.376222i
\(184\) −1.67915 + 2.90837i −0.123789 + 0.214408i
\(185\) 10.3841 17.9857i 0.763451 1.32234i
\(186\) 10.2459 1.58443i 0.751262 0.116176i
\(187\) 4.23610 2.44571i 0.309774 0.178848i
\(188\) −5.14045 −0.374906
\(189\) 0 0
\(190\) 29.2311 2.12064
\(191\) −4.44499 + 2.56632i −0.321628 + 0.185692i −0.652118 0.758117i \(-0.726119\pi\)
0.330490 + 0.943810i \(0.392786\pi\)
\(192\) 1.71170 0.264701i 0.123532 0.0191031i
\(193\) −7.99235 + 13.8432i −0.575302 + 0.996452i 0.420707 + 0.907197i \(0.361782\pi\)
−0.996009 + 0.0892557i \(0.971551\pi\)
\(194\) −7.69782 + 13.3330i −0.552671 + 0.957254i
\(195\) 4.92256 3.95652i 0.352512 0.283332i
\(196\) 0 0
\(197\) 4.72572i 0.336694i 0.985728 + 0.168347i \(0.0538428\pi\)
−0.985728 + 0.168347i \(0.946157\pi\)
\(198\) −1.94991 + 8.85496i −0.138574 + 0.629295i
\(199\) 2.12095i 0.150350i −0.997170 0.0751749i \(-0.976048\pi\)
0.997170 0.0751749i \(-0.0239515\pi\)
\(200\) −6.59779 + 3.80924i −0.466534 + 0.269354i
\(201\) −0.235404 + 0.606615i −0.0166041 + 0.0427873i
\(202\) 11.8686 + 6.85234i 0.835072 + 0.482129i
\(203\) 0 0
\(204\) 1.01412 2.61329i 0.0710025 0.182967i
\(205\) −0.167747 0.290545i −0.0117159 0.0202926i
\(206\) 3.04857 0.212404
\(207\) −9.83917 2.16664i −0.683870 0.150592i
\(208\) 1.02646i 0.0711725i
\(209\) 12.4354 + 21.5387i 0.860173 + 1.48986i
\(210\) 0 0
\(211\) −13.8079 + 23.9160i −0.950578 + 1.64645i −0.206399 + 0.978468i \(0.566174\pi\)
−0.744179 + 0.667981i \(0.767159\pi\)
\(212\) −2.76235 1.59484i −0.189719 0.109534i
\(213\) 3.70232 + 23.9413i 0.253679 + 1.64043i
\(214\) 6.56336 + 11.3681i 0.448662 + 0.777105i
\(215\) −21.7326 −1.48215
\(216\) 2.30812 + 4.65538i 0.157048 + 0.316759i
\(217\) 0 0
\(218\) −9.15516 + 5.28574i −0.620066 + 0.357995i
\(219\) 0.347052 + 2.24424i 0.0234516 + 0.151651i
\(220\) −9.29783 5.36811i −0.626860 0.361918i
\(221\) −1.43867 0.830619i −0.0967757 0.0558735i
\(222\) 7.89291 6.34395i 0.529737 0.425778i
\(223\) 17.6209 10.1734i 1.17998 0.681264i 0.223973 0.974595i \(-0.428097\pi\)
0.956011 + 0.293331i \(0.0947638\pi\)
\(224\) 0 0
\(225\) −16.8727 15.4170i −1.12485 1.02780i
\(226\) 12.2999 0.818174
\(227\) 2.08000 + 3.60266i 0.138054 + 0.239117i 0.926760 0.375654i \(-0.122582\pi\)
−0.788706 + 0.614771i \(0.789248\pi\)
\(228\) 13.2874 + 5.15634i 0.879982 + 0.341487i
\(229\) −5.16986 2.98482i −0.341634 0.197242i 0.319361 0.947633i \(-0.396532\pi\)
−0.660994 + 0.750391i \(0.729865\pi\)
\(230\) 5.96476 10.3313i 0.393305 0.681224i
\(231\) 0 0
\(232\) 2.13804 + 3.70319i 0.140369 + 0.243126i
\(233\) 4.48720i 0.293966i 0.989139 + 0.146983i \(0.0469563\pi\)
−0.989139 + 0.146983i \(0.953044\pi\)
\(234\) 2.93555 0.930160i 0.191903 0.0608065i
\(235\) 18.2602 1.19116
\(236\) 4.42036 + 7.65628i 0.287741 + 0.498381i
\(237\) 1.00277 + 1.24761i 0.0651368 + 0.0810409i
\(238\) 0 0
\(239\) −3.02944 1.74905i −0.195958 0.113136i 0.398811 0.917033i \(-0.369423\pi\)
−0.594769 + 0.803897i \(0.702756\pi\)
\(240\) −6.08040 + 0.940283i −0.392488 + 0.0606950i
\(241\) 10.0170 5.78332i 0.645252 0.372537i −0.141383 0.989955i \(-0.545155\pi\)
0.786635 + 0.617419i \(0.211821\pi\)
\(242\) 1.86528i 0.119905i
\(243\) −11.2222 + 10.8195i −0.719905 + 0.694073i
\(244\) 4.69034i 0.300268i
\(245\) 0 0
\(246\) −0.0249997 0.161662i −0.00159392 0.0103072i
\(247\) 4.22333 7.31502i 0.268724 0.465444i
\(248\) −2.99288 + 5.18382i −0.190048 + 0.329173i
\(249\) 11.7886 + 14.6670i 0.747074 + 0.929482i
\(250\) 8.05532 4.65074i 0.509463 0.294139i
\(251\) −26.7426 −1.68798 −0.843988 0.536361i \(-0.819798\pi\)
−0.843988 + 0.536361i \(0.819798\pi\)
\(252\) 0 0
\(253\) 10.1500 0.638127
\(254\) 0.248691 0.143582i 0.0156043 0.00900913i
\(255\) −3.60240 + 9.28307i −0.225591 + 0.581328i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −2.60614 + 4.51396i −0.162566 + 0.281573i −0.935788 0.352562i \(-0.885310\pi\)
0.773222 + 0.634135i \(0.218644\pi\)
\(258\) −9.87890 3.83362i −0.615034 0.238671i
\(259\) 0 0
\(260\) 3.64626i 0.226131i
\(261\) −8.65319 + 9.47026i −0.535619 + 0.586194i
\(262\) 0.372949i 0.0230409i
\(263\) 13.0228 7.51869i 0.803018 0.463622i −0.0415076 0.999138i \(-0.513216\pi\)
0.844525 + 0.535516i \(0.179883\pi\)
\(264\) −3.27954 4.08029i −0.201842 0.251124i
\(265\) 9.81255 + 5.66528i 0.602780 + 0.348015i
\(266\) 0 0
\(267\) 8.06194 1.24671i 0.493383 0.0762975i
\(268\) −0.187838 0.325345i −0.0114740 0.0198736i
\(269\) −23.1313 −1.41034 −0.705170 0.709038i \(-0.749130\pi\)
−0.705170 + 0.709038i \(0.749130\pi\)
\(270\) −8.19902 16.5371i −0.498976 1.00641i
\(271\) 9.91496i 0.602291i 0.953578 + 0.301146i \(0.0973690\pi\)
−0.953578 + 0.301146i \(0.902631\pi\)
\(272\) 0.809204 + 1.40158i 0.0490652 + 0.0849834i
\(273\) 0 0
\(274\) −3.53111 + 6.11607i −0.213322 + 0.369485i
\(275\) 19.9410 + 11.5129i 1.20249 + 0.694256i
\(276\) 4.53380 3.64406i 0.272903 0.219346i
\(277\) 4.29721 + 7.44299i 0.258195 + 0.447206i 0.965758 0.259443i \(-0.0835391\pi\)
−0.707564 + 0.706650i \(0.750206\pi\)
\(278\) 14.5862 0.874819
\(279\) −17.5371 3.86177i −1.04992 0.231198i
\(280\) 0 0
\(281\) −17.9508 + 10.3639i −1.07085 + 0.618258i −0.928415 0.371545i \(-0.878828\pi\)
−0.142440 + 0.989803i \(0.545495\pi\)
\(282\) 8.30045 + 3.22108i 0.494284 + 0.191813i
\(283\) 2.04997 + 1.18355i 0.121858 + 0.0703547i 0.559690 0.828702i \(-0.310920\pi\)
−0.437832 + 0.899057i \(0.644254\pi\)
\(284\) −12.1129 6.99341i −0.718771 0.414983i
\(285\) −47.2003 18.3166i −2.79590 1.08498i
\(286\) −2.68672 + 1.55118i −0.158869 + 0.0917231i
\(287\) 0 0
\(288\) −2.92981 0.645160i −0.172641 0.0380164i
\(289\) −14.3808 −0.845927
\(290\) −7.59485 13.1547i −0.445985 0.772468i
\(291\) 20.7846 16.7057i 1.21841 0.979303i
\(292\) −1.13546 0.655556i −0.0664475 0.0383635i
\(293\) −8.83774 + 15.3074i −0.516306 + 0.894268i 0.483515 + 0.875336i \(0.339360\pi\)
−0.999821 + 0.0189321i \(0.993973\pi\)
\(294\) 0 0
\(295\) −15.7022 27.1970i −0.914218 1.58347i
\(296\) 5.84647i 0.339819i
\(297\) 8.69723 13.0765i 0.504665 0.758777i
\(298\) 10.7021 0.619958
\(299\) −1.72359 2.98534i −0.0996777 0.172647i
\(300\) 13.0406 2.01662i 0.752898 0.116429i
\(301\) 0 0
\(302\) −13.8575 8.00065i −0.797411 0.460386i
\(303\) −14.8708 18.5017i −0.854305 1.06290i
\(304\) −7.12643 + 4.11444i −0.408729 + 0.235980i
\(305\) 16.6613i 0.954021i
\(306\) −3.27506 + 3.58430i −0.187223 + 0.204901i
\(307\) 1.28155i 0.0731422i 0.999331 + 0.0365711i \(0.0116435\pi\)
−0.999331 + 0.0365711i \(0.988356\pi\)
\(308\) 0 0
\(309\) −4.92262 1.91028i −0.280038 0.108672i
\(310\) 10.6315 18.4142i 0.603826 1.04586i
\(311\) 6.26643 10.8538i 0.355336 0.615461i −0.631839 0.775100i \(-0.717700\pi\)
0.987175 + 0.159639i \(0.0510330\pi\)
\(312\) −0.643198 + 1.65746i −0.0364139 + 0.0938354i
\(313\) −7.58105 + 4.37692i −0.428507 + 0.247398i −0.698710 0.715405i \(-0.746242\pi\)
0.270204 + 0.962803i \(0.412909\pi\)
\(314\) 11.5267 0.650488
\(315\) 0 0
\(316\) −0.924134 −0.0519866
\(317\) −11.8458 + 6.83920i −0.665329 + 0.384128i −0.794304 0.607520i \(-0.792164\pi\)
0.128976 + 0.991648i \(0.458831\pi\)
\(318\) 3.46109 + 4.30617i 0.194089 + 0.241478i
\(319\) 6.46195 11.1924i 0.361799 0.626655i
\(320\) 1.77612 3.07634i 0.0992884 0.171973i
\(321\) −3.47465 22.4691i −0.193936 1.25410i
\(322\) 0 0
\(323\) 13.3177i 0.741017i
\(324\) −0.809858 8.96349i −0.0449921 0.497972i
\(325\) 7.82009i 0.433781i
\(326\) −2.37960 + 1.37386i −0.131794 + 0.0760912i
\(327\) 18.0952 2.79828i 1.00067 0.154745i
\(328\) 0.0817920 + 0.0472226i 0.00451621 + 0.00260743i
\(329\) 0 0
\(330\) 11.6498 + 14.4942i 0.641298 + 0.797880i
\(331\) 5.44858 + 9.43721i 0.299481 + 0.518716i 0.976017 0.217693i \(-0.0698532\pi\)
−0.676536 + 0.736409i \(0.736520\pi\)
\(332\) −10.8642 −0.596250
\(333\) −16.7201 + 5.29795i −0.916257 + 0.290326i
\(334\) 5.53892i 0.303076i
\(335\) 0.667247 + 1.15570i 0.0364556 + 0.0631429i
\(336\) 0 0
\(337\) 12.8090 22.1858i 0.697749 1.20854i −0.271496 0.962440i \(-0.587518\pi\)
0.969245 0.246098i \(-0.0791484\pi\)
\(338\) −10.3459 5.97319i −0.562741 0.324898i
\(339\) −19.8610 7.70727i −1.07870 0.418602i
\(340\) −2.87450 4.97877i −0.155891 0.270012i
\(341\) 18.0912 0.979692
\(342\) −18.2246 16.6522i −0.985473 0.900448i
\(343\) 0 0
\(344\) 5.29833 3.05899i 0.285667 0.164930i
\(345\) −16.1052 + 12.9446i −0.867075 + 0.696914i
\(346\) 9.70387 + 5.60253i 0.521683 + 0.301194i
\(347\) −14.5166 8.38116i −0.779291 0.449924i 0.0568878 0.998381i \(-0.481882\pi\)
−0.836179 + 0.548457i \(0.815216\pi\)
\(348\) −1.13188 7.31938i −0.0606752 0.392360i
\(349\) −14.4455 + 8.34010i −0.773249 + 0.446435i −0.834032 0.551716i \(-0.813973\pi\)
0.0607835 + 0.998151i \(0.480640\pi\)
\(350\) 0 0
\(351\) −5.32298 0.337503i −0.284119 0.0180146i
\(352\) 3.02237 0.161093
\(353\) 17.9568 + 31.1021i 0.955746 + 1.65540i 0.732653 + 0.680603i \(0.238282\pi\)
0.223093 + 0.974797i \(0.428385\pi\)
\(354\) −2.34014 15.1327i −0.124377 0.804293i
\(355\) 43.0282 + 24.8424i 2.28370 + 1.31850i
\(356\) −2.35495 + 4.07888i −0.124812 + 0.216180i
\(357\) 0 0
\(358\) −1.37089 2.37445i −0.0724538 0.125494i
\(359\) 28.5498i 1.50680i −0.657563 0.753399i \(-0.728413\pi\)
0.657563 0.753399i \(-0.271587\pi\)
\(360\) 10.4074 + 2.29177i 0.548518 + 0.120787i
\(361\) −48.7146 −2.56393
\(362\) −11.1449 19.3036i −0.585765 1.01457i
\(363\) 1.16881 3.01192i 0.0613467 0.158085i
\(364\) 0 0
\(365\) 4.03342 + 2.32870i 0.211119 + 0.121890i
\(366\) −2.93904 + 7.57364i −0.153626 + 0.395880i
\(367\) 0.310665 0.179362i 0.0162166 0.00936264i −0.491870 0.870669i \(-0.663686\pi\)
0.508086 + 0.861306i \(0.330353\pi\)
\(368\) 3.35830i 0.175063i
\(369\) −0.0609323 + 0.276706i −0.00317201 + 0.0144048i
\(370\) 20.7681i 1.07968i
\(371\) 0 0
\(372\) 8.08095 6.49509i 0.418978 0.336755i
\(373\) −12.6854 + 21.9718i −0.656826 + 1.13766i 0.324606 + 0.945849i \(0.394768\pi\)
−0.981433 + 0.191807i \(0.938565\pi\)
\(374\) 2.44571 4.23610i 0.126465 0.219044i
\(375\) −15.9214 + 2.46211i −0.822177 + 0.127143i
\(376\) −4.45176 + 2.57023i −0.229582 + 0.132549i
\(377\) −4.38924 −0.226057
\(378\) 0 0
\(379\) 26.9063 1.38209 0.691043 0.722814i \(-0.257152\pi\)
0.691043 + 0.722814i \(0.257152\pi\)
\(380\) 25.3148 14.6155i 1.29862 0.749761i
\(381\) −0.491540 + 0.0760125i −0.0251823 + 0.00389424i
\(382\) −2.56632 + 4.44499i −0.131304 + 0.227426i
\(383\) 6.28586 10.8874i 0.321192 0.556322i −0.659542 0.751668i \(-0.729250\pi\)
0.980734 + 0.195346i \(0.0625830\pi\)
\(384\) 1.35003 1.08509i 0.0688934 0.0553733i
\(385\) 0 0
\(386\) 15.9847i 0.813600i
\(387\) 13.5496 + 12.3805i 0.688763 + 0.629338i
\(388\) 15.3956i 0.781595i
\(389\) 14.0805 8.12937i 0.713909 0.412175i −0.0985980 0.995127i \(-0.531436\pi\)
0.812507 + 0.582952i \(0.198102\pi\)
\(390\) 2.28480 5.88772i 0.115695 0.298136i
\(391\) 4.70694 + 2.71755i 0.238040 + 0.137432i
\(392\) 0 0
\(393\) 0.233695 0.602212i 0.0117884 0.0303776i
\(394\) 2.36286 + 4.09259i 0.119039 + 0.206182i
\(395\) 3.28275 0.165173
\(396\) 2.73881 + 8.64358i 0.137630 + 0.434356i
\(397\) 14.6938i 0.737463i −0.929536 0.368732i \(-0.879792\pi\)
0.929536 0.368732i \(-0.120208\pi\)
\(398\) −1.06047 1.83679i −0.0531567 0.0920701i
\(399\) 0 0
\(400\) −3.80924 + 6.59779i −0.190462 + 0.329890i
\(401\) −14.4162 8.32318i −0.719909 0.415640i 0.0948099 0.995495i \(-0.469776\pi\)
−0.814719 + 0.579855i \(0.803109\pi\)
\(402\) 0.0994416 + 0.643046i 0.00495969 + 0.0320722i
\(403\) −3.07208 5.32101i −0.153031 0.265058i
\(404\) 13.7047 0.681833
\(405\) 2.87682 + 31.8405i 0.142950 + 1.58217i
\(406\) 0 0
\(407\) 15.3028 8.83510i 0.758534 0.437940i
\(408\) −0.428394 2.77024i −0.0212087 0.137147i
\(409\) 2.43254 + 1.40443i 0.120282 + 0.0694446i 0.558934 0.829212i \(-0.311211\pi\)
−0.438652 + 0.898657i \(0.644544\pi\)
\(410\) −0.290545 0.167747i −0.0143490 0.00828441i
\(411\) 9.53421 7.66315i 0.470288 0.377995i
\(412\) 2.64014 1.52429i 0.130070 0.0750962i
\(413\) 0 0
\(414\) −9.60429 + 3.04322i −0.472025 + 0.149566i
\(415\) 38.5923 1.89442
\(416\) −0.513232 0.888944i −0.0251633 0.0435841i
\(417\) −23.5527 9.13990i −1.15338 0.447583i
\(418\) 21.5387 + 12.4354i 1.05349 + 0.608234i
\(419\) −7.47362 + 12.9447i −0.365110 + 0.632390i −0.988794 0.149287i \(-0.952302\pi\)
0.623684 + 0.781677i \(0.285635\pi\)
\(420\) 0 0
\(421\) −7.80336 13.5158i −0.380312 0.658720i 0.610794 0.791789i \(-0.290850\pi\)
−0.991107 + 0.133069i \(0.957517\pi\)
\(422\) 27.6159i 1.34432i
\(423\) −11.3846 10.4024i −0.553538 0.505780i
\(424\) −3.18968 −0.154905
\(425\) 6.16490 + 10.6779i 0.299042 + 0.517955i
\(426\) 15.1770 + 18.8826i 0.735326 + 0.914867i
\(427\) 0 0
\(428\) 11.3681 + 6.56336i 0.549496 + 0.317252i
\(429\) 5.31032 0.821196i 0.256385 0.0396477i
\(430\) −18.8210 + 10.8663i −0.907629 + 0.524020i
\(431\) 16.1758i 0.779163i −0.920992 0.389581i \(-0.872620\pi\)
0.920992 0.389581i \(-0.127380\pi\)
\(432\) 4.32658 + 2.87762i 0.208163 + 0.138450i
\(433\) 27.2499i 1.30955i 0.755824 + 0.654774i \(0.227236\pi\)
−0.755824 + 0.654774i \(0.772764\pi\)
\(434\) 0 0
\(435\) 4.02072 + 26.0003i 0.192779 + 1.24662i
\(436\) −5.28574 + 9.15516i −0.253141 + 0.438453i
\(437\) −13.8175 + 23.9327i −0.660983 + 1.14486i
\(438\) 1.42267 + 1.77004i 0.0679780 + 0.0845757i
\(439\) −28.6955 + 16.5674i −1.36956 + 0.790717i −0.990872 0.134806i \(-0.956959\pi\)
−0.378690 + 0.925523i \(0.623625\pi\)
\(440\) −10.7362 −0.511829
\(441\) 0 0
\(442\) −1.66124 −0.0790171
\(443\) −19.2808 + 11.1318i −0.916060 + 0.528887i −0.882376 0.470545i \(-0.844057\pi\)
−0.0336837 + 0.999433i \(0.510724\pi\)
\(444\) 3.66349 9.44047i 0.173861 0.448025i
\(445\) 8.36535 14.4892i 0.396556 0.686855i
\(446\) 10.1734 17.6209i 0.481727 0.834375i
\(447\) −17.2811 6.70612i −0.817366 0.317188i
\(448\) 0 0
\(449\) 6.80819i 0.321298i −0.987012 0.160649i \(-0.948641\pi\)
0.987012 0.160649i \(-0.0513588\pi\)
\(450\) −22.3207 4.91513i −1.05221 0.231702i
\(451\) 0.285448i 0.0134412i
\(452\) 10.6520 6.14993i 0.501027 0.289268i
\(453\) 17.3628 + 21.6022i 0.815778 + 1.01496i
\(454\) 3.60266 + 2.08000i 0.169081 + 0.0976192i
\(455\) 0 0
\(456\) 14.0854 2.17819i 0.659611 0.102003i
\(457\) −7.61298 13.1861i −0.356120 0.616818i 0.631189 0.775629i \(-0.282567\pi\)
−0.987309 + 0.158811i \(0.949234\pi\)
\(458\) −5.96964 −0.278943
\(459\) 7.53431 3.73548i 0.351671 0.174357i
\(460\) 11.9295i 0.556217i
\(461\) −0.103381 0.179060i −0.00481492 0.00833968i 0.863608 0.504164i \(-0.168199\pi\)
−0.868423 + 0.495824i \(0.834866\pi\)
\(462\) 0 0
\(463\) −7.60217 + 13.1673i −0.353303 + 0.611938i −0.986826 0.161785i \(-0.948275\pi\)
0.633523 + 0.773724i \(0.281608\pi\)
\(464\) 3.70319 + 2.13804i 0.171916 + 0.0992560i
\(465\) −28.7056 + 23.0722i −1.33119 + 1.06995i
\(466\) 2.24360 + 3.88603i 0.103933 + 0.180017i
\(467\) 2.30849 0.106824 0.0534120 0.998573i \(-0.482990\pi\)
0.0534120 + 0.998573i \(0.482990\pi\)
\(468\) 2.07718 2.27332i 0.0960178 0.105084i
\(469\) 0 0
\(470\) 15.8138 9.13009i 0.729435 0.421139i
\(471\) −18.6125 7.22278i −0.857617 0.332808i
\(472\) 7.65628 + 4.42036i 0.352409 + 0.203463i
\(473\) −16.0135 9.24541i −0.736303 0.425105i
\(474\) 1.49223 + 0.579076i 0.0685403 + 0.0265978i
\(475\) −54.2925 + 31.3458i −2.49111 + 1.43824i
\(476\) 0 0
\(477\) −2.89042 9.12207i −0.132343 0.417671i
\(478\) −3.49809 −0.159999
\(479\) −6.21659 10.7674i −0.284043 0.491977i 0.688334 0.725394i \(-0.258343\pi\)
−0.972377 + 0.233417i \(0.925009\pi\)
\(480\) −4.79564 + 3.85451i −0.218890 + 0.175934i
\(481\) −5.19719 3.00060i −0.236971 0.136815i
\(482\) 5.78332 10.0170i 0.263423 0.456262i
\(483\) 0 0
\(484\) 0.932639 + 1.61538i 0.0423927 + 0.0734263i
\(485\) 54.6891i 2.48331i
\(486\) −4.30895 + 14.9811i −0.195458 + 0.679556i
\(487\) 37.3007 1.69026 0.845128 0.534565i \(-0.179524\pi\)
0.845128 + 0.534565i \(0.179524\pi\)
\(488\) −2.34517 4.06195i −0.106161 0.183876i
\(489\) 4.70330 0.727325i 0.212690 0.0328908i
\(490\) 0 0
\(491\) −11.8191 6.82377i −0.533389 0.307952i 0.209006 0.977914i \(-0.432977\pi\)
−0.742396 + 0.669962i \(0.766310\pi\)
\(492\) −0.102482 0.127504i −0.00462023 0.00574832i
\(493\) 5.99328 3.46022i 0.269924 0.155840i
\(494\) 8.44666i 0.380033i
\(495\) −9.72893 30.7041i −0.437283 1.38005i
\(496\) 5.98576i 0.268768i
\(497\) 0 0
\(498\) 17.5427 + 6.80766i 0.786109 + 0.305059i
\(499\) 10.5010 18.1882i 0.470088 0.814216i −0.529327 0.848418i \(-0.677556\pi\)
0.999415 + 0.0342021i \(0.0108890\pi\)
\(500\) 4.65074 8.05532i 0.207987 0.360245i
\(501\) −3.47077 + 8.94386i −0.155063 + 0.399582i
\(502\) −23.1598 + 13.3713i −1.03367 + 0.596790i
\(503\) 22.3018 0.994388 0.497194 0.867639i \(-0.334364\pi\)
0.497194 + 0.867639i \(0.334364\pi\)
\(504\) 0 0
\(505\) −48.6824 −2.16634
\(506\) 8.79018 5.07501i 0.390771 0.225612i
\(507\) 12.9629 + 16.1280i 0.575702 + 0.716268i
\(508\) 0.143582 0.248691i 0.00637042 0.0110339i
\(509\) 10.9589 18.9814i 0.485746 0.841337i −0.514120 0.857719i \(-0.671881\pi\)
0.999866 + 0.0163813i \(0.00521458\pi\)
\(510\) 1.52176 + 9.84057i 0.0673847 + 0.435748i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 18.9933 + 38.3086i 0.838573 + 1.69137i
\(514\) 5.21227i 0.229904i
\(515\) −9.37844 + 5.41465i −0.413264 + 0.238598i
\(516\) −10.4722 + 1.61944i −0.461013 + 0.0712917i
\(517\) 13.4549 + 7.76818i 0.591745 + 0.341644i
\(518\) 0 0
\(519\) −12.1585 15.1272i −0.533699 0.664009i
\(520\) 1.82313 + 3.15775i 0.0799495 + 0.138477i
\(521\) 26.7678 1.17272 0.586358 0.810052i \(-0.300561\pi\)
0.586358 + 0.810052i \(0.300561\pi\)
\(522\) −2.75875 + 12.5281i −0.120747 + 0.548339i
\(523\) 17.1561i 0.750184i 0.926988 + 0.375092i \(0.122389\pi\)
−0.926988 + 0.375092i \(0.877611\pi\)
\(524\) 0.186474 + 0.322983i 0.00814617 + 0.0141096i
\(525\) 0 0
\(526\) 7.51869 13.0228i 0.327831 0.567819i
\(527\) 8.38954 + 4.84370i 0.365454 + 0.210995i
\(528\) −4.88031 1.89386i −0.212388 0.0824198i
\(529\) −5.86091 10.1514i −0.254822 0.441365i
\(530\) 11.3306 0.492168
\(531\) −5.70367 + 25.9016i −0.247518 + 1.12403i
\(532\) 0 0
\(533\) −0.0839566 + 0.0484723i −0.00363656 + 0.00209957i
\(534\) 6.35849 5.11065i 0.275159 0.221160i
\(535\) −40.3822 23.3147i −1.74588 1.00798i
\(536\) −0.325345 0.187838i −0.0140527 0.00811336i
\(537\) 0.725752 + 4.69312i 0.0313185 + 0.202523i
\(538\) −20.0323 + 11.5657i −0.863654 + 0.498631i
\(539\) 0 0
\(540\) −15.3691 10.2220i −0.661381 0.439886i
\(541\) 28.8182 1.23899 0.619496 0.785000i \(-0.287337\pi\)
0.619496 + 0.785000i \(0.287337\pi\)
\(542\) 4.95748 + 8.58661i 0.212942 + 0.368827i
\(543\) 5.90015 + 38.1537i 0.253199 + 1.63733i
\(544\) 1.40158 + 0.809204i 0.0600924 + 0.0346943i
\(545\) 18.7763 32.5214i 0.804286 1.39306i
\(546\) 0 0
\(547\) −16.4045 28.4135i −0.701407 1.21487i −0.967972 0.251056i \(-0.919222\pi\)
0.266565 0.963817i \(-0.414111\pi\)
\(548\) 7.06222i 0.301683i
\(549\) 9.49151 10.3877i 0.405088 0.443338i
\(550\) 23.0259 0.981826
\(551\) 17.5937 + 30.4732i 0.749516 + 1.29820i
\(552\) 2.10436 5.42275i 0.0895676 0.230808i
\(553\) 0 0
\(554\) 7.44299 + 4.29721i 0.316223 + 0.182571i
\(555\) −13.0136 + 33.5349i −0.552397 + 1.42348i
\(556\) 12.6320 7.29308i 0.535715 0.309295i
\(557\) 46.2508i 1.95971i −0.199708 0.979855i \(-0.563999\pi\)
0.199708 0.979855i \(-0.436001\pi\)
\(558\) −17.1185 + 5.42417i −0.724683 + 0.229623i
\(559\) 6.27990i 0.265611i
\(560\) 0 0
\(561\) −6.60357 + 5.30764i −0.278803 + 0.224089i
\(562\) −10.3639 + 17.9508i −0.437174 + 0.757208i
\(563\) 0.988637 1.71237i 0.0416661 0.0721678i −0.844440 0.535650i \(-0.820067\pi\)
0.886106 + 0.463482i \(0.153400\pi\)
\(564\) 8.79894 1.36068i 0.370502 0.0572950i
\(565\) −37.8385 + 21.8461i −1.59188 + 0.919071i
\(566\) 2.36710 0.0994966
\(567\) 0 0
\(568\) −13.9868 −0.586874
\(569\) 28.5702 16.4950i 1.19773 0.691508i 0.237679 0.971344i \(-0.423613\pi\)
0.960048 + 0.279836i \(0.0902800\pi\)
\(570\) −50.0350 + 7.73748i −2.09573 + 0.324087i
\(571\) −7.40326 + 12.8228i −0.309817 + 0.536618i −0.978322 0.207089i \(-0.933601\pi\)
0.668505 + 0.743707i \(0.266934\pi\)
\(572\) −1.55118 + 2.68672i −0.0648580 + 0.112337i
\(573\) 6.92921 5.56937i 0.289472 0.232664i
\(574\) 0 0
\(575\) 25.5851i 1.06697i
\(576\) −2.85987 + 0.906179i −0.119161 + 0.0377575i
\(577\) 18.4180i 0.766752i 0.923592 + 0.383376i \(0.125239\pi\)
−0.923592 + 0.383376i \(0.874761\pi\)
\(578\) −12.4541 + 7.19038i −0.518022 + 0.299080i
\(579\) 10.0163 25.8110i 0.416261 1.07267i
\(580\) −13.1547 7.59485i −0.546218 0.315359i
\(581\) 0 0
\(582\) 9.64714 24.8598i 0.399887 1.03047i
\(583\) 4.82020 + 8.34884i 0.199632 + 0.345774i
\(584\) −1.31111 −0.0542542
\(585\) −7.37867 + 8.07539i −0.305070 + 0.333876i
\(586\) 17.6755i 0.730167i
\(587\) −23.1065 40.0216i −0.953707 1.65187i −0.737301 0.675565i \(-0.763900\pi\)
−0.216406 0.976304i \(-0.569433\pi\)
\(588\) 0 0
\(589\) −24.6281 + 42.6571i −1.01478 + 1.75765i
\(590\) −27.1970 15.7022i −1.11968 0.646450i
\(591\) −1.25090 8.08904i −0.0514552 0.332738i
\(592\) 2.92323 + 5.06319i 0.120144 + 0.208096i
\(593\) 13.6093 0.558867 0.279434 0.960165i \(-0.409853\pi\)
0.279434 + 0.960165i \(0.409853\pi\)
\(594\) 0.993759 15.6732i 0.0407744 0.643080i
\(595\) 0 0
\(596\) 9.26832 5.35107i 0.379645 0.219188i
\(597\) 0.561416 + 3.63043i 0.0229772 + 0.148584i
\(598\) −2.98534 1.72359i −0.122080 0.0704827i
\(599\) −20.4214 11.7903i −0.834396 0.481739i 0.0209595 0.999780i \(-0.493328\pi\)
−0.855355 + 0.518042i \(0.826661\pi\)
\(600\) 10.2852 8.26673i 0.419890 0.337488i
\(601\) 31.0765 17.9420i 1.26764 0.731871i 0.293097 0.956083i \(-0.405314\pi\)
0.974540 + 0.224212i \(0.0719808\pi\)
\(602\) 0 0
\(603\) 0.242371 1.10066i 0.00987010 0.0448222i
\(604\) −16.0013 −0.651084
\(605\) −3.31297 5.73823i −0.134691 0.233292i
\(606\) −22.1294 8.58755i −0.898943 0.348846i
\(607\) −16.8502 9.72845i −0.683928 0.394866i 0.117406 0.993084i \(-0.462542\pi\)
−0.801333 + 0.598218i \(0.795876\pi\)
\(608\) −4.11444 + 7.12643i −0.166863 + 0.289015i
\(609\) 0 0
\(610\) 8.33063 + 14.4291i 0.337297 + 0.584216i
\(611\) 5.27649i 0.213464i
\(612\) −1.04413 + 4.74162i −0.0422065 + 0.191669i
\(613\) 42.2421 1.70614 0.853071 0.521795i \(-0.174738\pi\)
0.853071 + 0.521795i \(0.174738\pi\)
\(614\) 0.640777 + 1.10986i 0.0258597 + 0.0447902i
\(615\) 0.364040 + 0.452926i 0.0146795 + 0.0182637i
\(616\) 0 0
\(617\) 9.63660 + 5.56369i 0.387955 + 0.223986i 0.681274 0.732029i \(-0.261426\pi\)
−0.293319 + 0.956015i \(0.594760\pi\)
\(618\) −5.21826 + 0.806960i −0.209909 + 0.0324607i
\(619\) 8.71387 5.03096i 0.350240 0.202211i −0.314551 0.949241i \(-0.601854\pi\)
0.664791 + 0.747029i \(0.268521\pi\)
\(620\) 21.2629i 0.853939i
\(621\) 17.4153 + 1.10421i 0.698851 + 0.0443105i
\(622\) 12.5329i 0.502522i
\(623\) 0 0
\(624\) 0.271706 + 1.75700i 0.0108769 + 0.0703365i
\(625\) 2.52560 4.37447i 0.101024 0.174979i
\(626\) −4.37692 + 7.58105i −0.174937 + 0.303000i
\(627\) −26.9870 33.5762i −1.07776 1.34091i
\(628\) 9.98239 5.76334i 0.398341 0.229982i
\(629\) 9.46198 0.377274
\(630\) 0 0
\(631\) 10.3528 0.412139 0.206070 0.978537i \(-0.433933\pi\)
0.206070 + 0.978537i \(0.433933\pi\)
\(632\) −0.800324 + 0.462067i −0.0318352 + 0.0183800i
\(633\) 17.3045 44.5922i 0.687793 1.77238i
\(634\) −6.83920 + 11.8458i −0.271619 + 0.470459i
\(635\) −0.510039 + 0.883413i −0.0202403 + 0.0350572i
\(636\) 5.15048 + 1.99870i 0.204230 + 0.0792538i
\(637\) 0 0
\(638\) 12.9239i 0.511662i
\(639\) −12.6746 40.0005i −0.501398 1.58239i
\(640\) 3.55225i 0.140415i
\(641\) 23.0678 13.3182i 0.911123 0.526037i 0.0303310 0.999540i \(-0.490344\pi\)
0.880792 + 0.473503i \(0.157011\pi\)
\(642\) −14.2437 17.7215i −0.562153 0.699410i
\(643\) −40.0493 23.1225i −1.57939 0.911861i −0.994944 0.100429i \(-0.967979\pi\)
−0.584446 0.811433i \(-0.698688\pi\)
\(644\) 0 0
\(645\) 37.1998 5.75264i 1.46474 0.226510i
\(646\) 6.65885 + 11.5335i 0.261989 + 0.453778i
\(647\) −31.4063 −1.23471 −0.617355 0.786684i \(-0.711796\pi\)
−0.617355 + 0.786684i \(0.711796\pi\)
\(648\) −5.18310 7.35768i −0.203611 0.289037i
\(649\) 26.7199i 1.04885i
\(650\) −3.91005 6.77240i −0.153365 0.265635i
\(651\) 0 0
\(652\) −1.37386 + 2.37960i −0.0538046 + 0.0931923i
\(653\) −39.9639 23.0732i −1.56391 0.902924i −0.996855 0.0792429i \(-0.974750\pi\)
−0.567054 0.823681i \(-0.691917\pi\)
\(654\) 14.2718 11.4710i 0.558072 0.448552i
\(655\) −0.662404 1.14732i −0.0258823 0.0448294i
\(656\) 0.0944452 0.00368747
\(657\) −1.18810 3.74960i −0.0463522 0.146286i
\(658\) 0 0
\(659\) 1.18052 0.681575i 0.0459867 0.0265504i −0.476830 0.878995i \(-0.658214\pi\)
0.522817 + 0.852445i \(0.324881\pi\)
\(660\) 17.3361 + 6.72747i 0.674806 + 0.261866i
\(661\) −6.23888 3.60202i −0.242664 0.140102i 0.373736 0.927535i \(-0.378076\pi\)
−0.616401 + 0.787433i \(0.711410\pi\)
\(662\) 9.43721 + 5.44858i 0.366788 + 0.211765i
\(663\) 2.68245 + 1.04096i 0.104178 + 0.0404274i
\(664\) −9.40866 + 5.43209i −0.365127 + 0.210806i
\(665\) 0 0
\(666\) −11.8311 + 12.9482i −0.458445 + 0.501733i
\(667\) 14.3604 0.556035
\(668\) −2.76946 4.79685i −0.107154 0.185596i
\(669\) −27.4689 + 22.0782i −1.06201 + 0.853593i
\(670\) 1.15570 + 0.667247i 0.0446488 + 0.0257780i
\(671\) −7.08797 + 12.2767i −0.273628 + 0.473938i
\(672\) 0 0
\(673\) 19.4709 + 33.7246i 0.750548 + 1.29999i 0.947558 + 0.319585i \(0.103544\pi\)
−0.197010 + 0.980402i \(0.563123\pi\)
\(674\) 25.6180i 0.986767i
\(675\) 32.9620 + 21.9231i 1.26871 + 0.843820i
\(676\) −11.9464 −0.459476
\(677\) 1.20505 + 2.08722i 0.0463140 + 0.0802182i 0.888253 0.459354i \(-0.151919\pi\)
−0.841939 + 0.539573i \(0.818586\pi\)
\(678\) −21.0537 + 3.25578i −0.808563 + 0.125037i
\(679\) 0 0
\(680\) −4.97877 2.87450i −0.190927 0.110232i
\(681\) −4.51397 5.61612i −0.172976 0.215210i
\(682\) 15.6674 9.04559i 0.599937 0.346374i
\(683\) 28.3251i 1.08383i 0.840433 + 0.541915i \(0.182300\pi\)
−0.840433 + 0.541915i \(0.817700\pi\)
\(684\) −24.1091 5.30895i −0.921833 0.202993i
\(685\) 25.0868i 0.958517i
\(686\) 0 0
\(687\) 9.63935 + 3.74066i 0.367764 + 0.142715i
\(688\) 3.05899 5.29833i 0.116623 0.201997i
\(689\) 1.63705 2.83545i 0.0623666 0.108022i
\(690\) −7.47522 + 19.2630i −0.284577 + 0.733328i
\(691\) 2.95334 1.70511i 0.112350 0.0648655i −0.442772 0.896634i \(-0.646005\pi\)
0.555122 + 0.831769i \(0.312672\pi\)
\(692\) 11.2051 0.425953
\(693\) 0 0
\(694\) −16.7623 −0.636289
\(695\) −44.8719 + 25.9068i −1.70209 + 0.982702i
\(696\) −4.63993 5.77283i −0.175876 0.218819i
\(697\) 0.0764255 0.132373i 0.00289482 0.00501398i
\(698\) −8.34010 + 14.4455i −0.315678 + 0.546769i
\(699\) −1.18776 7.68076i −0.0449254 0.290513i
\(700\) 0 0
\(701\) 51.4943i 1.94491i −0.233087 0.972456i \(-0.574883\pi\)
0.233087 0.972456i \(-0.425117\pi\)
\(702\) −4.77858 + 2.36920i −0.180356 + 0.0894198i
\(703\) 48.1099i 1.81450i
\(704\) 2.61745 1.51119i 0.0986488 0.0569549i
\(705\) −31.2560 + 4.83348i −1.17717 + 0.182039i
\(706\) 31.1021 + 17.9568i 1.17054 + 0.675814i
\(707\) 0 0
\(708\) −9.59297 11.9352i −0.360526 0.448553i
\(709\) −5.04218 8.73331i −0.189363 0.327986i 0.755675 0.654947i \(-0.227309\pi\)
−0.945038 + 0.326960i \(0.893976\pi\)
\(710\) 49.6847 1.86463
\(711\) −2.04669 1.87010i −0.0767567 0.0701344i
\(712\) 4.70989i 0.176511i
\(713\) 10.0510 + 17.4088i 0.376412 + 0.651965i
\(714\) 0 0
\(715\) 5.51017 9.54389i 0.206069 0.356921i
\(716\) −2.37445 1.37089i −0.0887375 0.0512326i
\(717\) 5.64848 + 2.19196i 0.210946 + 0.0818602i
\(718\) −14.2749 24.7248i −0.532734 0.922722i
\(719\) −31.9168 −1.19030 −0.595148 0.803616i \(-0.702907\pi\)
−0.595148 + 0.803616i \(0.702907\pi\)
\(720\) 10.1590 3.21897i 0.378602 0.119964i
\(721\) 0 0
\(722\) −42.1881 + 24.3573i −1.57008 + 0.906485i
\(723\) −15.6153 + 12.5508i −0.580740 + 0.466771i
\(724\) −19.3036 11.1449i −0.717413 0.414198i
\(725\) 28.2127 + 16.2886i 1.04779 + 0.604943i
\(726\) −0.493741 3.19281i −0.0183244 0.118496i
\(727\) 17.9336 10.3540i 0.665120 0.384007i −0.129105 0.991631i \(-0.541210\pi\)
0.794225 + 0.607624i \(0.207877\pi\)
\(728\) 0 0
\(729\) 16.3452 21.4904i 0.605377 0.795939i
\(730\) 4.65739 0.172378
\(731\) −4.95070 8.57487i −0.183108 0.317153i
\(732\) 1.24154 + 8.02848i 0.0458885 + 0.296741i
\(733\) 7.69996 + 4.44558i 0.284405 + 0.164201i 0.635416 0.772170i \(-0.280829\pi\)
−0.351011 + 0.936371i \(0.614162\pi\)
\(734\) 0.179362 0.310665i 0.00662038 0.0114668i
\(735\) 0 0
\(736\) 1.67915 + 2.90837i 0.0618943 + 0.107204i
\(737\) 1.13543i 0.0418241i
\(738\) 0.0855843 + 0.270101i 0.00315040 + 0.00994255i
\(739\) 32.7763 1.20570 0.602848 0.797856i \(-0.294032\pi\)
0.602848 + 0.797856i \(0.294032\pi\)
\(740\) −10.3841 17.9857i −0.381726 0.661168i
\(741\) −5.29280 + 13.6391i −0.194436 + 0.501044i
\(742\) 0 0
\(743\) −6.68055 3.85702i −0.245086 0.141500i 0.372426 0.928062i \(-0.378526\pi\)
−0.617512 + 0.786562i \(0.711859\pi\)
\(744\) 3.75077 9.66539i 0.137510 0.354350i
\(745\) −32.9234 + 19.0083i −1.20622 + 0.696411i
\(746\) 25.3708i 0.928893i
\(747\) −24.0610 21.9851i −0.880346 0.804392i
\(748\) 4.89143i 0.178848i
\(749\) 0 0
\(750\) −12.5573 + 10.0929i −0.458527 + 0.368542i
\(751\) −15.3804 + 26.6397i −0.561239 + 0.972095i 0.436149 + 0.899874i \(0.356342\pi\)
−0.997389 + 0.0722207i \(0.976991\pi\)
\(752\) −2.57023 + 4.45176i −0.0937265 + 0.162339i
\(753\) 45.7754 7.07878i 1.66815 0.257965i
\(754\) −3.80120 + 2.19462i −0.138431 + 0.0799234i
\(755\) 56.8406 2.06864
\(756\) 0 0
\(757\) 46.4611 1.68866 0.844328 0.535827i \(-0.180000\pi\)
0.844328 + 0.535827i \(0.180000\pi\)
\(758\) 23.3016 13.4532i 0.846351 0.488641i
\(759\) −17.3738 + 2.68672i −0.630631 + 0.0975217i
\(760\) 14.6155 25.3148i 0.530161 0.918266i
\(761\) 18.5959 32.2090i 0.674099 1.16757i −0.302632 0.953107i \(-0.597865\pi\)
0.976731 0.214467i \(-0.0688013\pi\)
\(762\) −0.387680 + 0.311599i −0.0140442 + 0.0112880i
\(763\) 0 0
\(764\) 5.13264i 0.185692i
\(765\) 3.70902 16.8434i 0.134100 0.608976i
\(766\) 12.5717i 0.454235i
\(767\) −7.85890 + 4.53734i −0.283768 + 0.163834i
\(768\) 0.626615 1.61473i 0.0226110 0.0582666i
\(769\) 12.2312 + 7.06166i 0.441067 + 0.254650i 0.704050 0.710150i \(-0.251373\pi\)
−0.262983 + 0.964800i \(0.584706\pi\)
\(770\) 0 0
\(771\) 3.26609 8.41642i 0.117625 0.303110i
\(772\) 7.99235 + 13.8432i 0.287651 + 0.498226i
\(773\) 30.9455 1.11303 0.556517 0.830836i \(-0.312138\pi\)
0.556517 + 0.830836i \(0.312138\pi\)
\(774\) 17.9245 + 3.94708i 0.644284 + 0.141875i
\(775\) 45.6024i 1.63809i
\(776\) 7.69782 + 13.3330i 0.276336 + 0.478627i
\(777\) 0 0
\(778\) 8.12937 14.0805i 0.291452 0.504810i
\(779\) 0.673057 + 0.388590i 0.0241148 + 0.0139227i
\(780\) −0.965167 6.24132i −0.0345585 0.223475i
\(781\) 21.1367 + 36.6098i 0.756330 + 1.31000i
\(782\) 5.43510 0.194359
\(783\) 12.3049 18.5008i 0.439742 0.661165i
\(784\) 0 0
\(785\) −35.4599 + 20.4728i −1.26562 + 0.730706i
\(786\) −0.0987198 0.638378i −0.00352122 0.0227702i
\(787\) 15.8704 + 9.16280i 0.565720 + 0.326619i 0.755438 0.655220i \(-0.227424\pi\)
−0.189718 + 0.981839i \(0.560757\pi\)
\(788\) 4.09259 + 2.36286i 0.145793 + 0.0841734i
\(789\) −20.3009 + 16.3169i −0.722732 + 0.580898i
\(790\) 2.84295 1.64138i 0.101148 0.0583976i
\(791\) 0 0
\(792\) 6.69367 + 6.11615i 0.237849 + 0.217328i
\(793\) 4.81447 0.170967
\(794\) −7.34692 12.7252i −0.260733 0.451602i
\(795\) −18.2958 7.09990i −0.648885 0.251807i
\(796\) −1.83679 1.06047i −0.0651034 0.0375875i
\(797\) 1.07681 1.86508i 0.0381424 0.0660646i −0.846324 0.532668i \(-0.821189\pi\)
0.884466 + 0.466604i \(0.154523\pi\)
\(798\) 0 0
\(799\) 4.15968 + 7.20477i 0.147159 + 0.254886i
\(800\) 7.61848i 0.269354i
\(801\) −13.4697 + 4.26800i −0.475927 + 0.150802i
\(802\) −16.6464 −0.587804
\(803\) 1.98133 + 3.43177i 0.0699197 + 0.121104i
\(804\) 0.407642 + 0.507173i 0.0143764 + 0.0178866i
\(805\) 0 0
\(806\) −5.32101 3.07208i −0.187424 0.108210i
\(807\) 39.5940 6.12287i 1.39377 0.215535i
\(808\) 11.8686 6.85234i 0.417536 0.241064i
\(809\) 19.6468i 0.690746i 0.938465 + 0.345373i \(0.112248\pi\)
−0.938465 + 0.345373i \(0.887752\pi\)
\(810\) 18.4117 + 26.1363i 0.646920 + 0.918336i
\(811\) 12.3340i 0.433105i −0.976271 0.216552i \(-0.930519\pi\)
0.976271 0.216552i \(-0.0694812\pi\)
\(812\) 0 0
\(813\) −2.62450 16.9715i −0.0920452 0.595216i
\(814\) 8.83510 15.3028i 0.309670 0.536364i
\(815\) 4.88030 8.45293i 0.170950 0.296093i
\(816\) −1.75612 2.18490i −0.0614765 0.0764868i
\(817\) 43.5994 25.1721i 1.52535 0.880661i
\(818\) 2.80886 0.0982095
\(819\) 0 0
\(820\) −0.335493 −0.0117159
\(821\) 19.3763 11.1869i 0.676238 0.390426i −0.122198 0.992506i \(-0.538994\pi\)
0.798436 + 0.602079i \(0.205661\pi\)
\(822\) 4.42529 11.4036i 0.154350 0.397746i
\(823\) −13.5033 + 23.3883i −0.470694 + 0.815266i −0.999438 0.0335154i \(-0.989330\pi\)
0.528744 + 0.848781i \(0.322663\pi\)
\(824\) 1.52429 2.64014i 0.0531010 0.0919737i
\(825\) −37.1805 14.4283i −1.29446 0.502330i
\(826\) 0 0
\(827\) 26.3189i 0.915196i 0.889159 + 0.457598i \(0.151290\pi\)
−0.889159 + 0.457598i \(0.848710\pi\)
\(828\) −6.79595 + 7.43765i −0.236176 + 0.258476i
\(829\) 33.3351i 1.15778i −0.815407 0.578888i \(-0.803487\pi\)
0.815407 0.578888i \(-0.196513\pi\)
\(830\) 33.4219 19.2962i 1.16009 0.669779i
\(831\) −9.32573 11.6027i −0.323506 0.402494i
\(832\) −0.888944 0.513232i −0.0308186 0.0177931i
\(833\) 0 0
\(834\) −24.9672 + 3.86096i −0.864543 + 0.133694i
\(835\) 9.83781 + 17.0396i 0.340452 + 0.589679i
\(836\) 24.8707 0.860173
\(837\) 31.0406 + 1.96812i 1.07292 + 0.0680283i
\(838\) 14.9472i 0.516344i
\(839\) 18.6896 + 32.3713i 0.645236 + 1.11758i 0.984247 + 0.176799i \(0.0565743\pi\)
−0.339011 + 0.940782i \(0.610092\pi\)
\(840\) 0 0
\(841\) −5.35758 + 9.27960i −0.184744 + 0.319986i
\(842\) −13.5158 7.80336i −0.465786 0.268922i
\(843\) 27.9831 22.4915i 0.963790 0.774649i
\(844\) 13.8079 + 23.9160i 0.475289 + 0.823224i
\(845\) 42.4365 1.45986
\(846\) −15.0605 3.31641i −0.517792 0.114021i
\(847\) 0 0
\(848\) −2.76235 + 1.59484i −0.0948594 + 0.0547671i
\(849\) −3.82223 1.48326i −0.131178 0.0509053i
\(850\) 10.6779 + 6.16490i 0.366250 + 0.211454i
\(851\) 17.0037 + 9.81710i 0.582880 + 0.336526i
\(852\) 22.5850 + 8.76436i 0.773748 + 0.300262i
\(853\) 4.65798 2.68929i 0.159486 0.0920795i −0.418133 0.908386i \(-0.637315\pi\)
0.577619 + 0.816306i \(0.303982\pi\)
\(854\) 0 0
\(855\) 85.6414 + 18.8587i 2.92887 + 0.644954i
\(856\) 13.1267 0.448662
\(857\) −22.7000 39.3176i −0.775418 1.34306i −0.934559 0.355807i \(-0.884206\pi\)
0.159142 0.987256i \(-0.449127\pi\)
\(858\) 4.18827 3.36633i 0.142985 0.114925i
\(859\) 3.36261 + 1.94141i 0.114731 + 0.0662399i 0.556267 0.831003i \(-0.312233\pi\)
−0.441536 + 0.897243i \(0.645566\pi\)
\(860\) −10.8663 + 18.8210i −0.370538 + 0.641791i
\(861\) 0 0
\(862\) −8.08792 14.0087i −0.275476 0.477138i
\(863\) 23.4788i 0.799228i 0.916684 + 0.399614i \(0.130856\pi\)
−0.916684 + 0.399614i \(0.869144\pi\)
\(864\) 5.18574 + 0.328801i 0.176422 + 0.0111860i
\(865\) −39.8032 −1.35335
\(866\) 13.6250 + 23.5991i 0.462995 + 0.801931i
\(867\) 24.6156 3.80660i 0.835990 0.129279i
\(868\) 0 0
\(869\) 2.41887 + 1.39654i 0.0820547 + 0.0473743i
\(870\) 16.4822 + 20.5065i 0.558798 + 0.695237i
\(871\) 0.333955 0.192809i 0.0113156 0.00653308i
\(872\) 10.5715i 0.357995i
\(873\) −31.1550 + 34.0968i −1.05444 + 1.15400i
\(874\) 27.6351i 0.934770i
\(875\) 0 0
\(876\) 2.11709 + 0.821562i 0.0715299 + 0.0277580i
\(877\) −16.4796 + 28.5434i −0.556475 + 0.963843i 0.441312 + 0.897354i \(0.354513\pi\)
−0.997787 + 0.0664896i \(0.978820\pi\)
\(878\) −16.5674 + 28.6955i −0.559121 + 0.968427i
\(879\) 11.0757 28.5411i 0.373575 0.962668i
\(880\) −9.29783 + 5.36811i −0.313430 + 0.180959i
\(881\) −7.44403 −0.250796 −0.125398 0.992107i \(-0.540021\pi\)
−0.125398 + 0.992107i \(0.540021\pi\)
\(882\) 0 0
\(883\) −28.2839 −0.951828 −0.475914 0.879492i \(-0.657883\pi\)
−0.475914 + 0.879492i \(0.657883\pi\)
\(884\) −1.43867 + 0.830619i −0.0483879 + 0.0279368i
\(885\) 34.0766 + 42.3969i 1.14547 + 1.42516i
\(886\) −11.1318 + 19.2808i −0.373980 + 0.647752i
\(887\) −6.06377 + 10.5028i −0.203602 + 0.352648i −0.949686 0.313203i \(-0.898598\pi\)
0.746085 + 0.665851i \(0.231931\pi\)
\(888\) −1.54756 10.0074i −0.0519329 0.335827i
\(889\) 0 0
\(890\) 16.7307i 0.560814i
\(891\) −11.4257 + 24.6853i −0.382776 + 0.826989i
\(892\) 20.3469i 0.681264i
\(893\) −36.6331 + 21.1501i −1.22588 + 0.707761i
\(894\) −18.3189 + 2.83286i −0.612676 + 0.0947451i
\(895\) 8.43465 + 4.86975i 0.281939 + 0.162778i
\(896\) 0 0
\(897\) 3.74050 + 4.65379i 0.124892 + 0.155385i
\(898\) −3.40409 5.89606i −0.113596 0.196754i
\(899\) 25.5956 0.853660
\(900\) −21.7878 + 6.90370i −0.726261 + 0.230123i
\(901\) 5.16221i 0.171978i
\(902\) −0.142724 0.247206i −0.00475220 0.00823105i
\(903\) 0 0
\(904\) 6.14993 10.6520i 0.204544 0.354280i
\(905\) 68.5712 + 39.5896i 2.27938 + 1.31600i
\(906\) 25.8378 + 10.0267i 0.858403 + 0.333113i
\(907\) 23.0890 + 39.9913i 0.766657 + 1.32789i 0.939366 + 0.342916i \(0.111415\pi\)
−0.172709 + 0.984973i \(0.555252\pi\)
\(908\) 4.16000 0.138054
\(909\) 30.3518 + 27.7332i 1.00671 + 0.919851i
\(910\) 0 0
\(911\) −12.7284 + 7.34874i −0.421710 + 0.243475i −0.695809 0.718227i \(-0.744954\pi\)
0.274098 + 0.961702i \(0.411621\pi\)
\(912\) 11.1092 8.92908i 0.367864 0.295672i
\(913\) 28.4365 + 16.4178i 0.941110 + 0.543350i
\(914\) −13.1861 7.61298i −0.436156 0.251815i
\(915\) −4.41025 28.5192i −0.145798 0.942814i
\(916\) −5.16986 + 2.98482i −0.170817 + 0.0986212i
\(917\) 0 0
\(918\) 4.65716 7.00218i 0.153709 0.231106i
\(919\) 25.8691 0.853342 0.426671 0.904407i \(-0.359686\pi\)
0.426671 + 0.904407i \(0.359686\pi\)
\(920\) −5.96476 10.3313i −0.196652 0.340612i
\(921\) −0.339228 2.19364i −0.0111780 0.0722830i
\(922\) −0.179060 0.103381i −0.00589704 0.00340466i
\(923\) 7.17849 12.4335i 0.236283 0.409254i
\(924\) 0 0
\(925\) 22.2706 + 38.5738i 0.732253 + 1.26830i
\(926\) 15.2043i 0.499645i
\(927\) 8.93173 + 1.96682i 0.293357 + 0.0645987i
\(928\) 4.27608 0.140369
\(929\) 6.59673 + 11.4259i 0.216432 + 0.374870i 0.953714 0.300714i \(-0.0972248\pi\)
−0.737283 + 0.675584i \(0.763892\pi\)
\(930\) −13.3237 + 34.3339i −0.436900 + 1.12585i
\(931\) 0 0
\(932\) 3.88603 + 2.24360i 0.127291 + 0.0734915i
\(933\) −7.85327 + 20.2372i −0.257105 + 0.662535i
\(934\) 1.99921 1.15424i 0.0654161 0.0377680i
\(935\) 17.3756i 0.568242i
\(936\) 0.662233 3.00734i 0.0216458 0.0982981i
\(937\) 8.86021i 0.289451i −0.989472 0.144725i \(-0.953770\pi\)
0.989472 0.144725i \(-0.0462298\pi\)
\(938\) 0 0
\(939\) 11.8180 9.49871i 0.385664 0.309979i
\(940\) 9.13009 15.8138i 0.297791 0.515788i
\(941\) −2.05919 + 3.56663i −0.0671278 + 0.116269i −0.897636 0.440738i \(-0.854717\pi\)
0.830508 + 0.557007i \(0.188050\pi\)
\(942\) −19.7303 + 3.05112i −0.642847 + 0.0994108i
\(943\) 0.274682 0.158588i 0.00894488 0.00516433i
\(944\) 8.84071 0.287741
\(945\) 0 0
\(946\) −18.4908 −0.601189
\(947\) 21.4498 12.3840i 0.697024 0.402427i −0.109214 0.994018i \(-0.534833\pi\)
0.806238 + 0.591591i \(0.201500\pi\)
\(948\) 1.58184 0.244619i 0.0513759 0.00794485i
\(949\) 0.672905 1.16550i 0.0218434 0.0378339i
\(950\) −31.3458 + 54.2925i −1.01699 + 1.76148i
\(951\) 18.4662 14.8423i 0.598809 0.481294i
\(952\) 0 0
\(953\) 9.62625i 0.311825i −0.987771 0.155912i \(-0.950168\pi\)
0.987771 0.155912i \(-0.0498317\pi\)
\(954\) −7.06422 6.45474i −0.228713 0.208980i
\(955\) 18.2324i 0.589987i
\(956\) −3.02944 + 1.74905i −0.0979790 + 0.0565682i
\(957\) −8.09830 + 20.8686i −0.261781 + 0.674586i
\(958\) −10.7674 6.21659i −0.347880 0.200849i
\(959\) 0 0
\(960\) −2.22589 + 5.73592i −0.0718404 + 0.185126i
\(961\) 2.41465 + 4.18230i 0.0778920 + 0.134913i
\(962\) −6.00119 −0.193486
\(963\) 11.8952 + 37.5407i 0.383316 + 1.20973i
\(964\) 11.5666i 0.372537i
\(965\) −28.3908 49.1744i −0.913933 1.58298i
\(966\) 0 0
\(967\) 5.05558 8.75652i 0.162576 0.281591i −0.773216 0.634143i \(-0.781353\pi\)
0.935792 + 0.352553i \(0.114686\pi\)
\(968\) 1.61538 + 0.932639i 0.0519202 + 0.0299762i
\(969\) −3.52520 22.7960i −0.113246 0.732312i
\(970\) −27.3446 47.3622i −0.877981 1.52071i
\(971\) −25.3149 −0.812392 −0.406196 0.913786i \(-0.633145\pi\)
−0.406196 + 0.913786i \(0.633145\pi\)
\(972\) 3.75888 + 15.1285i 0.120566 + 0.485246i
\(973\) 0 0
\(974\) 32.3033 18.6503i 1.03507 0.597595i
\(975\) 2.06998 + 13.3857i 0.0662926 + 0.428685i
\(976\) −4.06195 2.34517i −0.130020 0.0750671i
\(977\) −7.84008 4.52647i −0.250826 0.144815i 0.369316 0.929304i \(-0.379592\pi\)
−0.620143 + 0.784489i \(0.712925\pi\)
\(978\) 3.70951 2.98153i 0.118617 0.0953388i
\(979\) 12.3279 7.11752i 0.394001 0.227477i
\(980\) 0 0
\(981\) −30.2330 + 9.57964i −0.965266 + 0.305855i
\(982\) −13.6475 −0.435511
\(983\) 3.19651 + 5.53653i 0.101953 + 0.176588i 0.912489 0.409101i \(-0.134158\pi\)
−0.810536 + 0.585688i \(0.800824\pi\)
\(984\) −0.152504 0.0591808i −0.00486164 0.00188661i
\(985\) −14.5379 8.39347i −0.463216 0.267438i
\(986\) 3.46022 5.99328i 0.110196 0.190865i
\(987\) 0 0
\(988\) −4.22333 7.31502i −0.134362 0.232722i
\(989\) 20.5460i 0.653326i
\(990\) −23.7776 21.7261i −0.755701 0.690501i
\(991\) −13.8446 −0.439788 −0.219894 0.975524i \(-0.570571\pi\)
−0.219894 + 0.975524i \(0.570571\pi\)
\(992\) 2.99288 + 5.18382i 0.0950240 + 0.164586i
\(993\) −11.8244 14.7115i −0.375236 0.466855i
\(994\) 0 0
\(995\) 6.52475 + 3.76706i 0.206848 + 0.119424i
\(996\) 18.5963 2.87576i 0.589246 0.0911219i
\(997\) −5.99391 + 3.46059i −0.189829 + 0.109598i −0.591903 0.806010i \(-0.701623\pi\)
0.402073 + 0.915607i \(0.368290\pi\)
\(998\) 21.0019i 0.664804i
\(999\) 27.2176 13.4944i 0.861125 0.426942i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.m.a.293.5 16
3.2 odd 2 2646.2.m.a.881.4 16
7.2 even 3 126.2.t.a.59.4 yes 16
7.3 odd 6 126.2.l.a.5.6 16
7.4 even 3 882.2.l.b.509.7 16
7.5 odd 6 882.2.t.a.815.1 16
7.6 odd 2 882.2.m.b.293.8 16
9.2 odd 6 882.2.m.b.587.8 16
9.7 even 3 2646.2.m.b.1763.1 16
21.2 odd 6 378.2.t.a.17.5 16
21.5 even 6 2646.2.t.b.2285.8 16
21.11 odd 6 2646.2.l.a.1097.4 16
21.17 even 6 378.2.l.a.341.1 16
21.20 even 2 2646.2.m.b.881.1 16
28.3 even 6 1008.2.ca.c.257.7 16
28.23 odd 6 1008.2.df.c.689.3 16
63.2 odd 6 126.2.l.a.101.2 yes 16
63.11 odd 6 882.2.t.a.803.1 16
63.16 even 3 378.2.l.a.143.5 16
63.20 even 6 inner 882.2.m.a.587.5 16
63.23 odd 6 1134.2.k.a.647.4 16
63.25 even 3 2646.2.t.b.1979.8 16
63.31 odd 6 1134.2.k.a.971.4 16
63.34 odd 6 2646.2.m.a.1763.4 16
63.38 even 6 126.2.t.a.47.4 yes 16
63.47 even 6 882.2.l.b.227.3 16
63.52 odd 6 378.2.t.a.89.5 16
63.58 even 3 1134.2.k.b.647.5 16
63.59 even 6 1134.2.k.b.971.5 16
63.61 odd 6 2646.2.l.a.521.8 16
84.23 even 6 3024.2.df.c.17.1 16
84.59 odd 6 3024.2.ca.c.2609.1 16
252.79 odd 6 3024.2.ca.c.2033.1 16
252.115 even 6 3024.2.df.c.1601.1 16
252.191 even 6 1008.2.ca.c.353.7 16
252.227 odd 6 1008.2.df.c.929.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.6 16 7.3 odd 6
126.2.l.a.101.2 yes 16 63.2 odd 6
126.2.t.a.47.4 yes 16 63.38 even 6
126.2.t.a.59.4 yes 16 7.2 even 3
378.2.l.a.143.5 16 63.16 even 3
378.2.l.a.341.1 16 21.17 even 6
378.2.t.a.17.5 16 21.2 odd 6
378.2.t.a.89.5 16 63.52 odd 6
882.2.l.b.227.3 16 63.47 even 6
882.2.l.b.509.7 16 7.4 even 3
882.2.m.a.293.5 16 1.1 even 1 trivial
882.2.m.a.587.5 16 63.20 even 6 inner
882.2.m.b.293.8 16 7.6 odd 2
882.2.m.b.587.8 16 9.2 odd 6
882.2.t.a.803.1 16 63.11 odd 6
882.2.t.a.815.1 16 7.5 odd 6
1008.2.ca.c.257.7 16 28.3 even 6
1008.2.ca.c.353.7 16 252.191 even 6
1008.2.df.c.689.3 16 28.23 odd 6
1008.2.df.c.929.3 16 252.227 odd 6
1134.2.k.a.647.4 16 63.23 odd 6
1134.2.k.a.971.4 16 63.31 odd 6
1134.2.k.b.647.5 16 63.58 even 3
1134.2.k.b.971.5 16 63.59 even 6
2646.2.l.a.521.8 16 63.61 odd 6
2646.2.l.a.1097.4 16 21.11 odd 6
2646.2.m.a.881.4 16 3.2 odd 2
2646.2.m.a.1763.4 16 63.34 odd 6
2646.2.m.b.881.1 16 21.20 even 2
2646.2.m.b.1763.1 16 9.7 even 3
2646.2.t.b.1979.8 16 63.25 even 3
2646.2.t.b.2285.8 16 21.5 even 6
3024.2.ca.c.2033.1 16 252.79 odd 6
3024.2.ca.c.2609.1 16 84.59 odd 6
3024.2.df.c.17.1 16 84.23 even 6
3024.2.df.c.1601.1 16 252.115 even 6