Properties

Label 115.5.c.c.114.12
Level $115$
Weight $5$
Character 115.114
Analytic conductor $11.888$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,5,Mod(114,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.114");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 115.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.8875457546\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 114.12
Character \(\chi\) \(=\) 115.114
Dual form 115.5.c.c.114.34

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.94563i q^{2} -6.82837i q^{3} -8.45927 q^{4} +(22.1235 + 11.6426i) q^{5} -33.7706 q^{6} +47.4193 q^{7} -37.2937i q^{8} +34.3734 q^{9} +(57.5800 - 109.415i) q^{10} -121.460i q^{11} +57.7631i q^{12} -25.2927i q^{13} -234.518i q^{14} +(79.4999 - 151.068i) q^{15} -319.789 q^{16} +130.920 q^{17} -169.998i q^{18} +292.655i q^{19} +(-187.149 - 98.4878i) q^{20} -323.797i q^{21} -600.696 q^{22} +(-215.187 + 483.255i) q^{23} -254.655 q^{24} +(353.900 + 515.150i) q^{25} -125.088 q^{26} -787.812i q^{27} -401.133 q^{28} -790.956 q^{29} +(-747.125 - 393.177i) q^{30} +365.318 q^{31} +984.861i q^{32} -829.373 q^{33} -647.481i q^{34} +(1049.08 + 552.083i) q^{35} -290.774 q^{36} -471.550 q^{37} +1447.36 q^{38} -172.708 q^{39} +(434.195 - 825.067i) q^{40} -1821.57 q^{41} -1601.38 q^{42} -7.12217 q^{43} +1027.46i q^{44} +(760.460 + 400.195i) q^{45} +(2390.00 + 1064.24i) q^{46} -2540.24i q^{47} +2183.64i q^{48} -152.410 q^{49} +(2547.74 - 1750.26i) q^{50} -893.969i q^{51} +213.958i q^{52} +2852.07 q^{53} -3896.23 q^{54} +(1414.11 - 2687.12i) q^{55} -1768.44i q^{56} +1998.36 q^{57} +3911.78i q^{58} -4053.87 q^{59} +(-672.512 + 1277.92i) q^{60} +3186.31i q^{61} -1806.73i q^{62} +1629.96 q^{63} -245.867 q^{64} +(294.472 - 559.563i) q^{65} +4101.77i q^{66} +6094.08 q^{67} -1107.49 q^{68} +(3299.84 + 1469.38i) q^{69} +(2730.40 - 5188.37i) q^{70} +4387.94 q^{71} -1281.91i q^{72} +3217.13i q^{73} +2332.11i q^{74} +(3517.64 - 2416.56i) q^{75} -2475.65i q^{76} -5759.54i q^{77} +854.149i q^{78} +8824.58i q^{79} +(-7074.86 - 3723.17i) q^{80} -2595.23 q^{81} +9008.82i q^{82} +12862.0 q^{83} +2739.08i q^{84} +(2896.41 + 1524.24i) q^{85} +35.2236i q^{86} +5400.94i q^{87} -4529.68 q^{88} +5490.66i q^{89} +(1979.22 - 3760.95i) q^{90} -1199.36i q^{91} +(1820.33 - 4087.99i) q^{92} -2494.53i q^{93} -12563.1 q^{94} +(-3407.26 + 6474.56i) q^{95} +6724.99 q^{96} -15520.6 q^{97} +753.765i q^{98} -4174.98i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 360 q^{4} + 160 q^{6} - 1128 q^{9} + 2136 q^{16} - 3940 q^{24} - 2540 q^{25} + 3144 q^{26} - 348 q^{29} - 4480 q^{31} - 1440 q^{35} - 3728 q^{36} - 1800 q^{39} + 7176 q^{41} + 5372 q^{46} + 9580 q^{49}+ \cdots - 39960 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.94563i 1.23641i −0.786018 0.618204i \(-0.787861\pi\)
0.786018 0.618204i \(-0.212139\pi\)
\(3\) 6.82837i 0.758708i −0.925252 0.379354i \(-0.876146\pi\)
0.925252 0.379354i \(-0.123854\pi\)
\(4\) −8.45927 −0.528705
\(5\) 22.1235 + 11.6426i 0.884941 + 0.465703i
\(6\) −33.7706 −0.938072
\(7\) 47.4193 0.967741 0.483870 0.875140i \(-0.339231\pi\)
0.483870 + 0.875140i \(0.339231\pi\)
\(8\) 37.2937i 0.582713i
\(9\) 34.3734 0.424362
\(10\) 57.5800 109.415i 0.575800 1.09415i
\(11\) 121.460i 1.00380i −0.864926 0.501900i \(-0.832634\pi\)
0.864926 0.501900i \(-0.167366\pi\)
\(12\) 57.7631i 0.401132i
\(13\) 25.2927i 0.149661i −0.997196 0.0748304i \(-0.976158\pi\)
0.997196 0.0748304i \(-0.0238416\pi\)
\(14\) 234.518i 1.19652i
\(15\) 79.4999 151.068i 0.353333 0.671412i
\(16\) −319.789 −1.24918
\(17\) 130.920 0.453010 0.226505 0.974010i \(-0.427270\pi\)
0.226505 + 0.974010i \(0.427270\pi\)
\(18\) 169.998i 0.524685i
\(19\) 292.655i 0.810679i 0.914166 + 0.405339i \(0.132847\pi\)
−0.914166 + 0.405339i \(0.867153\pi\)
\(20\) −187.149 98.4878i −0.467872 0.246220i
\(21\) 323.797i 0.734233i
\(22\) −600.696 −1.24111
\(23\) −215.187 + 483.255i −0.406781 + 0.913526i
\(24\) −254.655 −0.442109
\(25\) 353.900 + 515.150i 0.566241 + 0.824240i
\(26\) −125.088 −0.185042
\(27\) 787.812i 1.08067i
\(28\) −401.133 −0.511649
\(29\) −790.956 −0.940495 −0.470247 0.882535i \(-0.655835\pi\)
−0.470247 + 0.882535i \(0.655835\pi\)
\(30\) −747.125 393.177i −0.830139 0.436864i
\(31\) 365.318 0.380144 0.190072 0.981770i \(-0.439128\pi\)
0.190072 + 0.981770i \(0.439128\pi\)
\(32\) 984.861i 0.961778i
\(33\) −829.373 −0.761591
\(34\) 647.481i 0.560105i
\(35\) 1049.08 + 552.083i 0.856393 + 0.450680i
\(36\) −290.774 −0.224362
\(37\) −471.550 −0.344449 −0.172224 0.985058i \(-0.555095\pi\)
−0.172224 + 0.985058i \(0.555095\pi\)
\(38\) 1447.36 1.00233
\(39\) −172.708 −0.113549
\(40\) 434.195 825.067i 0.271372 0.515667i
\(41\) −1821.57 −1.08362 −0.541812 0.840500i \(-0.682261\pi\)
−0.541812 + 0.840500i \(0.682261\pi\)
\(42\) −1601.38 −0.907811
\(43\) −7.12217 −0.00385190 −0.00192595 0.999998i \(-0.500613\pi\)
−0.00192595 + 0.999998i \(0.500613\pi\)
\(44\) 1027.46i 0.530714i
\(45\) 760.460 + 400.195i 0.375536 + 0.197627i
\(46\) 2390.00 + 1064.24i 1.12949 + 0.502948i
\(47\) 2540.24i 1.14995i −0.818171 0.574975i \(-0.805012\pi\)
0.818171 0.574975i \(-0.194988\pi\)
\(48\) 2183.64i 0.947760i
\(49\) −152.410 −0.0634778
\(50\) 2547.74 1750.26i 1.01910 0.700104i
\(51\) 893.969i 0.343702i
\(52\) 213.958i 0.0791264i
\(53\) 2852.07 1.01533 0.507666 0.861554i \(-0.330509\pi\)
0.507666 + 0.861554i \(0.330509\pi\)
\(54\) −3896.23 −1.33616
\(55\) 1414.11 2687.12i 0.467473 0.888304i
\(56\) 1768.44i 0.563915i
\(57\) 1998.36 0.615068
\(58\) 3911.78i 1.16284i
\(59\) −4053.87 −1.16457 −0.582285 0.812985i \(-0.697841\pi\)
−0.582285 + 0.812985i \(0.697841\pi\)
\(60\) −672.512 + 1277.92i −0.186809 + 0.354978i
\(61\) 3186.31i 0.856304i 0.903707 + 0.428152i \(0.140835\pi\)
−0.903707 + 0.428152i \(0.859165\pi\)
\(62\) 1806.73i 0.470013i
\(63\) 1629.96 0.410673
\(64\) −245.867 −0.0600262
\(65\) 294.472 559.563i 0.0696976 0.132441i
\(66\) 4101.77i 0.941638i
\(67\) 6094.08 1.35756 0.678779 0.734342i \(-0.262509\pi\)
0.678779 + 0.734342i \(0.262509\pi\)
\(68\) −1107.49 −0.239508
\(69\) 3299.84 + 1469.38i 0.693099 + 0.308628i
\(70\) 2730.40 5188.37i 0.557225 1.05885i
\(71\) 4387.94 0.870449 0.435225 0.900322i \(-0.356669\pi\)
0.435225 + 0.900322i \(0.356669\pi\)
\(72\) 1281.91i 0.247282i
\(73\) 3217.13i 0.603702i 0.953355 + 0.301851i \(0.0976044\pi\)
−0.953355 + 0.301851i \(0.902396\pi\)
\(74\) 2332.11i 0.425879i
\(75\) 3517.64 2416.56i 0.625357 0.429611i
\(76\) 2475.65i 0.428610i
\(77\) 5759.54i 0.971419i
\(78\) 854.149i 0.140393i
\(79\) 8824.58i 1.41397i 0.707229 + 0.706984i \(0.249945\pi\)
−0.707229 + 0.706984i \(0.750055\pi\)
\(80\) −7074.86 3723.17i −1.10545 0.581746i
\(81\) −2595.23 −0.395554
\(82\) 9008.82i 1.33980i
\(83\) 12862.0 1.86704 0.933519 0.358527i \(-0.116721\pi\)
0.933519 + 0.358527i \(0.116721\pi\)
\(84\) 2739.08i 0.388192i
\(85\) 2896.41 + 1524.24i 0.400887 + 0.210968i
\(86\) 35.2236i 0.00476252i
\(87\) 5400.94i 0.713561i
\(88\) −4529.68 −0.584928
\(89\) 5490.66i 0.693178i 0.938017 + 0.346589i \(0.112660\pi\)
−0.938017 + 0.346589i \(0.887340\pi\)
\(90\) 1979.22 3760.95i 0.244348 0.464315i
\(91\) 1199.36i 0.144833i
\(92\) 1820.33 4087.99i 0.215067 0.482985i
\(93\) 2494.53i 0.288418i
\(94\) −12563.1 −1.42181
\(95\) −3407.26 + 6474.56i −0.377536 + 0.717403i
\(96\) 6724.99 0.729708
\(97\) −15520.6 −1.64955 −0.824775 0.565461i \(-0.808698\pi\)
−0.824775 + 0.565461i \(0.808698\pi\)
\(98\) 753.765i 0.0784845i
\(99\) 4174.98i 0.425975i
\(100\) −2993.74 4357.80i −0.299374 0.435780i
\(101\) 3046.74 0.298671 0.149336 0.988787i \(-0.452287\pi\)
0.149336 + 0.988787i \(0.452287\pi\)
\(102\) −4421.24 −0.424956
\(103\) −6210.09 −0.585361 −0.292680 0.956210i \(-0.594547\pi\)
−0.292680 + 0.956210i \(0.594547\pi\)
\(104\) −943.257 −0.0872094
\(105\) 3769.83 7163.52i 0.341935 0.649752i
\(106\) 14105.3i 1.25536i
\(107\) 1863.57 0.162771 0.0813857 0.996683i \(-0.474065\pi\)
0.0813857 + 0.996683i \(0.474065\pi\)
\(108\) 6664.32i 0.571358i
\(109\) 3764.74i 0.316870i −0.987369 0.158435i \(-0.949355\pi\)
0.987369 0.158435i \(-0.0506449\pi\)
\(110\) −13289.5 6993.65i −1.09831 0.577988i
\(111\) 3219.92i 0.261336i
\(112\) −15164.2 −1.20888
\(113\) −10.8182 −0.000847225 −0.000423612 1.00000i \(-0.500135\pi\)
−0.000423612 1.00000i \(0.500135\pi\)
\(114\) 9883.14i 0.760475i
\(115\) −10387.0 + 8185.97i −0.785409 + 0.618977i
\(116\) 6690.91 0.497244
\(117\) 869.394i 0.0635104i
\(118\) 20048.9i 1.43988i
\(119\) 6208.12 0.438396
\(120\) −5633.86 2964.84i −0.391240 0.205892i
\(121\) −111.498 −0.00761547
\(122\) 15758.3 1.05874
\(123\) 12438.4i 0.822154i
\(124\) −3090.33 −0.200984
\(125\) 1831.84 + 15517.2i 0.117238 + 0.993104i
\(126\) 8061.18i 0.507759i
\(127\) 16809.7i 1.04221i −0.853494 0.521103i \(-0.825521\pi\)
0.853494 0.521103i \(-0.174479\pi\)
\(128\) 16973.7i 1.03599i
\(129\) 48.6328i 0.00292247i
\(130\) −2767.39 1456.35i −0.163751 0.0861747i
\(131\) 4191.57 0.244250 0.122125 0.992515i \(-0.461029\pi\)
0.122125 + 0.992515i \(0.461029\pi\)
\(132\) 7015.89 0.402657
\(133\) 13877.5i 0.784527i
\(134\) 30139.1i 1.67850i
\(135\) 9172.17 17429.2i 0.503274 0.956333i
\(136\) 4882.48i 0.263975i
\(137\) 8299.84 0.442210 0.221105 0.975250i \(-0.429034\pi\)
0.221105 + 0.975250i \(0.429034\pi\)
\(138\) 7267.00 16319.8i 0.381590 0.856953i
\(139\) 24420.7 1.26395 0.631973 0.774990i \(-0.282245\pi\)
0.631973 + 0.774990i \(0.282245\pi\)
\(140\) −8874.47 4670.22i −0.452779 0.238277i
\(141\) −17345.7 −0.872476
\(142\) 21701.1i 1.07623i
\(143\) −3072.05 −0.150230
\(144\) −10992.2 −0.530103
\(145\) −17498.7 9208.77i −0.832282 0.437992i
\(146\) 15910.7 0.746421
\(147\) 1040.71i 0.0481611i
\(148\) 3988.97 0.182112
\(149\) 104.420i 0.00470339i −0.999997 0.00235170i \(-0.999251\pi\)
0.999997 0.00235170i \(-0.000748569\pi\)
\(150\) −11951.4 17396.9i −0.531175 0.773197i
\(151\) −27841.9 −1.22108 −0.610542 0.791984i \(-0.709048\pi\)
−0.610542 + 0.791984i \(0.709048\pi\)
\(152\) 10914.2 0.472393
\(153\) 4500.15 0.192240
\(154\) −28484.6 −1.20107
\(155\) 8082.13 + 4253.25i 0.336405 + 0.177034i
\(156\) 1460.98 0.0600338
\(157\) −46395.1 −1.88223 −0.941116 0.338084i \(-0.890221\pi\)
−0.941116 + 0.338084i \(0.890221\pi\)
\(158\) 43643.1 1.74824
\(159\) 19475.0i 0.770340i
\(160\) −11466.3 + 21788.6i −0.447903 + 0.851117i
\(161\) −10204.0 + 22915.6i −0.393659 + 0.884056i
\(162\) 12835.1i 0.489066i
\(163\) 29520.0i 1.11107i 0.831493 + 0.555535i \(0.187486\pi\)
−0.831493 + 0.555535i \(0.812514\pi\)
\(164\) 15409.2 0.572917
\(165\) −18348.7 9656.05i −0.673963 0.354676i
\(166\) 63610.9i 2.30842i
\(167\) 37239.6i 1.33528i −0.744485 0.667639i \(-0.767305\pi\)
0.744485 0.667639i \(-0.232695\pi\)
\(168\) −12075.6 −0.427847
\(169\) 27921.3 0.977602
\(170\) 7538.35 14324.6i 0.260843 0.495659i
\(171\) 10059.5i 0.344022i
\(172\) 60.2484 0.00203652
\(173\) 19212.6i 0.641940i 0.947089 + 0.320970i \(0.104009\pi\)
−0.947089 + 0.320970i \(0.895991\pi\)
\(174\) 26711.1 0.882252
\(175\) 16781.7 + 24428.1i 0.547974 + 0.797651i
\(176\) 38841.5i 1.25392i
\(177\) 27681.3i 0.883569i
\(178\) 27154.8 0.857051
\(179\) 54673.8 1.70637 0.853185 0.521609i \(-0.174668\pi\)
0.853185 + 0.521609i \(0.174668\pi\)
\(180\) −6432.94 3385.36i −0.198547 0.104486i
\(181\) 60172.9i 1.83672i 0.395742 + 0.918362i \(0.370488\pi\)
−0.395742 + 0.918362i \(0.629512\pi\)
\(182\) −5931.60 −0.179073
\(183\) 21757.3 0.649685
\(184\) 18022.3 + 8025.12i 0.532324 + 0.237037i
\(185\) −10432.3 5490.06i −0.304817 0.160411i
\(186\) −12337.0 −0.356603
\(187\) 15901.5i 0.454731i
\(188\) 21488.6i 0.607984i
\(189\) 37357.5i 1.04581i
\(190\) 32020.8 + 16851.1i 0.887002 + 0.466788i
\(191\) 48565.0i 1.33124i 0.746290 + 0.665621i \(0.231833\pi\)
−0.746290 + 0.665621i \(0.768167\pi\)
\(192\) 1678.87i 0.0455424i
\(193\) 22851.5i 0.613479i 0.951793 + 0.306740i \(0.0992381\pi\)
−0.951793 + 0.306740i \(0.900762\pi\)
\(194\) 76759.3i 2.03952i
\(195\) −3820.91 2010.77i −0.100484 0.0528801i
\(196\) 1289.28 0.0335610
\(197\) 14182.4i 0.365441i −0.983165 0.182720i \(-0.941510\pi\)
0.983165 0.182720i \(-0.0584903\pi\)
\(198\) −20647.9 −0.526679
\(199\) 44550.7i 1.12499i 0.826801 + 0.562495i \(0.190159\pi\)
−0.826801 + 0.562495i \(0.809841\pi\)
\(200\) 19211.8 13198.2i 0.480296 0.329956i
\(201\) 41612.7i 1.02999i
\(202\) 15068.1i 0.369279i
\(203\) −37506.6 −0.910155
\(204\) 7562.33i 0.181717i
\(205\) −40299.6 21207.8i −0.958943 0.504647i
\(206\) 30712.8i 0.723745i
\(207\) −7396.71 + 16611.1i −0.172623 + 0.387666i
\(208\) 8088.33i 0.186953i
\(209\) 35545.8 0.813760
\(210\) −35428.1 18644.2i −0.803359 0.422771i
\(211\) −41236.0 −0.926215 −0.463108 0.886302i \(-0.653266\pi\)
−0.463108 + 0.886302i \(0.653266\pi\)
\(212\) −24126.4 −0.536810
\(213\) 29962.5i 0.660417i
\(214\) 9216.53i 0.201252i
\(215\) −157.567 82.9205i −0.00340871 0.00179384i
\(216\) −29380.4 −0.629724
\(217\) 17323.1 0.367881
\(218\) −18619.0 −0.391781
\(219\) 21967.7 0.458033
\(220\) −11962.3 + 22731.1i −0.247155 + 0.469650i
\(221\) 3311.31i 0.0677978i
\(222\) 15924.5 0.323118
\(223\) 15976.4i 0.321269i −0.987014 0.160634i \(-0.948646\pi\)
0.987014 0.160634i \(-0.0513540\pi\)
\(224\) 46701.4i 0.930752i
\(225\) 12164.7 + 17707.4i 0.240291 + 0.349776i
\(226\) 53.5029i 0.00104752i
\(227\) 48395.1 0.939181 0.469590 0.882884i \(-0.344402\pi\)
0.469590 + 0.882884i \(0.344402\pi\)
\(228\) −16904.7 −0.325190
\(229\) 69898.5i 1.33290i −0.745551 0.666449i \(-0.767814\pi\)
0.745551 0.666449i \(-0.232186\pi\)
\(230\) 40484.8 + 51370.5i 0.765308 + 0.971086i
\(231\) −39328.3 −0.737023
\(232\) 29497.6i 0.548039i
\(233\) 64869.9i 1.19490i −0.801906 0.597450i \(-0.796181\pi\)
0.801906 0.597450i \(-0.203819\pi\)
\(234\) −4299.70 −0.0785248
\(235\) 29575.0 56199.0i 0.535536 1.01764i
\(236\) 34292.8 0.615714
\(237\) 60257.5 1.07279
\(238\) 30703.1i 0.542036i
\(239\) −29088.5 −0.509243 −0.254621 0.967041i \(-0.581951\pi\)
−0.254621 + 0.967041i \(0.581951\pi\)
\(240\) −25423.2 + 48309.8i −0.441375 + 0.838711i
\(241\) 60948.1i 1.04936i −0.851298 0.524682i \(-0.824184\pi\)
0.851298 0.524682i \(-0.175816\pi\)
\(242\) 551.429i 0.00941583i
\(243\) 46091.6i 0.780565i
\(244\) 26953.8i 0.452732i
\(245\) −3371.85 1774.45i −0.0561741 0.0295618i
\(246\) 61515.6 1.01652
\(247\) 7402.03 0.121327
\(248\) 13624.1i 0.221515i
\(249\) 87826.7i 1.41654i
\(250\) 76742.6 9059.61i 1.22788 0.144954i
\(251\) 21475.3i 0.340873i −0.985369 0.170437i \(-0.945482\pi\)
0.985369 0.170437i \(-0.0545178\pi\)
\(252\) −13788.3 −0.217125
\(253\) 58696.1 + 26136.6i 0.916997 + 0.408327i
\(254\) −83134.8 −1.28859
\(255\) 10408.1 19777.7i 0.160063 0.304156i
\(256\) 80012.0 1.22089
\(257\) 89616.4i 1.35682i 0.734685 + 0.678409i \(0.237330\pi\)
−0.734685 + 0.678409i \(0.762670\pi\)
\(258\) 240.520 0.00361336
\(259\) −22360.6 −0.333337
\(260\) −2491.02 + 4733.50i −0.0368494 + 0.0700222i
\(261\) −27187.8 −0.399111
\(262\) 20730.0i 0.301992i
\(263\) 21291.6 0.307820 0.153910 0.988085i \(-0.450813\pi\)
0.153910 + 0.988085i \(0.450813\pi\)
\(264\) 30930.3i 0.443789i
\(265\) 63097.7 + 33205.4i 0.898508 + 0.472843i
\(266\) 68633.0 0.969995
\(267\) 37492.3 0.525919
\(268\) −51551.5 −0.717748
\(269\) −117290. −1.62090 −0.810450 0.585808i \(-0.800777\pi\)
−0.810450 + 0.585808i \(0.800777\pi\)
\(270\) −86198.3 45362.2i −1.18242 0.622252i
\(271\) −110364. −1.50276 −0.751379 0.659871i \(-0.770611\pi\)
−0.751379 + 0.659871i \(0.770611\pi\)
\(272\) −41866.7 −0.565889
\(273\) −8189.69 −0.109886
\(274\) 41048.0i 0.546752i
\(275\) 62570.1 42984.7i 0.827373 0.568393i
\(276\) −27914.3 12429.9i −0.366445 0.163173i
\(277\) 12201.9i 0.159025i −0.996834 0.0795127i \(-0.974664\pi\)
0.996834 0.0795127i \(-0.0253364\pi\)
\(278\) 120776.i 1.56275i
\(279\) 12557.2 0.161319
\(280\) 20589.2 39124.1i 0.262617 0.499032i
\(281\) 138763.i 1.75737i −0.477405 0.878683i \(-0.658423\pi\)
0.477405 0.878683i \(-0.341577\pi\)
\(282\) 85785.4i 1.07874i
\(283\) −2905.51 −0.0362785 −0.0181392 0.999835i \(-0.505774\pi\)
−0.0181392 + 0.999835i \(0.505774\pi\)
\(284\) −37118.8 −0.460211
\(285\) 44210.7 + 23266.0i 0.544299 + 0.286439i
\(286\) 15193.2i 0.185745i
\(287\) −86377.6 −1.04867
\(288\) 33853.0i 0.408142i
\(289\) −66381.0 −0.794782
\(290\) −45543.2 + 86542.3i −0.541536 + 1.02904i
\(291\) 105981.i 1.25153i
\(292\) 27214.5i 0.319180i
\(293\) −96882.7 −1.12852 −0.564262 0.825596i \(-0.690839\pi\)
−0.564262 + 0.825596i \(0.690839\pi\)
\(294\) 5146.99 0.0595468
\(295\) −89685.9 47197.5i −1.03058 0.542345i
\(296\) 17585.8i 0.200715i
\(297\) −95687.5 −1.08478
\(298\) −516.423 −0.00581531
\(299\) 12222.8 + 5442.66i 0.136719 + 0.0608792i
\(300\) −29756.6 + 20442.4i −0.330629 + 0.227137i
\(301\) −337.728 −0.00372764
\(302\) 137696.i 1.50976i
\(303\) 20804.3i 0.226604i
\(304\) 93587.9i 1.01268i
\(305\) −37096.9 + 70492.3i −0.398784 + 0.757778i
\(306\) 22256.1i 0.237687i
\(307\) 80278.2i 0.851767i −0.904778 0.425884i \(-0.859963\pi\)
0.904778 0.425884i \(-0.140037\pi\)
\(308\) 48721.5i 0.513594i
\(309\) 42404.8i 0.444118i
\(310\) 21035.0 39971.2i 0.218887 0.415934i
\(311\) 99847.5 1.03233 0.516163 0.856491i \(-0.327360\pi\)
0.516163 + 0.856491i \(0.327360\pi\)
\(312\) 6440.91i 0.0661664i
\(313\) 9836.64 0.100406 0.0502028 0.998739i \(-0.484013\pi\)
0.0502028 + 0.998739i \(0.484013\pi\)
\(314\) 229453.i 2.32721i
\(315\) 36060.5 + 18977.0i 0.363421 + 0.191252i
\(316\) 74649.5i 0.747572i
\(317\) 104833.i 1.04323i −0.853182 0.521613i \(-0.825330\pi\)
0.853182 0.521613i \(-0.174670\pi\)
\(318\) −96316.0 −0.952454
\(319\) 96069.4i 0.944069i
\(320\) −5439.45 2862.53i −0.0531196 0.0279544i
\(321\) 12725.1i 0.123496i
\(322\) 113332. + 50465.4i 1.09305 + 0.486723i
\(323\) 38314.3i 0.367245i
\(324\) 21953.8 0.209131
\(325\) 13029.5 8951.09i 0.123356 0.0847441i
\(326\) 145995. 1.37374
\(327\) −25707.0 −0.240412
\(328\) 67933.0i 0.631442i
\(329\) 120456.i 1.11285i
\(330\) −47755.3 + 90745.7i −0.438524 + 0.833294i
\(331\) −38032.9 −0.347139 −0.173569 0.984822i \(-0.555530\pi\)
−0.173569 + 0.984822i \(0.555530\pi\)
\(332\) −108803. −0.987112
\(333\) −16208.8 −0.146171
\(334\) −184173. −1.65095
\(335\) 134823. + 70950.9i 1.20136 + 0.632220i
\(336\) 103547.i 0.917186i
\(337\) −33040.3 −0.290927 −0.145463 0.989364i \(-0.546467\pi\)
−0.145463 + 0.989364i \(0.546467\pi\)
\(338\) 138088.i 1.20871i
\(339\) 73.8708i 0.000642796i
\(340\) −24501.5 12894.0i −0.211951 0.111540i
\(341\) 44371.5i 0.381589i
\(342\) 49750.8 0.425351
\(343\) −121081. −1.02917
\(344\) 265.612i 0.00224456i
\(345\) 55896.8 + 70926.6i 0.469622 + 0.595896i
\(346\) 95018.6 0.793700
\(347\) 43160.3i 0.358448i −0.983808 0.179224i \(-0.942641\pi\)
0.983808 0.179224i \(-0.0573586\pi\)
\(348\) 45688.0i 0.377263i
\(349\) −91666.3 −0.752591 −0.376296 0.926500i \(-0.622802\pi\)
−0.376296 + 0.926500i \(0.622802\pi\)
\(350\) 120812. 82996.1i 0.986222 0.677519i
\(351\) −19925.9 −0.161735
\(352\) 119621. 0.965433
\(353\) 51870.6i 0.416267i 0.978100 + 0.208133i \(0.0667388\pi\)
−0.978100 + 0.208133i \(0.933261\pi\)
\(354\) 136902. 1.09245
\(355\) 97076.6 + 51086.9i 0.770296 + 0.405371i
\(356\) 46447.0i 0.366486i
\(357\) 42391.4i 0.332614i
\(358\) 270396.i 2.10977i
\(359\) 240529.i 1.86629i 0.359499 + 0.933146i \(0.382948\pi\)
−0.359499 + 0.933146i \(0.617052\pi\)
\(360\) 14924.7 28360.3i 0.115160 0.218830i
\(361\) 44674.0 0.342800
\(362\) 297593. 2.27094
\(363\) 761.351i 0.00577792i
\(364\) 10145.7i 0.0765738i
\(365\) −37455.7 + 71174.1i −0.281146 + 0.534240i
\(366\) 107604.i 0.803275i
\(367\) −188291. −1.39797 −0.698983 0.715139i \(-0.746363\pi\)
−0.698983 + 0.715139i \(0.746363\pi\)
\(368\) 68814.5 154540.i 0.508141 1.14115i
\(369\) −62613.5 −0.459849
\(370\) −27151.8 + 51594.5i −0.198333 + 0.376878i
\(371\) 135243. 0.982577
\(372\) 21101.9i 0.152488i
\(373\) 156696. 1.12626 0.563132 0.826367i \(-0.309596\pi\)
0.563132 + 0.826367i \(0.309596\pi\)
\(374\) −78643.0 −0.562233
\(375\) 105958. 12508.5i 0.753476 0.0889493i
\(376\) −94734.8 −0.670091
\(377\) 20005.4i 0.140755i
\(378\) −184756. −1.29305
\(379\) 148654.i 1.03490i 0.855714 + 0.517449i \(0.173118\pi\)
−0.855714 + 0.517449i \(0.826882\pi\)
\(380\) 28823.0 54770.1i 0.199605 0.379294i
\(381\) −114783. −0.790730
\(382\) 240185. 1.64596
\(383\) 122905. 0.837859 0.418929 0.908019i \(-0.362405\pi\)
0.418929 + 0.908019i \(0.362405\pi\)
\(384\) 115903. 0.786017
\(385\) 67056.0 127421.i 0.452393 0.859648i
\(386\) 113015. 0.758511
\(387\) −244.813 −0.00163460
\(388\) 131293. 0.872125
\(389\) 122657.i 0.810578i −0.914189 0.405289i \(-0.867171\pi\)
0.914189 0.405289i \(-0.132829\pi\)
\(390\) −9944.51 + 18896.8i −0.0653814 + 0.124239i
\(391\) −28172.3 + 63267.6i −0.184276 + 0.413836i
\(392\) 5683.94i 0.0369894i
\(393\) 28621.6i 0.185314i
\(394\) −70140.9 −0.451834
\(395\) −102741. + 195231.i −0.658490 + 1.25128i
\(396\) 35317.3i 0.225215i
\(397\) 99402.5i 0.630691i −0.948977 0.315345i \(-0.897880\pi\)
0.948977 0.315345i \(-0.102120\pi\)
\(398\) 220332. 1.39095
\(399\) 94760.7 0.595227
\(400\) −113173. 164739.i −0.707334 1.02962i
\(401\) 233065.i 1.44940i 0.689065 + 0.724700i \(0.258021\pi\)
−0.689065 + 0.724700i \(0.741979\pi\)
\(402\) −205801. −1.27349
\(403\) 9239.88i 0.0568927i
\(404\) −25773.2 −0.157909
\(405\) −57415.7 30215.2i −0.350042 0.184211i
\(406\) 185494.i 1.12532i
\(407\) 57274.4i 0.345758i
\(408\) −33339.4 −0.200280
\(409\) 92352.0 0.552077 0.276038 0.961147i \(-0.410978\pi\)
0.276038 + 0.961147i \(0.410978\pi\)
\(410\) −104886. + 199307.i −0.623950 + 1.18564i
\(411\) 56674.4i 0.335508i
\(412\) 52532.9 0.309483
\(413\) −192232. −1.12700
\(414\) 82152.4 + 36581.4i 0.479313 + 0.213432i
\(415\) 284553. + 149747.i 1.65222 + 0.869486i
\(416\) 24909.8 0.143941
\(417\) 166754.i 0.958966i
\(418\) 175797.i 1.00614i
\(419\) 64162.6i 0.365472i −0.983162 0.182736i \(-0.941505\pi\)
0.983162 0.182736i \(-0.0584953\pi\)
\(420\) −31890.0 + 60598.2i −0.180782 + 0.343527i
\(421\) 125400.i 0.707514i −0.935337 0.353757i \(-0.884904\pi\)
0.935337 0.353757i \(-0.115096\pi\)
\(422\) 203938.i 1.14518i
\(423\) 87316.5i 0.487995i
\(424\) 106364.i 0.591647i
\(425\) 46332.5 + 67443.3i 0.256512 + 0.373389i
\(426\) −148183. −0.816545
\(427\) 151092.i 0.828680i
\(428\) −15764.4 −0.0860580
\(429\) 20977.1i 0.113980i
\(430\) −410.094 + 779.271i −0.00221792 + 0.00421455i
\(431\) 202228.i 1.08864i −0.838876 0.544322i \(-0.816787\pi\)
0.838876 0.544322i \(-0.183213\pi\)
\(432\) 251934.i 1.34995i
\(433\) −231136. −1.23280 −0.616400 0.787433i \(-0.711409\pi\)
−0.616400 + 0.787433i \(0.711409\pi\)
\(434\) 85673.9i 0.454851i
\(435\) −62880.9 + 119488.i −0.332308 + 0.631459i
\(436\) 31847.0i 0.167531i
\(437\) −141427. 62975.6i −0.740576 0.329769i
\(438\) 108644.i 0.566316i
\(439\) 282237. 1.46449 0.732243 0.681044i \(-0.238474\pi\)
0.732243 + 0.681044i \(0.238474\pi\)
\(440\) −100213. 52737.2i −0.517627 0.272403i
\(441\) −5238.85 −0.0269376
\(442\) −16376.5 −0.0838258
\(443\) 123666.i 0.630147i −0.949067 0.315073i \(-0.897971\pi\)
0.949067 0.315073i \(-0.102029\pi\)
\(444\) 27238.2i 0.138169i
\(445\) −63925.5 + 121473.i −0.322815 + 0.613421i
\(446\) −79013.2 −0.397219
\(447\) −713.019 −0.00356850
\(448\) −11658.9 −0.0580898
\(449\) −258480. −1.28214 −0.641069 0.767483i \(-0.721509\pi\)
−0.641069 + 0.767483i \(0.721509\pi\)
\(450\) 87574.4 60162.3i 0.432466 0.297098i
\(451\) 221248.i 1.08774i
\(452\) 91.5142 0.000447932
\(453\) 190115.i 0.926445i
\(454\) 239344.i 1.16121i
\(455\) 13963.7 26534.1i 0.0674492 0.128169i
\(456\) 74526.0i 0.358409i
\(457\) −184081. −0.881407 −0.440703 0.897653i \(-0.645271\pi\)
−0.440703 + 0.897653i \(0.645271\pi\)
\(458\) −345692. −1.64800
\(459\) 103140.i 0.489556i
\(460\) 87866.8 69247.3i 0.415250 0.327256i
\(461\) −39428.1 −0.185526 −0.0927628 0.995688i \(-0.529570\pi\)
−0.0927628 + 0.995688i \(0.529570\pi\)
\(462\) 194503.i 0.911261i
\(463\) 157266.i 0.733623i 0.930295 + 0.366812i \(0.119551\pi\)
−0.930295 + 0.366812i \(0.880449\pi\)
\(464\) 252939. 1.17484
\(465\) 29042.8 55187.8i 0.134317 0.255233i
\(466\) −320823. −1.47738
\(467\) 397293. 1.82170 0.910851 0.412735i \(-0.135426\pi\)
0.910851 + 0.412735i \(0.135426\pi\)
\(468\) 7354.45i 0.0335783i
\(469\) 288977. 1.31377
\(470\) −277940. 146267.i −1.25822 0.662140i
\(471\) 316803.i 1.42806i
\(472\) 151184.i 0.678611i
\(473\) 865.058i 0.00386654i
\(474\) 298011.i 1.32640i
\(475\) −150761. + 103571.i −0.668194 + 0.459039i
\(476\) −52516.2 −0.231782
\(477\) 98035.0 0.430868
\(478\) 143861.i 0.629632i
\(479\) 137130.i 0.597668i 0.954305 + 0.298834i \(0.0965977\pi\)
−0.954305 + 0.298834i \(0.903402\pi\)
\(480\) 148781. + 78296.3i 0.645749 + 0.339828i
\(481\) 11926.8i 0.0515505i
\(482\) −301427. −1.29744
\(483\) 156476. + 69676.9i 0.670740 + 0.298672i
\(484\) 943.193 0.00402634
\(485\) −343371. 180700.i −1.45975 0.768201i
\(486\) −227952. −0.965097
\(487\) 333190.i 1.40487i −0.711750 0.702433i \(-0.752097\pi\)
0.711750 0.702433i \(-0.247903\pi\)
\(488\) 118829. 0.498980
\(489\) 201574. 0.842977
\(490\) −8775.78 + 16675.9i −0.0365505 + 0.0694541i
\(491\) 72764.5 0.301826 0.150913 0.988547i \(-0.451779\pi\)
0.150913 + 0.988547i \(0.451779\pi\)
\(492\) 105220.i 0.434676i
\(493\) −103552. −0.426053
\(494\) 36607.7i 0.150010i
\(495\) 48607.6 92365.3i 0.198378 0.376963i
\(496\) −116825. −0.474867
\(497\) 208073. 0.842369
\(498\) −434359. −1.75142
\(499\) −64799.7 −0.260239 −0.130119 0.991498i \(-0.541536\pi\)
−0.130119 + 0.991498i \(0.541536\pi\)
\(500\) −15496.0 131265.i −0.0619842 0.525059i
\(501\) −254286. −1.01309
\(502\) −106209. −0.421458
\(503\) 66136.2 0.261399 0.130699 0.991422i \(-0.458278\pi\)
0.130699 + 0.991422i \(0.458278\pi\)
\(504\) 60787.2i 0.239304i
\(505\) 67404.7 + 35472.0i 0.264306 + 0.139092i
\(506\) 129262. 290289.i 0.504859 1.13378i
\(507\) 190657.i 0.741714i
\(508\) 142198.i 0.551019i
\(509\) −278831. −1.07623 −0.538115 0.842871i \(-0.680864\pi\)
−0.538115 + 0.842871i \(0.680864\pi\)
\(510\) −97813.4 51474.7i −0.376061 0.197903i
\(511\) 152554.i 0.584227i
\(512\) 124130.i 0.473518i
\(513\) 230557. 0.876080
\(514\) 443210. 1.67758
\(515\) −137389. 72301.6i −0.518010 0.272605i
\(516\) 411.398i 0.00154512i
\(517\) −308537. −1.15432
\(518\) 110587.i 0.412140i
\(519\) 131191. 0.487045
\(520\) −20868.2 10981.9i −0.0771751 0.0406137i
\(521\) 335750.i 1.23692i −0.785817 0.618459i \(-0.787757\pi\)
0.785817 0.618459i \(-0.212243\pi\)
\(522\) 134461.i 0.493463i
\(523\) 343493. 1.25578 0.627891 0.778301i \(-0.283918\pi\)
0.627891 + 0.778301i \(0.283918\pi\)
\(524\) −35457.6 −0.129136
\(525\) 166804. 114592.i 0.605184 0.415752i
\(526\) 105301.i 0.380592i
\(527\) 47827.4 0.172209
\(528\) 265224. 0.951362
\(529\) −187230. 207981.i −0.669058 0.743210i
\(530\) 164222. 312058.i 0.584627 1.11092i
\(531\) −139345. −0.494200
\(532\) 117394.i 0.414783i
\(533\) 46072.4i 0.162176i
\(534\) 185423.i 0.650251i
\(535\) 41228.7 + 21696.8i 0.144043 + 0.0758032i
\(536\) 227271.i 0.791068i
\(537\) 373333.i 1.29464i
\(538\) 580073.i 2.00409i
\(539\) 18511.7i 0.0637191i
\(540\) −77589.9 + 147438.i −0.266083 + 0.505618i
\(541\) 317068. 1.08332 0.541661 0.840597i \(-0.317796\pi\)
0.541661 + 0.840597i \(0.317796\pi\)
\(542\) 545820.i 1.85802i
\(543\) 410883. 1.39354
\(544\) 128938.i 0.435695i
\(545\) 43831.3 83289.3i 0.147568 0.280412i
\(546\) 40503.2i 0.135864i
\(547\) 5272.95i 0.0176230i 0.999961 + 0.00881148i \(0.00280482\pi\)
−0.999961 + 0.00881148i \(0.997195\pi\)
\(548\) −70210.6 −0.233799
\(549\) 109524.i 0.363383i
\(550\) −212586. 309448.i −0.702765 1.02297i
\(551\) 231477.i 0.762439i
\(552\) 54798.5 123063.i 0.179842 0.403878i
\(553\) 418455.i 1.36835i
\(554\) −60345.9 −0.196620
\(555\) −37488.2 + 71235.9i −0.121705 + 0.231267i
\(556\) −206582. −0.668254
\(557\) 279435. 0.900679 0.450340 0.892857i \(-0.351303\pi\)
0.450340 + 0.892857i \(0.351303\pi\)
\(558\) 62103.4i 0.199456i
\(559\) 180.139i 0.000576479i
\(560\) −335485. 176550.i −1.06979 0.562979i
\(561\) −108581. −0.345008
\(562\) −686273. −2.17282
\(563\) −259566. −0.818902 −0.409451 0.912332i \(-0.634280\pi\)
−0.409451 + 0.912332i \(0.634280\pi\)
\(564\) 146732. 0.461282
\(565\) −239.337 125.952i −0.000749744 0.000394556i
\(566\) 14369.6i 0.0448550i
\(567\) −123064. −0.382794
\(568\) 163642.i 0.507223i
\(569\) 298678.i 0.922527i −0.887263 0.461264i \(-0.847396\pi\)
0.887263 0.461264i \(-0.152604\pi\)
\(570\) 115065. 218650.i 0.354156 0.672976i
\(571\) 335764.i 1.02982i 0.857244 + 0.514910i \(0.172175\pi\)
−0.857244 + 0.514910i \(0.827825\pi\)
\(572\) 25987.3 0.0794271
\(573\) 331620. 1.01002
\(574\) 427192.i 1.29658i
\(575\) −325104. + 60170.4i −0.983300 + 0.181990i
\(576\) −8451.29 −0.0254729
\(577\) 159733.i 0.479782i 0.970800 + 0.239891i \(0.0771117\pi\)
−0.970800 + 0.239891i \(0.922888\pi\)
\(578\) 328296.i 0.982675i
\(579\) 156038. 0.465452
\(580\) 148027. + 77899.5i 0.440031 + 0.231568i
\(581\) 609908. 1.80681
\(582\) 524141. 1.54740
\(583\) 346411.i 1.01919i
\(584\) 119978. 0.351785
\(585\) 10122.0 19234.1i 0.0295770 0.0562030i
\(586\) 479146.i 1.39532i
\(587\) 524199.i 1.52132i −0.649151 0.760659i \(-0.724876\pi\)
0.649151 0.760659i \(-0.275124\pi\)
\(588\) 8803.68i 0.0254630i
\(589\) 106912.i 0.308175i
\(590\) −233422. + 443553.i −0.670559 + 1.27421i
\(591\) −96842.7 −0.277263
\(592\) 150797. 0.430277
\(593\) 272680.i 0.775432i −0.921779 0.387716i \(-0.873264\pi\)
0.921779 0.387716i \(-0.126736\pi\)
\(594\) 473235.i 1.34123i
\(595\) 137346. + 72278.6i 0.387954 + 0.204162i
\(596\) 883.318i 0.00248671i
\(597\) 304209. 0.853539
\(598\) 26917.4 60449.6i 0.0752716 0.169041i
\(599\) −372361. −1.03779 −0.518896 0.854838i \(-0.673657\pi\)
−0.518896 + 0.854838i \(0.673657\pi\)
\(600\) −90122.4 131185.i −0.250340 0.364404i
\(601\) 686200. 1.89977 0.949887 0.312594i \(-0.101198\pi\)
0.949887 + 0.312594i \(0.101198\pi\)
\(602\) 1670.28i 0.00460889i
\(603\) 209474. 0.576097
\(604\) 235522. 0.645592
\(605\) −2466.73 1298.13i −0.00673924 0.00354655i
\(606\) −102890. −0.280175
\(607\) 39449.6i 0.107069i −0.998566 0.0535346i \(-0.982951\pi\)
0.998566 0.0535346i \(-0.0170488\pi\)
\(608\) −288224. −0.779693
\(609\) 256109.i 0.690542i
\(610\) 348629. + 183467.i 0.936923 + 0.493059i
\(611\) −64249.5 −0.172102
\(612\) −38068.0 −0.101638
\(613\) −328168. −0.873323 −0.436662 0.899626i \(-0.643839\pi\)
−0.436662 + 0.899626i \(0.643839\pi\)
\(614\) −397026. −1.05313
\(615\) −144815. + 275180.i −0.382880 + 0.727557i
\(616\) −214794. −0.566059
\(617\) −676661. −1.77746 −0.888731 0.458428i \(-0.848413\pi\)
−0.888731 + 0.458428i \(0.848413\pi\)
\(618\) 209719. 0.549111
\(619\) 334267.i 0.872394i 0.899851 + 0.436197i \(0.143675\pi\)
−0.899851 + 0.436197i \(0.856325\pi\)
\(620\) −68368.9 35979.4i −0.177859 0.0935989i
\(621\) 380714. + 169527.i 0.987224 + 0.439598i
\(622\) 493809.i 1.27638i
\(623\) 260363.i 0.670816i
\(624\) 55230.1 0.141843
\(625\) −140134. + 364624.i −0.358743 + 0.933436i
\(626\) 48648.4i 0.124142i
\(627\) 242720.i 0.617406i
\(628\) 392469. 0.995145
\(629\) −61735.2 −0.156038
\(630\) 93853.0 178342.i 0.236465 0.449337i
\(631\) 331904.i 0.833592i 0.909000 + 0.416796i \(0.136847\pi\)
−0.909000 + 0.416796i \(0.863153\pi\)
\(632\) 329101. 0.823938
\(633\) 281575.i 0.702727i
\(634\) −518464. −1.28985
\(635\) 195709. 371891.i 0.485359 0.922290i
\(636\) 164744.i 0.407282i
\(637\) 3854.87i 0.00950015i
\(638\) 475124. 1.16725
\(639\) 150828. 0.369386
\(640\) −197618. + 375519.i −0.482466 + 0.916794i
\(641\) 802258.i 1.95253i −0.216579 0.976265i \(-0.569490\pi\)
0.216579 0.976265i \(-0.430510\pi\)
\(642\) −62933.9 −0.152691
\(643\) −143766. −0.347724 −0.173862 0.984770i \(-0.555625\pi\)
−0.173862 + 0.984770i \(0.555625\pi\)
\(644\) 86318.7 193849.i 0.208129 0.467405i
\(645\) −566.212 + 1075.93i −0.00136100 + 0.00258621i
\(646\) 189489. 0.454065
\(647\) 756331.i 1.80677i 0.428828 + 0.903386i \(0.358927\pi\)
−0.428828 + 0.903386i \(0.641073\pi\)
\(648\) 96785.7i 0.230495i
\(649\) 492382.i 1.16900i
\(650\) −44268.8 64439.3i −0.104778 0.152519i
\(651\) 118289.i 0.279114i
\(652\) 249718.i 0.587428i
\(653\) 442957.i 1.03881i 0.854529 + 0.519404i \(0.173846\pi\)
−0.854529 + 0.519404i \(0.826154\pi\)
\(654\) 127137.i 0.297247i
\(655\) 92732.3 + 48800.7i 0.216147 + 0.113748i
\(656\) 582518. 1.35364
\(657\) 110583.i 0.256188i
\(658\) −595733. −1.37594
\(659\) 654514.i 1.50712i −0.657379 0.753560i \(-0.728335\pi\)
0.657379 0.753560i \(-0.271665\pi\)
\(660\) 155216. + 81683.2i 0.356328 + 0.187519i
\(661\) 175823.i 0.402413i 0.979549 + 0.201206i \(0.0644862\pi\)
−0.979549 + 0.201206i \(0.935514\pi\)
\(662\) 188097.i 0.429205i
\(663\) −22610.9 −0.0514387
\(664\) 479672.i 1.08795i
\(665\) −161570. + 307019.i −0.365357 + 0.694260i
\(666\) 80162.5i 0.180727i
\(667\) 170204. 382233.i 0.382576 0.859166i
\(668\) 315020.i 0.705968i
\(669\) −109093. −0.243749
\(670\) 350897. 666783.i 0.781682 1.48537i
\(671\) 387008. 0.859558
\(672\) 318894. 0.706169
\(673\) 487162.i 1.07558i 0.843078 + 0.537791i \(0.180741\pi\)
−0.843078 + 0.537791i \(0.819259\pi\)
\(674\) 163405.i 0.359704i
\(675\) 405841. 278807.i 0.890736 0.611922i
\(676\) −236194. −0.516863
\(677\) −372718. −0.813210 −0.406605 0.913604i \(-0.633288\pi\)
−0.406605 + 0.913604i \(0.633288\pi\)
\(678\) 365.338 0.000794758
\(679\) −735977. −1.59634
\(680\) 56844.7 108018.i 0.122934 0.233602i
\(681\) 330459.i 0.712564i
\(682\) −219445. −0.471799
\(683\) 278036.i 0.596019i −0.954563 0.298009i \(-0.903677\pi\)
0.954563 0.298009i \(-0.0963227\pi\)
\(684\) 85096.4i 0.181886i
\(685\) 183622. + 96631.6i 0.391330 + 0.205939i
\(686\) 598822.i 1.27248i
\(687\) −477293. −1.01128
\(688\) 2277.59 0.00481171
\(689\) 72136.4i 0.151955i
\(690\) 350777. 276445.i 0.736771 0.580645i
\(691\) −335596. −0.702848 −0.351424 0.936216i \(-0.614302\pi\)
−0.351424 + 0.936216i \(0.614302\pi\)
\(692\) 162525.i 0.339397i
\(693\) 197975.i 0.412234i
\(694\) −213455. −0.443188
\(695\) 540272. + 284320.i 1.11852 + 0.588624i
\(696\) 201421. 0.415801
\(697\) −238480. −0.490892
\(698\) 453348.i 0.930510i
\(699\) −442956. −0.906580
\(700\) −141961. 206644.i −0.289716 0.421722i
\(701\) 220951.i 0.449635i −0.974401 0.224817i \(-0.927821\pi\)
0.974401 0.224817i \(-0.0721785\pi\)
\(702\) 98546.1i 0.199970i
\(703\) 138001.i 0.279237i
\(704\) 29863.0i 0.0602543i
\(705\) −383748. 201949.i −0.772090 0.406315i
\(706\) 256533. 0.514675
\(707\) 144474. 0.289036
\(708\) 234164.i 0.467147i
\(709\) 755284.i 1.50251i 0.660012 + 0.751255i \(0.270551\pi\)
−0.660012 + 0.751255i \(0.729449\pi\)
\(710\) 252657. 480105.i 0.501204 0.952400i
\(711\) 303330.i 0.600035i
\(712\) 204767. 0.403924
\(713\) −78611.9 + 176542.i −0.154635 + 0.347271i
\(714\) −209652. −0.411247
\(715\) −67964.5 35766.6i −0.132944 0.0699625i
\(716\) −462501. −0.902165
\(717\) 198627.i 0.386367i
\(718\) 1.18957e6 2.30750
\(719\) −68333.1 −0.132182 −0.0660912 0.997814i \(-0.521053\pi\)
−0.0660912 + 0.997814i \(0.521053\pi\)
\(720\) −243187. 127978.i −0.469110 0.246871i
\(721\) −294478. −0.566478
\(722\) 220941.i 0.423841i
\(723\) −416176. −0.796160
\(724\) 509019.i 0.971084i
\(725\) −279920. 407461.i −0.532546 0.775193i
\(726\) 3765.36 0.00714387
\(727\) −343164. −0.649281 −0.324640 0.945838i \(-0.605243\pi\)
−0.324640 + 0.945838i \(0.605243\pi\)
\(728\) −44728.6 −0.0843961
\(729\) −524944. −0.987775
\(730\) 352001. + 185242.i 0.660539 + 0.347611i
\(731\) −932.433 −0.00174495
\(732\) −184051. −0.343491
\(733\) 449850. 0.837259 0.418630 0.908157i \(-0.362511\pi\)
0.418630 + 0.908157i \(0.362511\pi\)
\(734\) 931216.i 1.72846i
\(735\) −12116.6 + 23024.3i −0.0224288 + 0.0426197i
\(736\) −475939. 211929.i −0.878609 0.391233i
\(737\) 740186.i 1.36272i
\(738\) 309663.i 0.568561i
\(739\) 321903. 0.589435 0.294717 0.955584i \(-0.404774\pi\)
0.294717 + 0.955584i \(0.404774\pi\)
\(740\) 88250.1 + 46441.9i 0.161158 + 0.0848100i
\(741\) 50543.8i 0.0920517i
\(742\) 668862.i 1.21487i
\(743\) −725883. −1.31489 −0.657445 0.753503i \(-0.728363\pi\)
−0.657445 + 0.753503i \(0.728363\pi\)
\(744\) −93030.1 −0.168065
\(745\) 1215.72 2310.14i 0.00219039 0.00416222i
\(746\) 774960.i 1.39252i
\(747\) 442111. 0.792301
\(748\) 134515.i 0.240419i
\(749\) 88369.1 0.157520
\(750\) −61862.4 524027.i −0.109978 0.931603i
\(751\) 943161.i 1.67227i −0.548525 0.836134i \(-0.684810\pi\)
0.548525 0.836134i \(-0.315190\pi\)
\(752\) 812341.i 1.43649i
\(753\) −146642. −0.258623
\(754\) 98939.4 0.174031
\(755\) −615961. 324152.i −1.08059 0.568663i
\(756\) 316017.i 0.552926i
\(757\) 534635. 0.932965 0.466483 0.884530i \(-0.345521\pi\)
0.466483 + 0.884530i \(0.345521\pi\)
\(758\) 735187. 1.27956
\(759\) 178470. 400799.i 0.309801 0.695733i
\(760\) 241460. + 127069.i 0.418040 + 0.219995i
\(761\) 150078. 0.259148 0.129574 0.991570i \(-0.458639\pi\)
0.129574 + 0.991570i \(0.458639\pi\)
\(762\) 567675.i 0.977665i
\(763\) 178521.i 0.306648i
\(764\) 410825.i 0.703834i
\(765\) 99559.2 + 52393.4i 0.170121 + 0.0895269i
\(766\) 607841.i 1.03594i
\(767\) 102533.i 0.174291i
\(768\) 546351.i 0.926296i
\(769\) 238646.i 0.403553i 0.979432 + 0.201777i \(0.0646715\pi\)
−0.979432 + 0.201777i \(0.935329\pi\)
\(770\) −630179. 331634.i −1.06288 0.559342i
\(771\) 611934. 1.02943
\(772\) 193307.i 0.324349i
\(773\) 197164. 0.329965 0.164983 0.986296i \(-0.447243\pi\)
0.164983 + 0.986296i \(0.447243\pi\)
\(774\) 1210.75i 0.00202104i
\(775\) 129286. + 188194.i 0.215253 + 0.313330i
\(776\) 578821.i 0.961215i
\(777\) 152686.i 0.252905i
\(778\) −606619. −1.00220
\(779\) 533092.i 0.878471i
\(780\) 32322.1 + 17009.6i 0.0531264 + 0.0279580i
\(781\) 532958.i 0.873758i
\(782\) 312898. + 139330.i 0.511670 + 0.227840i
\(783\) 623125.i 1.01637i
\(784\) 48739.1 0.0792950
\(785\) −1.02642e6 540159.i −1.66566 0.876562i
\(786\) −141552. −0.229124
\(787\) 103089. 0.166441 0.0832206 0.996531i \(-0.473479\pi\)
0.0832206 + 0.996531i \(0.473479\pi\)
\(788\) 119973.i 0.193210i
\(789\) 145387.i 0.233546i
\(790\) 965539. + 508119.i 1.54709 + 0.814162i
\(791\) −512.992 −0.000819894
\(792\) −155700. −0.248221
\(793\) 80590.3 0.128155
\(794\) −491608. −0.779791
\(795\) 226739. 430855.i 0.358750 0.681705i
\(796\) 376867.i 0.594788i
\(797\) −1.05340e6 −1.65835 −0.829174 0.558990i \(-0.811189\pi\)
−0.829174 + 0.558990i \(0.811189\pi\)
\(798\) 468651.i 0.735943i
\(799\) 332568.i 0.520938i
\(800\) −507351. + 348542.i −0.792736 + 0.544598i
\(801\) 188732.i 0.294159i
\(802\) 1.15265e6 1.79205
\(803\) 390752. 0.605996
\(804\) 352013.i 0.544561i
\(805\) −492546. + 388173.i −0.760073 + 0.599009i
\(806\) −45697.1 −0.0703426
\(807\) 800899.i 1.22979i
\(808\) 113624.i 0.174040i
\(809\) −280562. −0.428679 −0.214340 0.976759i \(-0.568760\pi\)
−0.214340 + 0.976759i \(0.568760\pi\)
\(810\) −149433. + 283957.i −0.227760 + 0.432795i
\(811\) −977553. −1.48627 −0.743137 0.669140i \(-0.766663\pi\)
−0.743137 + 0.669140i \(0.766663\pi\)
\(812\) 317278. 0.481203
\(813\) 753607.i 1.14015i
\(814\) 283258. 0.427497
\(815\) −343689. + 653086.i −0.517429 + 0.983231i
\(816\) 285881.i 0.429344i
\(817\) 2084.34i 0.00312266i
\(818\) 456739.i 0.682592i
\(819\) 41226.1i 0.0614616i
\(820\) 340905. + 179403.i 0.506997 + 0.266809i
\(821\) 240514. 0.356824 0.178412 0.983956i \(-0.442904\pi\)
0.178412 + 0.983956i \(0.442904\pi\)
\(822\) −280291. −0.414825
\(823\) 148476.i 0.219208i −0.993975 0.109604i \(-0.965042\pi\)
0.993975 0.109604i \(-0.0349583\pi\)
\(824\) 231597.i 0.341098i
\(825\) −293515. 427252.i −0.431244 0.627734i
\(826\) 950707.i 1.39343i
\(827\) −186234. −0.272301 −0.136150 0.990688i \(-0.543473\pi\)
−0.136150 + 0.990688i \(0.543473\pi\)
\(828\) 62570.8 140518.i 0.0912664 0.204961i
\(829\) 601485. 0.875217 0.437608 0.899166i \(-0.355826\pi\)
0.437608 + 0.899166i \(0.355826\pi\)
\(830\) 740595. 1.40730e6i 1.07504 2.04282i
\(831\) −83318.9 −0.120654
\(832\) 6218.65i 0.00898358i
\(833\) −19953.5 −0.0287561
\(834\) −824702. −1.18567
\(835\) 433565. 823871.i 0.621844 1.18164i
\(836\) −300692. −0.430239
\(837\) 287802.i 0.410812i
\(838\) −317325. −0.451872
\(839\) 335094.i 0.476039i −0.971260 0.238020i \(-0.923502\pi\)
0.971260 0.238020i \(-0.0764982\pi\)
\(840\) −267154. 140591.i −0.378619 0.199250i
\(841\) −81669.6 −0.115470
\(842\) −620184. −0.874775
\(843\) −947528. −1.33333
\(844\) 348827. 0.489694
\(845\) 617717. + 325076.i 0.865120 + 0.455272i
\(846\) −431835. −0.603361
\(847\) −5287.16 −0.00736980
\(848\) −912059. −1.26833
\(849\) 19839.9i 0.0275248i
\(850\) 333550. 229144.i 0.461661 0.317154i
\(851\) 101472. 227879.i 0.140115 0.314663i
\(852\) 253461.i 0.349165i
\(853\) 374862.i 0.515197i −0.966252 0.257598i \(-0.917069\pi\)
0.966252 0.257598i \(-0.0829311\pi\)
\(854\) 747248. 1.02459
\(855\) −117119. + 222552.i −0.160212 + 0.304439i
\(856\) 69499.3i 0.0948490i
\(857\) 141026.i 0.192017i −0.995381 0.0960083i \(-0.969392\pi\)
0.995381 0.0960083i \(-0.0306075\pi\)
\(858\) 103745. 0.140926
\(859\) 413213. 0.560000 0.280000 0.960000i \(-0.409666\pi\)
0.280000 + 0.960000i \(0.409666\pi\)
\(860\) 1332.91 + 701.447i 0.00180220 + 0.000948414i
\(861\) 589818.i 0.795632i
\(862\) −1.00014e6 −1.34601
\(863\) 166710.i 0.223841i −0.993717 0.111920i \(-0.964300\pi\)
0.993717 0.111920i \(-0.0357002\pi\)
\(864\) 775885. 1.03937
\(865\) −223685. + 425051.i −0.298954 + 0.568079i
\(866\) 1.14312e6i 1.52424i
\(867\) 453274.i 0.603008i
\(868\) −146541. −0.194500
\(869\) 1.07183e6 1.41934
\(870\) 590943. + 310986.i 0.780741 + 0.410868i
\(871\) 154136.i 0.203173i
\(872\) −140401. −0.184645
\(873\) −533496. −0.700007
\(874\) −311454. + 699446.i −0.407729 + 0.915654i
\(875\) 86864.6 + 735817.i 0.113456 + 0.961067i
\(876\) −185831. −0.242164
\(877\) 543966.i 0.707249i −0.935387 0.353625i \(-0.884949\pi\)
0.935387 0.353625i \(-0.115051\pi\)
\(878\) 1.39584e6i 1.81070i
\(879\) 661551.i 0.856220i
\(880\) −452216. + 859312.i −0.583957 + 1.10965i
\(881\) 173103.i 0.223025i 0.993763 + 0.111512i \(0.0355695\pi\)
−0.993763 + 0.111512i \(0.964431\pi\)
\(882\) 25909.4i 0.0333059i
\(883\) 350410.i 0.449423i 0.974425 + 0.224712i \(0.0721440\pi\)
−0.974425 + 0.224712i \(0.927856\pi\)
\(884\) 28011.3i 0.0358450i
\(885\) −322282. + 612408.i −0.411481 + 0.781906i
\(886\) −611605. −0.779118
\(887\) 735051.i 0.934266i 0.884187 + 0.467133i \(0.154713\pi\)
−0.884187 + 0.467133i \(0.845287\pi\)
\(888\) 120083. 0.152284
\(889\) 797106.i 1.00859i
\(890\) 600760. + 316152.i 0.758439 + 0.399131i
\(891\) 315216.i 0.397058i
\(892\) 135148.i 0.169856i
\(893\) 743414. 0.932240
\(894\) 3526.33i 0.00441212i
\(895\) 1.20958e6 + 636544.i 1.51004 + 0.794662i
\(896\) 804883.i 1.00257i
\(897\) 37164.5 83461.9i 0.0461896 0.103730i
\(898\) 1.27835e6i 1.58525i
\(899\) −288951. −0.357523
\(900\) −102905. 149792.i −0.127043 0.184928i
\(901\) 373392. 0.459955
\(902\) 1.09421e6 1.34489
\(903\) 2306.13i 0.00282819i
\(904\) 403.451i 0.000493689i
\(905\) −700568. + 1.33124e6i −0.855369 + 1.62539i
\(906\) 940238. 1.14546
\(907\) 281974. 0.342763 0.171381 0.985205i \(-0.445177\pi\)
0.171381 + 0.985205i \(0.445177\pi\)
\(908\) −409387. −0.496549
\(909\) 104727. 0.126745
\(910\) −131228. 69059.2i −0.158469 0.0833947i
\(911\) 1.44668e6i 1.74315i −0.490260 0.871576i \(-0.663098\pi\)
0.490260 0.871576i \(-0.336902\pi\)
\(912\) −639053. −0.768329
\(913\) 1.56222e6i 1.87413i
\(914\) 910396.i 1.08978i
\(915\) 481348. + 253311.i 0.574932 + 0.302560i
\(916\) 591290.i 0.704709i
\(917\) 198761. 0.236370
\(918\) −510093. −0.605291
\(919\) 86628.3i 0.102572i −0.998684 0.0512860i \(-0.983668\pi\)
0.998684 0.0512860i \(-0.0163320\pi\)
\(920\) 305285. + 387371.i 0.360686 + 0.457668i
\(921\) −548169. −0.646243
\(922\) 194997.i 0.229385i
\(923\) 110983.i 0.130272i
\(924\) 332689. 0.389667
\(925\) −166882. 242919.i −0.195041 0.283908i
\(926\) 777780. 0.907058
\(927\) −213462. −0.248405
\(928\) 778981.i 0.904547i
\(929\) 169901. 0.196863 0.0984316 0.995144i \(-0.468617\pi\)
0.0984316 + 0.995144i \(0.468617\pi\)
\(930\) −272938. 143635.i −0.315572 0.166071i
\(931\) 44603.6i 0.0514601i
\(932\) 548753.i 0.631749i
\(933\) 681796.i 0.783233i
\(934\) 1.96487e6i 2.25237i
\(935\) 185135. 351797.i 0.211770 0.402410i
\(936\) −32422.9 −0.0370084
\(937\) 1.28498e6 1.46358 0.731792 0.681529i \(-0.238684\pi\)
0.731792 + 0.681529i \(0.238684\pi\)
\(938\) 1.42917e6i 1.62435i
\(939\) 67168.3i 0.0761786i
\(940\) −250183. + 475403.i −0.283140 + 0.538030i
\(941\) 942315.i 1.06418i 0.846687 + 0.532092i \(0.178594\pi\)
−0.846687 + 0.532092i \(0.821406\pi\)
\(942\) 1.56679e6 1.76567
\(943\) 391979. 880283.i 0.440798 0.989918i
\(944\) 1.29638e6 1.45475
\(945\) 434938. 826479.i 0.487039 0.925483i
\(946\) 4278.26 0.00478062
\(947\) 819939.i 0.914285i −0.889394 0.457142i \(-0.848873\pi\)
0.889394 0.457142i \(-0.151127\pi\)
\(948\) −509735. −0.567189
\(949\) 81369.7 0.0903505
\(950\) 512223. + 745610.i 0.567560 + 0.826160i
\(951\) −715837. −0.791504
\(952\) 231524.i 0.255459i
\(953\) 143611. 0.158125 0.0790625 0.996870i \(-0.474807\pi\)
0.0790625 + 0.996870i \(0.474807\pi\)
\(954\) 484845.i 0.532729i
\(955\) −565423. + 1.07443e6i −0.619964 + 1.17807i
\(956\) 246067. 0.269239
\(957\) 655998. 0.716273
\(958\) 678192. 0.738961
\(959\) 393573. 0.427945
\(960\) −19546.4 + 37142.6i −0.0212092 + 0.0403023i
\(961\) −790063. −0.855491
\(962\) 58985.4 0.0637374
\(963\) 64057.1 0.0690740
\(964\) 515577.i 0.554803i
\(965\) −266050. + 505555.i −0.285699 + 0.542893i
\(966\) 344596. 773874.i 0.369280 0.829309i
\(967\) 1.68061e6i 1.79728i −0.438691 0.898638i \(-0.644558\pi\)
0.438691 0.898638i \(-0.355442\pi\)
\(968\) 4158.17i 0.00443764i
\(969\) 261624. 0.278632
\(970\) −893676. + 1.69819e6i −0.949810 + 1.80485i
\(971\) 1.16288e6i 1.23338i 0.787207 + 0.616689i \(0.211526\pi\)
−0.787207 + 0.616689i \(0.788474\pi\)
\(972\) 389901.i 0.412688i
\(973\) 1.15801e6 1.22317
\(974\) −1.64784e6 −1.73699
\(975\) −61121.4 88970.5i −0.0642960 0.0935915i
\(976\) 1.01895e6i 1.06967i
\(977\) 997.036 0.00104453 0.000522266 1.00000i \(-0.499834\pi\)
0.000522266 1.00000i \(0.499834\pi\)
\(978\) 996909.i 1.04226i
\(979\) 666895. 0.695812
\(980\) 28523.4 + 15010.6i 0.0296995 + 0.0156295i
\(981\) 129407.i 0.134468i
\(982\) 359866.i 0.373180i
\(983\) 597261. 0.618097 0.309049 0.951046i \(-0.399989\pi\)
0.309049 + 0.951046i \(0.399989\pi\)
\(984\) 463872. 0.479080
\(985\) 165120. 313765.i 0.170187 0.323394i
\(986\) 512129.i 0.526775i
\(987\) −822521. −0.844331
\(988\) −62615.8 −0.0641461
\(989\) 1532.60 3441.82i 0.00156688 0.00351881i
\(990\) −456805. 240395.i −0.466080 0.245276i
\(991\) 307119. 0.312722 0.156361 0.987700i \(-0.450024\pi\)
0.156361 + 0.987700i \(0.450024\pi\)
\(992\) 359788.i 0.365614i
\(993\) 259703.i 0.263377i
\(994\) 1.02905e6i 1.04151i
\(995\) −518686. + 985619.i −0.523912 + 0.995550i
\(996\) 742950.i 0.748930i
\(997\) 1.32569e6i 1.33368i −0.745202 0.666839i \(-0.767647\pi\)
0.745202 0.666839i \(-0.232353\pi\)
\(998\) 320475.i 0.321761i
\(999\) 371493.i 0.372237i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 115.5.c.c.114.12 yes 44
5.4 even 2 inner 115.5.c.c.114.33 yes 44
23.22 odd 2 inner 115.5.c.c.114.11 44
115.114 odd 2 inner 115.5.c.c.114.34 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
115.5.c.c.114.11 44 23.22 odd 2 inner
115.5.c.c.114.12 yes 44 1.1 even 1 trivial
115.5.c.c.114.33 yes 44 5.4 even 2 inner
115.5.c.c.114.34 yes 44 115.114 odd 2 inner