Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [115,5,Mod(114,115)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(115, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("115.114");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 115 = 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 115.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(11.8875457546\) |
Analytic rank: | \(0\) |
Dimension: | \(44\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
114.1 | − | 7.82075i | 2.35396i | −45.1642 | −21.7947 | − | 12.2470i | 18.4097 | −44.2956 | 228.086i | 75.4589 | −95.7809 | + | 170.451i | |||||||||||||
114.2 | − | 7.82075i | 2.35396i | −45.1642 | 21.7947 | + | 12.2470i | 18.4097 | 44.2956 | 228.086i | 75.4589 | 95.7809 | − | 170.451i | |||||||||||||
114.3 | − | 6.76854i | − | 12.7750i | −29.8132 | −13.2033 | + | 21.2290i | −86.4679 | 5.97783 | 93.4949i | −82.1996 | 143.690 | + | 89.3674i | ||||||||||||
114.4 | − | 6.76854i | − | 12.7750i | −29.8132 | 13.2033 | − | 21.2290i | −86.4679 | −5.97783 | 93.4949i | −82.1996 | −143.690 | − | 89.3674i | ||||||||||||
114.5 | − | 6.47969i | 15.9529i | −25.9863 | −3.25644 | − | 24.7870i | 103.370 | 26.8346 | 64.7082i | −173.496 | −160.612 | + | 21.1007i | |||||||||||||
114.6 | − | 6.47969i | 15.9529i | −25.9863 | 3.25644 | + | 24.7870i | 103.370 | −26.8346 | 64.7082i | −173.496 | 160.612 | − | 21.1007i | |||||||||||||
114.7 | − | 6.07514i | 5.74843i | −20.9073 | −19.8103 | + | 15.2497i | 34.9225 | 44.4256 | 29.8125i | 47.9555 | 92.6440 | + | 120.350i | |||||||||||||
114.8 | − | 6.07514i | 5.74843i | −20.9073 | 19.8103 | − | 15.2497i | 34.9225 | −44.4256 | 29.8125i | 47.9555 | −92.6440 | − | 120.350i | |||||||||||||
114.9 | − | 5.17567i | 1.68656i | −10.7876 | −10.7683 | − | 22.5620i | 8.72909 | 91.0414 | − | 26.9778i | 78.1555 | −116.773 | + | 55.7333i | ||||||||||||
114.10 | − | 5.17567i | 1.68656i | −10.7876 | 10.7683 | + | 22.5620i | 8.72909 | −91.0414 | − | 26.9778i | 78.1555 | 116.773 | − | 55.7333i | ||||||||||||
114.11 | − | 4.94563i | − | 6.82837i | −8.45927 | −22.1235 | − | 11.6426i | −33.7706 | −47.4193 | − | 37.2937i | 34.3734 | −57.5800 | + | 109.415i | |||||||||||
114.12 | − | 4.94563i | − | 6.82837i | −8.45927 | 22.1235 | + | 11.6426i | −33.7706 | 47.4193 | − | 37.2937i | 34.3734 | 57.5800 | − | 109.415i | |||||||||||
114.13 | − | 3.09098i | 9.49430i | 6.44587 | −21.4801 | + | 12.7909i | 29.3466 | 12.9929 | − | 69.3796i | −9.14173 | 39.5363 | + | 66.3944i | ||||||||||||
114.14 | − | 3.09098i | 9.49430i | 6.44587 | 21.4801 | − | 12.7909i | 29.3466 | −12.9929 | − | 69.3796i | −9.14173 | −39.5363 | − | 66.3944i | ||||||||||||
114.15 | − | 2.69449i | − | 17.0210i | 8.73974 | −22.5851 | − | 10.7197i | −45.8630 | 63.1360 | − | 66.6609i | −208.716 | −28.8842 | + | 60.8553i | |||||||||||
114.16 | − | 2.69449i | − | 17.0210i | 8.73974 | 22.5851 | + | 10.7197i | −45.8630 | −63.1360 | − | 66.6609i | −208.716 | 28.8842 | − | 60.8553i | |||||||||||
114.17 | − | 2.39227i | 13.3085i | 10.2771 | −19.8434 | − | 15.2066i | 31.8375 | −60.8570 | − | 62.8617i | −96.1161 | −36.3782 | + | 47.4707i | ||||||||||||
114.18 | − | 2.39227i | 13.3085i | 10.2771 | 19.8434 | + | 15.2066i | 31.8375 | 60.8570 | − | 62.8617i | −96.1161 | 36.3782 | − | 47.4707i | ||||||||||||
114.19 | − | 2.28507i | − | 4.59850i | 10.7785 | −9.51726 | + | 23.1176i | −10.5079 | −33.6997 | − | 61.1906i | 59.8538 | 52.8252 | + | 21.7476i | |||||||||||
114.20 | − | 2.28507i | − | 4.59850i | 10.7785 | 9.51726 | − | 23.1176i | −10.5079 | 33.6997 | − | 61.1906i | 59.8538 | −52.8252 | − | 21.7476i | |||||||||||
See all 44 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
23.b | odd | 2 | 1 | inner |
115.c | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 115.5.c.c | ✓ | 44 |
5.b | even | 2 | 1 | inner | 115.5.c.c | ✓ | 44 |
23.b | odd | 2 | 1 | inner | 115.5.c.c | ✓ | 44 |
115.c | odd | 2 | 1 | inner | 115.5.c.c | ✓ | 44 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
115.5.c.c | ✓ | 44 | 1.a | even | 1 | 1 | trivial |
115.5.c.c | ✓ | 44 | 5.b | even | 2 | 1 | inner |
115.5.c.c | ✓ | 44 | 23.b | odd | 2 | 1 | inner |
115.5.c.c | ✓ | 44 | 115.c | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{5}^{\mathrm{new}}(115, [\chi])\):
\( T_{2}^{22} + 266 T_{2}^{20} + 30135 T_{2}^{18} + 1903779 T_{2}^{16} + 73772780 T_{2}^{14} + \cdots + 6624707045184 \) |
\( T_{7}^{22} - 28806 T_{7}^{20} + 347917924 T_{7}^{18} - 2323948644785 T_{7}^{16} + \cdots - 24\!\cdots\!00 \) |