Properties

Label 1156.2.e.d.829.1
Level $1156$
Weight $2$
Character 1156.829
Analytic conductor $9.231$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1156,2,Mod(829,1156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1156, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1156.829");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1156.e (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.23070647366\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 68)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 829.1
Root \(0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 1156.829
Dual form 1156.2.e.d.905.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.93185 - 1.93185i) q^{3} +(-2.44949 - 2.44949i) q^{5} +(-1.93185 + 1.93185i) q^{7} +4.46410i q^{9} +(0.896575 - 0.896575i) q^{11} -5.46410 q^{13} +9.46410i q^{15} +1.46410i q^{19} +7.46410 q^{21} +(0.896575 - 0.896575i) q^{23} +7.00000i q^{25} +(2.82843 - 2.82843i) q^{27} +(2.44949 + 2.44949i) q^{29} +(-2.96713 - 2.96713i) q^{31} -3.46410 q^{33} +9.46410 q^{35} +(-3.20736 - 3.20736i) q^{37} +(10.5558 + 10.5558i) q^{39} +(-4.24264 + 4.24264i) q^{41} -8.39230i q^{43} +(10.9348 - 10.9348i) q^{45} +6.92820 q^{47} -0.464102i q^{49} -12.9282i q^{53} -4.39230 q^{55} +(2.82843 - 2.82843i) q^{57} +2.53590i q^{59} +(-0.378937 + 0.378937i) q^{61} +(-8.62398 - 8.62398i) q^{63} +(13.3843 + 13.3843i) q^{65} +14.9282 q^{67} -3.46410 q^{69} +(5.79555 + 5.79555i) q^{71} +(1.41421 + 1.41421i) q^{73} +(13.5230 - 13.5230i) q^{75} +3.46410i q^{77} +(8.62398 - 8.62398i) q^{79} +2.46410 q^{81} +2.53590i q^{83} -9.46410i q^{87} -2.53590 q^{89} +(10.5558 - 10.5558i) q^{91} +11.4641i q^{93} +(3.58630 - 3.58630i) q^{95} +(-3.48477 - 3.48477i) q^{97} +(4.00240 + 4.00240i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{13} + 32 q^{21} + 48 q^{35} + 48 q^{55} + 64 q^{67} - 8 q^{81} - 48 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1156\mathbb{Z}\right)^\times\).

\(n\) \(579\) \(581\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.93185 1.93185i −1.11536 1.11536i −0.992414 0.122941i \(-0.960767\pi\)
−0.122941 0.992414i \(-0.539233\pi\)
\(4\) 0 0
\(5\) −2.44949 2.44949i −1.09545 1.09545i −0.994936 0.100509i \(-0.967953\pi\)
−0.100509 0.994936i \(-0.532047\pi\)
\(6\) 0 0
\(7\) −1.93185 + 1.93185i −0.730171 + 0.730171i −0.970654 0.240482i \(-0.922694\pi\)
0.240482 + 0.970654i \(0.422694\pi\)
\(8\) 0 0
\(9\) 4.46410i 1.48803i
\(10\) 0 0
\(11\) 0.896575 0.896575i 0.270328 0.270328i −0.558904 0.829232i \(-0.688778\pi\)
0.829232 + 0.558904i \(0.188778\pi\)
\(12\) 0 0
\(13\) −5.46410 −1.51547 −0.757735 0.652563i \(-0.773694\pi\)
−0.757735 + 0.652563i \(0.773694\pi\)
\(14\) 0 0
\(15\) 9.46410i 2.44362i
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 1.46410i 0.335888i 0.985797 + 0.167944i \(0.0537128\pi\)
−0.985797 + 0.167944i \(0.946287\pi\)
\(20\) 0 0
\(21\) 7.46410 1.62880
\(22\) 0 0
\(23\) 0.896575 0.896575i 0.186949 0.186949i −0.607427 0.794376i \(-0.707798\pi\)
0.794376 + 0.607427i \(0.207798\pi\)
\(24\) 0 0
\(25\) 7.00000i 1.40000i
\(26\) 0 0
\(27\) 2.82843 2.82843i 0.544331 0.544331i
\(28\) 0 0
\(29\) 2.44949 + 2.44949i 0.454859 + 0.454859i 0.896963 0.442105i \(-0.145768\pi\)
−0.442105 + 0.896963i \(0.645768\pi\)
\(30\) 0 0
\(31\) −2.96713 2.96713i −0.532912 0.532912i 0.388526 0.921438i \(-0.372984\pi\)
−0.921438 + 0.388526i \(0.872984\pi\)
\(32\) 0 0
\(33\) −3.46410 −0.603023
\(34\) 0 0
\(35\) 9.46410 1.59973
\(36\) 0 0
\(37\) −3.20736 3.20736i −0.527287 0.527287i 0.392475 0.919763i \(-0.371619\pi\)
−0.919763 + 0.392475i \(0.871619\pi\)
\(38\) 0 0
\(39\) 10.5558 + 10.5558i 1.69029 + 1.69029i
\(40\) 0 0
\(41\) −4.24264 + 4.24264i −0.662589 + 0.662589i −0.955990 0.293400i \(-0.905213\pi\)
0.293400 + 0.955990i \(0.405213\pi\)
\(42\) 0 0
\(43\) 8.39230i 1.27981i −0.768452 0.639907i \(-0.778973\pi\)
0.768452 0.639907i \(-0.221027\pi\)
\(44\) 0 0
\(45\) 10.9348 10.9348i 1.63006 1.63006i
\(46\) 0 0
\(47\) 6.92820 1.01058 0.505291 0.862949i \(-0.331385\pi\)
0.505291 + 0.862949i \(0.331385\pi\)
\(48\) 0 0
\(49\) 0.464102i 0.0663002i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.9282i 1.77583i −0.460012 0.887913i \(-0.652155\pi\)
0.460012 0.887913i \(-0.347845\pi\)
\(54\) 0 0
\(55\) −4.39230 −0.592258
\(56\) 0 0
\(57\) 2.82843 2.82843i 0.374634 0.374634i
\(58\) 0 0
\(59\) 2.53590i 0.330146i 0.986281 + 0.165073i \(0.0527859\pi\)
−0.986281 + 0.165073i \(0.947214\pi\)
\(60\) 0 0
\(61\) −0.378937 + 0.378937i −0.0485180 + 0.0485180i −0.730950 0.682432i \(-0.760923\pi\)
0.682432 + 0.730950i \(0.260923\pi\)
\(62\) 0 0
\(63\) −8.62398 8.62398i −1.08652 1.08652i
\(64\) 0 0
\(65\) 13.3843 + 13.3843i 1.66011 + 1.66011i
\(66\) 0 0
\(67\) 14.9282 1.82377 0.911885 0.410445i \(-0.134627\pi\)
0.911885 + 0.410445i \(0.134627\pi\)
\(68\) 0 0
\(69\) −3.46410 −0.417029
\(70\) 0 0
\(71\) 5.79555 + 5.79555i 0.687806 + 0.687806i 0.961747 0.273941i \(-0.0883272\pi\)
−0.273941 + 0.961747i \(0.588327\pi\)
\(72\) 0 0
\(73\) 1.41421 + 1.41421i 0.165521 + 0.165521i 0.785007 0.619486i \(-0.212659\pi\)
−0.619486 + 0.785007i \(0.712659\pi\)
\(74\) 0 0
\(75\) 13.5230 13.5230i 1.56150 1.56150i
\(76\) 0 0
\(77\) 3.46410i 0.394771i
\(78\) 0 0
\(79\) 8.62398 8.62398i 0.970274 0.970274i −0.0292970 0.999571i \(-0.509327\pi\)
0.999571 + 0.0292970i \(0.00932685\pi\)
\(80\) 0 0
\(81\) 2.46410 0.273789
\(82\) 0 0
\(83\) 2.53590i 0.278351i 0.990268 + 0.139176i \(0.0444452\pi\)
−0.990268 + 0.139176i \(0.955555\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 9.46410i 1.01466i
\(88\) 0 0
\(89\) −2.53590 −0.268805 −0.134402 0.990927i \(-0.542911\pi\)
−0.134402 + 0.990927i \(0.542911\pi\)
\(90\) 0 0
\(91\) 10.5558 10.5558i 1.10655 1.10655i
\(92\) 0 0
\(93\) 11.4641i 1.18877i
\(94\) 0 0
\(95\) 3.58630 3.58630i 0.367947 0.367947i
\(96\) 0 0
\(97\) −3.48477 3.48477i −0.353824 0.353824i 0.507706 0.861530i \(-0.330494\pi\)
−0.861530 + 0.507706i \(0.830494\pi\)
\(98\) 0 0
\(99\) 4.00240 + 4.00240i 0.402257 + 0.402257i
\(100\) 0 0
\(101\) −2.53590 −0.252331 −0.126166 0.992009i \(-0.540267\pi\)
−0.126166 + 0.992009i \(0.540267\pi\)
\(102\) 0 0
\(103\) −10.9282 −1.07679 −0.538394 0.842693i \(-0.680969\pi\)
−0.538394 + 0.842693i \(0.680969\pi\)
\(104\) 0 0
\(105\) −18.2832 18.2832i −1.78426 1.78426i
\(106\) 0 0
\(107\) 7.58871 + 7.58871i 0.733628 + 0.733628i 0.971337 0.237709i \(-0.0763963\pi\)
−0.237709 + 0.971337i \(0.576396\pi\)
\(108\) 0 0
\(109\) −10.1769 + 10.1769i −0.974770 + 0.974770i −0.999689 0.0249196i \(-0.992067\pi\)
0.0249196 + 0.999689i \(0.492067\pi\)
\(110\) 0 0
\(111\) 12.3923i 1.17623i
\(112\) 0 0
\(113\) −14.0406 + 14.0406i −1.32083 + 1.32083i −0.407723 + 0.913106i \(0.633677\pi\)
−0.913106 + 0.407723i \(0.866323\pi\)
\(114\) 0 0
\(115\) −4.39230 −0.409585
\(116\) 0 0
\(117\) 24.3923i 2.25507i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 9.39230i 0.853846i
\(122\) 0 0
\(123\) 16.3923 1.47804
\(124\) 0 0
\(125\) 4.89898 4.89898i 0.438178 0.438178i
\(126\) 0 0
\(127\) 0.392305i 0.0348114i 0.999849 + 0.0174057i \(0.00554069\pi\)
−0.999849 + 0.0174057i \(0.994459\pi\)
\(128\) 0 0
\(129\) −16.2127 + 16.2127i −1.42745 + 1.42745i
\(130\) 0 0
\(131\) 4.00240 + 4.00240i 0.349692 + 0.349692i 0.859995 0.510303i \(-0.170467\pi\)
−0.510303 + 0.859995i \(0.670467\pi\)
\(132\) 0 0
\(133\) −2.82843 2.82843i −0.245256 0.245256i
\(134\) 0 0
\(135\) −13.8564 −1.19257
\(136\) 0 0
\(137\) 2.53590 0.216656 0.108328 0.994115i \(-0.465450\pi\)
0.108328 + 0.994115i \(0.465450\pi\)
\(138\) 0 0
\(139\) 10.4171 + 10.4171i 0.883570 + 0.883570i 0.993895 0.110326i \(-0.0351894\pi\)
−0.110326 + 0.993895i \(0.535189\pi\)
\(140\) 0 0
\(141\) −13.3843 13.3843i −1.12716 1.12716i
\(142\) 0 0
\(143\) −4.89898 + 4.89898i −0.409673 + 0.409673i
\(144\) 0 0
\(145\) 12.0000i 0.996546i
\(146\) 0 0
\(147\) −0.896575 + 0.896575i −0.0739483 + 0.0739483i
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 13.4641i 1.09569i 0.836579 + 0.547847i \(0.184552\pi\)
−0.836579 + 0.547847i \(0.815448\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 14.5359i 1.16755i
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) −24.9754 + 24.9754i −1.98068 + 1.98068i
\(160\) 0 0
\(161\) 3.46410i 0.273009i
\(162\) 0 0
\(163\) 14.5582 14.5582i 1.14029 1.14029i 0.151892 0.988397i \(-0.451463\pi\)
0.988397 0.151892i \(-0.0485366\pi\)
\(164\) 0 0
\(165\) 8.48528 + 8.48528i 0.660578 + 0.660578i
\(166\) 0 0
\(167\) −4.00240 4.00240i −0.309715 0.309715i 0.535084 0.844799i \(-0.320280\pi\)
−0.844799 + 0.535084i \(0.820280\pi\)
\(168\) 0 0
\(169\) 16.8564 1.29665
\(170\) 0 0
\(171\) −6.53590 −0.499813
\(172\) 0 0
\(173\) 10.9348 + 10.9348i 0.831355 + 0.831355i 0.987702 0.156347i \(-0.0499718\pi\)
−0.156347 + 0.987702i \(0.549972\pi\)
\(174\) 0 0
\(175\) −13.5230 13.5230i −1.02224 1.02224i
\(176\) 0 0
\(177\) 4.89898 4.89898i 0.368230 0.368230i
\(178\) 0 0
\(179\) 14.5359i 1.08646i 0.839583 + 0.543232i \(0.182800\pi\)
−0.839583 + 0.543232i \(0.817200\pi\)
\(180\) 0 0
\(181\) −3.20736 + 3.20736i −0.238402 + 0.238402i −0.816188 0.577786i \(-0.803917\pi\)
0.577786 + 0.816188i \(0.303917\pi\)
\(182\) 0 0
\(183\) 1.46410 0.108230
\(184\) 0 0
\(185\) 15.7128i 1.15523i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 10.9282i 0.794910i
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) −14.7985 + 14.7985i −1.06522 + 1.06522i −0.0674981 + 0.997719i \(0.521502\pi\)
−0.997719 + 0.0674981i \(0.978498\pi\)
\(194\) 0 0
\(195\) 51.7128i 3.70323i
\(196\) 0 0
\(197\) 2.44949 2.44949i 0.174519 0.174519i −0.614443 0.788962i \(-0.710619\pi\)
0.788962 + 0.614443i \(0.210619\pi\)
\(198\) 0 0
\(199\) 2.96713 + 2.96713i 0.210334 + 0.210334i 0.804409 0.594075i \(-0.202482\pi\)
−0.594075 + 0.804409i \(0.702482\pi\)
\(200\) 0 0
\(201\) −28.8391 28.8391i −2.03415 2.03415i
\(202\) 0 0
\(203\) −9.46410 −0.664250
\(204\) 0 0
\(205\) 20.7846 1.45166
\(206\) 0 0
\(207\) 4.00240 + 4.00240i 0.278186 + 0.278186i
\(208\) 0 0
\(209\) 1.31268 + 1.31268i 0.0907998 + 0.0907998i
\(210\) 0 0
\(211\) 1.65445 1.65445i 0.113897 0.113897i −0.647861 0.761758i \(-0.724336\pi\)
0.761758 + 0.647861i \(0.224336\pi\)
\(212\) 0 0
\(213\) 22.3923i 1.53430i
\(214\) 0 0
\(215\) −20.5569 + 20.5569i −1.40197 + 1.40197i
\(216\) 0 0
\(217\) 11.4641 0.778234
\(218\) 0 0
\(219\) 5.46410i 0.369230i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 12.3923i 0.829850i −0.909856 0.414925i \(-0.863808\pi\)
0.909856 0.414925i \(-0.136192\pi\)
\(224\) 0 0
\(225\) −31.2487 −2.08325
\(226\) 0 0
\(227\) 14.2808 14.2808i 0.947852 0.947852i −0.0508537 0.998706i \(-0.516194\pi\)
0.998706 + 0.0508537i \(0.0161942\pi\)
\(228\) 0 0
\(229\) 20.3923i 1.34756i −0.738931 0.673781i \(-0.764669\pi\)
0.738931 0.673781i \(-0.235331\pi\)
\(230\) 0 0
\(231\) 6.69213 6.69213i 0.440310 0.440310i
\(232\) 0 0
\(233\) 4.24264 + 4.24264i 0.277945 + 0.277945i 0.832288 0.554343i \(-0.187031\pi\)
−0.554343 + 0.832288i \(0.687031\pi\)
\(234\) 0 0
\(235\) −16.9706 16.9706i −1.10704 1.10704i
\(236\) 0 0
\(237\) −33.3205 −2.16440
\(238\) 0 0
\(239\) 20.7846 1.34444 0.672222 0.740349i \(-0.265340\pi\)
0.672222 + 0.740349i \(0.265340\pi\)
\(240\) 0 0
\(241\) −1.41421 1.41421i −0.0910975 0.0910975i 0.660089 0.751187i \(-0.270518\pi\)
−0.751187 + 0.660089i \(0.770518\pi\)
\(242\) 0 0
\(243\) −13.2456 13.2456i −0.849703 0.849703i
\(244\) 0 0
\(245\) −1.13681 + 1.13681i −0.0726283 + 0.0726283i
\(246\) 0 0
\(247\) 8.00000i 0.509028i
\(248\) 0 0
\(249\) 4.89898 4.89898i 0.310460 0.310460i
\(250\) 0 0
\(251\) −6.92820 −0.437304 −0.218652 0.975803i \(-0.570166\pi\)
−0.218652 + 0.975803i \(0.570166\pi\)
\(252\) 0 0
\(253\) 1.60770i 0.101075i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 28.3923i 1.77106i 0.464579 + 0.885532i \(0.346206\pi\)
−0.464579 + 0.885532i \(0.653794\pi\)
\(258\) 0 0
\(259\) 12.3923 0.770020
\(260\) 0 0
\(261\) −10.9348 + 10.9348i −0.676845 + 0.676845i
\(262\) 0 0
\(263\) 11.3205i 0.698052i 0.937113 + 0.349026i \(0.113488\pi\)
−0.937113 + 0.349026i \(0.886512\pi\)
\(264\) 0 0
\(265\) −31.6675 + 31.6675i −1.94532 + 1.94532i
\(266\) 0 0
\(267\) 4.89898 + 4.89898i 0.299813 + 0.299813i
\(268\) 0 0
\(269\) 19.4201 + 19.4201i 1.18406 + 1.18406i 0.978683 + 0.205379i \(0.0658427\pi\)
0.205379 + 0.978683i \(0.434157\pi\)
\(270\) 0 0
\(271\) 1.07180 0.0651070 0.0325535 0.999470i \(-0.489636\pi\)
0.0325535 + 0.999470i \(0.489636\pi\)
\(272\) 0 0
\(273\) −40.7846 −2.46840
\(274\) 0 0
\(275\) 6.27603 + 6.27603i 0.378459 + 0.378459i
\(276\) 0 0
\(277\) 4.52004 + 4.52004i 0.271583 + 0.271583i 0.829737 0.558154i \(-0.188490\pi\)
−0.558154 + 0.829737i \(0.688490\pi\)
\(278\) 0 0
\(279\) 13.2456 13.2456i 0.792991 0.792991i
\(280\) 0 0
\(281\) 19.8564i 1.18453i −0.805742 0.592267i \(-0.798233\pi\)
0.805742 0.592267i \(-0.201767\pi\)
\(282\) 0 0
\(283\) −14.5582 + 14.5582i −0.865397 + 0.865397i −0.991959 0.126561i \(-0.959606\pi\)
0.126561 + 0.991959i \(0.459606\pi\)
\(284\) 0 0
\(285\) −13.8564 −0.820783
\(286\) 0 0
\(287\) 16.3923i 0.967607i
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 13.4641i 0.789280i
\(292\) 0 0
\(293\) −30.0000 −1.75262 −0.876309 0.481749i \(-0.840002\pi\)
−0.876309 + 0.481749i \(0.840002\pi\)
\(294\) 0 0
\(295\) 6.21166 6.21166i 0.361657 0.361657i
\(296\) 0 0
\(297\) 5.07180i 0.294295i
\(298\) 0 0
\(299\) −4.89898 + 4.89898i −0.283315 + 0.283315i
\(300\) 0 0
\(301\) 16.2127 + 16.2127i 0.934484 + 0.934484i
\(302\) 0 0
\(303\) 4.89898 + 4.89898i 0.281439 + 0.281439i
\(304\) 0 0
\(305\) 1.85641 0.106298
\(306\) 0 0
\(307\) −24.7846 −1.41453 −0.707266 0.706947i \(-0.750072\pi\)
−0.707266 + 0.706947i \(0.750072\pi\)
\(308\) 0 0
\(309\) 21.1117 + 21.1117i 1.20100 + 1.20100i
\(310\) 0 0
\(311\) −2.20925 2.20925i −0.125275 0.125275i 0.641689 0.766965i \(-0.278234\pi\)
−0.766965 + 0.641689i \(0.778234\pi\)
\(312\) 0 0
\(313\) 14.7985 14.7985i 0.836459 0.836459i −0.151932 0.988391i \(-0.548549\pi\)
0.988391 + 0.151932i \(0.0485494\pi\)
\(314\) 0 0
\(315\) 42.2487i 2.38045i
\(316\) 0 0
\(317\) −6.03579 + 6.03579i −0.339004 + 0.339004i −0.855992 0.516989i \(-0.827053\pi\)
0.516989 + 0.855992i \(0.327053\pi\)
\(318\) 0 0
\(319\) 4.39230 0.245922
\(320\) 0 0
\(321\) 29.3205i 1.63651i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 38.2487i 2.12166i
\(326\) 0 0
\(327\) 39.3205 2.17443
\(328\) 0 0
\(329\) −13.3843 + 13.3843i −0.737898 + 0.737898i
\(330\) 0 0
\(331\) 19.3205i 1.06195i 0.847387 + 0.530976i \(0.178174\pi\)
−0.847387 + 0.530976i \(0.821826\pi\)
\(332\) 0 0
\(333\) 14.3180 14.3180i 0.784622 0.784622i
\(334\) 0 0
\(335\) −36.5665 36.5665i −1.99784 1.99784i
\(336\) 0 0
\(337\) 4.79744 + 4.79744i 0.261333 + 0.261333i 0.825596 0.564262i \(-0.190839\pi\)
−0.564262 + 0.825596i \(0.690839\pi\)
\(338\) 0 0
\(339\) 54.2487 2.94639
\(340\) 0 0
\(341\) −5.32051 −0.288122
\(342\) 0 0
\(343\) −12.6264 12.6264i −0.681761 0.681761i
\(344\) 0 0
\(345\) 8.48528 + 8.48528i 0.456832 + 0.456832i
\(346\) 0 0
\(347\) −24.0788 + 24.0788i −1.29262 + 1.29262i −0.359455 + 0.933162i \(0.617037\pi\)
−0.933162 + 0.359455i \(0.882963\pi\)
\(348\) 0 0
\(349\) 10.7846i 0.577287i 0.957437 + 0.288643i \(0.0932042\pi\)
−0.957437 + 0.288643i \(0.906796\pi\)
\(350\) 0 0
\(351\) −15.4548 + 15.4548i −0.824917 + 0.824917i
\(352\) 0 0
\(353\) 19.8564 1.05685 0.528425 0.848980i \(-0.322783\pi\)
0.528425 + 0.848980i \(0.322783\pi\)
\(354\) 0 0
\(355\) 28.3923i 1.50691i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 23.3205i 1.23081i 0.788211 + 0.615405i \(0.211007\pi\)
−0.788211 + 0.615405i \(0.788993\pi\)
\(360\) 0 0
\(361\) 16.8564 0.887179
\(362\) 0 0
\(363\) 18.1445 18.1445i 0.952341 0.952341i
\(364\) 0 0
\(365\) 6.92820i 0.362639i
\(366\) 0 0
\(367\) 1.65445 1.65445i 0.0863616 0.0863616i −0.662606 0.748968i \(-0.730550\pi\)
0.748968 + 0.662606i \(0.230550\pi\)
\(368\) 0 0
\(369\) −18.9396 18.9396i −0.985955 0.985955i
\(370\) 0 0
\(371\) 24.9754 + 24.9754i 1.29666 + 1.29666i
\(372\) 0 0
\(373\) −8.39230 −0.434537 −0.217269 0.976112i \(-0.569715\pi\)
−0.217269 + 0.976112i \(0.569715\pi\)
\(374\) 0 0
\(375\) −18.9282 −0.977448
\(376\) 0 0
\(377\) −13.3843 13.3843i −0.689325 0.689325i
\(378\) 0 0
\(379\) −3.72500 3.72500i −0.191341 0.191341i 0.604935 0.796275i \(-0.293199\pi\)
−0.796275 + 0.604935i \(0.793199\pi\)
\(380\) 0 0
\(381\) 0.757875 0.757875i 0.0388271 0.0388271i
\(382\) 0 0
\(383\) 2.53590i 0.129578i −0.997899 0.0647892i \(-0.979363\pi\)
0.997899 0.0647892i \(-0.0206375\pi\)
\(384\) 0 0
\(385\) 8.48528 8.48528i 0.432450 0.432450i
\(386\) 0 0
\(387\) 37.4641 1.90441
\(388\) 0 0
\(389\) 37.1769i 1.88494i −0.334285 0.942472i \(-0.608495\pi\)
0.334285 0.942472i \(-0.391505\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 15.4641i 0.780061i
\(394\) 0 0
\(395\) −42.2487 −2.12576
\(396\) 0 0
\(397\) 3.96524 3.96524i 0.199010 0.199010i −0.600566 0.799575i \(-0.705058\pi\)
0.799575 + 0.600566i \(0.205058\pi\)
\(398\) 0 0
\(399\) 10.9282i 0.547094i
\(400\) 0 0
\(401\) 22.5259 22.5259i 1.12489 1.12489i 0.133893 0.990996i \(-0.457252\pi\)
0.990996 0.133893i \(-0.0427479\pi\)
\(402\) 0 0
\(403\) 16.2127 + 16.2127i 0.807612 + 0.807612i
\(404\) 0 0
\(405\) −6.03579 6.03579i −0.299921 0.299921i
\(406\) 0 0
\(407\) −5.75129 −0.285081
\(408\) 0 0
\(409\) 17.7128 0.875842 0.437921 0.899013i \(-0.355715\pi\)
0.437921 + 0.899013i \(0.355715\pi\)
\(410\) 0 0
\(411\) −4.89898 4.89898i −0.241649 0.241649i
\(412\) 0 0
\(413\) −4.89898 4.89898i −0.241063 0.241063i
\(414\) 0 0
\(415\) 6.21166 6.21166i 0.304918 0.304918i
\(416\) 0 0
\(417\) 40.2487i 1.97099i
\(418\) 0 0
\(419\) 17.3867 17.3867i 0.849394 0.849394i −0.140663 0.990057i \(-0.544924\pi\)
0.990057 + 0.140663i \(0.0449235\pi\)
\(420\) 0 0
\(421\) 22.2487 1.08434 0.542168 0.840270i \(-0.317604\pi\)
0.542168 + 0.840270i \(0.317604\pi\)
\(422\) 0 0
\(423\) 30.9282i 1.50378i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.46410i 0.0708528i
\(428\) 0 0
\(429\) 18.9282 0.913862
\(430\) 0 0
\(431\) −12.4877 + 12.4877i −0.601511 + 0.601511i −0.940713 0.339203i \(-0.889843\pi\)
0.339203 + 0.940713i \(0.389843\pi\)
\(432\) 0 0
\(433\) 3.60770i 0.173375i 0.996236 + 0.0866874i \(0.0276281\pi\)
−0.996236 + 0.0866874i \(0.972372\pi\)
\(434\) 0 0
\(435\) −23.1822 + 23.1822i −1.11150 + 1.11150i
\(436\) 0 0
\(437\) 1.31268 + 1.31268i 0.0627939 + 0.0627939i
\(438\) 0 0
\(439\) 17.1093 + 17.1093i 0.816581 + 0.816581i 0.985611 0.169030i \(-0.0540636\pi\)
−0.169030 + 0.985611i \(0.554064\pi\)
\(440\) 0 0
\(441\) 2.07180 0.0986570
\(442\) 0 0
\(443\) −20.7846 −0.987507 −0.493753 0.869602i \(-0.664375\pi\)
−0.493753 + 0.869602i \(0.664375\pi\)
\(444\) 0 0
\(445\) 6.21166 + 6.21166i 0.294461 + 0.294461i
\(446\) 0 0
\(447\) 11.5911 + 11.5911i 0.548241 + 0.548241i
\(448\) 0 0
\(449\) 4.24264 4.24264i 0.200223 0.200223i −0.599873 0.800095i \(-0.704782\pi\)
0.800095 + 0.599873i \(0.204782\pi\)
\(450\) 0 0
\(451\) 7.60770i 0.358232i
\(452\) 0 0
\(453\) 26.0106 26.0106i 1.22209 1.22209i
\(454\) 0 0
\(455\) −51.7128 −2.42433
\(456\) 0 0
\(457\) 20.3923i 0.953912i 0.878927 + 0.476956i \(0.158260\pi\)
−0.878927 + 0.476956i \(0.841740\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 26.7846i 1.24748i −0.781630 0.623742i \(-0.785612\pi\)
0.781630 0.623742i \(-0.214388\pi\)
\(462\) 0 0
\(463\) 2.14359 0.0996212 0.0498106 0.998759i \(-0.484138\pi\)
0.0498106 + 0.998759i \(0.484138\pi\)
\(464\) 0 0
\(465\) 28.0812 28.0812i 1.30223 1.30223i
\(466\) 0 0
\(467\) 14.5359i 0.672641i 0.941748 + 0.336321i \(0.109183\pi\)
−0.941748 + 0.336321i \(0.890817\pi\)
\(468\) 0 0
\(469\) −28.8391 + 28.8391i −1.33166 + 1.33166i
\(470\) 0 0
\(471\) 3.86370 + 3.86370i 0.178030 + 0.178030i
\(472\) 0 0
\(473\) −7.52433 7.52433i −0.345969 0.345969i
\(474\) 0 0
\(475\) −10.2487 −0.470243
\(476\) 0 0
\(477\) 57.7128 2.64249
\(478\) 0 0
\(479\) 12.4877 + 12.4877i 0.570577 + 0.570577i 0.932290 0.361713i \(-0.117808\pi\)
−0.361713 + 0.932290i \(0.617808\pi\)
\(480\) 0 0
\(481\) 17.5254 + 17.5254i 0.799088 + 0.799088i
\(482\) 0 0
\(483\) 6.69213 6.69213i 0.304502 0.304502i
\(484\) 0 0
\(485\) 17.0718i 0.775190i
\(486\) 0 0
\(487\) −4.27981 + 4.27981i −0.193936 + 0.193936i −0.797395 0.603458i \(-0.793789\pi\)
0.603458 + 0.797395i \(0.293789\pi\)
\(488\) 0 0
\(489\) −56.2487 −2.54365
\(490\) 0 0
\(491\) 37.1769i 1.67777i 0.544308 + 0.838885i \(0.316792\pi\)
−0.544308 + 0.838885i \(0.683208\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 19.6077i 0.881300i
\(496\) 0 0
\(497\) −22.3923 −1.00443
\(498\) 0 0
\(499\) −17.6641 + 17.6641i −0.790752 + 0.790752i −0.981616 0.190864i \(-0.938871\pi\)
0.190864 + 0.981616i \(0.438871\pi\)
\(500\) 0 0
\(501\) 15.4641i 0.690885i
\(502\) 0 0
\(503\) 19.1798 19.1798i 0.855186 0.855186i −0.135581 0.990766i \(-0.543290\pi\)
0.990766 + 0.135581i \(0.0432900\pi\)
\(504\) 0 0
\(505\) 6.21166 + 6.21166i 0.276415 + 0.276415i
\(506\) 0 0
\(507\) −32.5641 32.5641i −1.44622 1.44622i
\(508\) 0 0
\(509\) −21.7128 −0.962404 −0.481202 0.876610i \(-0.659800\pi\)
−0.481202 + 0.876610i \(0.659800\pi\)
\(510\) 0 0
\(511\) −5.46410 −0.241718
\(512\) 0 0
\(513\) 4.14110 + 4.14110i 0.182834 + 0.182834i
\(514\) 0 0
\(515\) 26.7685 + 26.7685i 1.17956 + 1.17956i
\(516\) 0 0
\(517\) 6.21166 6.21166i 0.273188 0.273188i
\(518\) 0 0
\(519\) 42.2487i 1.85451i
\(520\) 0 0
\(521\) 4.24264 4.24264i 0.185873 0.185873i −0.608036 0.793909i \(-0.708042\pi\)
0.793909 + 0.608036i \(0.208042\pi\)
\(522\) 0 0
\(523\) 12.7846 0.559032 0.279516 0.960141i \(-0.409826\pi\)
0.279516 + 0.960141i \(0.409826\pi\)
\(524\) 0 0
\(525\) 52.2487i 2.28032i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 21.3923i 0.930100i
\(530\) 0 0
\(531\) −11.3205 −0.491268
\(532\) 0 0
\(533\) 23.1822 23.1822i 1.00413 1.00413i
\(534\) 0 0
\(535\) 37.1769i 1.60730i
\(536\) 0 0
\(537\) 28.0812 28.0812i 1.21179 1.21179i
\(538\) 0 0
\(539\) −0.416102 0.416102i −0.0179228 0.0179228i
\(540\) 0 0
\(541\) −13.0053 13.0053i −0.559143 0.559143i 0.369921 0.929063i \(-0.379385\pi\)
−0.929063 + 0.369921i \(0.879385\pi\)
\(542\) 0 0
\(543\) 12.3923 0.531805
\(544\) 0 0
\(545\) 49.8564 2.13561
\(546\) 0 0
\(547\) −30.2161 30.2161i −1.29195 1.29195i −0.933581 0.358368i \(-0.883333\pi\)
−0.358368 0.933581i \(-0.616667\pi\)
\(548\) 0 0
\(549\) −1.69161 1.69161i −0.0721964 0.0721964i
\(550\) 0 0
\(551\) −3.58630 + 3.58630i −0.152782 + 0.152782i
\(552\) 0 0
\(553\) 33.3205i 1.41693i
\(554\) 0 0
\(555\) 30.3548 30.3548i 1.28849 1.28849i
\(556\) 0 0
\(557\) 26.5359 1.12436 0.562181 0.827014i \(-0.309962\pi\)
0.562181 + 0.827014i \(0.309962\pi\)
\(558\) 0 0
\(559\) 45.8564i 1.93952i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 35.3205i 1.48858i 0.667855 + 0.744291i \(0.267212\pi\)
−0.667855 + 0.744291i \(0.732788\pi\)
\(564\) 0 0
\(565\) 68.7846 2.89379
\(566\) 0 0
\(567\) −4.76028 + 4.76028i −0.199913 + 0.199913i
\(568\) 0 0
\(569\) 7.85641i 0.329358i −0.986347 0.164679i \(-0.947341\pi\)
0.986347 0.164679i \(-0.0526588\pi\)
\(570\) 0 0
\(571\) 7.86611 7.86611i 0.329186 0.329186i −0.523091 0.852277i \(-0.675221\pi\)
0.852277 + 0.523091i \(0.175221\pi\)
\(572\) 0 0
\(573\) 23.1822 + 23.1822i 0.968451 + 0.968451i
\(574\) 0 0
\(575\) 6.27603 + 6.27603i 0.261728 + 0.261728i
\(576\) 0 0
\(577\) −13.4641 −0.560518 −0.280259 0.959924i \(-0.590420\pi\)
−0.280259 + 0.959924i \(0.590420\pi\)
\(578\) 0 0
\(579\) 57.1769 2.37619
\(580\) 0 0
\(581\) −4.89898 4.89898i −0.203244 0.203244i
\(582\) 0 0
\(583\) −11.5911 11.5911i −0.480055 0.480055i
\(584\) 0 0
\(585\) −59.7487 + 59.7487i −2.47030 + 2.47030i
\(586\) 0 0
\(587\) 28.3923i 1.17188i 0.810356 + 0.585938i \(0.199274\pi\)
−0.810356 + 0.585938i \(0.800726\pi\)
\(588\) 0 0
\(589\) 4.34418 4.34418i 0.178999 0.178999i
\(590\) 0 0
\(591\) −9.46410 −0.389301
\(592\) 0 0
\(593\) 4.14359i 0.170157i 0.996374 + 0.0850785i \(0.0271141\pi\)
−0.996374 + 0.0850785i \(0.972886\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 11.4641i 0.469194i
\(598\) 0 0
\(599\) 27.7128 1.13231 0.566157 0.824297i \(-0.308429\pi\)
0.566157 + 0.824297i \(0.308429\pi\)
\(600\) 0 0
\(601\) −7.62587 + 7.62587i −0.311066 + 0.311066i −0.845322 0.534257i \(-0.820592\pi\)
0.534257 + 0.845322i \(0.320592\pi\)
\(602\) 0 0
\(603\) 66.6410i 2.71383i
\(604\) 0 0
\(605\) 23.0064 23.0064i 0.935341 0.935341i
\(606\) 0 0
\(607\) −27.3877 27.3877i −1.11163 1.11163i −0.992930 0.118702i \(-0.962127\pi\)
−0.118702 0.992930i \(-0.537873\pi\)
\(608\) 0 0
\(609\) 18.2832 + 18.2832i 0.740874 + 0.740874i
\(610\) 0 0
\(611\) −37.8564 −1.53151
\(612\) 0 0
\(613\) −47.8564 −1.93290 −0.966451 0.256851i \(-0.917315\pi\)
−0.966451 + 0.256851i \(0.917315\pi\)
\(614\) 0 0
\(615\) −40.1528 40.1528i −1.61912 1.61912i
\(616\) 0 0
\(617\) −25.1512 25.1512i −1.01255 1.01255i −0.999920 0.0126304i \(-0.995980\pi\)
−0.0126304 0.999920i \(-0.504020\pi\)
\(618\) 0 0
\(619\) 8.34658 8.34658i 0.335477 0.335477i −0.519185 0.854662i \(-0.673764\pi\)
0.854662 + 0.519185i \(0.173764\pi\)
\(620\) 0 0
\(621\) 5.07180i 0.203524i
\(622\) 0 0
\(623\) 4.89898 4.89898i 0.196273 0.196273i
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 5.07180i 0.202548i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 41.4641i 1.65066i −0.564651 0.825330i \(-0.690989\pi\)
0.564651 0.825330i \(-0.309011\pi\)
\(632\) 0 0
\(633\) −6.39230 −0.254071
\(634\) 0 0
\(635\) 0.960947 0.960947i 0.0381340 0.0381340i
\(636\) 0 0
\(637\) 2.53590i 0.100476i
\(638\) 0 0
\(639\) −25.8719 + 25.8719i −1.02348 + 1.02348i
\(640\) 0 0
\(641\) −9.14162 9.14162i −0.361072 0.361072i 0.503135 0.864208i \(-0.332180\pi\)
−0.864208 + 0.503135i \(0.832180\pi\)
\(642\) 0 0
\(643\) −23.0435 23.0435i −0.908748 0.908748i 0.0874235 0.996171i \(-0.472137\pi\)
−0.996171 + 0.0874235i \(0.972137\pi\)
\(644\) 0 0
\(645\) 79.4256 3.12738
\(646\) 0 0
\(647\) 17.0718 0.671162 0.335581 0.942011i \(-0.391067\pi\)
0.335581 + 0.942011i \(0.391067\pi\)
\(648\) 0 0
\(649\) 2.27362 + 2.27362i 0.0892476 + 0.0892476i
\(650\) 0 0
\(651\) −22.1469 22.1469i −0.868007 0.868007i
\(652\) 0 0
\(653\) −7.34847 + 7.34847i −0.287568 + 0.287568i −0.836118 0.548550i \(-0.815180\pi\)
0.548550 + 0.836118i \(0.315180\pi\)
\(654\) 0 0
\(655\) 19.6077i 0.766136i
\(656\) 0 0
\(657\) −6.31319 + 6.31319i −0.246301 + 0.246301i
\(658\) 0 0
\(659\) −42.9282 −1.67225 −0.836123 0.548542i \(-0.815183\pi\)
−0.836123 + 0.548542i \(0.815183\pi\)
\(660\) 0 0
\(661\) 15.0718i 0.586225i 0.956078 + 0.293112i \(0.0946910\pi\)
−0.956078 + 0.293112i \(0.905309\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 13.8564i 0.537328i
\(666\) 0 0
\(667\) 4.39230 0.170071
\(668\) 0 0
\(669\) −23.9401 + 23.9401i −0.925578 + 0.925578i
\(670\) 0 0
\(671\) 0.679492i 0.0262315i
\(672\) 0 0
\(673\) 0.101536 0.101536i 0.00391392 0.00391392i −0.705147 0.709061i \(-0.749119\pi\)
0.709061 + 0.705147i \(0.249119\pi\)
\(674\) 0 0
\(675\) 19.7990 + 19.7990i 0.762063 + 0.762063i
\(676\) 0 0
\(677\) 17.1464 + 17.1464i 0.658991 + 0.658991i 0.955141 0.296151i \(-0.0957030\pi\)
−0.296151 + 0.955141i \(0.595703\pi\)
\(678\) 0 0
\(679\) 13.4641 0.516705
\(680\) 0 0
\(681\) −55.1769 −2.11438
\(682\) 0 0
\(683\) 32.5641 + 32.5641i 1.24603 + 1.24603i 0.957458 + 0.288571i \(0.0931803\pi\)
0.288571 + 0.957458i \(0.406820\pi\)
\(684\) 0 0
\(685\) −6.21166 6.21166i −0.237335 0.237335i
\(686\) 0 0
\(687\) −39.3949 + 39.3949i −1.50301 + 1.50301i
\(688\) 0 0
\(689\) 70.6410i 2.69121i
\(690\) 0 0
\(691\) 25.5945 25.5945i 0.973662 0.973662i −0.0259996 0.999662i \(-0.508277\pi\)
0.999662 + 0.0259996i \(0.00827686\pi\)
\(692\) 0 0
\(693\) −15.4641 −0.587433
\(694\) 0 0
\(695\) 51.0333i 1.93580i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 16.3923i 0.620014i
\(700\) 0 0
\(701\) 16.3923 0.619129 0.309564 0.950878i \(-0.399817\pi\)
0.309564 + 0.950878i \(0.399817\pi\)
\(702\) 0 0
\(703\) 4.69591 4.69591i 0.177110 0.177110i
\(704\) 0 0
\(705\) 65.5692i 2.46948i
\(706\) 0 0
\(707\) 4.89898 4.89898i 0.184245 0.184245i
\(708\) 0 0
\(709\) −11.4896 11.4896i −0.431500 0.431500i 0.457638 0.889138i \(-0.348695\pi\)
−0.889138 + 0.457638i \(0.848695\pi\)
\(710\) 0 0
\(711\) 38.4983 + 38.4983i 1.44380 + 1.44380i
\(712\) 0 0
\(713\) −5.32051 −0.199255
\(714\) 0 0
\(715\) 24.0000 0.897549
\(716\) 0 0
\(717\) −40.1528 40.1528i −1.49953 1.49953i
\(718\) 0 0
\(719\) 30.7709 + 30.7709i 1.14756 + 1.14756i 0.987031 + 0.160531i \(0.0513207\pi\)
0.160531 + 0.987031i \(0.448679\pi\)
\(720\) 0 0
\(721\) 21.1117 21.1117i 0.786240 0.786240i
\(722\) 0 0
\(723\) 5.46410i 0.203212i
\(724\) 0 0
\(725\) −17.1464 + 17.1464i −0.636802 + 0.636802i
\(726\) 0 0
\(727\) −4.78461 −0.177451 −0.0887257 0.996056i \(-0.528279\pi\)
−0.0887257 + 0.996056i \(0.528279\pi\)
\(728\) 0 0
\(729\) 43.7846i 1.62165i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 18.7846i 0.693825i 0.937897 + 0.346913i \(0.112770\pi\)
−0.937897 + 0.346913i \(0.887230\pi\)
\(734\) 0 0
\(735\) 4.39230 0.162013
\(736\) 0 0
\(737\) 13.3843 13.3843i 0.493016 0.493016i
\(738\) 0 0
\(739\) 12.3923i 0.455858i 0.973678 + 0.227929i \(0.0731955\pi\)
−0.973678 + 0.227929i \(0.926805\pi\)
\(740\) 0 0
\(741\) −15.4548 + 15.4548i −0.567747 + 0.567747i
\(742\) 0 0
\(743\) 16.9062 + 16.9062i 0.620228 + 0.620228i 0.945590 0.325362i \(-0.105486\pi\)
−0.325362 + 0.945590i \(0.605486\pi\)
\(744\) 0 0
\(745\) 14.6969 + 14.6969i 0.538454 + 0.538454i
\(746\) 0 0
\(747\) −11.3205 −0.414196
\(748\) 0 0
\(749\) −29.3205 −1.07135
\(750\) 0 0
\(751\) −13.2456 13.2456i −0.483337 0.483337i 0.422858 0.906196i \(-0.361027\pi\)
−0.906196 + 0.422858i \(0.861027\pi\)
\(752\) 0 0
\(753\) 13.3843 + 13.3843i 0.487750 + 0.487750i
\(754\) 0 0
\(755\) 32.9802 32.9802i 1.20027 1.20027i
\(756\) 0 0
\(757\) 17.4641i 0.634744i 0.948301 + 0.317372i \(0.102800\pi\)
−0.948301 + 0.317372i \(0.897200\pi\)
\(758\) 0 0
\(759\) −3.10583 + 3.10583i −0.112734 + 0.112734i
\(760\) 0 0
\(761\) −16.3923 −0.594221 −0.297110 0.954843i \(-0.596023\pi\)
−0.297110 + 0.954843i \(0.596023\pi\)
\(762\) 0 0
\(763\) 39.3205i 1.42350i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13.8564i 0.500326i
\(768\) 0 0
\(769\) −0.392305 −0.0141469 −0.00707344 0.999975i \(-0.502252\pi\)
−0.00707344 + 0.999975i \(0.502252\pi\)
\(770\) 0 0
\(771\) 54.8497 54.8497i 1.97536 1.97536i
\(772\) 0 0
\(773\) 0.679492i 0.0244396i −0.999925 0.0122198i \(-0.996110\pi\)
0.999925 0.0122198i \(-0.00388978\pi\)
\(774\) 0 0
\(775\) 20.7699 20.7699i 0.746077 0.746077i
\(776\) 0 0
\(777\) −23.9401 23.9401i −0.858846 0.858846i
\(778\) 0 0
\(779\) −6.21166 6.21166i −0.222556 0.222556i
\(780\) 0 0
\(781\) 10.3923 0.371866
\(782\) 0 0
\(783\) 13.8564 0.495188
\(784\) 0 0
\(785\) 4.89898 + 4.89898i 0.174852 + 0.174852i
\(786\) 0 0
\(787\) 16.3514 + 16.3514i 0.582864 + 0.582864i 0.935689 0.352825i \(-0.114779\pi\)
−0.352825 + 0.935689i \(0.614779\pi\)
\(788\) 0 0
\(789\) 21.8695 21.8695i 0.778576 0.778576i
\(790\) 0 0
\(791\) 54.2487i 1.92886i
\(792\) 0 0
\(793\) 2.07055 2.07055i 0.0735275 0.0735275i
\(794\) 0 0
\(795\) 122.354 4.33944
\(796\) 0 0
\(797\) 2.78461i 0.0986359i 0.998783 + 0.0493180i \(0.0157048\pi\)
−0.998783 + 0.0493180i \(0.984295\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 11.3205i 0.399990i
\(802\) 0 0
\(803\) 2.53590 0.0894899
\(804\) 0 0
\(805\) 8.48528 8.48528i 0.299067 0.299067i
\(806\) 0 0
\(807\) 75.0333i 2.64130i
\(808\) 0 0
\(809\) −5.55532 + 5.55532i −0.195315 + 0.195315i −0.797988 0.602673i \(-0.794102\pi\)
0.602673 + 0.797988i \(0.294102\pi\)
\(810\) 0 0
\(811\) −26.4267 26.4267i −0.927969 0.927969i 0.0696059 0.997575i \(-0.477826\pi\)
−0.997575 + 0.0696059i \(0.977826\pi\)
\(812\) 0 0
\(813\) −2.07055 2.07055i −0.0726174 0.0726174i
\(814\) 0 0
\(815\) −71.3205 −2.49825
\(816\) 0 0
\(817\) 12.2872 0.429874
\(818\) 0 0
\(819\) 47.1223 + 47.1223i 1.64659 + 1.64659i
\(820\) 0 0
\(821\) 31.8434 + 31.8434i 1.11134 + 1.11134i 0.992969 + 0.118372i \(0.0377675\pi\)
0.118372 + 0.992969i \(0.462233\pi\)
\(822\) 0 0
\(823\) 1.17398 1.17398i 0.0409223 0.0409223i −0.686350 0.727272i \(-0.740788\pi\)
0.727272 + 0.686350i \(0.240788\pi\)
\(824\) 0 0
\(825\) 24.2487i 0.844232i
\(826\) 0 0
\(827\) 13.8004 13.8004i 0.479886 0.479886i −0.425209 0.905095i \(-0.639800\pi\)
0.905095 + 0.425209i \(0.139800\pi\)
\(828\) 0 0
\(829\) −39.8564 −1.38427 −0.692135 0.721768i \(-0.743330\pi\)
−0.692135 + 0.721768i \(0.743330\pi\)
\(830\) 0 0
\(831\) 17.4641i 0.605823i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 19.6077i 0.678552i
\(836\) 0 0
\(837\) −16.7846 −0.580161
\(838\) 0 0
\(839\) −3.17020 + 3.17020i −0.109447 + 0.109447i −0.759710 0.650262i \(-0.774659\pi\)
0.650262 + 0.759710i \(0.274659\pi\)
\(840\) 0 0
\(841\) 17.0000i 0.586207i
\(842\) 0 0
\(843\) −38.3596 + 38.3596i −1.32118 + 1.32118i
\(844\) 0 0
\(845\) −41.2896 41.2896i −1.42041 1.42041i
\(846\) 0 0
\(847\) −18.1445 18.1445i −0.623454 0.623454i
\(848\) 0 0
\(849\) 56.2487 1.93045
\(850\) 0 0
\(851\) −5.75129 −0.197152
\(852\) 0 0
\(853\) −5.83272 5.83272i −0.199709 0.199709i 0.600167 0.799875i \(-0.295101\pi\)
−0.799875 + 0.600167i \(0.795101\pi\)
\(854\) 0 0
\(855\) 16.0096 + 16.0096i 0.547517 + 0.547517i
\(856\) 0 0
\(857\) 11.7670 11.7670i 0.401952 0.401952i −0.476968 0.878921i \(-0.658264\pi\)
0.878921 + 0.476968i \(0.158264\pi\)
\(858\) 0 0
\(859\) 27.3205i 0.932164i −0.884742 0.466082i \(-0.845665\pi\)
0.884742 0.466082i \(-0.154335\pi\)
\(860\) 0 0
\(861\) −31.6675 + 31.6675i −1.07923 + 1.07923i
\(862\) 0 0
\(863\) −10.1436 −0.345292 −0.172646 0.984984i \(-0.555232\pi\)
−0.172646 + 0.984984i \(0.555232\pi\)
\(864\) 0 0
\(865\) 53.5692i 1.82141i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 15.4641i 0.524584i
\(870\) 0 0
\(871\) −81.5692 −2.76387
\(872\) 0 0
\(873\) 15.5563 15.5563i 0.526503 0.526503i
\(874\) 0 0
\(875\) 18.9282i 0.639890i
\(876\) 0 0
\(877\) 6.79367 6.79367i 0.229406 0.229406i −0.583039 0.812444i \(-0.698136\pi\)
0.812444 + 0.583039i \(0.198136\pi\)
\(878\) 0 0
\(879\) 57.9555 + 57.9555i 1.95479 + 1.95479i
\(880\) 0 0
\(881\) 27.4249 + 27.4249i 0.923967 + 0.923967i 0.997307 0.0733400i \(-0.0233658\pi\)
−0.0733400 + 0.997307i \(0.523366\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) −24.0000 −0.806751
\(886\) 0 0
\(887\) −8.06918 8.06918i −0.270937 0.270937i 0.558541 0.829477i \(-0.311361\pi\)
−0.829477 + 0.558541i \(0.811361\pi\)
\(888\) 0 0
\(889\) −0.757875 0.757875i −0.0254183 0.0254183i
\(890\) 0 0
\(891\) 2.20925 2.20925i 0.0740128 0.0740128i
\(892\) 0 0
\(893\) 10.1436i 0.339442i
\(894\) 0 0
\(895\) 35.6055 35.6055i 1.19016 1.19016i
\(896\) 0 0
\(897\) 18.9282 0.631994
\(898\) 0 0
\(899\) 14.5359i 0.484799i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 62.6410i 2.08456i
\(904\) 0 0
\(905\) 15.7128 0.522312
\(906\) 0 0
\(907\) −24.3562 + 24.3562i −0.808734 + 0.808734i −0.984442 0.175708i \(-0.943779\pi\)
0.175708 + 0.984442i \(0.443779\pi\)
\(908\) 0 0
\(909\) 11.3205i 0.375478i
\(910\) 0 0
\(911\) −11.1750 + 11.1750i −0.370245 + 0.370245i −0.867566 0.497322i \(-0.834317\pi\)
0.497322 + 0.867566i \(0.334317\pi\)
\(912\) 0 0
\(913\) 2.27362 + 2.27362i 0.0752460 + 0.0752460i
\(914\) 0 0
\(915\) −3.58630 3.58630i −0.118559 0.118559i
\(916\) 0 0
\(917\) −15.4641 −0.510670
\(918\) 0 0
\(919\) −52.0000 −1.71532 −0.857661 0.514216i \(-0.828083\pi\)
−0.857661 + 0.514216i \(0.828083\pi\)
\(920\) 0 0
\(921\) 47.8802 + 47.8802i 1.57771 + 1.57771i
\(922\) 0 0
\(923\) −31.6675 31.6675i −1.04235 1.04235i
\(924\) 0 0
\(925\) 22.4516 22.4516i 0.738202 0.738202i
\(926\) 0 0
\(927\) 48.7846i 1.60230i
\(928\) 0 0
\(929\) 6.86800 6.86800i 0.225332 0.225332i −0.585408 0.810739i \(-0.699065\pi\)
0.810739 + 0.585408i \(0.199065\pi\)
\(930\) 0 0
\(931\) 0.679492 0.0222694
\(932\) 0 0
\(933\) 8.53590i 0.279453i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0.143594i 0.00469100i −0.999997 0.00234550i \(-0.999253\pi\)
0.999997 0.00234550i \(-0.000746596\pi\)
\(938\) 0 0
\(939\) −57.1769 −1.86590
\(940\) 0 0
\(941\) −29.2180 + 29.2180i −0.952480 + 0.952480i −0.998921 0.0464411i \(-0.985212\pi\)
0.0464411 + 0.998921i \(0.485212\pi\)
\(942\) 0 0
\(943\) 7.60770i 0.247741i
\(944\) 0 0
\(945\) 26.7685 26.7685i 0.870780 0.870780i
\(946\) 0 0
\(947\) 34.8377 + 34.8377i 1.13207 + 1.13207i 0.989832 + 0.142241i \(0.0454308\pi\)
0.142241 + 0.989832i \(0.454569\pi\)
\(948\) 0 0
\(949\) −7.72741 7.72741i −0.250842 0.250842i
\(950\) 0 0
\(951\) 23.3205 0.756219
\(952\) 0 0
\(953\) 6.24871 0.202416 0.101208 0.994865i \(-0.467729\pi\)
0.101208 + 0.994865i \(0.467729\pi\)
\(954\) 0 0
\(955\) 29.3939 + 29.3939i 0.951164 + 0.951164i
\(956\) 0 0
\(957\) −8.48528 8.48528i −0.274290 0.274290i
\(958\) 0 0
\(959\) −4.89898 + 4.89898i −0.158196 + 0.158196i
\(960\) 0 0
\(961\) 13.3923i 0.432010i
\(962\) 0 0
\(963\) −33.8768 + 33.8768i −1.09166 + 1.09166i
\(964\) 0 0
\(965\) 72.4974 2.33377
\(966\) 0 0
\(967\) 27.6077i 0.887804i −0.896075 0.443902i \(-0.853594\pi\)
0.896075 0.443902i \(-0.146406\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 20.1051i 0.645204i −0.946535 0.322602i \(-0.895442\pi\)
0.946535 0.322602i \(-0.104558\pi\)
\(972\) 0 0
\(973\) −40.2487 −1.29031
\(974\) 0 0
\(975\) −73.8908 + 73.8908i −2.36640 + 2.36640i
\(976\) 0 0
\(977\) 42.0000i 1.34370i −0.740688 0.671850i \(-0.765500\pi\)
0.740688 0.671850i \(-0.234500\pi\)
\(978\) 0 0
\(979\) −2.27362 + 2.27362i −0.0726653 + 0.0726653i
\(980\) 0 0
\(981\) −45.4307 45.4307i −1.45049 1.45049i
\(982\) 0 0
\(983\) 25.3915 + 25.3915i 0.809862 + 0.809862i 0.984613 0.174751i \(-0.0559119\pi\)
−0.174751 + 0.984613i \(0.555912\pi\)
\(984\) 0 0
\(985\) −12.0000 −0.382352
\(986\) 0 0
\(987\) 51.7128 1.64604
\(988\) 0 0
\(989\) −7.52433 7.52433i −0.239260 0.239260i
\(990\) 0 0
\(991\) −0.138701 0.138701i −0.00440597 0.00440597i 0.704900 0.709306i \(-0.250992\pi\)
−0.709306 + 0.704900i \(0.750992\pi\)
\(992\) 0 0
\(993\) 37.3244 37.3244i 1.18445 1.18445i
\(994\) 0 0
\(995\) 14.5359i 0.460819i
\(996\) 0 0
\(997\) −15.2789 + 15.2789i −0.483889 + 0.483889i −0.906371 0.422482i \(-0.861159\pi\)
0.422482 + 0.906371i \(0.361159\pi\)
\(998\) 0 0
\(999\) −18.1436 −0.574038
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1156.2.e.d.829.1 8
17.2 even 8 1156.2.a.a.1.1 2
17.3 odd 16 1156.2.h.f.1001.1 16
17.4 even 4 inner 1156.2.e.d.905.1 8
17.5 odd 16 1156.2.h.f.733.4 16
17.6 odd 16 1156.2.h.f.757.1 16
17.7 odd 16 1156.2.h.f.977.1 16
17.8 even 8 1156.2.b.c.577.4 4
17.9 even 8 1156.2.b.c.577.1 4
17.10 odd 16 1156.2.h.f.977.4 16
17.11 odd 16 1156.2.h.f.757.4 16
17.12 odd 16 1156.2.h.f.733.1 16
17.13 even 4 inner 1156.2.e.d.905.4 8
17.14 odd 16 1156.2.h.f.1001.4 16
17.15 even 8 68.2.a.a.1.2 2
17.16 even 2 inner 1156.2.e.d.829.4 8
51.32 odd 8 612.2.a.e.1.2 2
68.15 odd 8 272.2.a.e.1.1 2
68.19 odd 8 4624.2.a.x.1.2 2
85.32 odd 8 1700.2.e.c.749.1 4
85.49 even 8 1700.2.a.d.1.1 2
85.83 odd 8 1700.2.e.c.749.4 4
119.83 odd 8 3332.2.a.h.1.1 2
136.83 odd 8 1088.2.a.t.1.2 2
136.117 even 8 1088.2.a.p.1.1 2
187.32 odd 8 8228.2.a.k.1.2 2
204.83 even 8 2448.2.a.y.1.2 2
340.219 odd 8 6800.2.a.bh.1.2 2
408.83 even 8 9792.2.a.cs.1.1 2
408.389 odd 8 9792.2.a.cr.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
68.2.a.a.1.2 2 17.15 even 8
272.2.a.e.1.1 2 68.15 odd 8
612.2.a.e.1.2 2 51.32 odd 8
1088.2.a.p.1.1 2 136.117 even 8
1088.2.a.t.1.2 2 136.83 odd 8
1156.2.a.a.1.1 2 17.2 even 8
1156.2.b.c.577.1 4 17.9 even 8
1156.2.b.c.577.4 4 17.8 even 8
1156.2.e.d.829.1 8 1.1 even 1 trivial
1156.2.e.d.829.4 8 17.16 even 2 inner
1156.2.e.d.905.1 8 17.4 even 4 inner
1156.2.e.d.905.4 8 17.13 even 4 inner
1156.2.h.f.733.1 16 17.12 odd 16
1156.2.h.f.733.4 16 17.5 odd 16
1156.2.h.f.757.1 16 17.6 odd 16
1156.2.h.f.757.4 16 17.11 odd 16
1156.2.h.f.977.1 16 17.7 odd 16
1156.2.h.f.977.4 16 17.10 odd 16
1156.2.h.f.1001.1 16 17.3 odd 16
1156.2.h.f.1001.4 16 17.14 odd 16
1700.2.a.d.1.1 2 85.49 even 8
1700.2.e.c.749.1 4 85.32 odd 8
1700.2.e.c.749.4 4 85.83 odd 8
2448.2.a.y.1.2 2 204.83 even 8
3332.2.a.h.1.1 2 119.83 odd 8
4624.2.a.x.1.2 2 68.19 odd 8
6800.2.a.bh.1.2 2 340.219 odd 8
8228.2.a.k.1.2 2 187.32 odd 8
9792.2.a.cr.1.1 2 408.389 odd 8
9792.2.a.cs.1.1 2 408.83 even 8