Properties

Label 3332.2.a.h.1.1
Level $3332$
Weight $2$
Character 3332.1
Self dual yes
Analytic conductor $26.606$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,2,Mod(1,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3332.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.6061539535\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 68)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 3332.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.73205 q^{3} +3.46410 q^{5} +4.46410 q^{9} -1.26795 q^{11} -5.46410 q^{13} -9.46410 q^{15} +1.00000 q^{17} +1.46410 q^{19} -1.26795 q^{23} +7.00000 q^{25} -4.00000 q^{27} +3.46410 q^{29} -4.19615 q^{31} +3.46410 q^{33} +4.53590 q^{37} +14.9282 q^{39} +6.00000 q^{41} -8.39230 q^{43} +15.4641 q^{45} +6.92820 q^{47} -2.73205 q^{51} +12.9282 q^{53} -4.39230 q^{55} -4.00000 q^{57} -2.53590 q^{59} +0.535898 q^{61} -18.9282 q^{65} +14.9282 q^{67} +3.46410 q^{69} -8.19615 q^{71} -2.00000 q^{73} -19.1244 q^{75} -12.1962 q^{79} -2.46410 q^{81} +2.53590 q^{83} +3.46410 q^{85} -9.46410 q^{87} -2.53590 q^{89} +11.4641 q^{93} +5.07180 q^{95} +4.92820 q^{97} -5.66025 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{9} - 6 q^{11} - 4 q^{13} - 12 q^{15} + 2 q^{17} - 4 q^{19} - 6 q^{23} + 14 q^{25} - 8 q^{27} + 2 q^{31} + 16 q^{37} + 16 q^{39} + 12 q^{41} + 4 q^{43} + 24 q^{45} - 2 q^{51} + 12 q^{53}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.73205 −1.57735 −0.788675 0.614810i \(-0.789233\pi\)
−0.788675 + 0.614810i \(0.789233\pi\)
\(4\) 0 0
\(5\) 3.46410 1.54919 0.774597 0.632456i \(-0.217953\pi\)
0.774597 + 0.632456i \(0.217953\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 4.46410 1.48803
\(10\) 0 0
\(11\) −1.26795 −0.382301 −0.191151 0.981561i \(-0.561222\pi\)
−0.191151 + 0.981561i \(0.561222\pi\)
\(12\) 0 0
\(13\) −5.46410 −1.51547 −0.757735 0.652563i \(-0.773694\pi\)
−0.757735 + 0.652563i \(0.773694\pi\)
\(14\) 0 0
\(15\) −9.46410 −2.44362
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 1.46410 0.335888 0.167944 0.985797i \(-0.446287\pi\)
0.167944 + 0.985797i \(0.446287\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.26795 −0.264386 −0.132193 0.991224i \(-0.542202\pi\)
−0.132193 + 0.991224i \(0.542202\pi\)
\(24\) 0 0
\(25\) 7.00000 1.40000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) 3.46410 0.643268 0.321634 0.946864i \(-0.395768\pi\)
0.321634 + 0.946864i \(0.395768\pi\)
\(30\) 0 0
\(31\) −4.19615 −0.753651 −0.376826 0.926284i \(-0.622984\pi\)
−0.376826 + 0.926284i \(0.622984\pi\)
\(32\) 0 0
\(33\) 3.46410 0.603023
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.53590 0.745697 0.372849 0.927892i \(-0.378381\pi\)
0.372849 + 0.927892i \(0.378381\pi\)
\(38\) 0 0
\(39\) 14.9282 2.39043
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) −8.39230 −1.27981 −0.639907 0.768452i \(-0.721027\pi\)
−0.639907 + 0.768452i \(0.721027\pi\)
\(44\) 0 0
\(45\) 15.4641 2.30525
\(46\) 0 0
\(47\) 6.92820 1.01058 0.505291 0.862949i \(-0.331385\pi\)
0.505291 + 0.862949i \(0.331385\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.73205 −0.382564
\(52\) 0 0
\(53\) 12.9282 1.77583 0.887913 0.460012i \(-0.152155\pi\)
0.887913 + 0.460012i \(0.152155\pi\)
\(54\) 0 0
\(55\) −4.39230 −0.592258
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) −2.53590 −0.330146 −0.165073 0.986281i \(-0.552786\pi\)
−0.165073 + 0.986281i \(0.552786\pi\)
\(60\) 0 0
\(61\) 0.535898 0.0686148 0.0343074 0.999411i \(-0.489077\pi\)
0.0343074 + 0.999411i \(0.489077\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −18.9282 −2.34775
\(66\) 0 0
\(67\) 14.9282 1.82377 0.911885 0.410445i \(-0.134627\pi\)
0.911885 + 0.410445i \(0.134627\pi\)
\(68\) 0 0
\(69\) 3.46410 0.417029
\(70\) 0 0
\(71\) −8.19615 −0.972704 −0.486352 0.873763i \(-0.661673\pi\)
−0.486352 + 0.873763i \(0.661673\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) −19.1244 −2.20829
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −12.1962 −1.37217 −0.686087 0.727519i \(-0.740673\pi\)
−0.686087 + 0.727519i \(0.740673\pi\)
\(80\) 0 0
\(81\) −2.46410 −0.273789
\(82\) 0 0
\(83\) 2.53590 0.278351 0.139176 0.990268i \(-0.455555\pi\)
0.139176 + 0.990268i \(0.455555\pi\)
\(84\) 0 0
\(85\) 3.46410 0.375735
\(86\) 0 0
\(87\) −9.46410 −1.01466
\(88\) 0 0
\(89\) −2.53590 −0.268805 −0.134402 0.990927i \(-0.542911\pi\)
−0.134402 + 0.990927i \(0.542911\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 11.4641 1.18877
\(94\) 0 0
\(95\) 5.07180 0.520355
\(96\) 0 0
\(97\) 4.92820 0.500383 0.250192 0.968196i \(-0.419506\pi\)
0.250192 + 0.968196i \(0.419506\pi\)
\(98\) 0 0
\(99\) −5.66025 −0.568877
\(100\) 0 0
\(101\) 2.53590 0.252331 0.126166 0.992009i \(-0.459733\pi\)
0.126166 + 0.992009i \(0.459733\pi\)
\(102\) 0 0
\(103\) 10.9282 1.07679 0.538394 0.842693i \(-0.319031\pi\)
0.538394 + 0.842693i \(0.319031\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.7321 1.03751 0.518753 0.854924i \(-0.326396\pi\)
0.518753 + 0.854924i \(0.326396\pi\)
\(108\) 0 0
\(109\) −14.3923 −1.37853 −0.689266 0.724508i \(-0.742067\pi\)
−0.689266 + 0.724508i \(0.742067\pi\)
\(110\) 0 0
\(111\) −12.3923 −1.17623
\(112\) 0 0
\(113\) 19.8564 1.86793 0.933967 0.357360i \(-0.116323\pi\)
0.933967 + 0.357360i \(0.116323\pi\)
\(114\) 0 0
\(115\) −4.39230 −0.409585
\(116\) 0 0
\(117\) −24.3923 −2.25507
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.39230 −0.853846
\(122\) 0 0
\(123\) −16.3923 −1.47804
\(124\) 0 0
\(125\) 6.92820 0.619677
\(126\) 0 0
\(127\) 0.392305 0.0348114 0.0174057 0.999849i \(-0.494459\pi\)
0.0174057 + 0.999849i \(0.494459\pi\)
\(128\) 0 0
\(129\) 22.9282 2.01872
\(130\) 0 0
\(131\) −5.66025 −0.494539 −0.247269 0.968947i \(-0.579533\pi\)
−0.247269 + 0.968947i \(0.579533\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −13.8564 −1.19257
\(136\) 0 0
\(137\) 2.53590 0.216656 0.108328 0.994115i \(-0.465450\pi\)
0.108328 + 0.994115i \(0.465450\pi\)
\(138\) 0 0
\(139\) 14.7321 1.24956 0.624778 0.780802i \(-0.285189\pi\)
0.624778 + 0.780802i \(0.285189\pi\)
\(140\) 0 0
\(141\) −18.9282 −1.59404
\(142\) 0 0
\(143\) 6.92820 0.579365
\(144\) 0 0
\(145\) 12.0000 0.996546
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −13.4641 −1.09569 −0.547847 0.836579i \(-0.684552\pi\)
−0.547847 + 0.836579i \(0.684552\pi\)
\(152\) 0 0
\(153\) 4.46410 0.360901
\(154\) 0 0
\(155\) −14.5359 −1.16755
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) −35.3205 −2.80110
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 20.5885 1.61261 0.806306 0.591498i \(-0.201463\pi\)
0.806306 + 0.591498i \(0.201463\pi\)
\(164\) 0 0
\(165\) 12.0000 0.934199
\(166\) 0 0
\(167\) −5.66025 −0.438004 −0.219002 0.975724i \(-0.570280\pi\)
−0.219002 + 0.975724i \(0.570280\pi\)
\(168\) 0 0
\(169\) 16.8564 1.29665
\(170\) 0 0
\(171\) 6.53590 0.499813
\(172\) 0 0
\(173\) 15.4641 1.17571 0.587857 0.808965i \(-0.299972\pi\)
0.587857 + 0.808965i \(0.299972\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6.92820 0.520756
\(178\) 0 0
\(179\) 14.5359 1.08646 0.543232 0.839583i \(-0.317200\pi\)
0.543232 + 0.839583i \(0.317200\pi\)
\(180\) 0 0
\(181\) −4.53590 −0.337151 −0.168575 0.985689i \(-0.553917\pi\)
−0.168575 + 0.985689i \(0.553917\pi\)
\(182\) 0 0
\(183\) −1.46410 −0.108230
\(184\) 0 0
\(185\) 15.7128 1.15523
\(186\) 0 0
\(187\) −1.26795 −0.0927216
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) 20.9282 1.50645 0.753223 0.657766i \(-0.228498\pi\)
0.753223 + 0.657766i \(0.228498\pi\)
\(194\) 0 0
\(195\) 51.7128 3.70323
\(196\) 0 0
\(197\) 3.46410 0.246807 0.123404 0.992357i \(-0.460619\pi\)
0.123404 + 0.992357i \(0.460619\pi\)
\(198\) 0 0
\(199\) −4.19615 −0.297457 −0.148729 0.988878i \(-0.547518\pi\)
−0.148729 + 0.988878i \(0.547518\pi\)
\(200\) 0 0
\(201\) −40.7846 −2.87672
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 20.7846 1.45166
\(206\) 0 0
\(207\) −5.66025 −0.393415
\(208\) 0 0
\(209\) −1.85641 −0.128410
\(210\) 0 0
\(211\) 2.33975 0.161075 0.0805374 0.996752i \(-0.474336\pi\)
0.0805374 + 0.996752i \(0.474336\pi\)
\(212\) 0 0
\(213\) 22.3923 1.53430
\(214\) 0 0
\(215\) −29.0718 −1.98268
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 5.46410 0.369230
\(220\) 0 0
\(221\) −5.46410 −0.367555
\(222\) 0 0
\(223\) −12.3923 −0.829850 −0.414925 0.909856i \(-0.636192\pi\)
−0.414925 + 0.909856i \(0.636192\pi\)
\(224\) 0 0
\(225\) 31.2487 2.08325
\(226\) 0 0
\(227\) 20.1962 1.34047 0.670233 0.742151i \(-0.266194\pi\)
0.670233 + 0.742151i \(0.266194\pi\)
\(228\) 0 0
\(229\) 20.3923 1.34756 0.673781 0.738931i \(-0.264669\pi\)
0.673781 + 0.738931i \(0.264669\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 24.0000 1.56559
\(236\) 0 0
\(237\) 33.3205 2.16440
\(238\) 0 0
\(239\) 20.7846 1.34444 0.672222 0.740349i \(-0.265340\pi\)
0.672222 + 0.740349i \(0.265340\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 0 0
\(243\) 18.7321 1.20166
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −8.00000 −0.509028
\(248\) 0 0
\(249\) −6.92820 −0.439057
\(250\) 0 0
\(251\) −6.92820 −0.437304 −0.218652 0.975803i \(-0.570166\pi\)
−0.218652 + 0.975803i \(0.570166\pi\)
\(252\) 0 0
\(253\) 1.60770 0.101075
\(254\) 0 0
\(255\) −9.46410 −0.592665
\(256\) 0 0
\(257\) 28.3923 1.77106 0.885532 0.464579i \(-0.153794\pi\)
0.885532 + 0.464579i \(0.153794\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 15.4641 0.957204
\(262\) 0 0
\(263\) 11.3205 0.698052 0.349026 0.937113i \(-0.386512\pi\)
0.349026 + 0.937113i \(0.386512\pi\)
\(264\) 0 0
\(265\) 44.7846 2.75110
\(266\) 0 0
\(267\) 6.92820 0.423999
\(268\) 0 0
\(269\) 27.4641 1.67452 0.837258 0.546808i \(-0.184157\pi\)
0.837258 + 0.546808i \(0.184157\pi\)
\(270\) 0 0
\(271\) −1.07180 −0.0651070 −0.0325535 0.999470i \(-0.510364\pi\)
−0.0325535 + 0.999470i \(0.510364\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.87564 −0.535221
\(276\) 0 0
\(277\) 6.39230 0.384076 0.192038 0.981387i \(-0.438490\pi\)
0.192038 + 0.981387i \(0.438490\pi\)
\(278\) 0 0
\(279\) −18.7321 −1.12146
\(280\) 0 0
\(281\) −19.8564 −1.18453 −0.592267 0.805742i \(-0.701767\pi\)
−0.592267 + 0.805742i \(0.701767\pi\)
\(282\) 0 0
\(283\) −20.5885 −1.22386 −0.611928 0.790913i \(-0.709606\pi\)
−0.611928 + 0.790913i \(0.709606\pi\)
\(284\) 0 0
\(285\) −13.8564 −0.820783
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −13.4641 −0.789280
\(292\) 0 0
\(293\) −30.0000 −1.75262 −0.876309 0.481749i \(-0.840002\pi\)
−0.876309 + 0.481749i \(0.840002\pi\)
\(294\) 0 0
\(295\) −8.78461 −0.511460
\(296\) 0 0
\(297\) 5.07180 0.294295
\(298\) 0 0
\(299\) 6.92820 0.400668
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −6.92820 −0.398015
\(304\) 0 0
\(305\) 1.85641 0.106298
\(306\) 0 0
\(307\) 24.7846 1.41453 0.707266 0.706947i \(-0.249928\pi\)
0.707266 + 0.706947i \(0.249928\pi\)
\(308\) 0 0
\(309\) −29.8564 −1.69847
\(310\) 0 0
\(311\) 3.12436 0.177166 0.0885830 0.996069i \(-0.471766\pi\)
0.0885830 + 0.996069i \(0.471766\pi\)
\(312\) 0 0
\(313\) −20.9282 −1.18293 −0.591466 0.806330i \(-0.701451\pi\)
−0.591466 + 0.806330i \(0.701451\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.53590 0.479424 0.239712 0.970844i \(-0.422947\pi\)
0.239712 + 0.970844i \(0.422947\pi\)
\(318\) 0 0
\(319\) −4.39230 −0.245922
\(320\) 0 0
\(321\) −29.3205 −1.63651
\(322\) 0 0
\(323\) 1.46410 0.0814648
\(324\) 0 0
\(325\) −38.2487 −2.12166
\(326\) 0 0
\(327\) 39.3205 2.17443
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 19.3205 1.06195 0.530976 0.847387i \(-0.321826\pi\)
0.530976 + 0.847387i \(0.321826\pi\)
\(332\) 0 0
\(333\) 20.2487 1.10962
\(334\) 0 0
\(335\) 51.7128 2.82537
\(336\) 0 0
\(337\) −6.78461 −0.369581 −0.184791 0.982778i \(-0.559161\pi\)
−0.184791 + 0.982778i \(0.559161\pi\)
\(338\) 0 0
\(339\) −54.2487 −2.94639
\(340\) 0 0
\(341\) 5.32051 0.288122
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 12.0000 0.646058
\(346\) 0 0
\(347\) −34.0526 −1.82804 −0.914019 0.405672i \(-0.867037\pi\)
−0.914019 + 0.405672i \(0.867037\pi\)
\(348\) 0 0
\(349\) −10.7846 −0.577287 −0.288643 0.957437i \(-0.593204\pi\)
−0.288643 + 0.957437i \(0.593204\pi\)
\(350\) 0 0
\(351\) 21.8564 1.16661
\(352\) 0 0
\(353\) 19.8564 1.05685 0.528425 0.848980i \(-0.322783\pi\)
0.528425 + 0.848980i \(0.322783\pi\)
\(354\) 0 0
\(355\) −28.3923 −1.50691
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −23.3205 −1.23081 −0.615405 0.788211i \(-0.711007\pi\)
−0.615405 + 0.788211i \(0.711007\pi\)
\(360\) 0 0
\(361\) −16.8564 −0.887179
\(362\) 0 0
\(363\) 25.6603 1.34681
\(364\) 0 0
\(365\) −6.92820 −0.362639
\(366\) 0 0
\(367\) −2.33975 −0.122134 −0.0610669 0.998134i \(-0.519450\pi\)
−0.0610669 + 0.998134i \(0.519450\pi\)
\(368\) 0 0
\(369\) 26.7846 1.39435
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −8.39230 −0.434537 −0.217269 0.976112i \(-0.569715\pi\)
−0.217269 + 0.976112i \(0.569715\pi\)
\(374\) 0 0
\(375\) −18.9282 −0.977448
\(376\) 0 0
\(377\) −18.9282 −0.974852
\(378\) 0 0
\(379\) −5.26795 −0.270596 −0.135298 0.990805i \(-0.543199\pi\)
−0.135298 + 0.990805i \(0.543199\pi\)
\(380\) 0 0
\(381\) −1.07180 −0.0549098
\(382\) 0 0
\(383\) 2.53590 0.129578 0.0647892 0.997899i \(-0.479363\pi\)
0.0647892 + 0.997899i \(0.479363\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −37.4641 −1.90441
\(388\) 0 0
\(389\) 37.1769 1.88494 0.942472 0.334285i \(-0.108495\pi\)
0.942472 + 0.334285i \(0.108495\pi\)
\(390\) 0 0
\(391\) −1.26795 −0.0641229
\(392\) 0 0
\(393\) 15.4641 0.780061
\(394\) 0 0
\(395\) −42.2487 −2.12576
\(396\) 0 0
\(397\) 5.60770 0.281442 0.140721 0.990049i \(-0.455058\pi\)
0.140721 + 0.990049i \(0.455058\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 31.8564 1.59083 0.795417 0.606063i \(-0.207252\pi\)
0.795417 + 0.606063i \(0.207252\pi\)
\(402\) 0 0
\(403\) 22.9282 1.14214
\(404\) 0 0
\(405\) −8.53590 −0.424152
\(406\) 0 0
\(407\) −5.75129 −0.285081
\(408\) 0 0
\(409\) −17.7128 −0.875842 −0.437921 0.899013i \(-0.644285\pi\)
−0.437921 + 0.899013i \(0.644285\pi\)
\(410\) 0 0
\(411\) −6.92820 −0.341743
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 8.78461 0.431220
\(416\) 0 0
\(417\) −40.2487 −1.97099
\(418\) 0 0
\(419\) 24.5885 1.20122 0.600612 0.799540i \(-0.294924\pi\)
0.600612 + 0.799540i \(0.294924\pi\)
\(420\) 0 0
\(421\) −22.2487 −1.08434 −0.542168 0.840270i \(-0.682396\pi\)
−0.542168 + 0.840270i \(0.682396\pi\)
\(422\) 0 0
\(423\) 30.9282 1.50378
\(424\) 0 0
\(425\) 7.00000 0.339550
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −18.9282 −0.913862
\(430\) 0 0
\(431\) 17.6603 0.850665 0.425332 0.905037i \(-0.360157\pi\)
0.425332 + 0.905037i \(0.360157\pi\)
\(432\) 0 0
\(433\) −3.60770 −0.173375 −0.0866874 0.996236i \(-0.527628\pi\)
−0.0866874 + 0.996236i \(0.527628\pi\)
\(434\) 0 0
\(435\) −32.7846 −1.57190
\(436\) 0 0
\(437\) −1.85641 −0.0888040
\(438\) 0 0
\(439\) 24.1962 1.15482 0.577410 0.816455i \(-0.304064\pi\)
0.577410 + 0.816455i \(0.304064\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −20.7846 −0.987507 −0.493753 0.869602i \(-0.664375\pi\)
−0.493753 + 0.869602i \(0.664375\pi\)
\(444\) 0 0
\(445\) −8.78461 −0.416430
\(446\) 0 0
\(447\) −16.3923 −0.775329
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) −7.60770 −0.358232
\(452\) 0 0
\(453\) 36.7846 1.72829
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −20.3923 −0.953912 −0.476956 0.878927i \(-0.658260\pi\)
−0.476956 + 0.878927i \(0.658260\pi\)
\(458\) 0 0
\(459\) −4.00000 −0.186704
\(460\) 0 0
\(461\) −26.7846 −1.24748 −0.623742 0.781630i \(-0.714388\pi\)
−0.623742 + 0.781630i \(0.714388\pi\)
\(462\) 0 0
\(463\) −2.14359 −0.0996212 −0.0498106 0.998759i \(-0.515862\pi\)
−0.0498106 + 0.998759i \(0.515862\pi\)
\(464\) 0 0
\(465\) 39.7128 1.84164
\(466\) 0 0
\(467\) −14.5359 −0.672641 −0.336321 0.941748i \(-0.609183\pi\)
−0.336321 + 0.941748i \(0.609183\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 5.46410 0.251773
\(472\) 0 0
\(473\) 10.6410 0.489274
\(474\) 0 0
\(475\) 10.2487 0.470243
\(476\) 0 0
\(477\) 57.7128 2.64249
\(478\) 0 0
\(479\) 17.6603 0.806918 0.403459 0.914998i \(-0.367808\pi\)
0.403459 + 0.914998i \(0.367808\pi\)
\(480\) 0 0
\(481\) −24.7846 −1.13008
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 17.0718 0.775190
\(486\) 0 0
\(487\) 6.05256 0.274268 0.137134 0.990553i \(-0.456211\pi\)
0.137134 + 0.990553i \(0.456211\pi\)
\(488\) 0 0
\(489\) −56.2487 −2.54365
\(490\) 0 0
\(491\) −37.1769 −1.67777 −0.838885 0.544308i \(-0.816792\pi\)
−0.838885 + 0.544308i \(0.816792\pi\)
\(492\) 0 0
\(493\) 3.46410 0.156015
\(494\) 0 0
\(495\) −19.6077 −0.881300
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 24.9808 1.11829 0.559146 0.829069i \(-0.311129\pi\)
0.559146 + 0.829069i \(0.311129\pi\)
\(500\) 0 0
\(501\) 15.4641 0.690885
\(502\) 0 0
\(503\) −27.1244 −1.20942 −0.604708 0.796448i \(-0.706710\pi\)
−0.604708 + 0.796448i \(0.706710\pi\)
\(504\) 0 0
\(505\) 8.78461 0.390910
\(506\) 0 0
\(507\) −46.0526 −2.04527
\(508\) 0 0
\(509\) 21.7128 0.962404 0.481202 0.876610i \(-0.340200\pi\)
0.481202 + 0.876610i \(0.340200\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −5.85641 −0.258567
\(514\) 0 0
\(515\) 37.8564 1.66815
\(516\) 0 0
\(517\) −8.78461 −0.386347
\(518\) 0 0
\(519\) −42.2487 −1.85451
\(520\) 0 0
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 0 0
\(523\) 12.7846 0.559032 0.279516 0.960141i \(-0.409826\pi\)
0.279516 + 0.960141i \(0.409826\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.19615 −0.182787
\(528\) 0 0
\(529\) −21.3923 −0.930100
\(530\) 0 0
\(531\) −11.3205 −0.491268
\(532\) 0 0
\(533\) −32.7846 −1.42006
\(534\) 0 0
\(535\) 37.1769 1.60730
\(536\) 0 0
\(537\) −39.7128 −1.71373
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 18.3923 0.790747 0.395373 0.918520i \(-0.370615\pi\)
0.395373 + 0.918520i \(0.370615\pi\)
\(542\) 0 0
\(543\) 12.3923 0.531805
\(544\) 0 0
\(545\) −49.8564 −2.13561
\(546\) 0 0
\(547\) 42.7321 1.82709 0.913545 0.406737i \(-0.133333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(548\) 0 0
\(549\) 2.39230 0.102101
\(550\) 0 0
\(551\) 5.07180 0.216066
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −42.9282 −1.82220
\(556\) 0 0
\(557\) −26.5359 −1.12436 −0.562181 0.827014i \(-0.690038\pi\)
−0.562181 + 0.827014i \(0.690038\pi\)
\(558\) 0 0
\(559\) 45.8564 1.93952
\(560\) 0 0
\(561\) 3.46410 0.146254
\(562\) 0 0
\(563\) 35.3205 1.48858 0.744291 0.667855i \(-0.232788\pi\)
0.744291 + 0.667855i \(0.232788\pi\)
\(564\) 0 0
\(565\) 68.7846 2.89379
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.85641 −0.329358 −0.164679 0.986347i \(-0.552659\pi\)
−0.164679 + 0.986347i \(0.552659\pi\)
\(570\) 0 0
\(571\) 11.1244 0.465540 0.232770 0.972532i \(-0.425221\pi\)
0.232770 + 0.972532i \(0.425221\pi\)
\(572\) 0 0
\(573\) −32.7846 −1.36960
\(574\) 0 0
\(575\) −8.87564 −0.370140
\(576\) 0 0
\(577\) 13.4641 0.560518 0.280259 0.959924i \(-0.409580\pi\)
0.280259 + 0.959924i \(0.409580\pi\)
\(578\) 0 0
\(579\) −57.1769 −2.37619
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −16.3923 −0.678900
\(584\) 0 0
\(585\) −84.4974 −3.49354
\(586\) 0 0
\(587\) −28.3923 −1.17188 −0.585938 0.810356i \(-0.699274\pi\)
−0.585938 + 0.810356i \(0.699274\pi\)
\(588\) 0 0
\(589\) −6.14359 −0.253142
\(590\) 0 0
\(591\) −9.46410 −0.389301
\(592\) 0 0
\(593\) 4.14359 0.170157 0.0850785 0.996374i \(-0.472886\pi\)
0.0850785 + 0.996374i \(0.472886\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 11.4641 0.469194
\(598\) 0 0
\(599\) −27.7128 −1.13231 −0.566157 0.824297i \(-0.691571\pi\)
−0.566157 + 0.824297i \(0.691571\pi\)
\(600\) 0 0
\(601\) −10.7846 −0.439913 −0.219957 0.975510i \(-0.570592\pi\)
−0.219957 + 0.975510i \(0.570592\pi\)
\(602\) 0 0
\(603\) 66.6410 2.71383
\(604\) 0 0
\(605\) −32.5359 −1.32277
\(606\) 0 0
\(607\) 38.7321 1.57209 0.786043 0.618172i \(-0.212127\pi\)
0.786043 + 0.618172i \(0.212127\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −37.8564 −1.53151
\(612\) 0 0
\(613\) −47.8564 −1.93290 −0.966451 0.256851i \(-0.917315\pi\)
−0.966451 + 0.256851i \(0.917315\pi\)
\(614\) 0 0
\(615\) −56.7846 −2.28978
\(616\) 0 0
\(617\) −35.5692 −1.43196 −0.715981 0.698119i \(-0.754020\pi\)
−0.715981 + 0.698119i \(0.754020\pi\)
\(618\) 0 0
\(619\) −11.8038 −0.474437 −0.237218 0.971456i \(-0.576236\pi\)
−0.237218 + 0.971456i \(0.576236\pi\)
\(620\) 0 0
\(621\) 5.07180 0.203524
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) 5.07180 0.202548
\(628\) 0 0
\(629\) 4.53590 0.180858
\(630\) 0 0
\(631\) 41.4641 1.65066 0.825330 0.564651i \(-0.190989\pi\)
0.825330 + 0.564651i \(0.190989\pi\)
\(632\) 0 0
\(633\) −6.39230 −0.254071
\(634\) 0 0
\(635\) 1.35898 0.0539296
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −36.5885 −1.44742
\(640\) 0 0
\(641\) −12.9282 −0.510633 −0.255317 0.966857i \(-0.582180\pi\)
−0.255317 + 0.966857i \(0.582180\pi\)
\(642\) 0 0
\(643\) −32.5885 −1.28516 −0.642582 0.766217i \(-0.722137\pi\)
−0.642582 + 0.766217i \(0.722137\pi\)
\(644\) 0 0
\(645\) 79.4256 3.12738
\(646\) 0 0
\(647\) −17.0718 −0.671162 −0.335581 0.942011i \(-0.608933\pi\)
−0.335581 + 0.942011i \(0.608933\pi\)
\(648\) 0 0
\(649\) 3.21539 0.126215
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −10.3923 −0.406682 −0.203341 0.979108i \(-0.565180\pi\)
−0.203341 + 0.979108i \(0.565180\pi\)
\(654\) 0 0
\(655\) −19.6077 −0.766136
\(656\) 0 0
\(657\) −8.92820 −0.348322
\(658\) 0 0
\(659\) 42.9282 1.67225 0.836123 0.548542i \(-0.184817\pi\)
0.836123 + 0.548542i \(0.184817\pi\)
\(660\) 0 0
\(661\) 15.0718 0.586225 0.293112 0.956078i \(-0.405309\pi\)
0.293112 + 0.956078i \(0.405309\pi\)
\(662\) 0 0
\(663\) 14.9282 0.579763
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4.39230 −0.170071
\(668\) 0 0
\(669\) 33.8564 1.30896
\(670\) 0 0
\(671\) −0.679492 −0.0262315
\(672\) 0 0
\(673\) 0.143594 0.00553512 0.00276756 0.999996i \(-0.499119\pi\)
0.00276756 + 0.999996i \(0.499119\pi\)
\(674\) 0 0
\(675\) −28.0000 −1.07772
\(676\) 0 0
\(677\) 24.2487 0.931954 0.465977 0.884797i \(-0.345703\pi\)
0.465977 + 0.884797i \(0.345703\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −55.1769 −2.11438
\(682\) 0 0
\(683\) −46.0526 −1.76215 −0.881076 0.472975i \(-0.843180\pi\)
−0.881076 + 0.472975i \(0.843180\pi\)
\(684\) 0 0
\(685\) 8.78461 0.335643
\(686\) 0 0
\(687\) −55.7128 −2.12558
\(688\) 0 0
\(689\) −70.6410 −2.69121
\(690\) 0 0
\(691\) 36.1962 1.37697 0.688483 0.725252i \(-0.258277\pi\)
0.688483 + 0.725252i \(0.258277\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 51.0333 1.93580
\(696\) 0 0
\(697\) 6.00000 0.227266
\(698\) 0 0
\(699\) −16.3923 −0.620014
\(700\) 0 0
\(701\) −16.3923 −0.619129 −0.309564 0.950878i \(-0.600183\pi\)
−0.309564 + 0.950878i \(0.600183\pi\)
\(702\) 0 0
\(703\) 6.64102 0.250471
\(704\) 0 0
\(705\) −65.5692 −2.46948
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −16.2487 −0.610233 −0.305117 0.952315i \(-0.598695\pi\)
−0.305117 + 0.952315i \(0.598695\pi\)
\(710\) 0 0
\(711\) −54.4449 −2.04184
\(712\) 0 0
\(713\) 5.32051 0.199255
\(714\) 0 0
\(715\) 24.0000 0.897549
\(716\) 0 0
\(717\) −56.7846 −2.12066
\(718\) 0 0
\(719\) −43.5167 −1.62290 −0.811449 0.584424i \(-0.801321\pi\)
−0.811449 + 0.584424i \(0.801321\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 5.46410 0.203212
\(724\) 0 0
\(725\) 24.2487 0.900575
\(726\) 0 0
\(727\) −4.78461 −0.177451 −0.0887257 0.996056i \(-0.528279\pi\)
−0.0887257 + 0.996056i \(0.528279\pi\)
\(728\) 0 0
\(729\) −43.7846 −1.62165
\(730\) 0 0
\(731\) −8.39230 −0.310401
\(732\) 0 0
\(733\) 18.7846 0.693825 0.346913 0.937897i \(-0.387230\pi\)
0.346913 + 0.937897i \(0.387230\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −18.9282 −0.697229
\(738\) 0 0
\(739\) 12.3923 0.455858 0.227929 0.973678i \(-0.426805\pi\)
0.227929 + 0.973678i \(0.426805\pi\)
\(740\) 0 0
\(741\) 21.8564 0.802915
\(742\) 0 0
\(743\) 23.9090 0.877135 0.438567 0.898698i \(-0.355486\pi\)
0.438567 + 0.898698i \(0.355486\pi\)
\(744\) 0 0
\(745\) 20.7846 0.761489
\(746\) 0 0
\(747\) 11.3205 0.414196
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 18.7321 0.683542 0.341771 0.939783i \(-0.388973\pi\)
0.341771 + 0.939783i \(0.388973\pi\)
\(752\) 0 0
\(753\) 18.9282 0.689782
\(754\) 0 0
\(755\) −46.6410 −1.69744
\(756\) 0 0
\(757\) 17.4641 0.634744 0.317372 0.948301i \(-0.397200\pi\)
0.317372 + 0.948301i \(0.397200\pi\)
\(758\) 0 0
\(759\) −4.39230 −0.159431
\(760\) 0 0
\(761\) −16.3923 −0.594221 −0.297110 0.954843i \(-0.596023\pi\)
−0.297110 + 0.954843i \(0.596023\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 15.4641 0.559106
\(766\) 0 0
\(767\) 13.8564 0.500326
\(768\) 0 0
\(769\) −0.392305 −0.0141469 −0.00707344 0.999975i \(-0.502252\pi\)
−0.00707344 + 0.999975i \(0.502252\pi\)
\(770\) 0 0
\(771\) −77.5692 −2.79359
\(772\) 0 0
\(773\) 0.679492 0.0244396 0.0122198 0.999925i \(-0.496110\pi\)
0.0122198 + 0.999925i \(0.496110\pi\)
\(774\) 0 0
\(775\) −29.3731 −1.05511
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.78461 0.314741
\(780\) 0 0
\(781\) 10.3923 0.371866
\(782\) 0 0
\(783\) −13.8564 −0.495188
\(784\) 0 0
\(785\) −6.92820 −0.247278
\(786\) 0 0
\(787\) −23.1244 −0.824294 −0.412147 0.911117i \(-0.635221\pi\)
−0.412147 + 0.911117i \(0.635221\pi\)
\(788\) 0 0
\(789\) −30.9282 −1.10107
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.92820 −0.103984
\(794\) 0 0
\(795\) −122.354 −4.33944
\(796\) 0 0
\(797\) 2.78461 0.0986359 0.0493180 0.998783i \(-0.484295\pi\)
0.0493180 + 0.998783i \(0.484295\pi\)
\(798\) 0 0
\(799\) 6.92820 0.245102
\(800\) 0 0
\(801\) −11.3205 −0.399990
\(802\) 0 0
\(803\) 2.53590 0.0894899
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −75.0333 −2.64130
\(808\) 0 0
\(809\) −7.85641 −0.276217 −0.138108 0.990417i \(-0.544102\pi\)
−0.138108 + 0.990417i \(0.544102\pi\)
\(810\) 0 0
\(811\) 37.3731 1.31235 0.656173 0.754611i \(-0.272174\pi\)
0.656173 + 0.754611i \(0.272174\pi\)
\(812\) 0 0
\(813\) 2.92820 0.102697
\(814\) 0 0
\(815\) 71.3205 2.49825
\(816\) 0 0
\(817\) −12.2872 −0.429874
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 45.0333 1.57167 0.785837 0.618434i \(-0.212233\pi\)
0.785837 + 0.618434i \(0.212233\pi\)
\(822\) 0 0
\(823\) 1.66025 0.0578728 0.0289364 0.999581i \(-0.490788\pi\)
0.0289364 + 0.999581i \(0.490788\pi\)
\(824\) 0 0
\(825\) 24.2487 0.844232
\(826\) 0 0
\(827\) −19.5167 −0.678661 −0.339330 0.940667i \(-0.610200\pi\)
−0.339330 + 0.940667i \(0.610200\pi\)
\(828\) 0 0
\(829\) −39.8564 −1.38427 −0.692135 0.721768i \(-0.743330\pi\)
−0.692135 + 0.721768i \(0.743330\pi\)
\(830\) 0 0
\(831\) −17.4641 −0.605823
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −19.6077 −0.678552
\(836\) 0 0
\(837\) 16.7846 0.580161
\(838\) 0 0
\(839\) −4.48334 −0.154782 −0.0773910 0.997001i \(-0.524659\pi\)
−0.0773910 + 0.997001i \(0.524659\pi\)
\(840\) 0 0
\(841\) −17.0000 −0.586207
\(842\) 0 0
\(843\) 54.2487 1.86842
\(844\) 0 0
\(845\) 58.3923 2.00876
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 56.2487 1.93045
\(850\) 0 0
\(851\) −5.75129 −0.197152
\(852\) 0 0
\(853\) −8.24871 −0.282430 −0.141215 0.989979i \(-0.545101\pi\)
−0.141215 + 0.989979i \(0.545101\pi\)
\(854\) 0 0
\(855\) 22.6410 0.774306
\(856\) 0 0
\(857\) −16.6410 −0.568446 −0.284223 0.958758i \(-0.591736\pi\)
−0.284223 + 0.958758i \(0.591736\pi\)
\(858\) 0 0
\(859\) 27.3205 0.932164 0.466082 0.884742i \(-0.345665\pi\)
0.466082 + 0.884742i \(0.345665\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 10.1436 0.345292 0.172646 0.984984i \(-0.444768\pi\)
0.172646 + 0.984984i \(0.444768\pi\)
\(864\) 0 0
\(865\) 53.5692 1.82141
\(866\) 0 0
\(867\) −2.73205 −0.0927853
\(868\) 0 0
\(869\) 15.4641 0.524584
\(870\) 0 0
\(871\) −81.5692 −2.76387
\(872\) 0 0
\(873\) 22.0000 0.744587
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 9.60770 0.324429 0.162214 0.986756i \(-0.448136\pi\)
0.162214 + 0.986756i \(0.448136\pi\)
\(878\) 0 0
\(879\) 81.9615 2.76449
\(880\) 0 0
\(881\) 38.7846 1.30669 0.653343 0.757062i \(-0.273366\pi\)
0.653343 + 0.757062i \(0.273366\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) 24.0000 0.806751
\(886\) 0 0
\(887\) −11.4115 −0.383162 −0.191581 0.981477i \(-0.561361\pi\)
−0.191581 + 0.981477i \(0.561361\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 3.12436 0.104670
\(892\) 0 0
\(893\) 10.1436 0.339442
\(894\) 0 0
\(895\) 50.3538 1.68314
\(896\) 0 0
\(897\) −18.9282 −0.631994
\(898\) 0 0
\(899\) −14.5359 −0.484799
\(900\) 0 0
\(901\) 12.9282 0.430701
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −15.7128 −0.522312
\(906\) 0 0
\(907\) 34.4449 1.14372 0.571861 0.820350i \(-0.306221\pi\)
0.571861 + 0.820350i \(0.306221\pi\)
\(908\) 0 0
\(909\) 11.3205 0.375478
\(910\) 0 0
\(911\) −15.8038 −0.523605 −0.261802 0.965121i \(-0.584317\pi\)
−0.261802 + 0.965121i \(0.584317\pi\)
\(912\) 0 0
\(913\) −3.21539 −0.106414
\(914\) 0 0
\(915\) −5.07180 −0.167668
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −52.0000 −1.71532 −0.857661 0.514216i \(-0.828083\pi\)
−0.857661 + 0.514216i \(0.828083\pi\)
\(920\) 0 0
\(921\) −67.7128 −2.23121
\(922\) 0 0
\(923\) 44.7846 1.47410
\(924\) 0 0
\(925\) 31.7513 1.04398
\(926\) 0 0
\(927\) 48.7846 1.60230
\(928\) 0 0
\(929\) 9.71281 0.318667 0.159334 0.987225i \(-0.449065\pi\)
0.159334 + 0.987225i \(0.449065\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −8.53590 −0.279453
\(934\) 0 0
\(935\) −4.39230 −0.143644
\(936\) 0 0
\(937\) −0.143594 −0.00469100 −0.00234550 0.999997i \(-0.500747\pi\)
−0.00234550 + 0.999997i \(0.500747\pi\)
\(938\) 0 0
\(939\) 57.1769 1.86590
\(940\) 0 0
\(941\) −41.3205 −1.34701 −0.673505 0.739183i \(-0.735212\pi\)
−0.673505 + 0.739183i \(0.735212\pi\)
\(942\) 0 0
\(943\) −7.60770 −0.247741
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 49.2679 1.60099 0.800497 0.599337i \(-0.204569\pi\)
0.800497 + 0.599337i \(0.204569\pi\)
\(948\) 0 0
\(949\) 10.9282 0.354744
\(950\) 0 0
\(951\) −23.3205 −0.756219
\(952\) 0 0
\(953\) 6.24871 0.202416 0.101208 0.994865i \(-0.467729\pi\)
0.101208 + 0.994865i \(0.467729\pi\)
\(954\) 0 0
\(955\) 41.5692 1.34515
\(956\) 0 0
\(957\) 12.0000 0.387905
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −13.3923 −0.432010
\(962\) 0 0
\(963\) 47.9090 1.54384
\(964\) 0 0
\(965\) 72.4974 2.33377
\(966\) 0 0
\(967\) 27.6077 0.887804 0.443902 0.896075i \(-0.353594\pi\)
0.443902 + 0.896075i \(0.353594\pi\)
\(968\) 0 0
\(969\) −4.00000 −0.128499
\(970\) 0 0
\(971\) −20.1051 −0.645204 −0.322602 0.946535i \(-0.604558\pi\)
−0.322602 + 0.946535i \(0.604558\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 104.497 3.34660
\(976\) 0 0
\(977\) −42.0000 −1.34370 −0.671850 0.740688i \(-0.734500\pi\)
−0.671850 + 0.740688i \(0.734500\pi\)
\(978\) 0 0
\(979\) 3.21539 0.102764
\(980\) 0 0
\(981\) −64.2487 −2.05130
\(982\) 0 0
\(983\) 35.9090 1.14532 0.572659 0.819794i \(-0.305912\pi\)
0.572659 + 0.819794i \(0.305912\pi\)
\(984\) 0 0
\(985\) 12.0000 0.382352
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 10.6410 0.338365
\(990\) 0 0
\(991\) −0.196152 −0.00623099 −0.00311549 0.999995i \(-0.500992\pi\)
−0.00311549 + 0.999995i \(0.500992\pi\)
\(992\) 0 0
\(993\) −52.7846 −1.67507
\(994\) 0 0
\(995\) −14.5359 −0.460819
\(996\) 0 0
\(997\) −21.6077 −0.684323 −0.342161 0.939641i \(-0.611159\pi\)
−0.342161 + 0.939641i \(0.611159\pi\)
\(998\) 0 0
\(999\) −18.1436 −0.574038
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3332.2.a.h.1.1 2
7.6 odd 2 68.2.a.a.1.2 2
21.20 even 2 612.2.a.e.1.2 2
28.27 even 2 272.2.a.e.1.1 2
35.13 even 4 1700.2.e.c.749.4 4
35.27 even 4 1700.2.e.c.749.1 4
35.34 odd 2 1700.2.a.d.1.1 2
56.13 odd 2 1088.2.a.p.1.1 2
56.27 even 2 1088.2.a.t.1.2 2
77.76 even 2 8228.2.a.k.1.2 2
84.83 odd 2 2448.2.a.y.1.2 2
119.6 even 16 1156.2.h.f.733.4 16
119.13 odd 4 1156.2.b.c.577.4 4
119.20 even 16 1156.2.h.f.757.4 16
119.27 even 16 1156.2.h.f.1001.4 16
119.41 even 16 1156.2.h.f.1001.1 16
119.48 even 16 1156.2.h.f.757.1 16
119.55 odd 4 1156.2.b.c.577.1 4
119.62 even 16 1156.2.h.f.733.1 16
119.76 odd 8 1156.2.e.d.829.1 8
119.83 odd 8 1156.2.e.d.905.1 8
119.90 even 16 1156.2.h.f.977.1 16
119.97 even 16 1156.2.h.f.977.4 16
119.104 odd 8 1156.2.e.d.905.4 8
119.111 odd 8 1156.2.e.d.829.4 8
119.118 odd 2 1156.2.a.a.1.1 2
140.139 even 2 6800.2.a.bh.1.2 2
168.83 odd 2 9792.2.a.cs.1.1 2
168.125 even 2 9792.2.a.cr.1.1 2
476.475 even 2 4624.2.a.x.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
68.2.a.a.1.2 2 7.6 odd 2
272.2.a.e.1.1 2 28.27 even 2
612.2.a.e.1.2 2 21.20 even 2
1088.2.a.p.1.1 2 56.13 odd 2
1088.2.a.t.1.2 2 56.27 even 2
1156.2.a.a.1.1 2 119.118 odd 2
1156.2.b.c.577.1 4 119.55 odd 4
1156.2.b.c.577.4 4 119.13 odd 4
1156.2.e.d.829.1 8 119.76 odd 8
1156.2.e.d.829.4 8 119.111 odd 8
1156.2.e.d.905.1 8 119.83 odd 8
1156.2.e.d.905.4 8 119.104 odd 8
1156.2.h.f.733.1 16 119.62 even 16
1156.2.h.f.733.4 16 119.6 even 16
1156.2.h.f.757.1 16 119.48 even 16
1156.2.h.f.757.4 16 119.20 even 16
1156.2.h.f.977.1 16 119.90 even 16
1156.2.h.f.977.4 16 119.97 even 16
1156.2.h.f.1001.1 16 119.41 even 16
1156.2.h.f.1001.4 16 119.27 even 16
1700.2.a.d.1.1 2 35.34 odd 2
1700.2.e.c.749.1 4 35.27 even 4
1700.2.e.c.749.4 4 35.13 even 4
2448.2.a.y.1.2 2 84.83 odd 2
3332.2.a.h.1.1 2 1.1 even 1 trivial
4624.2.a.x.1.2 2 476.475 even 2
6800.2.a.bh.1.2 2 140.139 even 2
8228.2.a.k.1.2 2 77.76 even 2
9792.2.a.cr.1.1 2 168.125 even 2
9792.2.a.cs.1.1 2 168.83 odd 2