Properties

Label 1156.2.h.f.757.4
Level $1156$
Weight $2$
Character 1156.757
Analytic conductor $9.231$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1156,2,Mod(733,1156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1156, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1156.733");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1156.h (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.23070647366\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{48})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 68)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 757.4
Root \(0.608761 + 0.793353i\) of defining polynomial
Character \(\chi\) \(=\) 1156.757
Dual form 1156.2.h.f.733.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.52409 + 1.04551i) q^{3} +(1.32565 - 3.20041i) q^{5} +(1.04551 + 2.52409i) q^{7} +(3.15660 + 3.15660i) q^{9} +(1.17143 - 0.485223i) q^{11} +5.46410i q^{13} +(6.69213 - 6.69213i) q^{15} +(-1.03528 + 1.03528i) q^{19} +7.46410i q^{21} +(-1.17143 + 0.485223i) q^{23} +(-4.94975 - 4.94975i) q^{25} +(1.53073 + 3.69552i) q^{27} +(1.32565 - 3.20041i) q^{29} +(-3.87674 - 1.60580i) q^{31} +3.46410 q^{33} +9.46410 q^{35} +(4.19062 + 1.73581i) q^{37} +(-5.71278 + 13.7919i) q^{39} +(2.29610 + 5.54328i) q^{41} +(-5.93426 - 5.93426i) q^{43} +(14.2870 - 5.91786i) q^{45} -6.92820i q^{47} +(-0.328169 + 0.328169i) q^{49} +(9.14162 - 9.14162i) q^{53} -4.39230i q^{55} +(-3.69552 + 1.53073i) q^{57} +(-1.79315 - 1.79315i) q^{59} +(-0.205079 - 0.495106i) q^{61} +(-4.66727 + 11.2678i) q^{63} +(17.4874 + 7.24351i) q^{65} -14.9282 q^{67} -3.46410 q^{69} +(-7.57226 - 3.13653i) q^{71} +(-0.765367 + 1.84776i) q^{73} +(-7.31857 - 17.6686i) q^{75} +(2.44949 + 2.44949i) q^{77} +(11.2678 - 4.66727i) q^{79} -2.46410i q^{81} +(1.79315 - 1.79315i) q^{83} +(6.69213 - 6.69213i) q^{87} -2.53590i q^{89} +(-13.7919 + 5.71278i) q^{91} +(-8.10634 - 8.10634i) q^{93} +(1.94089 + 4.68573i) q^{95} +(-1.88594 + 4.55307i) q^{97} +(5.22939 + 2.16609i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 96 q^{35} - 128 q^{67}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1156\mathbb{Z}\right)^\times\).

\(n\) \(579\) \(581\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.52409 + 1.04551i 1.45728 + 0.603626i 0.963918 0.266198i \(-0.0857674\pi\)
0.493363 + 0.869823i \(0.335767\pi\)
\(4\) 0 0
\(5\) 1.32565 3.20041i 0.592851 1.43127i −0.287887 0.957664i \(-0.592953\pi\)
0.880738 0.473604i \(-0.157047\pi\)
\(6\) 0 0
\(7\) 1.04551 + 2.52409i 0.395166 + 0.954015i 0.988796 + 0.149276i \(0.0476944\pi\)
−0.593630 + 0.804738i \(0.702306\pi\)
\(8\) 0 0
\(9\) 3.15660 + 3.15660i 1.05220 + 1.05220i
\(10\) 0 0
\(11\) 1.17143 0.485223i 0.353200 0.146300i −0.199027 0.979994i \(-0.563778\pi\)
0.552227 + 0.833694i \(0.313778\pi\)
\(12\) 0 0
\(13\) 5.46410i 1.51547i 0.652563 + 0.757735i \(0.273694\pi\)
−0.652563 + 0.757735i \(0.726306\pi\)
\(14\) 0 0
\(15\) 6.69213 6.69213i 1.72790 1.72790i
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −1.03528 + 1.03528i −0.237509 + 0.237509i −0.815818 0.578309i \(-0.803713\pi\)
0.578309 + 0.815818i \(0.303713\pi\)
\(20\) 0 0
\(21\) 7.46410i 1.62880i
\(22\) 0 0
\(23\) −1.17143 + 0.485223i −0.244261 + 0.101176i −0.501455 0.865184i \(-0.667202\pi\)
0.257195 + 0.966360i \(0.417202\pi\)
\(24\) 0 0
\(25\) −4.94975 4.94975i −0.989949 0.989949i
\(26\) 0 0
\(27\) 1.53073 + 3.69552i 0.294590 + 0.711203i
\(28\) 0 0
\(29\) 1.32565 3.20041i 0.246168 0.594302i −0.751704 0.659500i \(-0.770768\pi\)
0.997872 + 0.0651984i \(0.0207680\pi\)
\(30\) 0 0
\(31\) −3.87674 1.60580i −0.696283 0.288410i 0.00633216 0.999980i \(-0.497984\pi\)
−0.702615 + 0.711570i \(0.747984\pi\)
\(32\) 0 0
\(33\) 3.46410 0.603023
\(34\) 0 0
\(35\) 9.46410 1.59973
\(36\) 0 0
\(37\) 4.19062 + 1.73581i 0.688934 + 0.285366i 0.699556 0.714578i \(-0.253381\pi\)
−0.0106218 + 0.999944i \(0.503381\pi\)
\(38\) 0 0
\(39\) −5.71278 + 13.7919i −0.914776 + 2.20847i
\(40\) 0 0
\(41\) 2.29610 + 5.54328i 0.358591 + 0.865714i 0.995499 + 0.0947747i \(0.0302131\pi\)
−0.636908 + 0.770940i \(0.719787\pi\)
\(42\) 0 0
\(43\) −5.93426 5.93426i −0.904966 0.904966i 0.0908950 0.995860i \(-0.471027\pi\)
−0.995860 + 0.0908950i \(0.971027\pi\)
\(44\) 0 0
\(45\) 14.2870 5.91786i 2.12978 0.882182i
\(46\) 0 0
\(47\) 6.92820i 1.01058i −0.862949 0.505291i \(-0.831385\pi\)
0.862949 0.505291i \(-0.168615\pi\)
\(48\) 0 0
\(49\) −0.328169 + 0.328169i −0.0468813 + 0.0468813i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.14162 9.14162i 1.25570 1.25570i 0.302571 0.953127i \(-0.402155\pi\)
0.953127 0.302571i \(-0.0978451\pi\)
\(54\) 0 0
\(55\) 4.39230i 0.592258i
\(56\) 0 0
\(57\) −3.69552 + 1.53073i −0.489483 + 0.202751i
\(58\) 0 0
\(59\) −1.79315 1.79315i −0.233448 0.233448i 0.580682 0.814130i \(-0.302786\pi\)
−0.814130 + 0.580682i \(0.802786\pi\)
\(60\) 0 0
\(61\) −0.205079 0.495106i −0.0262577 0.0633918i 0.910207 0.414154i \(-0.135923\pi\)
−0.936465 + 0.350762i \(0.885923\pi\)
\(62\) 0 0
\(63\) −4.66727 + 11.2678i −0.588020 + 1.41961i
\(64\) 0 0
\(65\) 17.4874 + 7.24351i 2.16904 + 0.898447i
\(66\) 0 0
\(67\) −14.9282 −1.82377 −0.911885 0.410445i \(-0.865373\pi\)
−0.911885 + 0.410445i \(0.865373\pi\)
\(68\) 0 0
\(69\) −3.46410 −0.417029
\(70\) 0 0
\(71\) −7.57226 3.13653i −0.898662 0.372238i −0.114956 0.993371i \(-0.536673\pi\)
−0.783705 + 0.621133i \(0.786673\pi\)
\(72\) 0 0
\(73\) −0.765367 + 1.84776i −0.0895794 + 0.216264i −0.962319 0.271921i \(-0.912341\pi\)
0.872740 + 0.488185i \(0.162341\pi\)
\(74\) 0 0
\(75\) −7.31857 17.6686i −0.845076 2.04019i
\(76\) 0 0
\(77\) 2.44949 + 2.44949i 0.279145 + 0.279145i
\(78\) 0 0
\(79\) 11.2678 4.66727i 1.26772 0.525108i 0.355452 0.934694i \(-0.384327\pi\)
0.912271 + 0.409586i \(0.134327\pi\)
\(80\) 0 0
\(81\) 2.46410i 0.273789i
\(82\) 0 0
\(83\) 1.79315 1.79315i 0.196824 0.196824i −0.601813 0.798637i \(-0.705555\pi\)
0.798637 + 0.601813i \(0.205555\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 6.69213 6.69213i 0.717472 0.717472i
\(88\) 0 0
\(89\) 2.53590i 0.268805i −0.990927 0.134402i \(-0.957089\pi\)
0.990927 0.134402i \(-0.0429115\pi\)
\(90\) 0 0
\(91\) −13.7919 + 5.71278i −1.44578 + 0.598862i
\(92\) 0 0
\(93\) −8.10634 8.10634i −0.840589 0.840589i
\(94\) 0 0
\(95\) 1.94089 + 4.68573i 0.199131 + 0.480746i
\(96\) 0 0
\(97\) −1.88594 + 4.55307i −0.191488 + 0.462294i −0.990241 0.139366i \(-0.955494\pi\)
0.798753 + 0.601660i \(0.205494\pi\)
\(98\) 0 0
\(99\) 5.22939 + 2.16609i 0.525574 + 0.217700i
\(100\) 0 0
\(101\) 2.53590 0.252331 0.126166 0.992009i \(-0.459733\pi\)
0.126166 + 0.992009i \(0.459733\pi\)
\(102\) 0 0
\(103\) −10.9282 −1.07679 −0.538394 0.842693i \(-0.680969\pi\)
−0.538394 + 0.842693i \(0.680969\pi\)
\(104\) 0 0
\(105\) 23.8882 + 9.89482i 2.33125 + 0.965635i
\(106\) 0 0
\(107\) −4.10698 + 9.91512i −0.397037 + 0.958531i 0.591329 + 0.806431i \(0.298604\pi\)
−0.988365 + 0.152100i \(0.951396\pi\)
\(108\) 0 0
\(109\) 5.50770 + 13.2968i 0.527542 + 1.27360i 0.933129 + 0.359542i \(0.117067\pi\)
−0.405587 + 0.914056i \(0.632933\pi\)
\(110\) 0 0
\(111\) 8.76268 + 8.76268i 0.831717 + 0.831717i
\(112\) 0 0
\(113\) −18.3449 + 7.59872i −1.72575 + 0.714827i −0.726117 + 0.687571i \(0.758677\pi\)
−0.999628 + 0.0272562i \(0.991323\pi\)
\(114\) 0 0
\(115\) 4.39230i 0.409585i
\(116\) 0 0
\(117\) −17.2480 + 17.2480i −1.59457 + 1.59457i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −6.64136 + 6.64136i −0.603760 + 0.603760i
\(122\) 0 0
\(123\) 16.3923i 1.47804i
\(124\) 0 0
\(125\) −6.40083 + 2.65131i −0.572507 + 0.237140i
\(126\) 0 0
\(127\) −0.277401 0.277401i −0.0246154 0.0246154i 0.694692 0.719307i \(-0.255541\pi\)
−0.719307 + 0.694692i \(0.755541\pi\)
\(128\) 0 0
\(129\) −8.77424 21.1829i −0.772529 1.86505i
\(130\) 0 0
\(131\) 2.16609 5.22939i 0.189252 0.456894i −0.800564 0.599247i \(-0.795467\pi\)
0.989816 + 0.142353i \(0.0454668\pi\)
\(132\) 0 0
\(133\) −3.69552 1.53073i −0.320442 0.132731i
\(134\) 0 0
\(135\) 13.8564 1.19257
\(136\) 0 0
\(137\) 2.53590 0.216656 0.108328 0.994115i \(-0.465450\pi\)
0.108328 + 0.994115i \(0.465450\pi\)
\(138\) 0 0
\(139\) −13.6106 5.63771i −1.15444 0.478184i −0.278420 0.960460i \(-0.589811\pi\)
−0.876020 + 0.482275i \(0.839811\pi\)
\(140\) 0 0
\(141\) 7.24351 17.4874i 0.610014 1.47270i
\(142\) 0 0
\(143\) 2.65131 + 6.40083i 0.221714 + 0.535264i
\(144\) 0 0
\(145\) −8.48528 8.48528i −0.704664 0.704664i
\(146\) 0 0
\(147\) −1.17143 + 0.485223i −0.0966181 + 0.0400205i
\(148\) 0 0
\(149\) 6.00000i 0.491539i 0.969328 + 0.245770i \(0.0790407\pi\)
−0.969328 + 0.245770i \(0.920959\pi\)
\(150\) 0 0
\(151\) 9.52056 9.52056i 0.774772 0.774772i −0.204165 0.978937i \(-0.565448\pi\)
0.978937 + 0.204165i \(0.0654478\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.2784 + 10.2784i −0.825584 + 0.825584i
\(156\) 0 0
\(157\) 2.00000i 0.159617i −0.996810 0.0798087i \(-0.974569\pi\)
0.996810 0.0798087i \(-0.0254309\pi\)
\(158\) 0 0
\(159\) 32.6319 13.5166i 2.58788 1.07193i
\(160\) 0 0
\(161\) −2.44949 2.44949i −0.193047 0.193047i
\(162\) 0 0
\(163\) 7.87886 + 19.0213i 0.617120 + 1.48986i 0.855033 + 0.518573i \(0.173537\pi\)
−0.237913 + 0.971286i \(0.576463\pi\)
\(164\) 0 0
\(165\) 4.59220 11.0866i 0.357502 0.863087i
\(166\) 0 0
\(167\) −5.22939 2.16609i −0.404663 0.167617i 0.171062 0.985260i \(-0.445280\pi\)
−0.575725 + 0.817643i \(0.695280\pi\)
\(168\) 0 0
\(169\) −16.8564 −1.29665
\(170\) 0 0
\(171\) −6.53590 −0.499813
\(172\) 0 0
\(173\) −14.2870 5.91786i −1.08622 0.449926i −0.233532 0.972349i \(-0.575028\pi\)
−0.852686 + 0.522423i \(0.825028\pi\)
\(174\) 0 0
\(175\) 7.31857 17.6686i 0.553232 1.33562i
\(176\) 0 0
\(177\) −2.65131 6.40083i −0.199285 0.481115i
\(178\) 0 0
\(179\) 10.2784 + 10.2784i 0.768246 + 0.768246i 0.977798 0.209552i \(-0.0672004\pi\)
−0.209552 + 0.977798i \(0.567200\pi\)
\(180\) 0 0
\(181\) −4.19062 + 1.73581i −0.311487 + 0.129022i −0.532950 0.846147i \(-0.678917\pi\)
0.221463 + 0.975169i \(0.428917\pi\)
\(182\) 0 0
\(183\) 1.46410i 0.108230i
\(184\) 0 0
\(185\) 11.1106 11.1106i 0.816870 0.816870i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −7.72741 + 7.72741i −0.562086 + 0.562086i
\(190\) 0 0
\(191\) 12.0000i 0.868290i −0.900843 0.434145i \(-0.857051\pi\)
0.900843 0.434145i \(-0.142949\pi\)
\(192\) 0 0
\(193\) 19.3351 8.00888i 1.39177 0.576492i 0.444171 0.895942i \(-0.353498\pi\)
0.947603 + 0.319451i \(0.103498\pi\)
\(194\) 0 0
\(195\) 36.5665 + 36.5665i 2.61858 + 2.61858i
\(196\) 0 0
\(197\) 1.32565 + 3.20041i 0.0944490 + 0.228020i 0.964042 0.265748i \(-0.0856191\pi\)
−0.869593 + 0.493768i \(0.835619\pi\)
\(198\) 0 0
\(199\) 1.60580 3.87674i 0.113832 0.274815i −0.856688 0.515835i \(-0.827482\pi\)
0.970520 + 0.241020i \(0.0774819\pi\)
\(200\) 0 0
\(201\) −37.6801 15.6076i −2.65775 1.10087i
\(202\) 0 0
\(203\) 9.46410 0.664250
\(204\) 0 0
\(205\) 20.7846 1.45166
\(206\) 0 0
\(207\) −5.22939 2.16609i −0.363468 0.150553i
\(208\) 0 0
\(209\) −0.710416 + 1.71510i −0.0491405 + 0.118636i
\(210\) 0 0
\(211\) −0.895382 2.16164i −0.0616406 0.148814i 0.890058 0.455847i \(-0.150664\pi\)
−0.951699 + 0.307033i \(0.900664\pi\)
\(212\) 0 0
\(213\) −15.8338 15.8338i −1.08491 1.08491i
\(214\) 0 0
\(215\) −26.8588 + 11.1253i −1.83176 + 0.758739i
\(216\) 0 0
\(217\) 11.4641i 0.778234i
\(218\) 0 0
\(219\) −3.86370 + 3.86370i −0.261085 + 0.261085i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 8.76268 8.76268i 0.586793 0.586793i −0.349969 0.936761i \(-0.613808\pi\)
0.936761 + 0.349969i \(0.113808\pi\)
\(224\) 0 0
\(225\) 31.2487i 2.08325i
\(226\) 0 0
\(227\) −18.6588 + 7.72873i −1.23843 + 0.512974i −0.903223 0.429171i \(-0.858806\pi\)
−0.335206 + 0.942145i \(0.608806\pi\)
\(228\) 0 0
\(229\) 14.4195 + 14.4195i 0.952870 + 0.952870i 0.998938 0.0460685i \(-0.0146692\pi\)
−0.0460685 + 0.998938i \(0.514669\pi\)
\(230\) 0 0
\(231\) 3.62175 + 8.74369i 0.238294 + 0.575293i
\(232\) 0 0
\(233\) 2.29610 5.54328i 0.150423 0.363152i −0.830649 0.556796i \(-0.812031\pi\)
0.981072 + 0.193644i \(0.0620306\pi\)
\(234\) 0 0
\(235\) −22.1731 9.18440i −1.44641 0.599124i
\(236\) 0 0
\(237\) 33.3205 2.16440
\(238\) 0 0
\(239\) 20.7846 1.34444 0.672222 0.740349i \(-0.265340\pi\)
0.672222 + 0.740349i \(0.265340\pi\)
\(240\) 0 0
\(241\) 1.84776 + 0.765367i 0.119025 + 0.0493016i 0.441401 0.897310i \(-0.354482\pi\)
−0.322376 + 0.946612i \(0.604482\pi\)
\(242\) 0 0
\(243\) 7.16845 17.3062i 0.459856 1.11019i
\(244\) 0 0
\(245\) 0.615238 + 1.48532i 0.0393061 + 0.0948934i
\(246\) 0 0
\(247\) −5.65685 5.65685i −0.359937 0.359937i
\(248\) 0 0
\(249\) 6.40083 2.65131i 0.405636 0.168020i
\(250\) 0 0
\(251\) 6.92820i 0.437304i 0.975803 + 0.218652i \(0.0701660\pi\)
−0.975803 + 0.218652i \(0.929834\pi\)
\(252\) 0 0
\(253\) −1.13681 + 1.13681i −0.0714708 + 0.0714708i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −20.0764 + 20.0764i −1.25233 + 1.25233i −0.297658 + 0.954672i \(0.596206\pi\)
−0.954672 + 0.297658i \(0.903794\pi\)
\(258\) 0 0
\(259\) 12.3923i 0.770020i
\(260\) 0 0
\(261\) 14.2870 5.91786i 0.884341 0.366306i
\(262\) 0 0
\(263\) −8.00481 8.00481i −0.493598 0.493598i 0.415840 0.909438i \(-0.363488\pi\)
−0.909438 + 0.415840i \(0.863488\pi\)
\(264\) 0 0
\(265\) −17.1383 41.3756i −1.05280 2.54168i
\(266\) 0 0
\(267\) 2.65131 6.40083i 0.162257 0.391724i
\(268\) 0 0
\(269\) 25.3735 + 10.5101i 1.54705 + 0.640809i 0.982780 0.184780i \(-0.0591573\pi\)
0.564271 + 0.825590i \(0.309157\pi\)
\(270\) 0 0
\(271\) −1.07180 −0.0651070 −0.0325535 0.999470i \(-0.510364\pi\)
−0.0325535 + 0.999470i \(0.510364\pi\)
\(272\) 0 0
\(273\) −40.7846 −2.46840
\(274\) 0 0
\(275\) −8.20003 3.39656i −0.494480 0.204820i
\(276\) 0 0
\(277\) −2.44623 + 5.90572i −0.146980 + 0.354840i −0.980174 0.198141i \(-0.936510\pi\)
0.833194 + 0.552981i \(0.186510\pi\)
\(278\) 0 0
\(279\) −7.16845 17.3062i −0.429164 1.03609i
\(280\) 0 0
\(281\) −14.0406 14.0406i −0.837592 0.837592i 0.150950 0.988541i \(-0.451767\pi\)
−0.988541 + 0.150950i \(0.951767\pi\)
\(282\) 0 0
\(283\) −19.0213 + 7.87886i −1.13070 + 0.468350i −0.868017 0.496534i \(-0.834606\pi\)
−0.262679 + 0.964883i \(0.584606\pi\)
\(284\) 0 0
\(285\) 13.8564i 0.820783i
\(286\) 0 0
\(287\) −11.5911 + 11.5911i −0.684202 + 0.684202i
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −9.52056 + 9.52056i −0.558105 + 0.558105i
\(292\) 0 0
\(293\) 30.0000i 1.75262i −0.481749 0.876309i \(-0.659998\pi\)
0.481749 0.876309i \(-0.340002\pi\)
\(294\) 0 0
\(295\) −8.11592 + 3.36172i −0.472527 + 0.195727i
\(296\) 0 0
\(297\) 3.58630 + 3.58630i 0.208098 + 0.208098i
\(298\) 0 0
\(299\) −2.65131 6.40083i −0.153329 0.370169i
\(300\) 0 0
\(301\) 8.77424 21.1829i 0.505739 1.22096i
\(302\) 0 0
\(303\) 6.40083 + 2.65131i 0.367718 + 0.152314i
\(304\) 0 0
\(305\) −1.85641 −0.106298
\(306\) 0 0
\(307\) −24.7846 −1.41453 −0.707266 0.706947i \(-0.750072\pi\)
−0.707266 + 0.706947i \(0.750072\pi\)
\(308\) 0 0
\(309\) −27.5837 11.4256i −1.56918 0.649977i
\(310\) 0 0
\(311\) 1.19564 2.88653i 0.0677985 0.163680i −0.886348 0.463019i \(-0.846766\pi\)
0.954147 + 0.299339i \(0.0967662\pi\)
\(312\) 0 0
\(313\) −8.00888 19.3351i −0.452688 1.09289i −0.971296 0.237874i \(-0.923549\pi\)
0.518607 0.855012i \(-0.326451\pi\)
\(314\) 0 0
\(315\) 29.8744 + 29.8744i 1.68323 + 1.68323i
\(316\) 0 0
\(317\) −7.88614 + 3.26655i −0.442930 + 0.183468i −0.592991 0.805209i \(-0.702053\pi\)
0.150061 + 0.988677i \(0.452053\pi\)
\(318\) 0 0
\(319\) 4.39230i 0.245922i
\(320\) 0 0
\(321\) −20.7327 + 20.7327i −1.15719 + 1.15719i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 27.0459 27.0459i 1.50024 1.50024i
\(326\) 0 0
\(327\) 39.3205i 2.17443i
\(328\) 0 0
\(329\) 17.4874 7.24351i 0.964110 0.399348i
\(330\) 0 0
\(331\) −13.6617 13.6617i −0.750913 0.750913i 0.223737 0.974650i \(-0.428174\pi\)
−0.974650 + 0.223737i \(0.928174\pi\)
\(332\) 0 0
\(333\) 7.74885 + 18.7074i 0.424634 + 1.02516i
\(334\) 0 0
\(335\) −19.7896 + 47.7764i −1.08122 + 2.61030i
\(336\) 0 0
\(337\) 6.26816 + 2.59636i 0.341449 + 0.141433i 0.546817 0.837252i \(-0.315839\pi\)
−0.205369 + 0.978685i \(0.565839\pi\)
\(338\) 0 0
\(339\) −54.2487 −2.94639
\(340\) 0 0
\(341\) −5.32051 −0.288122
\(342\) 0 0
\(343\) 16.4972 + 6.83335i 0.890763 + 0.368966i
\(344\) 0 0
\(345\) −4.59220 + 11.0866i −0.247236 + 0.596880i
\(346\) 0 0
\(347\) 13.0314 + 31.4605i 0.699560 + 1.68889i 0.724572 + 0.689199i \(0.242037\pi\)
−0.0250126 + 0.999687i \(0.507963\pi\)
\(348\) 0 0
\(349\) 7.62587 + 7.62587i 0.408203 + 0.408203i 0.881112 0.472908i \(-0.156796\pi\)
−0.472908 + 0.881112i \(0.656796\pi\)
\(350\) 0 0
\(351\) −20.1927 + 8.36408i −1.07781 + 0.446442i
\(352\) 0 0
\(353\) 19.8564i 1.05685i −0.848980 0.528425i \(-0.822783\pi\)
0.848980 0.528425i \(-0.177217\pi\)
\(354\) 0 0
\(355\) −20.0764 + 20.0764i −1.06554 + 1.06554i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −16.4901 + 16.4901i −0.870314 + 0.870314i −0.992506 0.122193i \(-0.961007\pi\)
0.122193 + 0.992506i \(0.461007\pi\)
\(360\) 0 0
\(361\) 16.8564i 0.887179i
\(362\) 0 0
\(363\) −23.7070 + 9.81975i −1.24429 + 0.515403i
\(364\) 0 0
\(365\) 4.89898 + 4.89898i 0.256424 + 0.256424i
\(366\) 0 0
\(367\) 0.895382 + 2.16164i 0.0467386 + 0.112837i 0.945525 0.325551i \(-0.105550\pi\)
−0.898786 + 0.438388i \(0.855550\pi\)
\(368\) 0 0
\(369\) −10.2500 + 24.7458i −0.533595 + 1.28821i
\(370\) 0 0
\(371\) 32.6319 + 13.5166i 1.69416 + 0.701746i
\(372\) 0 0
\(373\) 8.39230 0.434537 0.217269 0.976112i \(-0.430285\pi\)
0.217269 + 0.976112i \(0.430285\pi\)
\(374\) 0 0
\(375\) −18.9282 −0.977448
\(376\) 0 0
\(377\) 17.4874 + 7.24351i 0.900646 + 0.373060i
\(378\) 0 0
\(379\) 2.01596 4.86695i 0.103553 0.249998i −0.863608 0.504164i \(-0.831801\pi\)
0.967161 + 0.254165i \(0.0818008\pi\)
\(380\) 0 0
\(381\) −0.410159 0.990211i −0.0210131 0.0507301i
\(382\) 0 0
\(383\) −1.79315 1.79315i −0.0916257 0.0916257i 0.659808 0.751434i \(-0.270637\pi\)
−0.751434 + 0.659808i \(0.770637\pi\)
\(384\) 0 0
\(385\) 11.0866 4.59220i 0.565023 0.234040i
\(386\) 0 0
\(387\) 37.4641i 1.90441i
\(388\) 0 0
\(389\) −26.2880 + 26.2880i −1.33286 + 1.33286i −0.430054 + 0.902803i \(0.641505\pi\)
−0.902803 + 0.430054i \(0.858495\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 10.9348 10.9348i 0.551586 0.551586i
\(394\) 0 0
\(395\) 42.2487i 2.12576i
\(396\) 0 0
\(397\) −5.18083 + 2.14597i −0.260019 + 0.107703i −0.508885 0.860835i \(-0.669942\pi\)
0.248866 + 0.968538i \(0.419942\pi\)
\(398\) 0 0
\(399\) −7.72741 7.72741i −0.386854 0.386854i
\(400\) 0 0
\(401\) 12.1909 + 29.4315i 0.608785 + 1.46974i 0.864322 + 0.502939i \(0.167748\pi\)
−0.255537 + 0.966799i \(0.582252\pi\)
\(402\) 0 0
\(403\) 8.77424 21.1829i 0.437076 1.05520i
\(404\) 0 0
\(405\) −7.88614 3.26655i −0.391866 0.162316i
\(406\) 0 0
\(407\) 5.75129 0.285081
\(408\) 0 0
\(409\) 17.7128 0.875842 0.437921 0.899013i \(-0.355715\pi\)
0.437921 + 0.899013i \(0.355715\pi\)
\(410\) 0 0
\(411\) 6.40083 + 2.65131i 0.315729 + 0.130779i
\(412\) 0 0
\(413\) 2.65131 6.40083i 0.130462 0.314964i
\(414\) 0 0
\(415\) −3.36172 8.11592i −0.165021 0.398395i
\(416\) 0 0
\(417\) −28.4601 28.4601i −1.39370 1.39370i
\(418\) 0 0
\(419\) 22.7168 9.40960i 1.10979 0.459689i 0.248923 0.968523i \(-0.419924\pi\)
0.860864 + 0.508835i \(0.169924\pi\)
\(420\) 0 0
\(421\) 22.2487i 1.08434i −0.840270 0.542168i \(-0.817604\pi\)
0.840270 0.542168i \(-0.182396\pi\)
\(422\) 0 0
\(423\) 21.8695 21.8695i 1.06333 1.06333i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.03528 1.03528i 0.0501005 0.0501005i
\(428\) 0 0
\(429\) 18.9282i 0.913862i
\(430\) 0 0
\(431\) 16.3159 6.75829i 0.785912 0.325535i 0.0466130 0.998913i \(-0.485157\pi\)
0.739299 + 0.673378i \(0.235157\pi\)
\(432\) 0 0
\(433\) −2.55103 2.55103i −0.122594 0.122594i 0.643148 0.765742i \(-0.277628\pi\)
−0.765742 + 0.643148i \(0.777628\pi\)
\(434\) 0 0
\(435\) −12.5461 30.2890i −0.601541 1.45225i
\(436\) 0 0
\(437\) 0.710416 1.71510i 0.0339838 0.0820442i
\(438\) 0 0
\(439\) 22.3543 + 9.25947i 1.06691 + 0.441930i 0.845901 0.533341i \(-0.179064\pi\)
0.221013 + 0.975271i \(0.429064\pi\)
\(440\) 0 0
\(441\) −2.07180 −0.0986570
\(442\) 0 0
\(443\) −20.7846 −0.987507 −0.493753 0.869602i \(-0.664375\pi\)
−0.493753 + 0.869602i \(0.664375\pi\)
\(444\) 0 0
\(445\) −8.11592 3.36172i −0.384732 0.159361i
\(446\) 0 0
\(447\) −6.27306 + 15.1445i −0.296706 + 0.716311i
\(448\) 0 0
\(449\) −2.29610 5.54328i −0.108360 0.261603i 0.860393 0.509630i \(-0.170218\pi\)
−0.968753 + 0.248027i \(0.920218\pi\)
\(450\) 0 0
\(451\) 5.37945 + 5.37945i 0.253309 + 0.253309i
\(452\) 0 0
\(453\) 33.9845 14.0769i 1.59673 0.661389i
\(454\) 0 0
\(455\) 51.7128i 2.42433i
\(456\) 0 0
\(457\) 14.4195 14.4195i 0.674517 0.674517i −0.284237 0.958754i \(-0.591740\pi\)
0.958754 + 0.284237i \(0.0917401\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 18.9396 18.9396i 0.882104 0.882104i −0.111644 0.993748i \(-0.535612\pi\)
0.993748 + 0.111644i \(0.0356117\pi\)
\(462\) 0 0
\(463\) 2.14359i 0.0996212i 0.998759 + 0.0498106i \(0.0158618\pi\)
−0.998759 + 0.0498106i \(0.984138\pi\)
\(464\) 0 0
\(465\) −36.6899 + 15.1974i −1.70145 + 0.704764i
\(466\) 0 0
\(467\) −10.2784 10.2784i −0.475629 0.475629i 0.428102 0.903731i \(-0.359183\pi\)
−0.903731 + 0.428102i \(0.859183\pi\)
\(468\) 0 0
\(469\) −15.6076 37.6801i −0.720692 1.73990i
\(470\) 0 0
\(471\) 2.09102 5.04817i 0.0963492 0.232607i
\(472\) 0 0
\(473\) −9.83102 4.07214i −0.452031 0.187237i
\(474\) 0 0
\(475\) 10.2487 0.470243
\(476\) 0 0
\(477\) 57.7128 2.64249
\(478\) 0 0
\(479\) −16.3159 6.75829i −0.745495 0.308794i −0.0225928 0.999745i \(-0.507192\pi\)
−0.722902 + 0.690951i \(0.757192\pi\)
\(480\) 0 0
\(481\) −9.48466 + 22.8980i −0.432463 + 1.04406i
\(482\) 0 0
\(483\) −3.62175 8.74369i −0.164796 0.397852i
\(484\) 0 0
\(485\) 12.0716 + 12.0716i 0.548142 + 0.548142i
\(486\) 0 0
\(487\) −5.59184 + 2.31621i −0.253390 + 0.104958i −0.505763 0.862672i \(-0.668789\pi\)
0.252373 + 0.967630i \(0.418789\pi\)
\(488\) 0 0
\(489\) 56.2487i 2.54365i
\(490\) 0 0
\(491\) 26.2880 26.2880i 1.18636 1.18636i 0.208298 0.978066i \(-0.433208\pi\)
0.978066 0.208298i \(-0.0667922\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 13.8647 13.8647i 0.623173 0.623173i
\(496\) 0 0
\(497\) 22.3923i 1.00443i
\(498\) 0 0
\(499\) 23.0792 9.55972i 1.03317 0.427952i 0.199313 0.979936i \(-0.436129\pi\)
0.833855 + 0.551984i \(0.186129\pi\)
\(500\) 0 0
\(501\) −10.9348 10.9348i −0.488530 0.488530i
\(502\) 0 0
\(503\) 10.3800 + 25.0596i 0.462823 + 1.11735i 0.967233 + 0.253890i \(0.0817100\pi\)
−0.504410 + 0.863464i \(0.668290\pi\)
\(504\) 0 0
\(505\) 3.36172 8.11592i 0.149595 0.361154i
\(506\) 0 0
\(507\) −42.5470 17.6236i −1.88958 0.782689i
\(508\) 0 0
\(509\) 21.7128 0.962404 0.481202 0.876610i \(-0.340200\pi\)
0.481202 + 0.876610i \(0.340200\pi\)
\(510\) 0 0
\(511\) −5.46410 −0.241718
\(512\) 0 0
\(513\) −5.41061 2.24115i −0.238884 0.0989492i
\(514\) 0 0
\(515\) −14.4870 + 34.9748i −0.638374 + 1.54117i
\(516\) 0 0
\(517\) −3.36172 8.11592i −0.147848 0.356938i
\(518\) 0 0
\(519\) −29.8744 29.8744i −1.31134 1.31134i
\(520\) 0 0
\(521\) 5.54328 2.29610i 0.242855 0.100594i −0.257936 0.966162i \(-0.583042\pi\)
0.500791 + 0.865568i \(0.333042\pi\)
\(522\) 0 0
\(523\) 12.7846i 0.559032i −0.960141 0.279516i \(-0.909826\pi\)
0.960141 0.279516i \(-0.0901740\pi\)
\(524\) 0 0
\(525\) 36.9454 36.9454i 1.61243 1.61243i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −15.1266 + 15.1266i −0.657680 + 0.657680i
\(530\) 0 0
\(531\) 11.3205i 0.491268i
\(532\) 0 0
\(533\) −30.2890 + 12.5461i −1.31196 + 0.543433i
\(534\) 0 0
\(535\) 26.2880 + 26.2880i 1.13653 + 1.13653i
\(536\) 0 0
\(537\) 15.1974 + 36.6899i 0.655818 + 1.58328i
\(538\) 0 0
\(539\) −0.225193 + 0.543664i −0.00969974 + 0.0234173i
\(540\) 0 0
\(541\) −16.9923 7.03843i −0.730555 0.302606i −0.0137749 0.999905i \(-0.504385\pi\)
−0.716780 + 0.697299i \(0.754385\pi\)
\(542\) 0 0
\(543\) −12.3923 −0.531805
\(544\) 0 0
\(545\) 49.8564 2.13561
\(546\) 0 0
\(547\) 39.4793 + 16.3528i 1.68801 + 0.699197i 0.999657 0.0261774i \(-0.00833347\pi\)
0.688354 + 0.725375i \(0.258333\pi\)
\(548\) 0 0
\(549\) 0.915495 2.21020i 0.0390724 0.0943291i
\(550\) 0 0
\(551\) 1.94089 + 4.68573i 0.0826848 + 0.199619i
\(552\) 0 0
\(553\) 23.5612 + 23.5612i 1.00192 + 1.00192i
\(554\) 0 0
\(555\) 39.6605 16.4279i 1.68349 0.697326i
\(556\) 0 0
\(557\) 26.5359i 1.12436i −0.827014 0.562181i \(-0.809962\pi\)
0.827014 0.562181i \(-0.190038\pi\)
\(558\) 0 0
\(559\) 32.4254 32.4254i 1.37145 1.37145i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −24.9754 + 24.9754i −1.05259 + 1.05259i −0.0540480 + 0.998538i \(0.517212\pi\)
−0.998538 + 0.0540480i \(0.982788\pi\)
\(564\) 0 0
\(565\) 68.7846i 2.89379i
\(566\) 0 0
\(567\) 6.21960 2.57624i 0.261199 0.108192i
\(568\) 0 0
\(569\) 5.55532 + 5.55532i 0.232891 + 0.232891i 0.813898 0.581007i \(-0.197341\pi\)
−0.581007 + 0.813898i \(0.697341\pi\)
\(570\) 0 0
\(571\) 4.25711 + 10.2776i 0.178154 + 0.430103i 0.987579 0.157120i \(-0.0502211\pi\)
−0.809425 + 0.587223i \(0.800221\pi\)
\(572\) 0 0
\(573\) 12.5461 30.2890i 0.524122 1.26534i
\(574\) 0 0
\(575\) 8.20003 + 3.39656i 0.341965 + 0.141646i
\(576\) 0 0
\(577\) 13.4641 0.560518 0.280259 0.959924i \(-0.409580\pi\)
0.280259 + 0.959924i \(0.409580\pi\)
\(578\) 0 0
\(579\) 57.1769 2.37619
\(580\) 0 0
\(581\) 6.40083 + 2.65131i 0.265551 + 0.109995i
\(582\) 0 0
\(583\) 6.27306 15.1445i 0.259804 0.627222i
\(584\) 0 0
\(585\) 32.3358 + 78.0654i 1.33692 + 3.22761i
\(586\) 0 0
\(587\) 20.0764 + 20.0764i 0.828641 + 0.828641i 0.987329 0.158688i \(-0.0507262\pi\)
−0.158688 + 0.987329i \(0.550726\pi\)
\(588\) 0 0
\(589\) 5.67594 2.35105i 0.233873 0.0968734i
\(590\) 0 0
\(591\) 9.46410i 0.389301i
\(592\) 0 0
\(593\) 2.92996 2.92996i 0.120319 0.120319i −0.644383 0.764703i \(-0.722886\pi\)
0.764703 + 0.644383i \(0.222886\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.10634 8.10634i 0.331771 0.331771i
\(598\) 0 0
\(599\) 27.7128i 1.13231i 0.824297 + 0.566157i \(0.191571\pi\)
−0.824297 + 0.566157i \(0.808429\pi\)
\(600\) 0 0
\(601\) 9.96368 4.12709i 0.406427 0.168348i −0.170098 0.985427i \(-0.554408\pi\)
0.576525 + 0.817080i \(0.304408\pi\)
\(602\) 0 0
\(603\) −47.1223 47.1223i −1.91897 1.91897i
\(604\) 0 0
\(605\) 12.4509 + 30.0593i 0.506203 + 1.22208i
\(606\) 0 0
\(607\) −14.8221 + 35.7837i −0.601611 + 1.45242i 0.270311 + 0.962773i \(0.412873\pi\)
−0.871922 + 0.489645i \(0.837127\pi\)
\(608\) 0 0
\(609\) 23.8882 + 9.89482i 0.967999 + 0.400958i
\(610\) 0 0
\(611\) 37.8564 1.53151
\(612\) 0 0
\(613\) −47.8564 −1.93290 −0.966451 0.256851i \(-0.917315\pi\)
−0.966451 + 0.256851i \(0.917315\pi\)
\(614\) 0 0
\(615\) 52.4621 + 21.7305i 2.11548 + 0.876260i
\(616\) 0 0
\(617\) 13.6118 32.8617i 0.547988 1.32296i −0.370984 0.928639i \(-0.620980\pi\)
0.918972 0.394322i \(-0.129020\pi\)
\(618\) 0 0
\(619\) −4.51714 10.9053i −0.181559 0.438322i 0.806729 0.590921i \(-0.201236\pi\)
−0.988288 + 0.152599i \(0.951236\pi\)
\(620\) 0 0
\(621\) −3.58630 3.58630i −0.143913 0.143913i
\(622\) 0 0
\(623\) 6.40083 2.65131i 0.256444 0.106222i
\(624\) 0 0
\(625\) 11.0000i 0.440000i
\(626\) 0 0
\(627\) −3.58630 + 3.58630i −0.143223 + 0.143223i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 29.3195 29.3195i 1.16719 1.16719i 0.184328 0.982865i \(-0.440989\pi\)
0.982865 0.184328i \(-0.0590109\pi\)
\(632\) 0 0
\(633\) 6.39230i 0.254071i
\(634\) 0 0
\(635\) −1.25554 + 0.520061i −0.0498245 + 0.0206380i
\(636\) 0 0
\(637\) −1.79315 1.79315i −0.0710472 0.0710472i
\(638\) 0 0
\(639\) −14.0018 33.8033i −0.553903 1.33724i
\(640\) 0 0
\(641\) −4.94741 + 11.9441i −0.195411 + 0.471764i −0.990965 0.134119i \(-0.957180\pi\)
0.795554 + 0.605882i \(0.207180\pi\)
\(642\) 0 0
\(643\) −30.1078 12.4711i −1.18734 0.491811i −0.300449 0.953798i \(-0.597137\pi\)
−0.886887 + 0.461987i \(0.847137\pi\)
\(644\) 0 0
\(645\) −79.4256 −3.12738
\(646\) 0 0
\(647\) 17.0718 0.671162 0.335581 0.942011i \(-0.391067\pi\)
0.335581 + 0.942011i \(0.391067\pi\)
\(648\) 0 0
\(649\) −2.97063 1.23048i −0.116608 0.0483004i
\(650\) 0 0
\(651\) 11.9858 28.9364i 0.469762 1.13411i
\(652\) 0 0
\(653\) 3.97696 + 9.60124i 0.155631 + 0.375725i 0.982393 0.186826i \(-0.0598199\pi\)
−0.826763 + 0.562551i \(0.809820\pi\)
\(654\) 0 0
\(655\) −13.8647 13.8647i −0.541740 0.541740i
\(656\) 0 0
\(657\) −8.24858 + 3.41668i −0.321808 + 0.133297i
\(658\) 0 0
\(659\) 42.9282i 1.67225i 0.548542 + 0.836123i \(0.315183\pi\)
−0.548542 + 0.836123i \(0.684817\pi\)
\(660\) 0 0
\(661\) 10.6574 10.6574i 0.414524 0.414524i −0.468787 0.883311i \(-0.655309\pi\)
0.883311 + 0.468787i \(0.155309\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −9.79796 + 9.79796i −0.379949 + 0.379949i
\(666\) 0 0
\(667\) 4.39230i 0.170071i
\(668\) 0 0
\(669\) 31.2792 12.9563i 1.20933 0.500919i
\(670\) 0 0
\(671\) −0.480473 0.480473i −0.0185485 0.0185485i
\(672\) 0 0
\(673\) 0.0549509 + 0.132663i 0.00211820 + 0.00511379i 0.924935 0.380125i \(-0.124119\pi\)
−0.922817 + 0.385239i \(0.874119\pi\)
\(674\) 0 0
\(675\) 10.7151 25.8686i 0.412426 0.995684i
\(676\) 0 0
\(677\) 22.4029 + 9.27958i 0.861013 + 0.356643i 0.769104 0.639124i \(-0.220703\pi\)
0.0919093 + 0.995767i \(0.470703\pi\)
\(678\) 0 0
\(679\) −13.4641 −0.516705
\(680\) 0 0
\(681\) −55.1769 −2.11438
\(682\) 0 0
\(683\) −42.5470 17.6236i −1.62802 0.674346i −0.633009 0.774145i \(-0.718180\pi\)
−0.995008 + 0.0997983i \(0.968180\pi\)
\(684\) 0 0
\(685\) 3.36172 8.11592i 0.128445 0.310093i
\(686\) 0 0
\(687\) 21.3204 + 51.4719i 0.813423 + 1.96378i
\(688\) 0 0
\(689\) 49.9507 + 49.9507i 1.90297 + 1.90297i
\(690\) 0 0
\(691\) 33.4409 13.8517i 1.27215 0.526942i 0.358534 0.933517i \(-0.383277\pi\)
0.913618 + 0.406575i \(0.133277\pi\)
\(692\) 0 0
\(693\) 15.4641i 0.587433i
\(694\) 0 0
\(695\) −36.0860 + 36.0860i −1.36882 + 1.36882i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 11.5911 11.5911i 0.438416 0.438416i
\(700\) 0 0
\(701\) 16.3923i 0.619129i 0.950878 + 0.309564i \(0.100183\pi\)
−0.950878 + 0.309564i \(0.899817\pi\)
\(702\) 0 0
\(703\) −6.13550 + 2.54141i −0.231405 + 0.0958510i
\(704\) 0 0
\(705\) −46.3644 46.3644i −1.74619 1.74619i
\(706\) 0 0
\(707\) 2.65131 + 6.40083i 0.0997127 + 0.240728i
\(708\) 0 0
\(709\) −6.21811 + 15.0119i −0.233526 + 0.563782i −0.996587 0.0825442i \(-0.973695\pi\)
0.763061 + 0.646326i \(0.223695\pi\)
\(710\) 0 0
\(711\) 50.3005 + 20.8351i 1.88642 + 0.781379i
\(712\) 0 0
\(713\) 5.32051 0.199255
\(714\) 0 0
\(715\) 24.0000 0.897549
\(716\) 0 0
\(717\) 52.4621 + 21.7305i 1.95923 + 0.811541i
\(718\) 0 0
\(719\) −16.6531 + 40.2042i −0.621056 + 1.49936i 0.229409 + 0.973330i \(0.426321\pi\)
−0.850465 + 0.526032i \(0.823679\pi\)
\(720\) 0 0
\(721\) −11.4256 27.5837i −0.425510 1.02727i
\(722\) 0 0
\(723\) 3.86370 + 3.86370i 0.143693 + 0.143693i
\(724\) 0 0
\(725\) −22.4029 + 9.27958i −0.832022 + 0.344635i
\(726\) 0 0
\(727\) 4.78461i 0.177451i 0.996056 + 0.0887257i \(0.0282794\pi\)
−0.996056 + 0.0887257i \(0.971721\pi\)
\(728\) 0 0
\(729\) 30.9604 30.9604i 1.14668 1.14668i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −13.2827 + 13.2827i −0.490609 + 0.490609i −0.908498 0.417889i \(-0.862770\pi\)
0.417889 + 0.908498i \(0.362770\pi\)
\(734\) 0 0
\(735\) 4.39230i 0.162013i
\(736\) 0 0
\(737\) −17.4874 + 7.24351i −0.644156 + 0.266818i
\(738\) 0 0
\(739\) −8.76268 8.76268i −0.322340 0.322340i 0.527324 0.849664i \(-0.323195\pi\)
−0.849664 + 0.527324i \(0.823195\pi\)
\(740\) 0 0
\(741\) −8.36408 20.1927i −0.307262 0.741797i
\(742\) 0 0
\(743\) 9.14956 22.0890i 0.335665 0.810367i −0.662456 0.749100i \(-0.730486\pi\)
0.998121 0.0612665i \(-0.0195140\pi\)
\(744\) 0 0
\(745\) 19.2025 + 7.95393i 0.703524 + 0.291409i
\(746\) 0 0
\(747\) 11.3205 0.414196
\(748\) 0 0
\(749\) −29.3205 −1.07135
\(750\) 0 0
\(751\) 17.3062 + 7.16845i 0.631511 + 0.261580i 0.675395 0.737456i \(-0.263973\pi\)
−0.0438841 + 0.999037i \(0.513973\pi\)
\(752\) 0 0
\(753\) −7.24351 + 17.4874i −0.263968 + 0.637276i
\(754\) 0 0
\(755\) −17.8487 43.0907i −0.649582 1.56823i
\(756\) 0 0
\(757\) 12.3490 + 12.3490i 0.448831 + 0.448831i 0.894966 0.446134i \(-0.147200\pi\)
−0.446134 + 0.894966i \(0.647200\pi\)
\(758\) 0 0
\(759\) −4.05796 + 1.68086i −0.147295 + 0.0610114i
\(760\) 0 0
\(761\) 16.3923i 0.594221i 0.954843 + 0.297110i \(0.0960229\pi\)
−0.954843 + 0.297110i \(0.903977\pi\)
\(762\) 0 0
\(763\) −27.8038 + 27.8038i −1.00657 + 1.00657i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.79796 9.79796i 0.353784 0.353784i
\(768\) 0 0
\(769\) 0.392305i 0.0141469i −0.999975 0.00707344i \(-0.997748\pi\)
0.999975 0.00707344i \(-0.00225156\pi\)
\(770\) 0 0
\(771\) −71.6646 + 29.6845i −2.58094 + 1.06906i
\(772\) 0 0
\(773\) 0.480473 + 0.480473i 0.0172814 + 0.0172814i 0.715695 0.698413i \(-0.246110\pi\)
−0.698413 + 0.715695i \(0.746110\pi\)
\(774\) 0 0
\(775\) 11.2406 + 27.1372i 0.403774 + 0.974796i
\(776\) 0 0
\(777\) −12.9563 + 31.2792i −0.464804 + 1.12214i
\(778\) 0 0
\(779\) −8.11592 3.36172i −0.290783 0.120446i
\(780\) 0 0
\(781\) −10.3923 −0.371866
\(782\) 0 0
\(783\) 13.8564 0.495188
\(784\) 0 0
\(785\) −6.40083 2.65131i −0.228455 0.0946293i
\(786\) 0 0
\(787\) −8.84931 + 21.3641i −0.315444 + 0.761549i 0.684041 + 0.729444i \(0.260221\pi\)
−0.999485 + 0.0321048i \(0.989779\pi\)
\(788\) 0 0
\(789\) −11.8357 28.5739i −0.421362 1.01726i
\(790\) 0 0
\(791\) −38.3596 38.3596i −1.36391 1.36391i
\(792\) 0 0
\(793\) 2.70531 1.12057i 0.0960683 0.0397928i
\(794\) 0 0
\(795\) 122.354i 4.33944i
\(796\) 0 0
\(797\) 1.96902 1.96902i 0.0697461 0.0697461i −0.671373 0.741119i \(-0.734295\pi\)
0.741119 + 0.671373i \(0.234295\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 8.00481 8.00481i 0.282836 0.282836i
\(802\) 0 0
\(803\) 2.53590i 0.0894899i
\(804\) 0 0
\(805\) −11.0866 + 4.59220i −0.390750 + 0.161854i
\(806\) 0 0
\(807\) 53.0566 + 53.0566i 1.86768 + 1.86768i
\(808\) 0 0
\(809\) −3.00652 7.25837i −0.105703 0.255191i 0.862174 0.506612i \(-0.169102\pi\)
−0.967878 + 0.251421i \(0.919102\pi\)
\(810\) 0 0
\(811\) −14.3021 + 34.5282i −0.502213 + 1.21245i 0.446063 + 0.895002i \(0.352826\pi\)
−0.948276 + 0.317448i \(0.897174\pi\)
\(812\) 0 0
\(813\) −2.70531 1.12057i −0.0948793 0.0393003i
\(814\) 0 0
\(815\) 71.3205 2.49825
\(816\) 0 0
\(817\) 12.2872 0.429874
\(818\) 0 0
\(819\) −61.5683 25.5024i −2.15137 0.891126i
\(820\) 0 0
\(821\) −17.2335 + 41.6054i −0.601454 + 1.45204i 0.270632 + 0.962683i \(0.412767\pi\)
−0.872085 + 0.489354i \(0.837233\pi\)
\(822\) 0 0
\(823\) −0.635352 1.53387i −0.0221470 0.0534675i 0.912419 0.409257i \(-0.134212\pi\)
−0.934566 + 0.355789i \(0.884212\pi\)
\(824\) 0 0
\(825\) −17.1464 17.1464i −0.596962 0.596962i
\(826\) 0 0
\(827\) 18.0310 7.46870i 0.627001 0.259712i −0.0464774 0.998919i \(-0.514800\pi\)
0.673478 + 0.739207i \(0.264800\pi\)
\(828\) 0 0
\(829\) 39.8564i 1.38427i 0.721768 + 0.692135i \(0.243330\pi\)
−0.721768 + 0.692135i \(0.756670\pi\)
\(830\) 0 0
\(831\) −12.3490 + 12.3490i −0.428382 + 0.428382i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −13.8647 + 13.8647i −0.479809 + 0.479809i
\(836\) 0 0
\(837\) 16.7846i 0.580161i
\(838\) 0 0
\(839\) 4.14207 1.71570i 0.143000 0.0592325i −0.310036 0.950725i \(-0.600341\pi\)
0.453036 + 0.891492i \(0.350341\pi\)
\(840\) 0 0
\(841\) 12.0208 + 12.0208i 0.414511 + 0.414511i
\(842\) 0 0
\(843\) −20.7601 50.1193i −0.715015 1.72620i
\(844\) 0 0
\(845\) −22.3458 + 53.9475i −0.768718 + 1.85585i
\(846\) 0 0
\(847\) −23.7070 9.81975i −0.814582 0.337411i
\(848\) 0 0
\(849\) −56.2487 −1.93045
\(850\) 0 0
\(851\) −5.75129 −0.197152
\(852\) 0 0
\(853\) 7.62082 + 3.15665i 0.260932 + 0.108081i 0.509314 0.860581i \(-0.329899\pi\)
−0.248383 + 0.968662i \(0.579899\pi\)
\(854\) 0 0
\(855\) −8.66434 + 20.9176i −0.296314 + 0.715366i
\(856\) 0 0
\(857\) −6.36824 15.3743i −0.217535 0.525176i 0.777010 0.629489i \(-0.216736\pi\)
−0.994545 + 0.104313i \(0.966736\pi\)
\(858\) 0 0
\(859\) −19.3185 19.3185i −0.659139 0.659139i 0.296037 0.955176i \(-0.404335\pi\)
−0.955176 + 0.296037i \(0.904335\pi\)
\(860\) 0 0
\(861\) −41.3756 + 17.1383i −1.41008 + 0.584073i
\(862\) 0 0
\(863\) 10.1436i 0.345292i 0.984984 + 0.172646i \(0.0552317\pi\)
−0.984984 + 0.172646i \(0.944768\pi\)
\(864\) 0 0
\(865\) −37.8792 + 37.8792i −1.28793 + 1.28793i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 10.9348 10.9348i 0.370937 0.370937i
\(870\) 0 0
\(871\) 81.5692i 2.76387i
\(872\) 0 0
\(873\) −20.3253 + 8.41904i −0.687909 + 0.284941i
\(874\) 0 0
\(875\) −13.3843 13.3843i −0.452471 0.452471i
\(876\) 0 0
\(877\) 3.67671 + 8.87635i 0.124154 + 0.299733i 0.973720 0.227748i \(-0.0731364\pi\)
−0.849566 + 0.527482i \(0.823136\pi\)
\(878\) 0 0
\(879\) 31.3653 75.7226i 1.05793 2.55406i
\(880\) 0 0
\(881\) 35.8323 + 14.8422i 1.20722 + 0.500047i 0.893326 0.449410i \(-0.148366\pi\)
0.313896 + 0.949458i \(0.398366\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) −24.0000 −0.806751
\(886\) 0 0
\(887\) 10.5429 + 4.36701i 0.353996 + 0.146630i 0.552593 0.833451i \(-0.313639\pi\)
−0.198597 + 0.980081i \(0.563639\pi\)
\(888\) 0 0
\(889\) 0.410159 0.990211i 0.0137563 0.0332106i
\(890\) 0 0
\(891\) −1.19564 2.88653i −0.0400554 0.0967023i
\(892\) 0 0
\(893\) 7.17260 + 7.17260i 0.240022 + 0.240022i
\(894\) 0 0
\(895\) 46.5209 19.2696i 1.55502 0.644111i
\(896\) 0 0
\(897\) 18.9282i 0.631994i
\(898\) 0 0
\(899\) −10.2784 + 10.2784i −0.342805 + 0.342805i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 44.2939 44.2939i 1.47401 1.47401i
\(904\) 0 0
\(905\) 15.7128i 0.522312i
\(906\) 0 0
\(907\) 31.8229 13.1815i 1.05666 0.437684i 0.214397 0.976747i \(-0.431221\pi\)
0.842266 + 0.539063i \(0.181221\pi\)
\(908\) 0 0
\(909\) 8.00481 + 8.00481i 0.265503 + 0.265503i
\(910\) 0 0
\(911\) −6.04787 14.6009i −0.200375 0.483748i 0.791469 0.611210i \(-0.209317\pi\)
−0.991843 + 0.127462i \(0.959317\pi\)
\(912\) 0 0
\(913\) 1.23048 2.97063i 0.0407228 0.0983136i
\(914\) 0 0
\(915\) −4.68573 1.94089i −0.154905 0.0641639i
\(916\) 0 0
\(917\) 15.4641 0.510670
\(918\) 0 0
\(919\) −52.0000 −1.71532 −0.857661 0.514216i \(-0.828083\pi\)
−0.857661 + 0.514216i \(0.828083\pi\)
\(920\) 0 0
\(921\) −62.5585 25.9126i −2.06137 0.853848i
\(922\) 0 0
\(923\) 17.1383 41.3756i 0.564115 1.36189i
\(924\) 0 0
\(925\) −12.1507 29.3344i −0.399512 0.964508i
\(926\) 0 0
\(927\) −34.4959 34.4959i −1.13299 1.13299i
\(928\) 0 0
\(929\) 8.97347 3.71693i 0.294410 0.121949i −0.230590 0.973051i \(-0.574065\pi\)
0.525000 + 0.851102i \(0.324065\pi\)
\(930\) 0 0
\(931\) 0.679492i 0.0222694i
\(932\) 0 0
\(933\) 6.03579 6.03579i 0.197603 0.197603i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0.101536 0.101536i 0.00331704 0.00331704i −0.705446 0.708763i \(-0.749253\pi\)
0.708763 + 0.705446i \(0.249253\pi\)
\(938\) 0 0
\(939\) 57.1769i 1.86590i
\(940\) 0 0
\(941\) 38.1752 15.8127i 1.24448 0.515478i 0.339365 0.940655i \(-0.389788\pi\)
0.905110 + 0.425176i \(0.139788\pi\)
\(942\) 0 0
\(943\) −5.37945 5.37945i −0.175179 0.175179i
\(944\) 0 0
\(945\) 14.4870 + 34.9748i 0.471263 + 1.13773i
\(946\) 0 0
\(947\) 18.8540 45.5176i 0.612674 1.47912i −0.247379 0.968919i \(-0.579569\pi\)
0.860052 0.510206i \(-0.170431\pi\)
\(948\) 0 0
\(949\) −10.0963 4.18204i −0.327741 0.135755i
\(950\) 0 0
\(951\) −23.3205 −0.756219
\(952\) 0 0
\(953\) 6.24871 0.202416 0.101208 0.994865i \(-0.467729\pi\)
0.101208 + 0.994865i \(0.467729\pi\)
\(954\) 0 0
\(955\) −38.4050 15.9079i −1.24276 0.514766i
\(956\) 0 0
\(957\) 4.59220 11.0866i 0.148445 0.358377i
\(958\) 0 0
\(959\) 2.65131 + 6.40083i 0.0856152 + 0.206693i
\(960\) 0 0
\(961\) −9.46979 9.46979i −0.305477 0.305477i
\(962\) 0 0
\(963\) −44.2621 + 18.3340i −1.42633 + 0.590804i
\(964\) 0 0
\(965\) 72.4974i 2.33377i
\(966\) 0 0
\(967\) −19.5216 + 19.5216i −0.627772 + 0.627772i −0.947507 0.319735i \(-0.896406\pi\)
0.319735 + 0.947507i \(0.396406\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 14.2165 14.2165i 0.456228 0.456228i −0.441187 0.897415i \(-0.645442\pi\)
0.897415 + 0.441187i \(0.145442\pi\)
\(972\) 0 0
\(973\) 40.2487i 1.29031i
\(974\) 0 0
\(975\) 96.5430 39.9894i 3.09185 1.28069i
\(976\) 0 0
\(977\) 29.6985 + 29.6985i 0.950139 + 0.950139i 0.998815 0.0486759i \(-0.0155002\pi\)
−0.0486759 + 0.998815i \(0.515500\pi\)
\(978\) 0 0
\(979\) −1.23048 2.97063i −0.0393262 0.0949419i
\(980\) 0 0
\(981\) −24.5869 + 59.3581i −0.785000 + 1.89516i
\(982\) 0 0
\(983\) 33.1756 + 13.7418i 1.05814 + 0.438294i 0.842789 0.538243i \(-0.180912\pi\)
0.215347 + 0.976538i \(0.430912\pi\)
\(984\) 0 0
\(985\) 12.0000 0.382352
\(986\) 0 0
\(987\) 51.7128 1.64604
\(988\) 0 0
\(989\) 9.83102 + 4.07214i 0.312608 + 0.129487i
\(990\) 0 0
\(991\) 0.0750643 0.181221i 0.00238450 0.00575668i −0.922683 0.385560i \(-0.874008\pi\)
0.925067 + 0.379803i \(0.124008\pi\)
\(992\) 0 0
\(993\) −20.1998 48.7666i −0.641021 1.54756i
\(994\) 0 0
\(995\) −10.2784 10.2784i −0.325848 0.325848i
\(996\) 0 0
\(997\) −19.9629 + 8.26891i −0.632232 + 0.261879i −0.675701 0.737176i \(-0.736159\pi\)
0.0434693 + 0.999055i \(0.486159\pi\)
\(998\) 0 0
\(999\) 18.1436i 0.574038i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1156.2.h.f.757.4 16
17.2 even 8 inner 1156.2.h.f.733.4 16
17.3 odd 16 1156.2.e.d.829.4 8
17.4 even 4 inner 1156.2.h.f.977.4 16
17.5 odd 16 1156.2.e.d.905.1 8
17.6 odd 16 68.2.a.a.1.2 2
17.7 odd 16 1156.2.b.c.577.1 4
17.8 even 8 inner 1156.2.h.f.1001.1 16
17.9 even 8 inner 1156.2.h.f.1001.4 16
17.10 odd 16 1156.2.b.c.577.4 4
17.11 odd 16 1156.2.a.a.1.1 2
17.12 odd 16 1156.2.e.d.905.4 8
17.13 even 4 inner 1156.2.h.f.977.1 16
17.14 odd 16 1156.2.e.d.829.1 8
17.15 even 8 inner 1156.2.h.f.733.1 16
17.16 even 2 inner 1156.2.h.f.757.1 16
51.23 even 16 612.2.a.e.1.2 2
68.11 even 16 4624.2.a.x.1.2 2
68.23 even 16 272.2.a.e.1.1 2
85.23 even 16 1700.2.e.c.749.4 4
85.57 even 16 1700.2.e.c.749.1 4
85.74 odd 16 1700.2.a.d.1.1 2
119.6 even 16 3332.2.a.h.1.1 2
136.91 even 16 1088.2.a.t.1.2 2
136.125 odd 16 1088.2.a.p.1.1 2
187.142 even 16 8228.2.a.k.1.2 2
204.23 odd 16 2448.2.a.y.1.2 2
340.159 even 16 6800.2.a.bh.1.2 2
408.125 even 16 9792.2.a.cr.1.1 2
408.227 odd 16 9792.2.a.cs.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
68.2.a.a.1.2 2 17.6 odd 16
272.2.a.e.1.1 2 68.23 even 16
612.2.a.e.1.2 2 51.23 even 16
1088.2.a.p.1.1 2 136.125 odd 16
1088.2.a.t.1.2 2 136.91 even 16
1156.2.a.a.1.1 2 17.11 odd 16
1156.2.b.c.577.1 4 17.7 odd 16
1156.2.b.c.577.4 4 17.10 odd 16
1156.2.e.d.829.1 8 17.14 odd 16
1156.2.e.d.829.4 8 17.3 odd 16
1156.2.e.d.905.1 8 17.5 odd 16
1156.2.e.d.905.4 8 17.12 odd 16
1156.2.h.f.733.1 16 17.15 even 8 inner
1156.2.h.f.733.4 16 17.2 even 8 inner
1156.2.h.f.757.1 16 17.16 even 2 inner
1156.2.h.f.757.4 16 1.1 even 1 trivial
1156.2.h.f.977.1 16 17.13 even 4 inner
1156.2.h.f.977.4 16 17.4 even 4 inner
1156.2.h.f.1001.1 16 17.8 even 8 inner
1156.2.h.f.1001.4 16 17.9 even 8 inner
1700.2.a.d.1.1 2 85.74 odd 16
1700.2.e.c.749.1 4 85.57 even 16
1700.2.e.c.749.4 4 85.23 even 16
2448.2.a.y.1.2 2 204.23 odd 16
3332.2.a.h.1.1 2 119.6 even 16
4624.2.a.x.1.2 2 68.11 even 16
6800.2.a.bh.1.2 2 340.159 even 16
8228.2.a.k.1.2 2 187.142 even 16
9792.2.a.cr.1.1 2 408.125 even 16
9792.2.a.cs.1.1 2 408.227 odd 16