Properties

Label 1156.2.h.f.733.2
Level $1156$
Weight $2$
Character 1156.733
Analytic conductor $9.231$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1156,2,Mod(733,1156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1156, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1156.733");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1156.h (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.23070647366\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{48})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 68)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 733.2
Root \(-0.991445 - 0.130526i\) of defining polynomial
Character \(\chi\) \(=\) 1156.733
Dual form 1156.2.h.f.757.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.676327 + 0.280144i) q^{3} +(-1.32565 - 3.20041i) q^{5} +(-0.280144 + 0.676327i) q^{7} +(-1.74238 + 1.74238i) q^{9} +(4.37184 + 1.81088i) q^{11} +1.46410i q^{13} +(1.79315 + 1.79315i) q^{15} +(3.86370 + 3.86370i) q^{19} -0.535898i q^{21} +(-4.37184 - 1.81088i) q^{23} +(-4.94975 + 4.94975i) q^{25} +(1.53073 - 3.69552i) q^{27} +(-1.32565 - 3.20041i) q^{29} +(5.72450 - 2.37116i) q^{31} -3.46410 q^{33} +2.53590 q^{35} +(10.5914 - 4.38712i) q^{37} +(-0.410159 - 0.990211i) q^{39} +(2.29610 - 5.54328i) q^{41} +(8.76268 - 8.76268i) q^{43} +(7.88614 + 3.26655i) q^{45} -6.92820i q^{47} +(4.57081 + 4.57081i) q^{49} +(-0.656339 - 0.656339i) q^{53} -16.3923i q^{55} +(-3.69552 - 1.53073i) q^{57} +(-6.69213 + 6.69213i) q^{59} +(-2.85639 + 6.89593i) q^{61} +(-0.690303 - 1.66654i) q^{63} +(4.68573 - 1.94089i) q^{65} -1.07180 q^{67} +3.46410 q^{69} +(2.02898 - 0.840431i) q^{71} +(-0.765367 - 1.84776i) q^{73} +(1.96101 - 4.73429i) q^{75} +(-2.44949 + 2.44949i) q^{77} +(1.66654 + 0.690303i) q^{79} -4.46410i q^{81} +(6.69213 + 6.69213i) q^{83} +(1.79315 + 1.79315i) q^{87} +9.46410i q^{89} +(-0.990211 - 0.410159i) q^{91} +(-3.20736 + 3.20736i) q^{93} +(7.24351 - 17.4874i) q^{95} +(3.41668 + 8.24858i) q^{97} +(-10.7727 + 4.46219i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 96 q^{35} - 128 q^{67}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1156\mathbb{Z}\right)^\times\).

\(n\) \(579\) \(581\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.676327 + 0.280144i −0.390477 + 0.161741i −0.569280 0.822144i \(-0.692778\pi\)
0.178802 + 0.983885i \(0.442778\pi\)
\(4\) 0 0
\(5\) −1.32565 3.20041i −0.592851 1.43127i −0.880738 0.473604i \(-0.842953\pi\)
0.287887 0.957664i \(-0.407047\pi\)
\(6\) 0 0
\(7\) −0.280144 + 0.676327i −0.105884 + 0.255627i −0.967938 0.251190i \(-0.919178\pi\)
0.862053 + 0.506817i \(0.169178\pi\)
\(8\) 0 0
\(9\) −1.74238 + 1.74238i −0.580794 + 0.580794i
\(10\) 0 0
\(11\) 4.37184 + 1.81088i 1.31816 + 0.546000i 0.927255 0.374431i \(-0.122162\pi\)
0.390906 + 0.920431i \(0.372162\pi\)
\(12\) 0 0
\(13\) 1.46410i 0.406069i 0.979172 + 0.203034i \(0.0650803\pi\)
−0.979172 + 0.203034i \(0.934920\pi\)
\(14\) 0 0
\(15\) 1.79315 + 1.79315i 0.462990 + 0.462990i
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 3.86370 + 3.86370i 0.886394 + 0.886394i 0.994175 0.107780i \(-0.0343743\pi\)
−0.107780 + 0.994175i \(0.534374\pi\)
\(20\) 0 0
\(21\) 0.535898i 0.116943i
\(22\) 0 0
\(23\) −4.37184 1.81088i −0.911593 0.377594i −0.122927 0.992416i \(-0.539228\pi\)
−0.788666 + 0.614822i \(0.789228\pi\)
\(24\) 0 0
\(25\) −4.94975 + 4.94975i −0.989949 + 0.989949i
\(26\) 0 0
\(27\) 1.53073 3.69552i 0.294590 0.711203i
\(28\) 0 0
\(29\) −1.32565 3.20041i −0.246168 0.594302i 0.751704 0.659500i \(-0.229232\pi\)
−0.997872 + 0.0651984i \(0.979232\pi\)
\(30\) 0 0
\(31\) 5.72450 2.37116i 1.02815 0.425874i 0.196106 0.980583i \(-0.437170\pi\)
0.832044 + 0.554709i \(0.187170\pi\)
\(32\) 0 0
\(33\) −3.46410 −0.603023
\(34\) 0 0
\(35\) 2.53590 0.428645
\(36\) 0 0
\(37\) 10.5914 4.38712i 1.74122 0.721238i 0.742548 0.669793i \(-0.233617\pi\)
0.998676 0.0514451i \(-0.0163827\pi\)
\(38\) 0 0
\(39\) −0.410159 0.990211i −0.0656780 0.158561i
\(40\) 0 0
\(41\) 2.29610 5.54328i 0.358591 0.865714i −0.636908 0.770940i \(-0.719787\pi\)
0.995499 0.0947747i \(-0.0302131\pi\)
\(42\) 0 0
\(43\) 8.76268 8.76268i 1.33630 1.33630i 0.436679 0.899617i \(-0.356154\pi\)
0.899617 0.436679i \(-0.143846\pi\)
\(44\) 0 0
\(45\) 7.88614 + 3.26655i 1.17560 + 0.486948i
\(46\) 0 0
\(47\) 6.92820i 1.01058i −0.862949 0.505291i \(-0.831385\pi\)
0.862949 0.505291i \(-0.168615\pi\)
\(48\) 0 0
\(49\) 4.57081 + 4.57081i 0.652973 + 0.652973i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.656339 0.656339i −0.0901551 0.0901551i 0.660591 0.750746i \(-0.270306\pi\)
−0.750746 + 0.660591i \(0.770306\pi\)
\(54\) 0 0
\(55\) 16.3923i 2.21034i
\(56\) 0 0
\(57\) −3.69552 1.53073i −0.489483 0.202751i
\(58\) 0 0
\(59\) −6.69213 + 6.69213i −0.871241 + 0.871241i −0.992608 0.121367i \(-0.961272\pi\)
0.121367 + 0.992608i \(0.461272\pi\)
\(60\) 0 0
\(61\) −2.85639 + 6.89593i −0.365723 + 0.882933i 0.628718 + 0.777634i \(0.283580\pi\)
−0.994441 + 0.105300i \(0.966420\pi\)
\(62\) 0 0
\(63\) −0.690303 1.66654i −0.0869700 0.209964i
\(64\) 0 0
\(65\) 4.68573 1.94089i 0.581193 0.240738i
\(66\) 0 0
\(67\) −1.07180 −0.130941 −0.0654704 0.997855i \(-0.520855\pi\)
−0.0654704 + 0.997855i \(0.520855\pi\)
\(68\) 0 0
\(69\) 3.46410 0.417029
\(70\) 0 0
\(71\) 2.02898 0.840431i 0.240796 0.0997408i −0.259022 0.965871i \(-0.583400\pi\)
0.499818 + 0.866131i \(0.333400\pi\)
\(72\) 0 0
\(73\) −0.765367 1.84776i −0.0895794 0.216264i 0.872740 0.488185i \(-0.162341\pi\)
−0.962319 + 0.271921i \(0.912341\pi\)
\(74\) 0 0
\(75\) 1.96101 4.73429i 0.226437 0.546668i
\(76\) 0 0
\(77\) −2.44949 + 2.44949i −0.279145 + 0.279145i
\(78\) 0 0
\(79\) 1.66654 + 0.690303i 0.187500 + 0.0776651i 0.474458 0.880278i \(-0.342644\pi\)
−0.286958 + 0.957943i \(0.592644\pi\)
\(80\) 0 0
\(81\) 4.46410i 0.496011i
\(82\) 0 0
\(83\) 6.69213 + 6.69213i 0.734557 + 0.734557i 0.971519 0.236962i \(-0.0761517\pi\)
−0.236962 + 0.971519i \(0.576152\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.79315 + 1.79315i 0.192246 + 0.192246i
\(88\) 0 0
\(89\) 9.46410i 1.00319i 0.865102 + 0.501596i \(0.167254\pi\)
−0.865102 + 0.501596i \(0.832746\pi\)
\(90\) 0 0
\(91\) −0.990211 0.410159i −0.103802 0.0429963i
\(92\) 0 0
\(93\) −3.20736 + 3.20736i −0.332588 + 0.332588i
\(94\) 0 0
\(95\) 7.24351 17.4874i 0.743168 1.79417i
\(96\) 0 0
\(97\) 3.41668 + 8.24858i 0.346911 + 0.837517i 0.996981 + 0.0776429i \(0.0247394\pi\)
−0.650070 + 0.759874i \(0.725261\pi\)
\(98\) 0 0
\(99\) −10.7727 + 4.46219i −1.08269 + 0.448467i
\(100\) 0 0
\(101\) 9.46410 0.941713 0.470857 0.882210i \(-0.343945\pi\)
0.470857 + 0.882210i \(0.343945\pi\)
\(102\) 0 0
\(103\) 2.92820 0.288524 0.144262 0.989539i \(-0.453919\pi\)
0.144262 + 0.989539i \(0.453919\pi\)
\(104\) 0 0
\(105\) −1.71510 + 0.710416i −0.167376 + 0.0693295i
\(106\) 0 0
\(107\) −2.78132 6.71471i −0.268881 0.649135i 0.730550 0.682859i \(-0.239264\pi\)
−0.999431 + 0.0337232i \(0.989264\pi\)
\(108\) 0 0
\(109\) −2.44623 + 5.90572i −0.234306 + 0.565665i −0.996675 0.0814773i \(-0.974036\pi\)
0.762369 + 0.647143i \(0.224036\pi\)
\(110\) 0 0
\(111\) −5.93426 + 5.93426i −0.563255 + 0.563255i
\(112\) 0 0
\(113\) 7.25837 + 3.00652i 0.682810 + 0.282829i 0.697001 0.717070i \(-0.254517\pi\)
−0.0141908 + 0.999899i \(0.504517\pi\)
\(114\) 0 0
\(115\) 16.3923i 1.52859i
\(116\) 0 0
\(117\) −2.55103 2.55103i −0.235842 0.235842i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 8.05558 + 8.05558i 0.732325 + 0.732325i
\(122\) 0 0
\(123\) 4.39230i 0.396041i
\(124\) 0 0
\(125\) 6.40083 + 2.65131i 0.572507 + 0.237140i
\(126\) 0 0
\(127\) 14.4195 14.4195i 1.27953 1.27953i 0.338595 0.940932i \(-0.390048\pi\)
0.940932 0.338595i \(-0.109952\pi\)
\(128\) 0 0
\(129\) −3.47163 + 8.38125i −0.305660 + 0.737928i
\(130\) 0 0
\(131\) −4.46219 10.7727i −0.389863 0.941213i −0.989968 0.141291i \(-0.954875\pi\)
0.600105 0.799921i \(-0.295125\pi\)
\(132\) 0 0
\(133\) −3.69552 + 1.53073i −0.320442 + 0.132731i
\(134\) 0 0
\(135\) −13.8564 −1.19257
\(136\) 0 0
\(137\) 9.46410 0.808573 0.404286 0.914632i \(-0.367520\pi\)
0.404286 + 0.914632i \(0.367520\pi\)
\(138\) 0 0
\(139\) −10.4102 + 4.31206i −0.882984 + 0.365744i −0.777653 0.628693i \(-0.783590\pi\)
−0.105331 + 0.994437i \(0.533590\pi\)
\(140\) 0 0
\(141\) 1.94089 + 4.68573i 0.163453 + 0.394610i
\(142\) 0 0
\(143\) −2.65131 + 6.40083i −0.221714 + 0.535264i
\(144\) 0 0
\(145\) −8.48528 + 8.48528i −0.704664 + 0.704664i
\(146\) 0 0
\(147\) −4.37184 1.81088i −0.360584 0.149359i
\(148\) 0 0
\(149\) 6.00000i 0.491539i −0.969328 0.245770i \(-0.920959\pi\)
0.969328 0.245770i \(-0.0790407\pi\)
\(150\) 0 0
\(151\) 4.62158 + 4.62158i 0.376099 + 0.376099i 0.869693 0.493594i \(-0.164317\pi\)
−0.493594 + 0.869693i \(0.664317\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −15.1774 15.1774i −1.21908 1.21908i
\(156\) 0 0
\(157\) 2.00000i 0.159617i 0.996810 + 0.0798087i \(0.0254309\pi\)
−0.996810 + 0.0798087i \(0.974569\pi\)
\(158\) 0 0
\(159\) 0.627769 + 0.260030i 0.0497853 + 0.0206217i
\(160\) 0 0
\(161\) 2.44949 2.44949i 0.193047 0.193047i
\(162\) 0 0
\(163\) −4.05203 + 9.78246i −0.317379 + 0.766221i 0.682012 + 0.731341i \(0.261105\pi\)
−0.999391 + 0.0348805i \(0.988895\pi\)
\(164\) 0 0
\(165\) 4.59220 + 11.0866i 0.357502 + 0.863087i
\(166\) 0 0
\(167\) 10.7727 4.46219i 0.833614 0.345294i 0.0752818 0.997162i \(-0.476014\pi\)
0.758332 + 0.651868i \(0.226014\pi\)
\(168\) 0 0
\(169\) 10.8564 0.835108
\(170\) 0 0
\(171\) −13.4641 −1.02963
\(172\) 0 0
\(173\) −7.88614 + 3.26655i −0.599572 + 0.248351i −0.661763 0.749713i \(-0.730191\pi\)
0.0621905 + 0.998064i \(0.480191\pi\)
\(174\) 0 0
\(175\) −1.96101 4.73429i −0.148238 0.357878i
\(176\) 0 0
\(177\) 2.65131 6.40083i 0.199285 0.481115i
\(178\) 0 0
\(179\) 15.1774 15.1774i 1.13441 1.13441i 0.144978 0.989435i \(-0.453689\pi\)
0.989435 0.144978i \(-0.0463112\pi\)
\(180\) 0 0
\(181\) −10.5914 4.38712i −0.787256 0.326092i −0.0474163 0.998875i \(-0.515099\pi\)
−0.739840 + 0.672783i \(0.765099\pi\)
\(182\) 0 0
\(183\) 5.46410i 0.403918i
\(184\) 0 0
\(185\) −28.0812 28.0812i −2.06457 2.06457i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 2.07055 + 2.07055i 0.150611 + 0.150611i
\(190\) 0 0
\(191\) 12.0000i 0.868290i 0.900843 + 0.434145i \(0.142949\pi\)
−0.900843 + 0.434145i \(0.857051\pi\)
\(192\) 0 0
\(193\) 6.53349 + 2.70626i 0.470291 + 0.194801i 0.605226 0.796054i \(-0.293083\pi\)
−0.134935 + 0.990854i \(0.543083\pi\)
\(194\) 0 0
\(195\) −2.62536 + 2.62536i −0.188006 + 0.188006i
\(196\) 0 0
\(197\) −1.32565 + 3.20041i −0.0944490 + 0.228020i −0.964042 0.265748i \(-0.914381\pi\)
0.869593 + 0.493768i \(0.164381\pi\)
\(198\) 0 0
\(199\) −2.37116 5.72450i −0.168087 0.405799i 0.817280 0.576240i \(-0.195481\pi\)
−0.985368 + 0.170441i \(0.945481\pi\)
\(200\) 0 0
\(201\) 0.724885 0.300257i 0.0511294 0.0211785i
\(202\) 0 0
\(203\) 2.53590 0.177985
\(204\) 0 0
\(205\) −20.7846 −1.45166
\(206\) 0 0
\(207\) 10.7727 4.46219i 0.748752 0.310143i
\(208\) 0 0
\(209\) 9.89482 + 23.8882i 0.684439 + 1.65238i
\(210\) 0 0
\(211\) −7.52365 + 18.1637i −0.517950 + 1.25044i 0.421211 + 0.906963i \(0.361605\pi\)
−0.939161 + 0.343478i \(0.888395\pi\)
\(212\) 0 0
\(213\) −1.13681 + 1.13681i −0.0778931 + 0.0778931i
\(214\) 0 0
\(215\) −39.6605 16.4279i −2.70482 1.12037i
\(216\) 0 0
\(217\) 4.53590i 0.307917i
\(218\) 0 0
\(219\) 1.03528 + 1.03528i 0.0699575 + 0.0699575i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −5.93426 5.93426i −0.397387 0.397387i 0.479923 0.877310i \(-0.340664\pi\)
−0.877310 + 0.479923i \(0.840664\pi\)
\(224\) 0 0
\(225\) 17.2487i 1.14991i
\(226\) 0 0
\(227\) −9.05757 3.75177i −0.601172 0.249014i 0.0612766 0.998121i \(-0.480483\pi\)
−0.662449 + 0.749107i \(0.730483\pi\)
\(228\) 0 0
\(229\) −0.277401 + 0.277401i −0.0183312 + 0.0183312i −0.716213 0.697882i \(-0.754126\pi\)
0.697882 + 0.716213i \(0.254126\pi\)
\(230\) 0 0
\(231\) 0.970446 2.34286i 0.0638507 0.154149i
\(232\) 0 0
\(233\) 2.29610 + 5.54328i 0.150423 + 0.363152i 0.981072 0.193644i \(-0.0620306\pi\)
−0.830649 + 0.556796i \(0.812031\pi\)
\(234\) 0 0
\(235\) −22.1731 + 9.18440i −1.44641 + 0.599124i
\(236\) 0 0
\(237\) −1.32051 −0.0857762
\(238\) 0 0
\(239\) −20.7846 −1.34444 −0.672222 0.740349i \(-0.734660\pi\)
−0.672222 + 0.740349i \(0.734660\pi\)
\(240\) 0 0
\(241\) 1.84776 0.765367i 0.119025 0.0493016i −0.322376 0.946612i \(-0.604482\pi\)
0.441401 + 0.897310i \(0.354482\pi\)
\(242\) 0 0
\(243\) 5.84279 + 14.1057i 0.374815 + 0.904884i
\(244\) 0 0
\(245\) 8.56916 20.6878i 0.547464 1.32169i
\(246\) 0 0
\(247\) −5.65685 + 5.65685i −0.359937 + 0.359937i
\(248\) 0 0
\(249\) −6.40083 2.65131i −0.405636 0.168020i
\(250\) 0 0
\(251\) 6.92820i 0.437304i 0.975803 + 0.218652i \(0.0701660\pi\)
−0.975803 + 0.218652i \(0.929834\pi\)
\(252\) 0 0
\(253\) −15.8338 15.8338i −0.995459 0.995459i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.37945 5.37945i −0.335561 0.335561i 0.519133 0.854694i \(-0.326255\pi\)
−0.854694 + 0.519133i \(0.826255\pi\)
\(258\) 0 0
\(259\) 8.39230i 0.521472i
\(260\) 0 0
\(261\) 7.88614 + 3.26655i 0.488140 + 0.202194i
\(262\) 0 0
\(263\) 16.4901 16.4901i 1.01682 1.01682i 0.0169664 0.999856i \(-0.494599\pi\)
0.999856 0.0169664i \(-0.00540084\pi\)
\(264\) 0 0
\(265\) −1.23048 + 2.97063i −0.0755876 + 0.182485i
\(266\) 0 0
\(267\) −2.65131 6.40083i −0.162257 0.391724i
\(268\) 0 0
\(269\) 18.9727 7.85875i 1.15679 0.479156i 0.279982 0.960005i \(-0.409671\pi\)
0.876803 + 0.480849i \(0.159671\pi\)
\(270\) 0 0
\(271\) −14.9282 −0.906824 −0.453412 0.891301i \(-0.649793\pi\)
−0.453412 + 0.891301i \(0.649793\pi\)
\(272\) 0 0
\(273\) 0.784610 0.0474867
\(274\) 0 0
\(275\) −30.6029 + 12.6761i −1.84543 + 0.764400i
\(276\) 0 0
\(277\) 5.50770 + 13.2968i 0.330925 + 0.798925i 0.998519 + 0.0543990i \(0.0173243\pi\)
−0.667594 + 0.744526i \(0.732676\pi\)
\(278\) 0 0
\(279\) −5.84279 + 14.1057i −0.349799 + 0.844489i
\(280\) 0 0
\(281\) 5.55532 5.55532i 0.331403 0.331403i −0.521716 0.853119i \(-0.674708\pi\)
0.853119 + 0.521716i \(0.174708\pi\)
\(282\) 0 0
\(283\) 9.78246 + 4.05203i 0.581507 + 0.240868i 0.653992 0.756501i \(-0.273093\pi\)
−0.0724852 + 0.997369i \(0.523093\pi\)
\(284\) 0 0
\(285\) 13.8564i 0.820783i
\(286\) 0 0
\(287\) 3.10583 + 3.10583i 0.183331 + 0.183331i
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −4.62158 4.62158i −0.270922 0.270922i
\(292\) 0 0
\(293\) 30.0000i 1.75262i 0.481749 + 0.876309i \(0.340002\pi\)
−0.481749 + 0.876309i \(0.659998\pi\)
\(294\) 0 0
\(295\) 30.2890 + 12.5461i 1.76350 + 0.730464i
\(296\) 0 0
\(297\) 13.3843 13.3843i 0.776634 0.776634i
\(298\) 0 0
\(299\) 2.65131 6.40083i 0.153329 0.370169i
\(300\) 0 0
\(301\) 3.47163 + 8.38125i 0.200101 + 0.483087i
\(302\) 0 0
\(303\) −6.40083 + 2.65131i −0.367718 + 0.152314i
\(304\) 0 0
\(305\) 25.8564 1.48053
\(306\) 0 0
\(307\) 16.7846 0.957948 0.478974 0.877829i \(-0.341009\pi\)
0.478974 + 0.877829i \(0.341009\pi\)
\(308\) 0 0
\(309\) −1.98042 + 0.820318i −0.112662 + 0.0466662i
\(310\) 0 0
\(311\) −8.08394 19.5164i −0.458398 1.10667i −0.969046 0.246881i \(-0.920594\pi\)
0.510648 0.859790i \(-0.329406\pi\)
\(312\) 0 0
\(313\) −2.70626 + 6.53349i −0.152967 + 0.369295i −0.981723 0.190315i \(-0.939049\pi\)
0.828756 + 0.559610i \(0.189049\pi\)
\(314\) 0 0
\(315\) −4.41851 + 4.41851i −0.248955 + 0.248955i
\(316\) 0 0
\(317\) −14.2870 5.91786i −0.802436 0.332380i −0.0565043 0.998402i \(-0.517995\pi\)
−0.745932 + 0.666022i \(0.767995\pi\)
\(318\) 0 0
\(319\) 16.3923i 0.917793i
\(320\) 0 0
\(321\) 3.76217 + 3.76217i 0.209984 + 0.209984i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −7.24693 7.24693i −0.401988 0.401988i
\(326\) 0 0
\(327\) 4.67949i 0.258776i
\(328\) 0 0
\(329\) 4.68573 + 1.94089i 0.258333 + 0.107005i
\(330\) 0 0
\(331\) 10.8332 10.8332i 0.595448 0.595448i −0.343650 0.939098i \(-0.611663\pi\)
0.939098 + 0.343650i \(0.111663\pi\)
\(332\) 0 0
\(333\) −10.8103 + 26.0984i −0.592402 + 1.43018i
\(334\) 0 0
\(335\) 1.42083 + 3.43019i 0.0776283 + 0.187411i
\(336\) 0 0
\(337\) −32.1368 + 13.3115i −1.75060 + 0.725123i −0.752844 + 0.658199i \(0.771319\pi\)
−0.997758 + 0.0669248i \(0.978681\pi\)
\(338\) 0 0
\(339\) −5.75129 −0.312367
\(340\) 0 0
\(341\) 29.3205 1.58779
\(342\) 0 0
\(343\) −9.10613 + 3.77188i −0.491685 + 0.203663i
\(344\) 0 0
\(345\) −4.59220 11.0866i −0.247236 0.596880i
\(346\) 0 0
\(347\) −1.55085 + 3.74408i −0.0832538 + 0.200993i −0.960024 0.279916i \(-0.909693\pi\)
0.876771 + 0.480909i \(0.159693\pi\)
\(348\) 0 0
\(349\) −21.7680 + 21.7680i −1.16521 + 1.16521i −0.181897 + 0.983318i \(0.558224\pi\)
−0.983318 + 0.181897i \(0.941776\pi\)
\(350\) 0 0
\(351\) 5.41061 + 2.24115i 0.288797 + 0.119624i
\(352\) 0 0
\(353\) 7.85641i 0.418154i −0.977899 0.209077i \(-0.932954\pi\)
0.977899 0.209077i \(-0.0670460\pi\)
\(354\) 0 0
\(355\) −5.37945 5.37945i −0.285512 0.285512i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.00481 + 8.00481i 0.422478 + 0.422478i 0.886056 0.463578i \(-0.153435\pi\)
−0.463578 + 0.886056i \(0.653435\pi\)
\(360\) 0 0
\(361\) 10.8564i 0.571390i
\(362\) 0 0
\(363\) −7.70492 3.19148i −0.404403 0.167509i
\(364\) 0 0
\(365\) −4.89898 + 4.89898i −0.256424 + 0.256424i
\(366\) 0 0
\(367\) 7.52365 18.1637i 0.392732 0.948138i −0.596611 0.802531i \(-0.703486\pi\)
0.989342 0.145607i \(-0.0465136\pi\)
\(368\) 0 0
\(369\) 5.65783 + 13.6592i 0.294535 + 0.711069i
\(370\) 0 0
\(371\) 0.627769 0.260030i 0.0325921 0.0135001i
\(372\) 0 0
\(373\) −12.3923 −0.641649 −0.320825 0.947139i \(-0.603960\pi\)
−0.320825 + 0.947139i \(0.603960\pi\)
\(374\) 0 0
\(375\) −5.07180 −0.261906
\(376\) 0 0
\(377\) 4.68573 1.94089i 0.241327 0.0999611i
\(378\) 0 0
\(379\) 3.34161 + 8.06736i 0.171647 + 0.414393i 0.986170 0.165739i \(-0.0530010\pi\)
−0.814523 + 0.580132i \(0.803001\pi\)
\(380\) 0 0
\(381\) −5.71278 + 13.7919i −0.292674 + 0.706578i
\(382\) 0 0
\(383\) −6.69213 + 6.69213i −0.341952 + 0.341952i −0.857101 0.515149i \(-0.827737\pi\)
0.515149 + 0.857101i \(0.327737\pi\)
\(384\) 0 0
\(385\) 11.0866 + 4.59220i 0.565023 + 0.234040i
\(386\) 0 0
\(387\) 30.5359i 1.55223i
\(388\) 0 0
\(389\) 17.8028 + 17.8028i 0.902636 + 0.902636i 0.995664 0.0930274i \(-0.0296544\pi\)
−0.0930274 + 0.995664i \(0.529654\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 6.03579 + 6.03579i 0.304465 + 0.304465i
\(394\) 0 0
\(395\) 6.24871i 0.314407i
\(396\) 0 0
\(397\) −24.3833 10.0999i −1.22376 0.506899i −0.325159 0.945659i \(-0.605418\pi\)
−0.898604 + 0.438760i \(0.855418\pi\)
\(398\) 0 0
\(399\) 2.07055 2.07055i 0.103657 0.103657i
\(400\) 0 0
\(401\) 1.58568 3.82818i 0.0791853 0.191170i −0.879329 0.476215i \(-0.842008\pi\)
0.958514 + 0.285045i \(0.0920084\pi\)
\(402\) 0 0
\(403\) 3.47163 + 8.38125i 0.172934 + 0.417500i
\(404\) 0 0
\(405\) −14.2870 + 5.91786i −0.709925 + 0.294061i
\(406\) 0 0
\(407\) 54.2487 2.68901
\(408\) 0 0
\(409\) −37.7128 −1.86478 −0.932389 0.361456i \(-0.882280\pi\)
−0.932389 + 0.361456i \(0.882280\pi\)
\(410\) 0 0
\(411\) −6.40083 + 2.65131i −0.315729 + 0.130779i
\(412\) 0 0
\(413\) −2.65131 6.40083i −0.130462 0.314964i
\(414\) 0 0
\(415\) 12.5461 30.2890i 0.615865 1.48683i
\(416\) 0 0
\(417\) 5.83272 5.83272i 0.285630 0.285630i
\(418\) 0 0
\(419\) −6.08694 2.52129i −0.297367 0.123173i 0.229012 0.973424i \(-0.426450\pi\)
−0.526379 + 0.850250i \(0.676450\pi\)
\(420\) 0 0
\(421\) 26.2487i 1.27928i −0.768673 0.639642i \(-0.779083\pi\)
0.768673 0.639642i \(-0.220917\pi\)
\(422\) 0 0
\(423\) 12.0716 + 12.0716i 0.586940 + 0.586940i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −3.86370 3.86370i −0.186978 0.186978i
\(428\) 0 0
\(429\) 5.07180i 0.244869i
\(430\) 0 0
\(431\) 0.313884 + 0.130015i 0.0151193 + 0.00626261i 0.390230 0.920717i \(-0.372395\pi\)
−0.375111 + 0.926980i \(0.622395\pi\)
\(432\) 0 0
\(433\) −17.2480 + 17.2480i −0.828884 + 0.828884i −0.987362 0.158478i \(-0.949341\pi\)
0.158478 + 0.987362i \(0.449341\pi\)
\(434\) 0 0
\(435\) 3.36172 8.11592i 0.161182 0.389129i
\(436\) 0 0
\(437\) −9.89482 23.8882i −0.473333 1.14273i
\(438\) 0 0
\(439\) 12.7531 5.28250i 0.608672 0.252120i −0.0569887 0.998375i \(-0.518150\pi\)
0.665661 + 0.746255i \(0.268150\pi\)
\(440\) 0 0
\(441\) −15.9282 −0.758486
\(442\) 0 0
\(443\) 20.7846 0.987507 0.493753 0.869602i \(-0.335625\pi\)
0.493753 + 0.869602i \(0.335625\pi\)
\(444\) 0 0
\(445\) 30.2890 12.5461i 1.43584 0.594743i
\(446\) 0 0
\(447\) 1.68086 + 4.05796i 0.0795021 + 0.191935i
\(448\) 0 0
\(449\) −2.29610 + 5.54328i −0.108360 + 0.261603i −0.968753 0.248027i \(-0.920218\pi\)
0.860393 + 0.509630i \(0.170218\pi\)
\(450\) 0 0
\(451\) 20.0764 20.0764i 0.945360 0.945360i
\(452\) 0 0
\(453\) −4.42040 1.83099i −0.207689 0.0860275i
\(454\) 0 0
\(455\) 3.71281i 0.174059i
\(456\) 0 0
\(457\) −0.277401 0.277401i −0.0129763 0.0129763i 0.700589 0.713565i \(-0.252921\pi\)
−0.713565 + 0.700589i \(0.752921\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.4543 10.4543i −0.486905 0.486905i 0.420423 0.907328i \(-0.361882\pi\)
−0.907328 + 0.420423i \(0.861882\pi\)
\(462\) 0 0
\(463\) 29.8564i 1.38754i −0.720194 0.693772i \(-0.755947\pi\)
0.720194 0.693772i \(-0.244053\pi\)
\(464\) 0 0
\(465\) 14.5167 + 6.01303i 0.673198 + 0.278848i
\(466\) 0 0
\(467\) −15.1774 + 15.1774i −0.702327 + 0.702327i −0.964910 0.262583i \(-0.915426\pi\)
0.262583 + 0.964910i \(0.415426\pi\)
\(468\) 0 0
\(469\) 0.300257 0.724885i 0.0138646 0.0334721i
\(470\) 0 0
\(471\) −0.560287 1.35265i −0.0258167 0.0623270i
\(472\) 0 0
\(473\) 54.1772 22.4409i 2.49107 1.03184i
\(474\) 0 0
\(475\) −38.2487 −1.75497
\(476\) 0 0
\(477\) 2.28719 0.104723
\(478\) 0 0
\(479\) −0.313884 + 0.130015i −0.0143417 + 0.00594054i −0.389843 0.920881i \(-0.627471\pi\)
0.375501 + 0.926822i \(0.377471\pi\)
\(480\) 0 0
\(481\) 6.42319 + 15.5070i 0.292872 + 0.707056i
\(482\) 0 0
\(483\) −0.970446 + 2.34286i −0.0441568 + 0.106604i
\(484\) 0 0
\(485\) 21.8695 21.8695i 0.993045 0.993045i
\(486\) 0 0
\(487\) 29.6127 + 12.2660i 1.34188 + 0.555825i 0.934020 0.357220i \(-0.116275\pi\)
0.407859 + 0.913045i \(0.366275\pi\)
\(488\) 0 0
\(489\) 7.75129i 0.350525i
\(490\) 0 0
\(491\) −17.8028 17.8028i −0.803428 0.803428i 0.180202 0.983630i \(-0.442325\pi\)
−0.983630 + 0.180202i \(0.942325\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 28.5617 + 28.5617i 1.28375 + 1.28375i
\(496\) 0 0
\(497\) 1.60770i 0.0721150i
\(498\) 0 0
\(499\) −24.9270 10.3251i −1.11588 0.462215i −0.252924 0.967486i \(-0.581392\pi\)
−0.862960 + 0.505272i \(0.831392\pi\)
\(500\) 0 0
\(501\) −6.03579 + 6.03579i −0.269659 + 0.269659i
\(502\) 0 0
\(503\) 1.10046 2.65675i 0.0490672 0.118459i −0.897445 0.441125i \(-0.854579\pi\)
0.946513 + 0.322667i \(0.104579\pi\)
\(504\) 0 0
\(505\) −12.5461 30.2890i −0.558295 1.34784i
\(506\) 0 0
\(507\) −7.34248 + 3.04135i −0.326091 + 0.135071i
\(508\) 0 0
\(509\) −33.7128 −1.49429 −0.747147 0.664659i \(-0.768577\pi\)
−0.747147 + 0.664659i \(0.768577\pi\)
\(510\) 0 0
\(511\) 1.46410 0.0647680
\(512\) 0 0
\(513\) 20.1927 8.36408i 0.891529 0.369283i
\(514\) 0 0
\(515\) −3.88179 9.37146i −0.171052 0.412956i
\(516\) 0 0
\(517\) 12.5461 30.2890i 0.551778 1.33211i
\(518\) 0 0
\(519\) 4.41851 4.41851i 0.193951 0.193951i
\(520\) 0 0
\(521\) 5.54328 + 2.29610i 0.242855 + 0.100594i 0.500791 0.865568i \(-0.333042\pi\)
−0.257936 + 0.966162i \(0.583042\pi\)
\(522\) 0 0
\(523\) 28.7846i 1.25866i −0.777137 0.629332i \(-0.783329\pi\)
0.777137 0.629332i \(-0.216671\pi\)
\(524\) 0 0
\(525\) 2.65256 + 2.65256i 0.115767 + 0.115767i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.429705 0.429705i −0.0186828 0.0186828i
\(530\) 0 0
\(531\) 23.3205i 1.01202i
\(532\) 0 0
\(533\) 8.11592 + 3.36172i 0.351540 + 0.145612i
\(534\) 0 0
\(535\) −17.8028 + 17.8028i −0.769681 + 0.769681i
\(536\) 0 0
\(537\) −6.01303 + 14.5167i −0.259482 + 0.626444i
\(538\) 0 0
\(539\) 11.7057 + 28.2600i 0.504200 + 1.21725i
\(540\) 0 0
\(541\) 2.21020 0.915495i 0.0950240 0.0393602i −0.334665 0.942337i \(-0.608623\pi\)
0.429689 + 0.902977i \(0.358623\pi\)
\(542\) 0 0
\(543\) 8.39230 0.360148
\(544\) 0 0
\(545\) 22.1436 0.948527
\(546\) 0 0
\(547\) 36.2789 15.0272i 1.55117 0.642516i 0.567644 0.823274i \(-0.307855\pi\)
0.983528 + 0.180758i \(0.0578550\pi\)
\(548\) 0 0
\(549\) −7.03843 16.9923i −0.300393 0.725213i
\(550\) 0 0
\(551\) 7.24351 17.4874i 0.308584 0.744987i
\(552\) 0 0
\(553\) −0.933740 + 0.933740i −0.0397067 + 0.0397067i
\(554\) 0 0
\(555\) 26.8588 + 11.1253i 1.14009 + 0.472242i
\(556\) 0 0
\(557\) 33.4641i 1.41792i 0.705249 + 0.708960i \(0.250835\pi\)
−0.705249 + 0.708960i \(0.749165\pi\)
\(558\) 0 0
\(559\) 12.8295 + 12.8295i 0.542628 + 0.542628i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.480473 0.480473i −0.0202495 0.0202495i 0.696910 0.717159i \(-0.254558\pi\)
−0.717159 + 0.696910i \(0.754558\pi\)
\(564\) 0 0
\(565\) 27.2154i 1.14496i
\(566\) 0 0
\(567\) 3.01919 + 1.25059i 0.126794 + 0.0525198i
\(568\) 0 0
\(569\) −14.0406 + 14.0406i −0.588613 + 0.588613i −0.937256 0.348643i \(-0.886643\pi\)
0.348643 + 0.937256i \(0.386643\pi\)
\(570\) 0 0
\(571\) −5.02247 + 12.1253i −0.210184 + 0.507429i −0.993451 0.114256i \(-0.963552\pi\)
0.783267 + 0.621685i \(0.213552\pi\)
\(572\) 0 0
\(573\) −3.36172 8.11592i −0.140438 0.339047i
\(574\) 0 0
\(575\) 30.6029 12.6761i 1.27623 0.528632i
\(576\) 0 0
\(577\) 6.53590 0.272093 0.136047 0.990702i \(-0.456560\pi\)
0.136047 + 0.990702i \(0.456560\pi\)
\(578\) 0 0
\(579\) −5.17691 −0.215145
\(580\) 0 0
\(581\) −6.40083 + 2.65131i −0.265551 + 0.109995i
\(582\) 0 0
\(583\) −1.68086 4.05796i −0.0696142 0.168064i
\(584\) 0 0
\(585\) −4.78256 + 11.5461i −0.197734 + 0.477373i
\(586\) 0 0
\(587\) 5.37945 5.37945i 0.222034 0.222034i −0.587321 0.809354i \(-0.699817\pi\)
0.809354 + 0.587321i \(0.199817\pi\)
\(588\) 0 0
\(589\) 31.2792 + 12.9563i 1.28884 + 0.533854i
\(590\) 0 0
\(591\) 2.53590i 0.104313i
\(592\) 0 0
\(593\) 22.5259 + 22.5259i 0.925027 + 0.925027i 0.997379 0.0723521i \(-0.0230505\pi\)
−0.0723521 + 0.997379i \(0.523051\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3.20736 + 3.20736i 0.131269 + 0.131269i
\(598\) 0 0
\(599\) 27.7128i 1.13231i 0.824297 + 0.566157i \(0.191571\pi\)
−0.824297 + 0.566157i \(0.808429\pi\)
\(600\) 0 0
\(601\) −28.4413 11.7808i −1.16014 0.480547i −0.282221 0.959349i \(-0.591071\pi\)
−0.877923 + 0.478802i \(0.841071\pi\)
\(602\) 0 0
\(603\) 1.86748 1.86748i 0.0760497 0.0760497i
\(604\) 0 0
\(605\) 15.1023 36.4601i 0.613994 1.48231i
\(606\) 0 0
\(607\) −13.4965 32.5833i −0.547804 1.32252i −0.919108 0.394005i \(-0.871089\pi\)
0.371304 0.928511i \(-0.378911\pi\)
\(608\) 0 0
\(609\) −1.71510 + 0.710416i −0.0694992 + 0.0287875i
\(610\) 0 0
\(611\) 10.1436 0.410366
\(612\) 0 0
\(613\) −20.1436 −0.813592 −0.406796 0.913519i \(-0.633354\pi\)
−0.406796 + 0.913519i \(0.633354\pi\)
\(614\) 0 0
\(615\) 14.0572 5.82268i 0.566841 0.234793i
\(616\) 0 0
\(617\) −18.2040 43.9482i −0.732864 1.76929i −0.632810 0.774307i \(-0.718099\pi\)
−0.100053 0.994982i \(-0.531901\pi\)
\(618\) 0 0
\(619\) −8.49410 + 20.5066i −0.341407 + 0.824229i 0.656167 + 0.754615i \(0.272177\pi\)
−0.997574 + 0.0696133i \(0.977823\pi\)
\(620\) 0 0
\(621\) −13.3843 + 13.3843i −0.537092 + 0.537092i
\(622\) 0 0
\(623\) −6.40083 2.65131i −0.256444 0.106222i
\(624\) 0 0
\(625\) 11.0000i 0.440000i
\(626\) 0 0
\(627\) −13.3843 13.3843i −0.534516 0.534516i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 24.4206 + 24.4206i 0.972167 + 0.972167i 0.999623 0.0274556i \(-0.00874048\pi\)
−0.0274556 + 0.999623i \(0.508740\pi\)
\(632\) 0 0
\(633\) 14.3923i 0.572043i
\(634\) 0 0
\(635\) −65.2638 27.0331i −2.58991 1.07278i
\(636\) 0 0
\(637\) −6.69213 + 6.69213i −0.265152 + 0.265152i
\(638\) 0 0
\(639\) −2.07091 + 4.99961i −0.0819238 + 0.197782i
\(640\) 0 0
\(641\) 0.355208 + 0.857548i 0.0140299 + 0.0338711i 0.930739 0.365684i \(-0.119165\pi\)
−0.916709 + 0.399555i \(0.869165\pi\)
\(642\) 0 0
\(643\) −1.30410 + 0.540174i −0.0514285 + 0.0213024i −0.408249 0.912870i \(-0.633861\pi\)
0.356821 + 0.934173i \(0.383861\pi\)
\(644\) 0 0
\(645\) 31.4256 1.23738
\(646\) 0 0
\(647\) 30.9282 1.21591 0.607957 0.793970i \(-0.291989\pi\)
0.607957 + 0.793970i \(0.291989\pi\)
\(648\) 0 0
\(649\) −41.3756 + 17.1383i −1.62413 + 0.672738i
\(650\) 0 0
\(651\) −1.27070 3.06775i −0.0498028 0.120235i
\(652\) 0 0
\(653\) −3.97696 + 9.60124i −0.155631 + 0.375725i −0.982393 0.186826i \(-0.940180\pi\)
0.826763 + 0.562551i \(0.190180\pi\)
\(654\) 0 0
\(655\) −28.5617 + 28.5617i −1.11600 + 1.11600i
\(656\) 0 0
\(657\) 4.55307 + 1.88594i 0.177632 + 0.0735776i
\(658\) 0 0
\(659\) 29.0718i 1.13248i −0.824242 0.566238i \(-0.808398\pi\)
0.824242 0.566238i \(-0.191602\pi\)
\(660\) 0 0
\(661\) 20.4553 + 20.4553i 0.795620 + 0.795620i 0.982401 0.186781i \(-0.0598056\pi\)
−0.186781 + 0.982401i \(0.559806\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9.79796 + 9.79796i 0.379949 + 0.379949i
\(666\) 0 0
\(667\) 16.3923i 0.634713i
\(668\) 0 0
\(669\) 5.67594 + 2.35105i 0.219445 + 0.0908969i
\(670\) 0 0
\(671\) −24.9754 + 24.9754i −0.964163 + 0.964163i
\(672\) 0 0
\(673\) 10.6602 25.7360i 0.410920 0.992048i −0.573971 0.818875i \(-0.694598\pi\)
0.984891 0.173173i \(-0.0554020\pi\)
\(674\) 0 0
\(675\) 10.7151 + 25.8686i 0.412426 + 0.995684i
\(676\) 0 0
\(677\) −22.4029 + 9.27958i −0.861013 + 0.356643i −0.769104 0.639124i \(-0.779297\pi\)
−0.0919093 + 0.995767i \(0.529297\pi\)
\(678\) 0 0
\(679\) −6.53590 −0.250825
\(680\) 0 0
\(681\) 7.17691 0.275020
\(682\) 0 0
\(683\) −7.34248 + 3.04135i −0.280952 + 0.116374i −0.518710 0.854950i \(-0.673588\pi\)
0.237758 + 0.971324i \(0.423588\pi\)
\(684\) 0 0
\(685\) −12.5461 30.2890i −0.479363 1.15728i
\(686\) 0 0
\(687\) 0.109902 0.265326i 0.00419301 0.0101228i
\(688\) 0 0
\(689\) 0.960947 0.960947i 0.0366092 0.0366092i
\(690\) 0 0
\(691\) 23.8396 + 9.87470i 0.906903 + 0.375651i 0.786870 0.617118i \(-0.211700\pi\)
0.120033 + 0.992770i \(0.461700\pi\)
\(692\) 0 0
\(693\) 8.53590i 0.324252i
\(694\) 0 0
\(695\) 27.6007 + 27.6007i 1.04696 + 1.04696i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −3.10583 3.10583i −0.117473 0.117473i
\(700\) 0 0
\(701\) 4.39230i 0.165895i 0.996554 + 0.0829475i \(0.0264334\pi\)
−0.996554 + 0.0829475i \(0.973567\pi\)
\(702\) 0 0
\(703\) 57.8728 + 23.9717i 2.18271 + 0.904109i
\(704\) 0 0
\(705\) 12.4233 12.4233i 0.467889 0.467889i
\(706\) 0 0
\(707\) −2.65131 + 6.40083i −0.0997127 + 0.240728i
\(708\) 0 0
\(709\) 12.3410 + 29.7939i 0.463478 + 1.11893i 0.966960 + 0.254929i \(0.0820520\pi\)
−0.503482 + 0.864006i \(0.667948\pi\)
\(710\) 0 0
\(711\) −4.10652 + 1.70098i −0.154006 + 0.0637916i
\(712\) 0 0
\(713\) −29.3205 −1.09806
\(714\) 0 0
\(715\) 24.0000 0.897549
\(716\) 0 0
\(717\) 14.0572 5.82268i 0.524975 0.217452i
\(718\) 0 0
\(719\) 0.580401 + 1.40121i 0.0216453 + 0.0522564i 0.934333 0.356402i \(-0.115997\pi\)
−0.912687 + 0.408659i \(0.865997\pi\)
\(720\) 0 0
\(721\) −0.820318 + 1.98042i −0.0305502 + 0.0737548i
\(722\) 0 0
\(723\) −1.03528 + 1.03528i −0.0385023 + 0.0385023i
\(724\) 0 0
\(725\) 22.4029 + 9.27958i 0.832022 + 0.344635i
\(726\) 0 0
\(727\) 36.7846i 1.36427i 0.731228 + 0.682133i \(0.238947\pi\)
−0.731228 + 0.682133i \(0.761053\pi\)
\(728\) 0 0
\(729\) 1.56652 + 1.56652i 0.0580192 + 0.0580192i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 16.1112 + 16.1112i 0.595079 + 0.595079i 0.938999 0.343920i \(-0.111755\pi\)
−0.343920 + 0.938999i \(0.611755\pi\)
\(734\) 0 0
\(735\) 16.3923i 0.604639i
\(736\) 0 0
\(737\) −4.68573 1.94089i −0.172601 0.0714937i
\(738\) 0 0
\(739\) 5.93426 5.93426i 0.218295 0.218295i −0.589485 0.807780i \(-0.700669\pi\)
0.807780 + 0.589485i \(0.200669\pi\)
\(740\) 0 0
\(741\) 2.24115 5.41061i 0.0823307 0.198764i
\(742\) 0 0
\(743\) −16.0379 38.7188i −0.588372 1.42046i −0.885058 0.465481i \(-0.845881\pi\)
0.296686 0.954975i \(-0.404119\pi\)
\(744\) 0 0
\(745\) −19.2025 + 7.95393i −0.703524 + 0.291409i
\(746\) 0 0
\(747\) −23.3205 −0.853253
\(748\) 0 0
\(749\) 5.32051 0.194407
\(750\) 0 0
\(751\) 14.1057 5.84279i 0.514726 0.213206i −0.110173 0.993912i \(-0.535140\pi\)
0.624899 + 0.780706i \(0.285140\pi\)
\(752\) 0 0
\(753\) −1.94089 4.68573i −0.0707301 0.170757i
\(754\) 0 0
\(755\) 8.66434 20.9176i 0.315328 0.761268i
\(756\) 0 0
\(757\) 7.45001 7.45001i 0.270775 0.270775i −0.558637 0.829412i \(-0.688676\pi\)
0.829412 + 0.558637i \(0.188676\pi\)
\(758\) 0 0
\(759\) 15.1445 + 6.27306i 0.549711 + 0.227698i
\(760\) 0 0
\(761\) 4.39230i 0.159221i 0.996826 + 0.0796105i \(0.0253676\pi\)
−0.996826 + 0.0796105i \(0.974632\pi\)
\(762\) 0 0
\(763\) −3.30890 3.30890i −0.119790 0.119790i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.79796 9.79796i −0.353784 0.353784i
\(768\) 0 0
\(769\) 20.3923i 0.735365i −0.929951 0.367683i \(-0.880151\pi\)
0.929951 0.367683i \(-0.119849\pi\)
\(770\) 0 0
\(771\) 5.14529 + 2.13125i 0.185303 + 0.0767550i
\(772\) 0 0
\(773\) 24.9754 24.9754i 0.898302 0.898302i −0.0969843 0.995286i \(-0.530920\pi\)
0.995286 + 0.0969843i \(0.0309197\pi\)
\(774\) 0 0
\(775\) −16.5982 + 40.0715i −0.596223 + 1.43941i
\(776\) 0 0
\(777\) −2.35105 5.67594i −0.0843435 0.203623i
\(778\) 0 0
\(779\) 30.2890 12.5461i 1.08522 0.449512i
\(780\) 0 0
\(781\) 10.3923 0.371866
\(782\) 0 0
\(783\) −13.8564 −0.495188
\(784\) 0 0
\(785\) 6.40083 2.65131i 0.228455 0.0946293i
\(786\) 0 0
\(787\) 0.430272 + 1.03877i 0.0153376 + 0.0370281i 0.931363 0.364093i \(-0.118621\pi\)
−0.916025 + 0.401121i \(0.868621\pi\)
\(788\) 0 0
\(789\) −6.53309 + 15.7723i −0.232584 + 0.561508i
\(790\) 0 0
\(791\) −4.06678 + 4.06678i −0.144598 + 0.144598i
\(792\) 0 0
\(793\) −10.0963 4.18204i −0.358532 0.148509i
\(794\) 0 0
\(795\) 2.35383i 0.0834817i
\(796\) 0 0
\(797\) −27.4249 27.4249i −0.971438 0.971438i 0.0281649 0.999603i \(-0.491034\pi\)
−0.999603 + 0.0281649i \(0.991034\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −16.4901 16.4901i −0.582649 0.582649i
\(802\) 0 0
\(803\) 9.46410i 0.333981i
\(804\) 0 0
\(805\) −11.0866 4.59220i −0.390750 0.161854i
\(806\) 0 0
\(807\) −10.6302 + 10.6302i −0.374199 + 0.374199i
\(808\) 0 0
\(809\) 7.59872 18.3449i 0.267157 0.644973i −0.732191 0.681100i \(-0.761502\pi\)
0.999347 + 0.0361266i \(0.0115019\pi\)
\(810\) 0 0
\(811\) 13.5367 + 32.6805i 0.475337 + 1.14757i 0.961773 + 0.273849i \(0.0882969\pi\)
−0.486435 + 0.873717i \(0.661703\pi\)
\(812\) 0 0
\(813\) 10.0963 4.18204i 0.354094 0.146671i
\(814\) 0 0
\(815\) 36.6795 1.28483
\(816\) 0 0
\(817\) 67.7128 2.36897
\(818\) 0 0
\(819\) 2.43998 1.01067i 0.0852598 0.0353158i
\(820\) 0 0
\(821\) 17.2335 + 41.6054i 0.601454 + 1.45204i 0.872085 + 0.489354i \(0.162767\pi\)
−0.270632 + 0.962683i \(0.587233\pi\)
\(822\) 0 0
\(823\) 5.99292 14.4682i 0.208900 0.504329i −0.784350 0.620318i \(-0.787004\pi\)
0.993251 + 0.115989i \(0.0370036\pi\)
\(824\) 0 0
\(825\) 17.1464 17.1464i 0.596962 0.596962i
\(826\) 0 0
\(827\) −23.5743 9.76480i −0.819759 0.339555i −0.0669189 0.997758i \(-0.521317\pi\)
−0.752841 + 0.658203i \(0.771317\pi\)
\(828\) 0 0
\(829\) 12.1436i 0.421764i −0.977511 0.210882i \(-0.932366\pi\)
0.977511 0.210882i \(-0.0676337\pi\)
\(830\) 0 0
\(831\) −7.45001 7.45001i −0.258438 0.258438i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −28.5617 28.5617i −0.988417 0.988417i
\(836\) 0 0
\(837\) 24.7846i 0.856681i
\(838\) 0 0
\(839\) 45.7474 + 18.9492i 1.57938 + 0.654199i 0.988315 0.152427i \(-0.0487089\pi\)
0.591062 + 0.806626i \(0.298709\pi\)
\(840\) 0 0
\(841\) 12.0208 12.0208i 0.414511 0.414511i
\(842\) 0 0
\(843\) −2.20092 + 5.31350i −0.0758038 + 0.183007i
\(844\) 0 0
\(845\) −14.3918 34.7450i −0.495094 1.19526i
\(846\) 0 0
\(847\) −7.70492 + 3.19148i −0.264744 + 0.109661i
\(848\) 0 0
\(849\) −7.75129 −0.266024
\(850\) 0 0
\(851\) −54.2487 −1.85962
\(852\) 0 0
\(853\) −37.1850 + 15.4025i −1.27319 + 0.527372i −0.913932 0.405867i \(-0.866970\pi\)
−0.359257 + 0.933239i \(0.616970\pi\)
\(854\) 0 0
\(855\) 17.8487 + 43.0907i 0.610414 + 1.47367i
\(856\) 0 0
\(857\) 20.1448 48.6340i 0.688135 1.66130i −0.0603709 0.998176i \(-0.519228\pi\)
0.748506 0.663128i \(-0.230772\pi\)
\(858\) 0 0
\(859\) 5.17638 5.17638i 0.176616 0.176616i −0.613263 0.789879i \(-0.710143\pi\)
0.789879 + 0.613263i \(0.210143\pi\)
\(860\) 0 0
\(861\) −2.97063 1.23048i −0.101239 0.0419345i
\(862\) 0 0
\(863\) 37.8564i 1.28865i −0.764753 0.644324i \(-0.777139\pi\)
0.764753 0.644324i \(-0.222861\pi\)
\(864\) 0 0
\(865\) 20.9086 + 20.9086i 0.710914 + 0.710914i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.03579 + 6.03579i 0.204750 + 0.204750i
\(870\) 0 0
\(871\) 1.56922i 0.0531710i
\(872\) 0 0
\(873\) −20.3253 8.41904i −0.687909 0.284941i
\(874\) 0 0
\(875\) −3.58630 + 3.58630i −0.121239 + 0.121239i
\(876\) 0 0
\(877\) 11.6306 28.0788i 0.392739 0.948155i −0.596602 0.802537i \(-0.703483\pi\)
0.989341 0.145618i \(-0.0465170\pi\)
\(878\) 0 0
\(879\) −8.40431 20.2898i −0.283470 0.684358i
\(880\) 0 0
\(881\) −2.57264 + 1.06562i −0.0866746 + 0.0359018i −0.425599 0.904912i \(-0.639937\pi\)
0.338925 + 0.940813i \(0.389937\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) −24.0000 −0.806751
\(886\) 0 0
\(887\) 39.3466 16.2979i 1.32113 0.547230i 0.393018 0.919531i \(-0.371431\pi\)
0.928112 + 0.372301i \(0.121431\pi\)
\(888\) 0 0
\(889\) 5.71278 + 13.7919i 0.191600 + 0.462564i
\(890\) 0 0
\(891\) 8.08394 19.5164i 0.270822 0.653823i
\(892\) 0 0
\(893\) 26.7685 26.7685i 0.895774 0.895774i
\(894\) 0 0
\(895\) −68.6940 28.4540i −2.29619 0.951112i
\(896\) 0 0
\(897\) 5.07180i 0.169342i
\(898\) 0 0
\(899\) −15.1774 15.1774i −0.506195 0.506195i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −4.69591 4.69591i −0.156270 0.156270i
\(904\) 0 0
\(905\) 39.7128i 1.32010i
\(906\) 0 0
\(907\) −22.5841 9.35464i −0.749893 0.310616i −0.0251951 0.999683i \(-0.508021\pi\)
−0.724698 + 0.689067i \(0.758021\pi\)
\(908\) 0 0
\(909\) −16.4901 + 16.4901i −0.546942 + 0.546942i
\(910\) 0 0
\(911\) −10.0248 + 24.2021i −0.332138 + 0.801851i 0.666285 + 0.745698i \(0.267884\pi\)
−0.998422 + 0.0561534i \(0.982116\pi\)
\(912\) 0 0
\(913\) 17.1383 + 41.3756i 0.567196 + 1.36933i
\(914\) 0 0
\(915\) −17.4874 + 7.24351i −0.578115 + 0.239463i
\(916\) 0 0
\(917\) 8.53590 0.281880
\(918\) 0 0
\(919\) −52.0000 −1.71532 −0.857661 0.514216i \(-0.828083\pi\)
−0.857661 + 0.514216i \(0.828083\pi\)
\(920\) 0 0
\(921\) −11.3519 + 4.70210i −0.374057 + 0.154940i
\(922\) 0 0
\(923\) 1.23048 + 2.97063i 0.0405016 + 0.0977796i
\(924\) 0 0
\(925\) −30.7099 + 74.1401i −1.00973 + 2.43771i
\(926\) 0 0
\(927\) −5.10205 + 5.10205i −0.167573 + 0.167573i
\(928\) 0 0
\(929\) −42.2331 17.4935i −1.38562 0.573944i −0.439645 0.898172i \(-0.644896\pi\)
−0.945979 + 0.324227i \(0.894896\pi\)
\(930\) 0 0
\(931\) 35.3205i 1.15758i
\(932\) 0 0
\(933\) 10.9348 + 10.9348i 0.357988 + 0.357988i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 19.6975 + 19.6975i 0.643488 + 0.643488i 0.951411 0.307923i \(-0.0996340\pi\)
−0.307923 + 0.951411i \(0.599634\pi\)
\(938\) 0 0
\(939\) 5.17691i 0.168942i
\(940\) 0 0
\(941\) 6.17105 + 2.55613i 0.201170 + 0.0833275i 0.480994 0.876724i \(-0.340276\pi\)
−0.279823 + 0.960051i \(0.590276\pi\)
\(942\) 0 0
\(943\) −20.0764 + 20.0764i −0.653777 + 0.653777i
\(944\) 0 0
\(945\) 3.88179 9.37146i 0.126274 0.304854i
\(946\) 0 0
\(947\) 20.1797 + 48.7181i 0.655752 + 1.58312i 0.804303 + 0.594220i \(0.202539\pi\)
−0.148551 + 0.988905i \(0.547461\pi\)
\(948\) 0 0
\(949\) 2.70531 1.12057i 0.0878180 0.0363754i
\(950\) 0 0
\(951\) 11.3205 0.367093
\(952\) 0 0
\(953\) −42.2487 −1.36857 −0.684285 0.729215i \(-0.739886\pi\)
−0.684285 + 0.729215i \(0.739886\pi\)
\(954\) 0 0
\(955\) 38.4050 15.9079i 1.24276 0.514766i
\(956\) 0 0
\(957\) 4.59220 + 11.0866i 0.148445 + 0.358377i
\(958\) 0 0
\(959\) −2.65131 + 6.40083i −0.0856152 + 0.206693i
\(960\) 0 0
\(961\) 5.22715 5.22715i 0.168618 0.168618i
\(962\) 0 0
\(963\) 16.5457 + 6.85346i 0.533179 + 0.220850i
\(964\) 0 0
\(965\) 24.4974i 0.788600i
\(966\) 0 0
\(967\) −34.2185 34.2185i −1.10039 1.10039i −0.994363 0.106031i \(-0.966186\pi\)
−0.106031 0.994363i \(-0.533814\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −39.6723 39.6723i −1.27314 1.27314i −0.944429 0.328716i \(-0.893384\pi\)
−0.328716 0.944429i \(-0.606616\pi\)
\(972\) 0 0
\(973\) 8.24871i 0.264442i
\(974\) 0 0
\(975\) 6.93148 + 2.87111i 0.221985 + 0.0919492i
\(976\) 0 0
\(977\) 29.6985 29.6985i 0.950139 0.950139i −0.0486759 0.998815i \(-0.515500\pi\)
0.998815 + 0.0486759i \(0.0155002\pi\)
\(978\) 0 0
\(979\) −17.1383 + 41.3756i −0.547743 + 1.32237i
\(980\) 0 0
\(981\) −6.02776 14.5523i −0.192451 0.464619i
\(982\) 0 0
\(983\) −27.6323 + 11.4457i −0.881333 + 0.365060i −0.777014 0.629484i \(-0.783266\pi\)
−0.104319 + 0.994544i \(0.533266\pi\)
\(984\) 0 0
\(985\) 12.0000 0.382352
\(986\) 0 0
\(987\) −3.71281 −0.118180
\(988\) 0 0
\(989\) −54.1772 + 22.4409i −1.72274 + 0.713581i
\(990\) 0 0
\(991\) −3.90190 9.42002i −0.123948 0.299237i 0.849710 0.527250i \(-0.176777\pi\)
−0.973658 + 0.228014i \(0.926777\pi\)
\(992\) 0 0
\(993\) −4.29194 + 10.3617i −0.136201 + 0.328818i
\(994\) 0 0
\(995\) −15.1774 + 15.1774i −0.481156 + 0.481156i
\(996\) 0 0
\(997\) −39.1654 16.2228i −1.24038 0.513782i −0.336547 0.941667i \(-0.609259\pi\)
−0.903833 + 0.427885i \(0.859259\pi\)
\(998\) 0 0
\(999\) 45.8564i 1.45083i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1156.2.h.f.733.2 16
17.2 even 8 inner 1156.2.h.f.977.2 16
17.3 odd 16 68.2.a.a.1.1 2
17.4 even 4 inner 1156.2.h.f.1001.3 16
17.5 odd 16 1156.2.b.c.577.2 4
17.6 odd 16 1156.2.e.d.905.2 8
17.7 odd 16 1156.2.e.d.829.3 8
17.8 even 8 inner 1156.2.h.f.757.3 16
17.9 even 8 inner 1156.2.h.f.757.2 16
17.10 odd 16 1156.2.e.d.829.2 8
17.11 odd 16 1156.2.e.d.905.3 8
17.12 odd 16 1156.2.b.c.577.3 4
17.13 even 4 inner 1156.2.h.f.1001.2 16
17.14 odd 16 1156.2.a.a.1.2 2
17.15 even 8 inner 1156.2.h.f.977.3 16
17.16 even 2 inner 1156.2.h.f.733.3 16
51.20 even 16 612.2.a.e.1.1 2
68.3 even 16 272.2.a.e.1.2 2
68.31 even 16 4624.2.a.x.1.1 2
85.3 even 16 1700.2.e.c.749.2 4
85.37 even 16 1700.2.e.c.749.3 4
85.54 odd 16 1700.2.a.d.1.2 2
119.20 even 16 3332.2.a.h.1.2 2
136.3 even 16 1088.2.a.t.1.1 2
136.37 odd 16 1088.2.a.p.1.2 2
187.54 even 16 8228.2.a.k.1.1 2
204.71 odd 16 2448.2.a.y.1.1 2
340.139 even 16 6800.2.a.bh.1.1 2
408.173 even 16 9792.2.a.cr.1.2 2
408.275 odd 16 9792.2.a.cs.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
68.2.a.a.1.1 2 17.3 odd 16
272.2.a.e.1.2 2 68.3 even 16
612.2.a.e.1.1 2 51.20 even 16
1088.2.a.p.1.2 2 136.37 odd 16
1088.2.a.t.1.1 2 136.3 even 16
1156.2.a.a.1.2 2 17.14 odd 16
1156.2.b.c.577.2 4 17.5 odd 16
1156.2.b.c.577.3 4 17.12 odd 16
1156.2.e.d.829.2 8 17.10 odd 16
1156.2.e.d.829.3 8 17.7 odd 16
1156.2.e.d.905.2 8 17.6 odd 16
1156.2.e.d.905.3 8 17.11 odd 16
1156.2.h.f.733.2 16 1.1 even 1 trivial
1156.2.h.f.733.3 16 17.16 even 2 inner
1156.2.h.f.757.2 16 17.9 even 8 inner
1156.2.h.f.757.3 16 17.8 even 8 inner
1156.2.h.f.977.2 16 17.2 even 8 inner
1156.2.h.f.977.3 16 17.15 even 8 inner
1156.2.h.f.1001.2 16 17.13 even 4 inner
1156.2.h.f.1001.3 16 17.4 even 4 inner
1700.2.a.d.1.2 2 85.54 odd 16
1700.2.e.c.749.2 4 85.3 even 16
1700.2.e.c.749.3 4 85.37 even 16
2448.2.a.y.1.1 2 204.71 odd 16
3332.2.a.h.1.2 2 119.20 even 16
4624.2.a.x.1.1 2 68.31 even 16
6800.2.a.bh.1.1 2 340.139 even 16
8228.2.a.k.1.1 2 187.54 even 16
9792.2.a.cr.1.2 2 408.173 even 16
9792.2.a.cs.1.2 2 408.275 odd 16