Properties

Label 2448.2.a.y.1.1
Level $2448$
Weight $2$
Character 2448.1
Self dual yes
Analytic conductor $19.547$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2448,2,Mod(1,2448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2448.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2448.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.5473784148\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 68)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 2448.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.46410 q^{5} -0.732051 q^{7} -4.73205 q^{11} -1.46410 q^{13} +1.00000 q^{17} -5.46410 q^{19} -4.73205 q^{23} +7.00000 q^{25} +3.46410 q^{29} +6.19615 q^{31} +2.53590 q^{35} +11.4641 q^{37} +6.00000 q^{41} -12.3923 q^{43} +6.92820 q^{47} -6.46410 q^{49} +0.928203 q^{53} +16.3923 q^{55} +9.46410 q^{59} -7.46410 q^{61} +5.07180 q^{65} -1.07180 q^{67} +2.19615 q^{71} +2.00000 q^{73} +3.46410 q^{77} +1.80385 q^{79} -9.46410 q^{83} -3.46410 q^{85} -9.46410 q^{89} +1.07180 q^{91} +18.9282 q^{95} +8.92820 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{7} - 6 q^{11} + 4 q^{13} + 2 q^{17} - 4 q^{19} - 6 q^{23} + 14 q^{25} + 2 q^{31} + 12 q^{35} + 16 q^{37} + 12 q^{41} - 4 q^{43} - 6 q^{49} - 12 q^{53} + 12 q^{55} + 12 q^{59} - 8 q^{61} + 24 q^{65}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.46410 −1.54919 −0.774597 0.632456i \(-0.782047\pi\)
−0.774597 + 0.632456i \(0.782047\pi\)
\(6\) 0 0
\(7\) −0.732051 −0.276689 −0.138345 0.990384i \(-0.544178\pi\)
−0.138345 + 0.990384i \(0.544178\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.73205 −1.42677 −0.713384 0.700774i \(-0.752838\pi\)
−0.713384 + 0.700774i \(0.752838\pi\)
\(12\) 0 0
\(13\) −1.46410 −0.406069 −0.203034 0.979172i \(-0.565080\pi\)
−0.203034 + 0.979172i \(0.565080\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −5.46410 −1.25355 −0.626775 0.779200i \(-0.715626\pi\)
−0.626775 + 0.779200i \(0.715626\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.73205 −0.986701 −0.493350 0.869831i \(-0.664228\pi\)
−0.493350 + 0.869831i \(0.664228\pi\)
\(24\) 0 0
\(25\) 7.00000 1.40000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.46410 0.643268 0.321634 0.946864i \(-0.395768\pi\)
0.321634 + 0.946864i \(0.395768\pi\)
\(30\) 0 0
\(31\) 6.19615 1.11286 0.556431 0.830894i \(-0.312170\pi\)
0.556431 + 0.830894i \(0.312170\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.53590 0.428645
\(36\) 0 0
\(37\) 11.4641 1.88469 0.942343 0.334648i \(-0.108617\pi\)
0.942343 + 0.334648i \(0.108617\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) −12.3923 −1.88981 −0.944904 0.327346i \(-0.893846\pi\)
−0.944904 + 0.327346i \(0.893846\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.92820 1.01058 0.505291 0.862949i \(-0.331385\pi\)
0.505291 + 0.862949i \(0.331385\pi\)
\(48\) 0 0
\(49\) −6.46410 −0.923443
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.928203 0.127499 0.0637493 0.997966i \(-0.479694\pi\)
0.0637493 + 0.997966i \(0.479694\pi\)
\(54\) 0 0
\(55\) 16.3923 2.21034
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 9.46410 1.23212 0.616061 0.787699i \(-0.288728\pi\)
0.616061 + 0.787699i \(0.288728\pi\)
\(60\) 0 0
\(61\) −7.46410 −0.955680 −0.477840 0.878447i \(-0.658580\pi\)
−0.477840 + 0.878447i \(0.658580\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.07180 0.629079
\(66\) 0 0
\(67\) −1.07180 −0.130941 −0.0654704 0.997855i \(-0.520855\pi\)
−0.0654704 + 0.997855i \(0.520855\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.19615 0.260635 0.130318 0.991472i \(-0.458400\pi\)
0.130318 + 0.991472i \(0.458400\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.46410 0.394771
\(78\) 0 0
\(79\) 1.80385 0.202949 0.101474 0.994838i \(-0.467644\pi\)
0.101474 + 0.994838i \(0.467644\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −9.46410 −1.03882 −0.519410 0.854525i \(-0.673848\pi\)
−0.519410 + 0.854525i \(0.673848\pi\)
\(84\) 0 0
\(85\) −3.46410 −0.375735
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.46410 −1.00319 −0.501596 0.865102i \(-0.667254\pi\)
−0.501596 + 0.865102i \(0.667254\pi\)
\(90\) 0 0
\(91\) 1.07180 0.112355
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 18.9282 1.94199
\(96\) 0 0
\(97\) 8.92820 0.906522 0.453261 0.891378i \(-0.350261\pi\)
0.453261 + 0.891378i \(0.350261\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.46410 0.941713 0.470857 0.882210i \(-0.343945\pi\)
0.470857 + 0.882210i \(0.343945\pi\)
\(102\) 0 0
\(103\) −2.92820 −0.288524 −0.144262 0.989539i \(-0.546081\pi\)
−0.144262 + 0.989539i \(0.546081\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.26795 0.702619 0.351310 0.936259i \(-0.385736\pi\)
0.351310 + 0.936259i \(0.385736\pi\)
\(108\) 0 0
\(109\) 6.39230 0.612272 0.306136 0.951988i \(-0.400964\pi\)
0.306136 + 0.951988i \(0.400964\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.85641 0.739069 0.369534 0.929217i \(-0.379517\pi\)
0.369534 + 0.929217i \(0.379517\pi\)
\(114\) 0 0
\(115\) 16.3923 1.52859
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.732051 −0.0671070
\(120\) 0 0
\(121\) 11.3923 1.03566
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −6.92820 −0.619677
\(126\) 0 0
\(127\) 20.3923 1.80952 0.904762 0.425917i \(-0.140048\pi\)
0.904762 + 0.425917i \(0.140048\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −11.6603 −1.01876 −0.509381 0.860541i \(-0.670125\pi\)
−0.509381 + 0.860541i \(0.670125\pi\)
\(132\) 0 0
\(133\) 4.00000 0.346844
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.46410 −0.808573 −0.404286 0.914632i \(-0.632480\pi\)
−0.404286 + 0.914632i \(0.632480\pi\)
\(138\) 0 0
\(139\) 11.2679 0.955735 0.477867 0.878432i \(-0.341410\pi\)
0.477867 + 0.878432i \(0.341410\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.92820 0.579365
\(144\) 0 0
\(145\) −12.0000 −0.996546
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 6.53590 0.531884 0.265942 0.963989i \(-0.414317\pi\)
0.265942 + 0.963989i \(0.414317\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −21.4641 −1.72404
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.46410 0.273009
\(162\) 0 0
\(163\) 10.5885 0.829352 0.414676 0.909969i \(-0.363895\pi\)
0.414676 + 0.909969i \(0.363895\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.6603 −0.902298 −0.451149 0.892449i \(-0.648986\pi\)
−0.451149 + 0.892449i \(0.648986\pi\)
\(168\) 0 0
\(169\) −10.8564 −0.835108
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.53590 0.648972 0.324486 0.945890i \(-0.394809\pi\)
0.324486 + 0.945890i \(0.394809\pi\)
\(174\) 0 0
\(175\) −5.12436 −0.387365
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 21.4641 1.60430 0.802151 0.597121i \(-0.203689\pi\)
0.802151 + 0.597121i \(0.203689\pi\)
\(180\) 0 0
\(181\) 11.4641 0.852120 0.426060 0.904695i \(-0.359901\pi\)
0.426060 + 0.904695i \(0.359901\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −39.7128 −2.91974
\(186\) 0 0
\(187\) −4.73205 −0.346042
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) 7.07180 0.509039 0.254520 0.967068i \(-0.418083\pi\)
0.254520 + 0.967068i \(0.418083\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.46410 0.246807 0.123404 0.992357i \(-0.460619\pi\)
0.123404 + 0.992357i \(0.460619\pi\)
\(198\) 0 0
\(199\) 6.19615 0.439234 0.219617 0.975586i \(-0.429519\pi\)
0.219617 + 0.975586i \(0.429519\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.53590 −0.177985
\(204\) 0 0
\(205\) −20.7846 −1.45166
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 25.8564 1.78853
\(210\) 0 0
\(211\) −19.6603 −1.35347 −0.676734 0.736228i \(-0.736605\pi\)
−0.676734 + 0.736228i \(0.736605\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 42.9282 2.92768
\(216\) 0 0
\(217\) −4.53590 −0.307917
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.46410 −0.0984861
\(222\) 0 0
\(223\) 8.39230 0.561990 0.280995 0.959709i \(-0.409336\pi\)
0.280995 + 0.959709i \(0.409336\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.80385 −0.650704 −0.325352 0.945593i \(-0.605483\pi\)
−0.325352 + 0.945593i \(0.605483\pi\)
\(228\) 0 0
\(229\) 0.392305 0.0259242 0.0129621 0.999916i \(-0.495874\pi\)
0.0129621 + 0.999916i \(0.495874\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −24.0000 −1.56559
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −20.7846 −1.34444 −0.672222 0.740349i \(-0.734660\pi\)
−0.672222 + 0.740349i \(0.734660\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 22.3923 1.43059
\(246\) 0 0
\(247\) 8.00000 0.509028
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6.92820 −0.437304 −0.218652 0.975803i \(-0.570166\pi\)
−0.218652 + 0.975803i \(0.570166\pi\)
\(252\) 0 0
\(253\) 22.3923 1.40779
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.60770 0.474555 0.237277 0.971442i \(-0.423745\pi\)
0.237277 + 0.971442i \(0.423745\pi\)
\(258\) 0 0
\(259\) −8.39230 −0.521472
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −23.3205 −1.43800 −0.719002 0.695008i \(-0.755401\pi\)
−0.719002 + 0.695008i \(0.755401\pi\)
\(264\) 0 0
\(265\) −3.21539 −0.197520
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 20.5359 1.25210 0.626048 0.779785i \(-0.284671\pi\)
0.626048 + 0.779785i \(0.284671\pi\)
\(270\) 0 0
\(271\) −14.9282 −0.906824 −0.453412 0.891301i \(-0.649793\pi\)
−0.453412 + 0.891301i \(0.649793\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −33.1244 −1.99747
\(276\) 0 0
\(277\) −14.3923 −0.864750 −0.432375 0.901694i \(-0.642324\pi\)
−0.432375 + 0.901694i \(0.642324\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.85641 −0.468674 −0.234337 0.972155i \(-0.575292\pi\)
−0.234337 + 0.972155i \(0.575292\pi\)
\(282\) 0 0
\(283\) 10.5885 0.629418 0.314709 0.949188i \(-0.398093\pi\)
0.314709 + 0.949188i \(0.398093\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.39230 −0.259270
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −30.0000 −1.75262 −0.876309 0.481749i \(-0.840002\pi\)
−0.876309 + 0.481749i \(0.840002\pi\)
\(294\) 0 0
\(295\) −32.7846 −1.90879
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.92820 0.400668
\(300\) 0 0
\(301\) 9.07180 0.522890
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 25.8564 1.48053
\(306\) 0 0
\(307\) −16.7846 −0.957948 −0.478974 0.877829i \(-0.658991\pi\)
−0.478974 + 0.877829i \(0.658991\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 21.1244 1.19785 0.598926 0.800804i \(-0.295594\pi\)
0.598926 + 0.800804i \(0.295594\pi\)
\(312\) 0 0
\(313\) 7.07180 0.399722 0.199861 0.979824i \(-0.435951\pi\)
0.199861 + 0.979824i \(0.435951\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −15.4641 −0.868550 −0.434275 0.900780i \(-0.642995\pi\)
−0.434275 + 0.900780i \(0.642995\pi\)
\(318\) 0 0
\(319\) −16.3923 −0.917793
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.46410 −0.304031
\(324\) 0 0
\(325\) −10.2487 −0.568496
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.07180 −0.279617
\(330\) 0 0
\(331\) 15.3205 0.842091 0.421046 0.907039i \(-0.361663\pi\)
0.421046 + 0.907039i \(0.361663\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.71281 0.202853
\(336\) 0 0
\(337\) 34.7846 1.89484 0.947419 0.319995i \(-0.103681\pi\)
0.947419 + 0.319995i \(0.103681\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −29.3205 −1.58779
\(342\) 0 0
\(343\) 9.85641 0.532196
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.05256 0.217553 0.108776 0.994066i \(-0.465307\pi\)
0.108776 + 0.994066i \(0.465307\pi\)
\(348\) 0 0
\(349\) −30.7846 −1.64786 −0.823931 0.566690i \(-0.808224\pi\)
−0.823931 + 0.566690i \(0.808224\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.85641 −0.418154 −0.209077 0.977899i \(-0.567046\pi\)
−0.209077 + 0.977899i \(0.567046\pi\)
\(354\) 0 0
\(355\) −7.60770 −0.403775
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11.3205 0.597474 0.298737 0.954336i \(-0.403435\pi\)
0.298737 + 0.954336i \(0.403435\pi\)
\(360\) 0 0
\(361\) 10.8564 0.571390
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.92820 −0.362639
\(366\) 0 0
\(367\) −19.6603 −1.02626 −0.513128 0.858312i \(-0.671514\pi\)
−0.513128 + 0.858312i \(0.671514\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.679492 −0.0352775
\(372\) 0 0
\(373\) 12.3923 0.641649 0.320825 0.947139i \(-0.396040\pi\)
0.320825 + 0.947139i \(0.396040\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.07180 −0.261211
\(378\) 0 0
\(379\) 8.73205 0.448535 0.224268 0.974528i \(-0.428001\pi\)
0.224268 + 0.974528i \(0.428001\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9.46410 −0.483593 −0.241797 0.970327i \(-0.577737\pi\)
−0.241797 + 0.970327i \(0.577737\pi\)
\(384\) 0 0
\(385\) −12.0000 −0.611577
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 25.1769 1.27652 0.638260 0.769821i \(-0.279654\pi\)
0.638260 + 0.769821i \(0.279654\pi\)
\(390\) 0 0
\(391\) −4.73205 −0.239310
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6.24871 −0.314407
\(396\) 0 0
\(397\) −26.3923 −1.32459 −0.662296 0.749242i \(-0.730418\pi\)
−0.662296 + 0.749242i \(0.730418\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −4.14359 −0.206921 −0.103461 0.994634i \(-0.532992\pi\)
−0.103461 + 0.994634i \(0.532992\pi\)
\(402\) 0 0
\(403\) −9.07180 −0.451898
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −54.2487 −2.68901
\(408\) 0 0
\(409\) −37.7128 −1.86478 −0.932389 0.361456i \(-0.882280\pi\)
−0.932389 + 0.361456i \(0.882280\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.92820 −0.340915
\(414\) 0 0
\(415\) 32.7846 1.60933
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.58846 0.321867 0.160934 0.986965i \(-0.448550\pi\)
0.160934 + 0.986965i \(0.448550\pi\)
\(420\) 0 0
\(421\) 26.2487 1.27928 0.639642 0.768673i \(-0.279083\pi\)
0.639642 + 0.768673i \(0.279083\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.00000 0.339550
\(426\) 0 0
\(427\) 5.46410 0.264426
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.339746 0.0163650 0.00818249 0.999967i \(-0.497395\pi\)
0.00818249 + 0.999967i \(0.497395\pi\)
\(432\) 0 0
\(433\) 24.3923 1.17222 0.586110 0.810232i \(-0.300659\pi\)
0.586110 + 0.810232i \(0.300659\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 25.8564 1.23688
\(438\) 0 0
\(439\) 13.8038 0.658822 0.329411 0.944187i \(-0.393150\pi\)
0.329411 + 0.944187i \(0.393150\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 20.7846 0.987507 0.493753 0.869602i \(-0.335625\pi\)
0.493753 + 0.869602i \(0.335625\pi\)
\(444\) 0 0
\(445\) 32.7846 1.55414
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) −28.3923 −1.33694
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.71281 −0.174059
\(456\) 0 0
\(457\) 0.392305 0.0183512 0.00917562 0.999958i \(-0.497079\pi\)
0.00917562 + 0.999958i \(0.497079\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.7846 0.688588 0.344294 0.938862i \(-0.388118\pi\)
0.344294 + 0.938862i \(0.388118\pi\)
\(462\) 0 0
\(463\) 29.8564 1.38754 0.693772 0.720194i \(-0.255947\pi\)
0.693772 + 0.720194i \(0.255947\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 21.4641 0.993240 0.496620 0.867968i \(-0.334574\pi\)
0.496620 + 0.867968i \(0.334574\pi\)
\(468\) 0 0
\(469\) 0.784610 0.0362299
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 58.6410 2.69632
\(474\) 0 0
\(475\) −38.2487 −1.75497
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.339746 −0.0155234 −0.00776169 0.999970i \(-0.502471\pi\)
−0.00776169 + 0.999970i \(0.502471\pi\)
\(480\) 0 0
\(481\) −16.7846 −0.765312
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −30.9282 −1.40438
\(486\) 0 0
\(487\) 32.0526 1.45244 0.726220 0.687462i \(-0.241275\pi\)
0.726220 + 0.687462i \(0.241275\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 25.1769 1.13622 0.568109 0.822953i \(-0.307675\pi\)
0.568109 + 0.822953i \(0.307675\pi\)
\(492\) 0 0
\(493\) 3.46410 0.156015
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.60770 −0.0721150
\(498\) 0 0
\(499\) 26.9808 1.20782 0.603912 0.797051i \(-0.293608\pi\)
0.603912 + 0.797051i \(0.293608\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.87564 0.128219 0.0641093 0.997943i \(-0.479579\pi\)
0.0641093 + 0.997943i \(0.479579\pi\)
\(504\) 0 0
\(505\) −32.7846 −1.45890
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −33.7128 −1.49429 −0.747147 0.664659i \(-0.768577\pi\)
−0.747147 + 0.664659i \(0.768577\pi\)
\(510\) 0 0
\(511\) −1.46410 −0.0647680
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 10.1436 0.446980
\(516\) 0 0
\(517\) −32.7846 −1.44187
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 0 0
\(523\) −28.7846 −1.25866 −0.629332 0.777137i \(-0.716671\pi\)
−0.629332 + 0.777137i \(0.716671\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.19615 0.269909
\(528\) 0 0
\(529\) −0.607695 −0.0264215
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −8.78461 −0.380504
\(534\) 0 0
\(535\) −25.1769 −1.08849
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 30.5885 1.31754
\(540\) 0 0
\(541\) −2.39230 −0.102853 −0.0514266 0.998677i \(-0.516377\pi\)
−0.0514266 + 0.998677i \(0.516377\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −22.1436 −0.948527
\(546\) 0 0
\(547\) −39.2679 −1.67898 −0.839488 0.543378i \(-0.817145\pi\)
−0.839488 + 0.543378i \(0.817145\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −18.9282 −0.806369
\(552\) 0 0
\(553\) −1.32051 −0.0561537
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 33.4641 1.41792 0.708960 0.705249i \(-0.249165\pi\)
0.708960 + 0.705249i \(0.249165\pi\)
\(558\) 0 0
\(559\) 18.1436 0.767392
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.679492 −0.0286372 −0.0143186 0.999897i \(-0.504558\pi\)
−0.0143186 + 0.999897i \(0.504558\pi\)
\(564\) 0 0
\(565\) −27.2154 −1.14496
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −19.8564 −0.832424 −0.416212 0.909268i \(-0.636643\pi\)
−0.416212 + 0.909268i \(0.636643\pi\)
\(570\) 0 0
\(571\) 13.1244 0.549237 0.274619 0.961553i \(-0.411448\pi\)
0.274619 + 0.961553i \(0.411448\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −33.1244 −1.38138
\(576\) 0 0
\(577\) −6.53590 −0.272093 −0.136047 0.990702i \(-0.543440\pi\)
−0.136047 + 0.990702i \(0.543440\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.92820 0.287430
\(582\) 0 0
\(583\) −4.39230 −0.181911
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.60770 0.314003 0.157002 0.987598i \(-0.449817\pi\)
0.157002 + 0.987598i \(0.449817\pi\)
\(588\) 0 0
\(589\) −33.8564 −1.39503
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 31.8564 1.30819 0.654093 0.756414i \(-0.273051\pi\)
0.654093 + 0.756414i \(0.273051\pi\)
\(594\) 0 0
\(595\) 2.53590 0.103962
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 27.7128 1.13231 0.566157 0.824297i \(-0.308429\pi\)
0.566157 + 0.824297i \(0.308429\pi\)
\(600\) 0 0
\(601\) −30.7846 −1.25573 −0.627865 0.778322i \(-0.716071\pi\)
−0.627865 + 0.778322i \(0.716071\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −39.4641 −1.60444
\(606\) 0 0
\(607\) 35.2679 1.43148 0.715741 0.698366i \(-0.246089\pi\)
0.715741 + 0.698366i \(0.246089\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10.1436 −0.410366
\(612\) 0 0
\(613\) −20.1436 −0.813592 −0.406796 0.913519i \(-0.633354\pi\)
−0.406796 + 0.913519i \(0.633354\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −47.5692 −1.91506 −0.957532 0.288326i \(-0.906901\pi\)
−0.957532 + 0.288326i \(0.906901\pi\)
\(618\) 0 0
\(619\) −22.1962 −0.892139 −0.446069 0.894998i \(-0.647177\pi\)
−0.446069 + 0.894998i \(0.647177\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.92820 0.277573
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 11.4641 0.457104
\(630\) 0 0
\(631\) −34.5359 −1.37485 −0.687426 0.726254i \(-0.741260\pi\)
−0.687426 + 0.726254i \(0.741260\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −70.6410 −2.80330
\(636\) 0 0
\(637\) 9.46410 0.374981
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.928203 −0.0366618 −0.0183309 0.999832i \(-0.505835\pi\)
−0.0183309 + 0.999832i \(0.505835\pi\)
\(642\) 0 0
\(643\) −1.41154 −0.0556658 −0.0278329 0.999613i \(-0.508861\pi\)
−0.0278329 + 0.999613i \(0.508861\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 30.9282 1.21591 0.607957 0.793970i \(-0.291989\pi\)
0.607957 + 0.793970i \(0.291989\pi\)
\(648\) 0 0
\(649\) −44.7846 −1.75795
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −10.3923 −0.406682 −0.203341 0.979108i \(-0.565180\pi\)
−0.203341 + 0.979108i \(0.565180\pi\)
\(654\) 0 0
\(655\) 40.3923 1.57826
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 29.0718 1.13248 0.566238 0.824242i \(-0.308398\pi\)
0.566238 + 0.824242i \(0.308398\pi\)
\(660\) 0 0
\(661\) −28.9282 −1.12518 −0.562588 0.826737i \(-0.690194\pi\)
−0.562588 + 0.826737i \(0.690194\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −13.8564 −0.537328
\(666\) 0 0
\(667\) −16.3923 −0.634713
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 35.3205 1.36353
\(672\) 0 0
\(673\) 27.8564 1.07379 0.536893 0.843650i \(-0.319598\pi\)
0.536893 + 0.843650i \(0.319598\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −24.2487 −0.931954 −0.465977 0.884797i \(-0.654297\pi\)
−0.465977 + 0.884797i \(0.654297\pi\)
\(678\) 0 0
\(679\) −6.53590 −0.250825
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7.94744 −0.304100 −0.152050 0.988373i \(-0.548588\pi\)
−0.152050 + 0.988373i \(0.548588\pi\)
\(684\) 0 0
\(685\) 32.7846 1.25264
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.35898 −0.0517732
\(690\) 0 0
\(691\) 25.8038 0.981625 0.490812 0.871265i \(-0.336700\pi\)
0.490812 + 0.871265i \(0.336700\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −39.0333 −1.48062
\(696\) 0 0
\(697\) 6.00000 0.227266
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −4.39230 −0.165895 −0.0829475 0.996554i \(-0.526433\pi\)
−0.0829475 + 0.996554i \(0.526433\pi\)
\(702\) 0 0
\(703\) −62.6410 −2.36255
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.92820 −0.260562
\(708\) 0 0
\(709\) 32.2487 1.21113 0.605563 0.795797i \(-0.292948\pi\)
0.605563 + 0.795797i \(0.292948\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −29.3205 −1.09806
\(714\) 0 0
\(715\) −24.0000 −0.897549
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.51666 −0.0565619 −0.0282809 0.999600i \(-0.509003\pi\)
−0.0282809 + 0.999600i \(0.509003\pi\)
\(720\) 0 0
\(721\) 2.14359 0.0798316
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 24.2487 0.900575
\(726\) 0 0
\(727\) 36.7846 1.36427 0.682133 0.731228i \(-0.261053\pi\)
0.682133 + 0.731228i \(0.261053\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.3923 −0.458346
\(732\) 0 0
\(733\) 22.7846 0.841569 0.420784 0.907161i \(-0.361755\pi\)
0.420784 + 0.907161i \(0.361755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.07180 0.186822
\(738\) 0 0
\(739\) 8.39230 0.308716 0.154358 0.988015i \(-0.450669\pi\)
0.154358 + 0.988015i \(0.450669\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −41.9090 −1.53749 −0.768745 0.639555i \(-0.779119\pi\)
−0.768745 + 0.639555i \(0.779119\pi\)
\(744\) 0 0
\(745\) 20.7846 0.761489
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.32051 −0.194407
\(750\) 0 0
\(751\) −15.2679 −0.557135 −0.278568 0.960417i \(-0.589860\pi\)
−0.278568 + 0.960417i \(0.589860\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −22.6410 −0.823991
\(756\) 0 0
\(757\) 10.5359 0.382934 0.191467 0.981499i \(-0.438676\pi\)
0.191467 + 0.981499i \(0.438676\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.39230 0.159221 0.0796105 0.996826i \(-0.474632\pi\)
0.0796105 + 0.996826i \(0.474632\pi\)
\(762\) 0 0
\(763\) −4.67949 −0.169409
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13.8564 −0.500326
\(768\) 0 0
\(769\) −20.3923 −0.735365 −0.367683 0.929951i \(-0.619849\pi\)
−0.367683 + 0.929951i \(0.619849\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 35.3205 1.27039 0.635195 0.772352i \(-0.280920\pi\)
0.635195 + 0.772352i \(0.280920\pi\)
\(774\) 0 0
\(775\) 43.3731 1.55801
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −32.7846 −1.17463
\(780\) 0 0
\(781\) −10.3923 −0.371866
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6.92820 −0.247278
\(786\) 0 0
\(787\) 1.12436 0.0400790 0.0200395 0.999799i \(-0.493621\pi\)
0.0200395 + 0.999799i \(0.493621\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −5.75129 −0.204492
\(792\) 0 0
\(793\) 10.9282 0.388072
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −38.7846 −1.37382 −0.686911 0.726742i \(-0.741034\pi\)
−0.686911 + 0.726742i \(0.741034\pi\)
\(798\) 0 0
\(799\) 6.92820 0.245102
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −9.46410 −0.333981
\(804\) 0 0
\(805\) −12.0000 −0.422944
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −19.8564 −0.698114 −0.349057 0.937101i \(-0.613498\pi\)
−0.349057 + 0.937101i \(0.613498\pi\)
\(810\) 0 0
\(811\) −35.3731 −1.24212 −0.621058 0.783764i \(-0.713297\pi\)
−0.621058 + 0.783764i \(0.713297\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −36.6795 −1.28483
\(816\) 0 0
\(817\) 67.7128 2.36897
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 45.0333 1.57167 0.785837 0.618434i \(-0.212233\pi\)
0.785837 + 0.618434i \(0.212233\pi\)
\(822\) 0 0
\(823\) 15.6603 0.545882 0.272941 0.962031i \(-0.412004\pi\)
0.272941 + 0.962031i \(0.412004\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25.5167 0.887301 0.443651 0.896200i \(-0.353683\pi\)
0.443651 + 0.896200i \(0.353683\pi\)
\(828\) 0 0
\(829\) 12.1436 0.421764 0.210882 0.977511i \(-0.432366\pi\)
0.210882 + 0.977511i \(0.432366\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.46410 −0.223968
\(834\) 0 0
\(835\) 40.3923 1.39783
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 49.5167 1.70950 0.854752 0.519036i \(-0.173709\pi\)
0.854752 + 0.519036i \(0.173709\pi\)
\(840\) 0 0
\(841\) −17.0000 −0.586207
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 37.6077 1.29374
\(846\) 0 0
\(847\) −8.33975 −0.286557
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −54.2487 −1.85962
\(852\) 0 0
\(853\) −40.2487 −1.37809 −0.689045 0.724719i \(-0.741970\pi\)
−0.689045 + 0.724719i \(0.741970\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 52.6410 1.79818 0.899091 0.437761i \(-0.144228\pi\)
0.899091 + 0.437761i \(0.144228\pi\)
\(858\) 0 0
\(859\) −7.32051 −0.249773 −0.124886 0.992171i \(-0.539857\pi\)
−0.124886 + 0.992171i \(0.539857\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 37.8564 1.28865 0.644324 0.764753i \(-0.277139\pi\)
0.644324 + 0.764753i \(0.277139\pi\)
\(864\) 0 0
\(865\) −29.5692 −1.00538
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −8.53590 −0.289561
\(870\) 0 0
\(871\) 1.56922 0.0531710
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 5.07180 0.171458
\(876\) 0 0
\(877\) 30.3923 1.02628 0.513138 0.858306i \(-0.328483\pi\)
0.513138 + 0.858306i \(0.328483\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.78461 −0.0938159 −0.0469079 0.998899i \(-0.514937\pi\)
−0.0469079 + 0.998899i \(0.514937\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 42.5885 1.42998 0.714990 0.699134i \(-0.246431\pi\)
0.714990 + 0.699134i \(0.246431\pi\)
\(888\) 0 0
\(889\) −14.9282 −0.500676
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −37.8564 −1.26682
\(894\) 0 0
\(895\) −74.3538 −2.48537
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 21.4641 0.715868
\(900\) 0 0
\(901\) 0.928203 0.0309229
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −39.7128 −1.32010
\(906\) 0 0
\(907\) 24.4449 0.811678 0.405839 0.913945i \(-0.366979\pi\)
0.405839 + 0.913945i \(0.366979\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −26.1962 −0.867917 −0.433959 0.900933i \(-0.642884\pi\)
−0.433959 + 0.900933i \(0.642884\pi\)
\(912\) 0 0
\(913\) 44.7846 1.48215
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.53590 0.281880
\(918\) 0 0
\(919\) 52.0000 1.71532 0.857661 0.514216i \(-0.171917\pi\)
0.857661 + 0.514216i \(0.171917\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.21539 −0.105836
\(924\) 0 0
\(925\) 80.2487 2.63856
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −45.7128 −1.49979 −0.749894 0.661558i \(-0.769896\pi\)
−0.749894 + 0.661558i \(0.769896\pi\)
\(930\) 0 0
\(931\) 35.3205 1.15758
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 16.3923 0.536086
\(936\) 0 0
\(937\) 27.8564 0.910029 0.455015 0.890484i \(-0.349634\pi\)
0.455015 + 0.890484i \(0.349634\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −6.67949 −0.217745 −0.108873 0.994056i \(-0.534724\pi\)
−0.108873 + 0.994056i \(0.534724\pi\)
\(942\) 0 0
\(943\) −28.3923 −0.924581
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 52.7321 1.71356 0.856781 0.515681i \(-0.172461\pi\)
0.856781 + 0.515681i \(0.172461\pi\)
\(948\) 0 0
\(949\) −2.92820 −0.0950535
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 42.2487 1.36857 0.684285 0.729215i \(-0.260114\pi\)
0.684285 + 0.729215i \(0.260114\pi\)
\(954\) 0 0
\(955\) −41.5692 −1.34515
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.92820 0.223723
\(960\) 0 0
\(961\) 7.39230 0.238461
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −24.4974 −0.788600
\(966\) 0 0
\(967\) −48.3923 −1.55619 −0.778096 0.628146i \(-0.783814\pi\)
−0.778096 + 0.628146i \(0.783814\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −56.1051 −1.80050 −0.900249 0.435374i \(-0.856616\pi\)
−0.900249 + 0.435374i \(0.856616\pi\)
\(972\) 0 0
\(973\) −8.24871 −0.264442
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) 44.7846 1.43132
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 29.9090 0.953948 0.476974 0.878917i \(-0.341734\pi\)
0.476974 + 0.878917i \(0.341734\pi\)
\(984\) 0 0
\(985\) −12.0000 −0.382352
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 58.6410 1.86468
\(990\) 0 0
\(991\) −10.1962 −0.323891 −0.161946 0.986800i \(-0.551777\pi\)
−0.161946 + 0.986800i \(0.551777\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −21.4641 −0.680458
\(996\) 0 0
\(997\) 42.3923 1.34258 0.671289 0.741196i \(-0.265741\pi\)
0.671289 + 0.741196i \(0.265741\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2448.2.a.y.1.1 2
3.2 odd 2 272.2.a.e.1.2 2
4.3 odd 2 612.2.a.e.1.1 2
8.3 odd 2 9792.2.a.cr.1.2 2
8.5 even 2 9792.2.a.cs.1.2 2
12.11 even 2 68.2.a.a.1.1 2
15.14 odd 2 6800.2.a.bh.1.1 2
24.5 odd 2 1088.2.a.t.1.1 2
24.11 even 2 1088.2.a.p.1.2 2
51.50 odd 2 4624.2.a.x.1.1 2
60.23 odd 4 1700.2.e.c.749.2 4
60.47 odd 4 1700.2.e.c.749.3 4
60.59 even 2 1700.2.a.d.1.2 2
84.83 odd 2 3332.2.a.h.1.2 2
132.131 odd 2 8228.2.a.k.1.1 2
204.11 odd 16 1156.2.h.f.733.3 16
204.23 odd 16 1156.2.h.f.733.2 16
204.47 even 4 1156.2.b.c.577.2 4
204.59 even 8 1156.2.e.d.829.3 8
204.71 odd 16 1156.2.h.f.757.2 16
204.83 even 8 1156.2.e.d.905.3 8
204.95 odd 16 1156.2.h.f.1001.2 16
204.107 odd 16 1156.2.h.f.977.3 16
204.131 odd 16 1156.2.h.f.977.2 16
204.143 odd 16 1156.2.h.f.1001.3 16
204.155 even 8 1156.2.e.d.905.2 8
204.167 odd 16 1156.2.h.f.757.3 16
204.179 even 8 1156.2.e.d.829.2 8
204.191 even 4 1156.2.b.c.577.3 4
204.203 even 2 1156.2.a.a.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
68.2.a.a.1.1 2 12.11 even 2
272.2.a.e.1.2 2 3.2 odd 2
612.2.a.e.1.1 2 4.3 odd 2
1088.2.a.p.1.2 2 24.11 even 2
1088.2.a.t.1.1 2 24.5 odd 2
1156.2.a.a.1.2 2 204.203 even 2
1156.2.b.c.577.2 4 204.47 even 4
1156.2.b.c.577.3 4 204.191 even 4
1156.2.e.d.829.2 8 204.179 even 8
1156.2.e.d.829.3 8 204.59 even 8
1156.2.e.d.905.2 8 204.155 even 8
1156.2.e.d.905.3 8 204.83 even 8
1156.2.h.f.733.2 16 204.23 odd 16
1156.2.h.f.733.3 16 204.11 odd 16
1156.2.h.f.757.2 16 204.71 odd 16
1156.2.h.f.757.3 16 204.167 odd 16
1156.2.h.f.977.2 16 204.131 odd 16
1156.2.h.f.977.3 16 204.107 odd 16
1156.2.h.f.1001.2 16 204.95 odd 16
1156.2.h.f.1001.3 16 204.143 odd 16
1700.2.a.d.1.2 2 60.59 even 2
1700.2.e.c.749.2 4 60.23 odd 4
1700.2.e.c.749.3 4 60.47 odd 4
2448.2.a.y.1.1 2 1.1 even 1 trivial
3332.2.a.h.1.2 2 84.83 odd 2
4624.2.a.x.1.1 2 51.50 odd 2
6800.2.a.bh.1.1 2 15.14 odd 2
8228.2.a.k.1.1 2 132.131 odd 2
9792.2.a.cr.1.2 2 8.3 odd 2
9792.2.a.cs.1.2 2 8.5 even 2