Properties

Label 116.2.g.b.81.2
Level $116$
Weight $2$
Character 116.81
Analytic conductor $0.926$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [116,2,Mod(25,116)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(116, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("116.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 116 = 2^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 116.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.926264663447\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5 x^{11} + 12 x^{10} - 16 x^{9} + 22 x^{8} + 28 x^{7} + 71 x^{6} + 154 x^{5} + 442 x^{4} + \cdots + 841 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 81.2
Root \(-0.366459 + 1.60556i\) of defining polynomial
Character \(\chi\) \(=\) 116.81
Dual form 116.2.g.b.53.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.588980 - 2.58049i) q^{3} +(-0.379425 + 0.475783i) q^{5} +(0.143938 - 0.630635i) q^{7} +(-3.60913 - 1.73806i) q^{9} +(2.86324 - 1.37887i) q^{11} +(-4.97137 + 2.39409i) q^{13} +(1.00428 + 1.25933i) q^{15} +6.66330 q^{17} +(1.14602 + 5.02104i) q^{19} +(-1.54257 - 0.742863i) q^{21} +(1.01545 + 1.27333i) q^{23} +(1.03020 + 4.51359i) q^{25} +(-1.65990 + 2.08145i) q^{27} +(-5.38378 - 0.122066i) q^{29} +(-1.23153 + 1.54429i) q^{31} +(-1.87176 - 8.20070i) q^{33} +(0.245432 + 0.307762i) q^{35} +(-2.60003 - 1.25211i) q^{37} +(3.24988 + 14.2387i) q^{39} -9.83108 q^{41} +(-4.81739 - 6.04081i) q^{43} +(2.19633 - 1.05770i) q^{45} +(7.49675 - 3.61024i) q^{47} +(5.92980 + 2.85564i) q^{49} +(3.92455 - 17.1946i) q^{51} +(4.82640 - 6.05211i) q^{53} +(-0.430344 + 1.88546i) q^{55} +13.6317 q^{57} -1.12157 q^{59} +(-2.02019 + 8.85104i) q^{61} +(-1.61557 + 2.02587i) q^{63} +(0.747195 - 3.27367i) q^{65} +(-11.2641 - 5.42452i) q^{67} +(3.88390 - 1.87039i) q^{69} +(0.344508 - 0.165906i) q^{71} +(0.200048 + 0.250852i) q^{73} +12.2540 q^{75} +(-0.457430 - 2.00413i) q^{77} +(-15.5018 - 7.46526i) q^{79} +(-3.09926 - 3.88635i) q^{81} +(-1.91516 - 8.39086i) q^{83} +(-2.52822 + 3.17029i) q^{85} +(-3.48593 + 13.8209i) q^{87} +(-5.99640 + 7.51924i) q^{89} +(0.794224 + 3.47972i) q^{91} +(3.25968 + 4.08751i) q^{93} +(-2.82375 - 1.35985i) q^{95} +(1.95580 + 8.56894i) q^{97} -12.7304 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{3} - q^{5} - 7 q^{7} + q^{9} + 3 q^{11} - 21 q^{13} + 29 q^{15} - 10 q^{17} + 17 q^{19} + 3 q^{21} - 19 q^{23} - 3 q^{25} + 9 q^{27} - 5 q^{29} - 27 q^{31} - 47 q^{33} + 27 q^{35} - 3 q^{37}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/116\mathbb{Z}\right)^\times\).

\(n\) \(59\) \(89\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.588980 2.58049i 0.340048 1.48985i −0.458922 0.888476i \(-0.651764\pi\)
0.798970 0.601371i \(-0.205378\pi\)
\(4\) 0 0
\(5\) −0.379425 + 0.475783i −0.169684 + 0.212777i −0.859401 0.511302i \(-0.829163\pi\)
0.689717 + 0.724079i \(0.257735\pi\)
\(6\) 0 0
\(7\) 0.143938 0.630635i 0.0544035 0.238357i −0.940414 0.340031i \(-0.889562\pi\)
0.994818 + 0.101673i \(0.0324196\pi\)
\(8\) 0 0
\(9\) −3.60913 1.73806i −1.20304 0.579355i
\(10\) 0 0
\(11\) 2.86324 1.37887i 0.863300 0.415744i 0.0508032 0.998709i \(-0.483822\pi\)
0.812497 + 0.582965i \(0.198108\pi\)
\(12\) 0 0
\(13\) −4.97137 + 2.39409i −1.37881 + 0.664001i −0.968746 0.248056i \(-0.920208\pi\)
−0.410065 + 0.912056i \(0.634494\pi\)
\(14\) 0 0
\(15\) 1.00428 + 1.25933i 0.259304 + 0.325157i
\(16\) 0 0
\(17\) 6.66330 1.61609 0.808043 0.589123i \(-0.200527\pi\)
0.808043 + 0.589123i \(0.200527\pi\)
\(18\) 0 0
\(19\) 1.14602 + 5.02104i 0.262915 + 1.15190i 0.918073 + 0.396412i \(0.129745\pi\)
−0.655158 + 0.755492i \(0.727398\pi\)
\(20\) 0 0
\(21\) −1.54257 0.742863i −0.336616 0.162106i
\(22\) 0 0
\(23\) 1.01545 + 1.27333i 0.211735 + 0.265508i 0.876346 0.481682i \(-0.159974\pi\)
−0.664611 + 0.747190i \(0.731403\pi\)
\(24\) 0 0
\(25\) 1.03020 + 4.51359i 0.206040 + 0.902718i
\(26\) 0 0
\(27\) −1.65990 + 2.08145i −0.319449 + 0.400576i
\(28\) 0 0
\(29\) −5.38378 0.122066i −0.999743 0.0226671i
\(30\) 0 0
\(31\) −1.23153 + 1.54429i −0.221190 + 0.277363i −0.880028 0.474921i \(-0.842477\pi\)
0.658839 + 0.752284i \(0.271048\pi\)
\(32\) 0 0
\(33\) −1.87176 8.20070i −0.325831 1.42756i
\(34\) 0 0
\(35\) 0.245432 + 0.307762i 0.0414855 + 0.0520212i
\(36\) 0 0
\(37\) −2.60003 1.25211i −0.427442 0.205845i 0.207779 0.978176i \(-0.433377\pi\)
−0.635221 + 0.772331i \(0.719091\pi\)
\(38\) 0 0
\(39\) 3.24988 + 14.2387i 0.520397 + 2.28001i
\(40\) 0 0
\(41\) −9.83108 −1.53536 −0.767678 0.640836i \(-0.778588\pi\)
−0.767678 + 0.640836i \(0.778588\pi\)
\(42\) 0 0
\(43\) −4.81739 6.04081i −0.734644 0.921215i 0.264422 0.964407i \(-0.414819\pi\)
−0.999067 + 0.0431920i \(0.986247\pi\)
\(44\) 0 0
\(45\) 2.19633 1.05770i 0.327410 0.157672i
\(46\) 0 0
\(47\) 7.49675 3.61024i 1.09351 0.526608i 0.201900 0.979406i \(-0.435288\pi\)
0.891613 + 0.452798i \(0.149574\pi\)
\(48\) 0 0
\(49\) 5.92980 + 2.85564i 0.847114 + 0.407949i
\(50\) 0 0
\(51\) 3.92455 17.1946i 0.549547 2.40772i
\(52\) 0 0
\(53\) 4.82640 6.05211i 0.662957 0.831321i −0.330705 0.943734i \(-0.607287\pi\)
0.993662 + 0.112413i \(0.0358580\pi\)
\(54\) 0 0
\(55\) −0.430344 + 1.88546i −0.0580275 + 0.254235i
\(56\) 0 0
\(57\) 13.6317 1.80556
\(58\) 0 0
\(59\) −1.12157 −0.146016 −0.0730082 0.997331i \(-0.523260\pi\)
−0.0730082 + 0.997331i \(0.523260\pi\)
\(60\) 0 0
\(61\) −2.02019 + 8.85104i −0.258659 + 1.13326i 0.664027 + 0.747708i \(0.268846\pi\)
−0.922687 + 0.385551i \(0.874011\pi\)
\(62\) 0 0
\(63\) −1.61557 + 2.02587i −0.203543 + 0.255235i
\(64\) 0 0
\(65\) 0.747195 3.27367i 0.0926781 0.406049i
\(66\) 0 0
\(67\) −11.2641 5.42452i −1.37613 0.662711i −0.407961 0.912999i \(-0.633760\pi\)
−0.968171 + 0.250289i \(0.919475\pi\)
\(68\) 0 0
\(69\) 3.88390 1.87039i 0.467566 0.225168i
\(70\) 0 0
\(71\) 0.344508 0.165906i 0.0408855 0.0196894i −0.413329 0.910582i \(-0.635634\pi\)
0.454215 + 0.890892i \(0.349920\pi\)
\(72\) 0 0
\(73\) 0.200048 + 0.250852i 0.0234139 + 0.0293601i 0.793401 0.608700i \(-0.208309\pi\)
−0.769987 + 0.638060i \(0.779737\pi\)
\(74\) 0 0
\(75\) 12.2540 1.41498
\(76\) 0 0
\(77\) −0.457430 2.00413i −0.0521290 0.228392i
\(78\) 0 0
\(79\) −15.5018 7.46526i −1.74408 0.839907i −0.981103 0.193487i \(-0.938020\pi\)
−0.762982 0.646420i \(-0.776265\pi\)
\(80\) 0 0
\(81\) −3.09926 3.88635i −0.344362 0.431816i
\(82\) 0 0
\(83\) −1.91516 8.39086i −0.210216 0.921017i −0.964420 0.264376i \(-0.914834\pi\)
0.754204 0.656641i \(-0.228023\pi\)
\(84\) 0 0
\(85\) −2.52822 + 3.17029i −0.274224 + 0.343866i
\(86\) 0 0
\(87\) −3.48593 + 13.8209i −0.373731 + 1.48176i
\(88\) 0 0
\(89\) −5.99640 + 7.51924i −0.635617 + 0.797038i −0.990447 0.137892i \(-0.955967\pi\)
0.354830 + 0.934931i \(0.384539\pi\)
\(90\) 0 0
\(91\) 0.794224 + 3.47972i 0.0832573 + 0.364774i
\(92\) 0 0
\(93\) 3.25968 + 4.08751i 0.338013 + 0.423855i
\(94\) 0 0
\(95\) −2.82375 1.35985i −0.289711 0.139517i
\(96\) 0 0
\(97\) 1.95580 + 8.56894i 0.198582 + 0.870044i 0.971782 + 0.235882i \(0.0757978\pi\)
−0.773200 + 0.634162i \(0.781345\pi\)
\(98\) 0 0
\(99\) −12.7304 −1.27945
\(100\) 0 0
\(101\) 9.08321 + 11.3900i 0.903814 + 1.13335i 0.990555 + 0.137116i \(0.0437832\pi\)
−0.0867414 + 0.996231i \(0.527645\pi\)
\(102\) 0 0
\(103\) 8.84897 4.26144i 0.871915 0.419892i 0.0562500 0.998417i \(-0.482086\pi\)
0.815665 + 0.578525i \(0.196371\pi\)
\(104\) 0 0
\(105\) 0.938731 0.452069i 0.0916107 0.0441174i
\(106\) 0 0
\(107\) 0.975441 + 0.469747i 0.0942994 + 0.0454122i 0.480439 0.877028i \(-0.340477\pi\)
−0.386139 + 0.922440i \(0.626192\pi\)
\(108\) 0 0
\(109\) 1.01089 4.42898i 0.0968252 0.424219i −0.903162 0.429300i \(-0.858760\pi\)
0.999987 + 0.00508113i \(0.00161738\pi\)
\(110\) 0 0
\(111\) −4.76241 + 5.97188i −0.452028 + 0.566826i
\(112\) 0 0
\(113\) 0.291733 1.27816i 0.0274439 0.120240i −0.959351 0.282217i \(-0.908930\pi\)
0.986794 + 0.161978i \(0.0517873\pi\)
\(114\) 0 0
\(115\) −0.991116 −0.0924220
\(116\) 0 0
\(117\) 22.1034 2.04346
\(118\) 0 0
\(119\) 0.959103 4.20211i 0.0879208 0.385206i
\(120\) 0 0
\(121\) −0.561495 + 0.704093i −0.0510450 + 0.0640085i
\(122\) 0 0
\(123\) −5.79031 + 25.3690i −0.522094 + 2.28745i
\(124\) 0 0
\(125\) −5.27980 2.54262i −0.472239 0.227418i
\(126\) 0 0
\(127\) 8.84522 4.25963i 0.784886 0.377981i 0.00188260 0.999998i \(-0.499401\pi\)
0.783004 + 0.622017i \(0.213686\pi\)
\(128\) 0 0
\(129\) −18.4256 + 8.87330i −1.62228 + 0.781251i
\(130\) 0 0
\(131\) 1.30095 + 1.63134i 0.113665 + 0.142531i 0.835409 0.549629i \(-0.185231\pi\)
−0.721744 + 0.692160i \(0.756659\pi\)
\(132\) 0 0
\(133\) 3.33139 0.288869
\(134\) 0 0
\(135\) −0.360513 1.57951i −0.0310280 0.135943i
\(136\) 0 0
\(137\) 5.87422 + 2.82887i 0.501868 + 0.241687i 0.667650 0.744475i \(-0.267300\pi\)
−0.165782 + 0.986163i \(0.553015\pi\)
\(138\) 0 0
\(139\) −2.48124 3.11138i −0.210456 0.263904i 0.665388 0.746498i \(-0.268266\pi\)
−0.875844 + 0.482594i \(0.839695\pi\)
\(140\) 0 0
\(141\) −4.90076 21.4716i −0.412719 1.80824i
\(142\) 0 0
\(143\) −10.9331 + 13.7097i −0.914274 + 1.14646i
\(144\) 0 0
\(145\) 2.10082 2.51520i 0.174463 0.208876i
\(146\) 0 0
\(147\) 10.8615 13.6199i 0.895841 1.12335i
\(148\) 0 0
\(149\) −2.45408 10.7520i −0.201046 0.880840i −0.970302 0.241898i \(-0.922230\pi\)
0.769256 0.638941i \(-0.220627\pi\)
\(150\) 0 0
\(151\) 5.08706 + 6.37897i 0.413979 + 0.519113i 0.944479 0.328572i \(-0.106567\pi\)
−0.530500 + 0.847685i \(0.677996\pi\)
\(152\) 0 0
\(153\) −24.0487 11.5812i −1.94422 0.936287i
\(154\) 0 0
\(155\) −0.267475 1.17188i −0.0214841 0.0941280i
\(156\) 0 0
\(157\) 18.2828 1.45912 0.729562 0.683915i \(-0.239724\pi\)
0.729562 + 0.683915i \(0.239724\pi\)
\(158\) 0 0
\(159\) −12.7748 16.0190i −1.01310 1.27039i
\(160\) 0 0
\(161\) 0.949169 0.457095i 0.0748050 0.0360242i
\(162\) 0 0
\(163\) −17.4871 + 8.42132i −1.36969 + 0.659609i −0.966775 0.255628i \(-0.917718\pi\)
−0.402917 + 0.915237i \(0.632004\pi\)
\(164\) 0 0
\(165\) 4.61194 + 2.22100i 0.359039 + 0.172904i
\(166\) 0 0
\(167\) −5.31968 + 23.3070i −0.411649 + 1.80355i 0.164695 + 0.986345i \(0.447336\pi\)
−0.576344 + 0.817207i \(0.695521\pi\)
\(168\) 0 0
\(169\) 10.8775 13.6400i 0.836734 1.04923i
\(170\) 0 0
\(171\) 4.59075 20.1134i 0.351064 1.53811i
\(172\) 0 0
\(173\) 1.03092 0.0783792 0.0391896 0.999232i \(-0.487522\pi\)
0.0391896 + 0.999232i \(0.487522\pi\)
\(174\) 0 0
\(175\) 2.99471 0.226379
\(176\) 0 0
\(177\) −0.660585 + 2.89421i −0.0496526 + 0.217542i
\(178\) 0 0
\(179\) 10.8118 13.5575i 0.808109 1.01334i −0.191385 0.981515i \(-0.561298\pi\)
0.999494 0.0318212i \(-0.0101307\pi\)
\(180\) 0 0
\(181\) −0.754541 + 3.30586i −0.0560846 + 0.245723i −0.995198 0.0978856i \(-0.968792\pi\)
0.939113 + 0.343608i \(0.111649\pi\)
\(182\) 0 0
\(183\) 21.6502 + 10.4262i 1.60043 + 0.770725i
\(184\) 0 0
\(185\) 1.58225 0.761969i 0.116329 0.0560211i
\(186\) 0 0
\(187\) 19.0786 9.18779i 1.39517 0.671878i
\(188\) 0 0
\(189\) 1.07371 + 1.34639i 0.0781012 + 0.0979358i
\(190\) 0 0
\(191\) 17.7442 1.28393 0.641963 0.766735i \(-0.278120\pi\)
0.641963 + 0.766735i \(0.278120\pi\)
\(192\) 0 0
\(193\) −1.04550 4.58061i −0.0752564 0.329720i 0.923260 0.384176i \(-0.125515\pi\)
−0.998516 + 0.0544565i \(0.982657\pi\)
\(194\) 0 0
\(195\) −8.00760 3.85626i −0.573436 0.276152i
\(196\) 0 0
\(197\) −9.15408 11.4788i −0.652201 0.817834i 0.340268 0.940328i \(-0.389482\pi\)
−0.992469 + 0.122494i \(0.960911\pi\)
\(198\) 0 0
\(199\) −2.99572 13.1251i −0.212361 0.930414i −0.962958 0.269653i \(-0.913091\pi\)
0.750597 0.660761i \(-0.229766\pi\)
\(200\) 0 0
\(201\) −20.6323 + 25.8721i −1.45529 + 1.82487i
\(202\) 0 0
\(203\) −0.851911 + 3.37763i −0.0597924 + 0.237063i
\(204\) 0 0
\(205\) 3.73015 4.67746i 0.260525 0.326688i
\(206\) 0 0
\(207\) −1.45175 6.36053i −0.100904 0.442087i
\(208\) 0 0
\(209\) 10.2047 + 12.7962i 0.705871 + 0.885134i
\(210\) 0 0
\(211\) 8.59368 + 4.13850i 0.591613 + 0.284906i 0.705639 0.708572i \(-0.250660\pi\)
−0.114025 + 0.993478i \(0.536375\pi\)
\(212\) 0 0
\(213\) −0.225211 0.986714i −0.0154312 0.0676086i
\(214\) 0 0
\(215\) 4.70195 0.320670
\(216\) 0 0
\(217\) 0.796620 + 0.998929i 0.0540781 + 0.0678117i
\(218\) 0 0
\(219\) 0.765147 0.368475i 0.0517038 0.0248992i
\(220\) 0 0
\(221\) −33.1257 + 15.9525i −2.22828 + 1.07308i
\(222\) 0 0
\(223\) 0.596162 + 0.287096i 0.0399219 + 0.0192254i 0.453738 0.891135i \(-0.350090\pi\)
−0.413816 + 0.910360i \(0.635804\pi\)
\(224\) 0 0
\(225\) 4.12680 18.0807i 0.275120 1.20538i
\(226\) 0 0
\(227\) −0.697190 + 0.874248i −0.0462741 + 0.0580259i −0.804430 0.594047i \(-0.797529\pi\)
0.758156 + 0.652073i \(0.226101\pi\)
\(228\) 0 0
\(229\) 1.11130 4.86894i 0.0734370 0.321749i −0.924845 0.380345i \(-0.875805\pi\)
0.998282 + 0.0585962i \(0.0186624\pi\)
\(230\) 0 0
\(231\) −5.44106 −0.357995
\(232\) 0 0
\(233\) 3.74324 0.245228 0.122614 0.992454i \(-0.460872\pi\)
0.122614 + 0.992454i \(0.460872\pi\)
\(234\) 0 0
\(235\) −1.12676 + 4.93664i −0.0735015 + 0.322031i
\(236\) 0 0
\(237\) −28.3943 + 35.6053i −1.84440 + 2.31281i
\(238\) 0 0
\(239\) −3.58045 + 15.6870i −0.231600 + 1.01470i 0.716713 + 0.697368i \(0.245646\pi\)
−0.948313 + 0.317337i \(0.897211\pi\)
\(240\) 0 0
\(241\) 19.9713 + 9.61765i 1.28646 + 0.619527i 0.947043 0.321108i \(-0.104055\pi\)
0.339419 + 0.940635i \(0.389770\pi\)
\(242\) 0 0
\(243\) −19.0500 + 9.17398i −1.22206 + 0.588511i
\(244\) 0 0
\(245\) −3.60858 + 1.73780i −0.230544 + 0.111024i
\(246\) 0 0
\(247\) −17.7181 22.2178i −1.12737 1.41368i
\(248\) 0 0
\(249\) −22.7805 −1.44366
\(250\) 0 0
\(251\) 0.369520 + 1.61897i 0.0233239 + 0.102189i 0.985250 0.171121i \(-0.0547388\pi\)
−0.961926 + 0.273309i \(0.911882\pi\)
\(252\) 0 0
\(253\) 4.66323 + 2.24569i 0.293175 + 0.141185i
\(254\) 0 0
\(255\) 6.69182 + 8.39128i 0.419058 + 0.525482i
\(256\) 0 0
\(257\) −4.16162 18.2332i −0.259595 1.13736i −0.921686 0.387936i \(-0.873188\pi\)
0.662092 0.749423i \(-0.269669\pi\)
\(258\) 0 0
\(259\) −1.16387 + 1.45944i −0.0723191 + 0.0906852i
\(260\) 0 0
\(261\) 19.2186 + 9.79791i 1.18960 + 0.606475i
\(262\) 0 0
\(263\) 6.96230 8.73044i 0.429314 0.538342i −0.519378 0.854544i \(-0.673836\pi\)
0.948692 + 0.316202i \(0.102408\pi\)
\(264\) 0 0
\(265\) 1.04824 + 4.59264i 0.0643929 + 0.282124i
\(266\) 0 0
\(267\) 15.8716 + 19.9023i 0.971325 + 1.21800i
\(268\) 0 0
\(269\) −14.1318 6.80552i −0.861632 0.414940i −0.0497499 0.998762i \(-0.515842\pi\)
−0.811882 + 0.583822i \(0.801557\pi\)
\(270\) 0 0
\(271\) −3.65527 16.0148i −0.222042 0.972828i −0.955938 0.293567i \(-0.905158\pi\)
0.733897 0.679261i \(-0.237700\pi\)
\(272\) 0 0
\(273\) 9.44717 0.571769
\(274\) 0 0
\(275\) 9.17334 + 11.5030i 0.553173 + 0.693657i
\(276\) 0 0
\(277\) 2.00027 0.963280i 0.120185 0.0578779i −0.372825 0.927902i \(-0.621611\pi\)
0.493010 + 0.870024i \(0.335897\pi\)
\(278\) 0 0
\(279\) 7.12883 3.43307i 0.426792 0.205532i
\(280\) 0 0
\(281\) −4.54079 2.18673i −0.270881 0.130449i 0.293513 0.955955i \(-0.405176\pi\)
−0.564393 + 0.825506i \(0.690890\pi\)
\(282\) 0 0
\(283\) −2.73940 + 12.0021i −0.162840 + 0.713449i 0.825901 + 0.563815i \(0.190667\pi\)
−0.988741 + 0.149635i \(0.952190\pi\)
\(284\) 0 0
\(285\) −5.17221 + 6.48574i −0.306375 + 0.384182i
\(286\) 0 0
\(287\) −1.41507 + 6.19982i −0.0835288 + 0.365964i
\(288\) 0 0
\(289\) 27.3995 1.61174
\(290\) 0 0
\(291\) 23.2640 1.36376
\(292\) 0 0
\(293\) −4.95946 + 21.7288i −0.289735 + 1.26941i 0.595155 + 0.803611i \(0.297091\pi\)
−0.884890 + 0.465801i \(0.845766\pi\)
\(294\) 0 0
\(295\) 0.425553 0.533626i 0.0247766 0.0310689i
\(296\) 0 0
\(297\) −1.88267 + 8.24850i −0.109243 + 0.478626i
\(298\) 0 0
\(299\) −8.09664 3.89914i −0.468241 0.225493i
\(300\) 0 0
\(301\) −4.50295 + 2.16851i −0.259546 + 0.124991i
\(302\) 0 0
\(303\) 34.7416 16.7307i 1.99585 0.961152i
\(304\) 0 0
\(305\) −3.44467 4.31947i −0.197241 0.247332i
\(306\) 0 0
\(307\) 13.1298 0.749360 0.374680 0.927154i \(-0.377753\pi\)
0.374680 + 0.927154i \(0.377753\pi\)
\(308\) 0 0
\(309\) −5.78474 25.3446i −0.329082 1.44180i
\(310\) 0 0
\(311\) −26.8389 12.9249i −1.52189 0.732905i −0.528637 0.848848i \(-0.677297\pi\)
−0.993256 + 0.115943i \(0.963011\pi\)
\(312\) 0 0
\(313\) −16.6866 20.9243i −0.943181 1.18271i −0.983019 0.183506i \(-0.941255\pi\)
0.0398375 0.999206i \(-0.487316\pi\)
\(314\) 0 0
\(315\) −0.350885 1.53733i −0.0197701 0.0866186i
\(316\) 0 0
\(317\) 19.0006 23.8259i 1.06718 1.33820i 0.129155 0.991624i \(-0.458773\pi\)
0.938023 0.346574i \(-0.112655\pi\)
\(318\) 0 0
\(319\) −15.5834 + 7.07400i −0.872502 + 0.396068i
\(320\) 0 0
\(321\) 1.78669 2.24044i 0.0997235 0.125049i
\(322\) 0 0
\(323\) 7.63626 + 33.4566i 0.424893 + 1.86158i
\(324\) 0 0
\(325\) −15.9274 19.9724i −0.883495 1.10787i
\(326\) 0 0
\(327\) −10.8335 5.21716i −0.599096 0.288510i
\(328\) 0 0
\(329\) −1.19768 5.24736i −0.0660300 0.289296i
\(330\) 0 0
\(331\) −8.87712 −0.487931 −0.243965 0.969784i \(-0.578448\pi\)
−0.243965 + 0.969784i \(0.578448\pi\)
\(332\) 0 0
\(333\) 7.20758 + 9.03802i 0.394973 + 0.495281i
\(334\) 0 0
\(335\) 6.85478 3.30109i 0.374517 0.180358i
\(336\) 0 0
\(337\) 6.72814 3.24010i 0.366505 0.176500i −0.241561 0.970386i \(-0.577660\pi\)
0.608067 + 0.793886i \(0.291945\pi\)
\(338\) 0 0
\(339\) −3.12646 1.50563i −0.169806 0.0817744i
\(340\) 0 0
\(341\) −1.39680 + 6.11980i −0.0756412 + 0.331406i
\(342\) 0 0
\(343\) 5.47753 6.86861i 0.295759 0.370870i
\(344\) 0 0
\(345\) −0.583747 + 2.55756i −0.0314279 + 0.137695i
\(346\) 0 0
\(347\) −35.4169 −1.90128 −0.950639 0.310299i \(-0.899571\pi\)
−0.950639 + 0.310299i \(0.899571\pi\)
\(348\) 0 0
\(349\) −20.1279 −1.07742 −0.538712 0.842490i \(-0.681089\pi\)
−0.538712 + 0.842490i \(0.681089\pi\)
\(350\) 0 0
\(351\) 3.26882 14.3216i 0.174477 0.764433i
\(352\) 0 0
\(353\) 18.5997 23.3233i 0.989964 1.24138i 0.0195804 0.999808i \(-0.493767\pi\)
0.970384 0.241568i \(-0.0776616\pi\)
\(354\) 0 0
\(355\) −0.0517793 + 0.226860i −0.00274816 + 0.0120405i
\(356\) 0 0
\(357\) −10.2786 4.94991i −0.544001 0.261977i
\(358\) 0 0
\(359\) 21.6181 10.4107i 1.14096 0.549458i 0.234655 0.972079i \(-0.424604\pi\)
0.906307 + 0.422620i \(0.138890\pi\)
\(360\) 0 0
\(361\) −6.77903 + 3.26461i −0.356791 + 0.171821i
\(362\) 0 0
\(363\) 1.48620 + 1.86363i 0.0780050 + 0.0978152i
\(364\) 0 0
\(365\) −0.195255 −0.0102201
\(366\) 0 0
\(367\) 0.447103 + 1.95889i 0.0233386 + 0.102253i 0.985256 0.171088i \(-0.0547283\pi\)
−0.961917 + 0.273341i \(0.911871\pi\)
\(368\) 0 0
\(369\) 35.4816 + 17.0870i 1.84710 + 0.889516i
\(370\) 0 0
\(371\) −3.12197 3.91482i −0.162084 0.203247i
\(372\) 0 0
\(373\) −1.42888 6.26031i −0.0739844 0.324147i 0.924370 0.381498i \(-0.124592\pi\)
−0.998354 + 0.0573512i \(0.981735\pi\)
\(374\) 0 0
\(375\) −9.67089 + 12.1269i −0.499403 + 0.626231i
\(376\) 0 0
\(377\) 27.0570 12.2824i 1.39351 0.632576i
\(378\) 0 0
\(379\) −7.98938 + 10.0184i −0.410387 + 0.514609i −0.943472 0.331453i \(-0.892461\pi\)
0.533085 + 0.846062i \(0.321033\pi\)
\(380\) 0 0
\(381\) −5.78229 25.3338i −0.296235 1.29789i
\(382\) 0 0
\(383\) −14.1165 17.7016i −0.721320 0.904507i 0.277092 0.960844i \(-0.410629\pi\)
−0.998412 + 0.0563364i \(0.982058\pi\)
\(384\) 0 0
\(385\) 1.12709 + 0.542779i 0.0574420 + 0.0276626i
\(386\) 0 0
\(387\) 6.88724 + 30.1750i 0.350098 + 1.53388i
\(388\) 0 0
\(389\) 8.34460 0.423088 0.211544 0.977368i \(-0.432151\pi\)
0.211544 + 0.977368i \(0.432151\pi\)
\(390\) 0 0
\(391\) 6.76623 + 8.48458i 0.342183 + 0.429084i
\(392\) 0 0
\(393\) 4.97590 2.39627i 0.251001 0.120876i
\(394\) 0 0
\(395\) 9.43359 4.54298i 0.474656 0.228582i
\(396\) 0 0
\(397\) 15.2601 + 7.34888i 0.765883 + 0.368830i 0.775683 0.631122i \(-0.217405\pi\)
−0.00980058 + 0.999952i \(0.503120\pi\)
\(398\) 0 0
\(399\) 1.96213 8.59663i 0.0982291 0.430370i
\(400\) 0 0
\(401\) −10.6691 + 13.3786i −0.532789 + 0.668096i −0.973269 0.229666i \(-0.926237\pi\)
0.440481 + 0.897762i \(0.354808\pi\)
\(402\) 0 0
\(403\) 2.42524 10.6257i 0.120810 0.529301i
\(404\) 0 0
\(405\) 3.02499 0.150313
\(406\) 0 0
\(407\) −9.17099 −0.454589
\(408\) 0 0
\(409\) −2.91969 + 12.7920i −0.144369 + 0.632523i 0.850021 + 0.526749i \(0.176589\pi\)
−0.994390 + 0.105774i \(0.966268\pi\)
\(410\) 0 0
\(411\) 10.7597 13.4922i 0.530736 0.665522i
\(412\) 0 0
\(413\) −0.161437 + 0.707303i −0.00794381 + 0.0348041i
\(414\) 0 0
\(415\) 4.71889 + 2.27250i 0.231641 + 0.111553i
\(416\) 0 0
\(417\) −9.49030 + 4.57029i −0.464742 + 0.223808i
\(418\) 0 0
\(419\) −8.68443 + 4.18220i −0.424262 + 0.204314i −0.633817 0.773483i \(-0.718513\pi\)
0.209555 + 0.977797i \(0.432799\pi\)
\(420\) 0 0
\(421\) 14.3621 + 18.0096i 0.699968 + 0.877732i 0.997021 0.0771289i \(-0.0245753\pi\)
−0.297053 + 0.954861i \(0.596004\pi\)
\(422\) 0 0
\(423\) −33.3316 −1.62064
\(424\) 0 0
\(425\) 6.86451 + 30.0754i 0.332978 + 1.45887i
\(426\) 0 0
\(427\) 5.29099 + 2.54801i 0.256049 + 0.123307i
\(428\) 0 0
\(429\) 28.9384 + 36.2876i 1.39716 + 1.75198i
\(430\) 0 0
\(431\) 2.01619 + 8.83352i 0.0971166 + 0.425496i 0.999990 0.00441028i \(-0.00140384\pi\)
−0.902874 + 0.429906i \(0.858547\pi\)
\(432\) 0 0
\(433\) 1.20618 1.51250i 0.0579653 0.0726862i −0.752004 0.659159i \(-0.770912\pi\)
0.809969 + 0.586473i \(0.199484\pi\)
\(434\) 0 0
\(435\) −5.25311 6.90254i −0.251867 0.330951i
\(436\) 0 0
\(437\) −5.22972 + 6.55786i −0.250171 + 0.313705i
\(438\) 0 0
\(439\) 0.490574 + 2.14935i 0.0234138 + 0.102583i 0.985285 0.170921i \(-0.0546744\pi\)
−0.961871 + 0.273504i \(0.911817\pi\)
\(440\) 0 0
\(441\) −16.4381 20.6127i −0.782767 0.981559i
\(442\) 0 0
\(443\) 1.03099 + 0.496499i 0.0489839 + 0.0235894i 0.458215 0.888841i \(-0.348489\pi\)
−0.409231 + 0.912431i \(0.634203\pi\)
\(444\) 0 0
\(445\) −1.30235 5.70597i −0.0617373 0.270489i
\(446\) 0 0
\(447\) −29.1909 −1.38068
\(448\) 0 0
\(449\) −5.33964 6.69570i −0.251993 0.315990i 0.639704 0.768621i \(-0.279057\pi\)
−0.891698 + 0.452631i \(0.850485\pi\)
\(450\) 0 0
\(451\) −28.1488 + 13.5557i −1.32547 + 0.638314i
\(452\) 0 0
\(453\) 19.4571 9.37002i 0.914172 0.440242i
\(454\) 0 0
\(455\) −1.95694 0.942414i −0.0917428 0.0441810i
\(456\) 0 0
\(457\) −4.52455 + 19.8233i −0.211649 + 0.927296i 0.751797 + 0.659395i \(0.229187\pi\)
−0.963446 + 0.267902i \(0.913670\pi\)
\(458\) 0 0
\(459\) −11.0604 + 13.8693i −0.516257 + 0.647366i
\(460\) 0 0
\(461\) −3.56144 + 15.6037i −0.165873 + 0.726735i 0.821745 + 0.569855i \(0.193001\pi\)
−0.987618 + 0.156880i \(0.949856\pi\)
\(462\) 0 0
\(463\) −6.22178 −0.289151 −0.144575 0.989494i \(-0.546182\pi\)
−0.144575 + 0.989494i \(0.546182\pi\)
\(464\) 0 0
\(465\) −3.18157 −0.147542
\(466\) 0 0
\(467\) 5.86388 25.6913i 0.271348 1.18885i −0.637076 0.770801i \(-0.719856\pi\)
0.908423 0.418051i \(-0.137287\pi\)
\(468\) 0 0
\(469\) −5.04223 + 6.32276i −0.232829 + 0.291958i
\(470\) 0 0
\(471\) 10.7682 47.1785i 0.496172 2.17387i
\(472\) 0 0
\(473\) −22.1228 10.6538i −1.01721 0.489862i
\(474\) 0 0
\(475\) −21.4823 + 10.3453i −0.985674 + 0.474676i
\(476\) 0 0
\(477\) −27.9380 + 13.4542i −1.27919 + 0.616028i
\(478\) 0 0
\(479\) 24.2468 + 30.4045i 1.10786 + 1.38922i 0.912791 + 0.408427i \(0.133923\pi\)
0.195072 + 0.980789i \(0.437506\pi\)
\(480\) 0 0
\(481\) 15.9234 0.726043
\(482\) 0 0
\(483\) −0.620489 2.71854i −0.0282332 0.123698i
\(484\) 0 0
\(485\) −4.81904 2.32073i −0.218821 0.105379i
\(486\) 0 0
\(487\) −12.6125 15.8156i −0.571527 0.716672i 0.409115 0.912483i \(-0.365838\pi\)
−0.980642 + 0.195811i \(0.937266\pi\)
\(488\) 0 0
\(489\) 11.4316 + 50.0852i 0.516956 + 2.26493i
\(490\) 0 0
\(491\) 13.9463 17.4882i 0.629389 0.789229i −0.360242 0.932859i \(-0.617306\pi\)
0.989632 + 0.143629i \(0.0458773\pi\)
\(492\) 0 0
\(493\) −35.8737 0.813361i −1.61567 0.0366319i
\(494\) 0 0
\(495\) 4.83021 6.05690i 0.217102 0.272237i
\(496\) 0 0
\(497\) −0.0550383 0.241139i −0.00246881 0.0108166i
\(498\) 0 0
\(499\) 22.6465 + 28.3979i 1.01380 + 1.27126i 0.962128 + 0.272598i \(0.0878830\pi\)
0.0516701 + 0.998664i \(0.483546\pi\)
\(500\) 0 0
\(501\) 57.0104 + 27.4548i 2.54704 + 1.22659i
\(502\) 0 0
\(503\) 1.30663 + 5.72473i 0.0582598 + 0.255253i 0.995668 0.0929795i \(-0.0296391\pi\)
−0.937408 + 0.348233i \(0.886782\pi\)
\(504\) 0 0
\(505\) −8.86556 −0.394512
\(506\) 0 0
\(507\) −28.7913 36.1031i −1.27866 1.60339i
\(508\) 0 0
\(509\) −2.06644 + 0.995143i −0.0915932 + 0.0441090i −0.479119 0.877750i \(-0.659044\pi\)
0.387526 + 0.921859i \(0.373330\pi\)
\(510\) 0 0
\(511\) 0.186991 0.0900500i 0.00827199 0.00398358i
\(512\) 0 0
\(513\) −12.3533 5.94905i −0.545413 0.262657i
\(514\) 0 0
\(515\) −1.32999 + 5.82709i −0.0586066 + 0.256772i
\(516\) 0 0
\(517\) 16.4870 20.6740i 0.725096 0.909242i
\(518\) 0 0
\(519\) 0.607190 2.66027i 0.0266527 0.116773i
\(520\) 0 0
\(521\) 28.1445 1.23303 0.616517 0.787342i \(-0.288543\pi\)
0.616517 + 0.787342i \(0.288543\pi\)
\(522\) 0 0
\(523\) −22.9140 −1.00196 −0.500980 0.865459i \(-0.667027\pi\)
−0.500980 + 0.865459i \(0.667027\pi\)
\(524\) 0 0
\(525\) 1.76383 7.72783i 0.0769797 0.337270i
\(526\) 0 0
\(527\) −8.20606 + 10.2901i −0.357462 + 0.448243i
\(528\) 0 0
\(529\) 4.52774 19.8373i 0.196858 0.862493i
\(530\) 0 0
\(531\) 4.04790 + 1.94937i 0.175664 + 0.0845953i
\(532\) 0 0
\(533\) 48.8740 23.5365i 2.11697 1.01948i
\(534\) 0 0
\(535\) −0.593604 + 0.285865i −0.0256637 + 0.0123590i
\(536\) 0 0
\(537\) −28.6171 35.8847i −1.23492 1.54854i
\(538\) 0 0
\(539\) 20.9160 0.900916
\(540\) 0 0
\(541\) 6.29296 + 27.5713i 0.270556 + 1.18538i 0.909359 + 0.416012i \(0.136573\pi\)
−0.638803 + 0.769370i \(0.720570\pi\)
\(542\) 0 0
\(543\) 8.08633 + 3.89417i 0.347018 + 0.167115i
\(544\) 0 0
\(545\) 1.72368 + 2.16143i 0.0738343 + 0.0925853i
\(546\) 0 0
\(547\) 10.1039 + 44.2679i 0.432010 + 1.89276i 0.450208 + 0.892924i \(0.351350\pi\)
−0.0181984 + 0.999834i \(0.505793\pi\)
\(548\) 0 0
\(549\) 22.6748 28.4333i 0.967737 1.21350i
\(550\) 0 0
\(551\) −5.55702 27.1720i −0.236737 1.15757i
\(552\) 0 0
\(553\) −6.93915 + 8.70141i −0.295082 + 0.370022i
\(554\) 0 0
\(555\) −1.03434 4.53175i −0.0439054 0.192362i
\(556\) 0 0
\(557\) −8.86884 11.1212i −0.375785 0.471219i 0.557593 0.830114i \(-0.311725\pi\)
−0.933378 + 0.358895i \(0.883154\pi\)
\(558\) 0 0
\(559\) 38.4113 + 18.4979i 1.62462 + 0.782377i
\(560\) 0 0
\(561\) −12.4721 54.6437i −0.526571 2.30706i
\(562\) 0 0
\(563\) 33.6042 1.41625 0.708124 0.706088i \(-0.249542\pi\)
0.708124 + 0.706088i \(0.249542\pi\)
\(564\) 0 0
\(565\) 0.497439 + 0.623768i 0.0209274 + 0.0262421i
\(566\) 0 0
\(567\) −2.89697 + 1.39511i −0.121661 + 0.0585889i
\(568\) 0 0
\(569\) 15.1015 7.27249i 0.633087 0.304879i −0.0896797 0.995971i \(-0.528584\pi\)
0.722767 + 0.691092i \(0.242870\pi\)
\(570\) 0 0
\(571\) −6.53857 3.14881i −0.273631 0.131774i 0.292037 0.956407i \(-0.405667\pi\)
−0.565667 + 0.824634i \(0.691381\pi\)
\(572\) 0 0
\(573\) 10.4510 45.7888i 0.436597 1.91285i
\(574\) 0 0
\(575\) −4.70119 + 5.89510i −0.196053 + 0.245843i
\(576\) 0 0
\(577\) −9.66876 + 42.3616i −0.402516 + 1.76354i 0.214637 + 0.976694i \(0.431143\pi\)
−0.617153 + 0.786844i \(0.711714\pi\)
\(578\) 0 0
\(579\) −12.4360 −0.516823
\(580\) 0 0
\(581\) −5.56723 −0.230968
\(582\) 0 0
\(583\) 5.47410 23.9836i 0.226714 0.993300i
\(584\) 0 0
\(585\) −8.38657 + 10.5164i −0.346742 + 0.434801i
\(586\) 0 0
\(587\) 7.24630 31.7481i 0.299087 1.31039i −0.572403 0.819972i \(-0.693989\pi\)
0.871490 0.490413i \(-0.163154\pi\)
\(588\) 0 0
\(589\) −9.16530 4.41378i −0.377650 0.181867i
\(590\) 0 0
\(591\) −35.0126 + 16.8612i −1.44023 + 0.693577i
\(592\) 0 0
\(593\) −23.6346 + 11.3818i −0.970555 + 0.467394i −0.850846 0.525415i \(-0.823910\pi\)
−0.119708 + 0.992809i \(0.538196\pi\)
\(594\) 0 0
\(595\) 1.63538 + 2.05071i 0.0670442 + 0.0840708i
\(596\) 0 0
\(597\) −35.6336 −1.45839
\(598\) 0 0
\(599\) −3.61237 15.8268i −0.147597 0.646666i −0.993549 0.113406i \(-0.963824\pi\)
0.845951 0.533260i \(-0.179033\pi\)
\(600\) 0 0
\(601\) −13.4796 6.49142i −0.549843 0.264790i 0.138269 0.990395i \(-0.455846\pi\)
−0.688112 + 0.725604i \(0.741560\pi\)
\(602\) 0 0
\(603\) 31.2255 + 39.1556i 1.27160 + 1.59454i
\(604\) 0 0
\(605\) −0.121951 0.534300i −0.00495800 0.0217224i
\(606\) 0 0
\(607\) 16.4040 20.5699i 0.665817 0.834908i −0.328146 0.944627i \(-0.606424\pi\)
0.993963 + 0.109719i \(0.0349952\pi\)
\(608\) 0 0
\(609\) 8.21418 + 4.18770i 0.332855 + 0.169694i
\(610\) 0 0
\(611\) −28.6259 + 35.8957i −1.15808 + 1.45219i
\(612\) 0 0
\(613\) −4.99932 21.9034i −0.201921 0.884672i −0.969766 0.244037i \(-0.921528\pi\)
0.767846 0.640635i \(-0.221329\pi\)
\(614\) 0 0
\(615\) −9.87316 12.3806i −0.398124 0.499232i
\(616\) 0 0
\(617\) −1.81423 0.873689i −0.0730383 0.0351734i 0.397008 0.917815i \(-0.370049\pi\)
−0.470046 + 0.882642i \(0.655763\pi\)
\(618\) 0 0
\(619\) 2.72335 + 11.9318i 0.109461 + 0.479579i 0.999709 + 0.0241040i \(0.00767328\pi\)
−0.890249 + 0.455475i \(0.849470\pi\)
\(620\) 0 0
\(621\) −4.33593 −0.173995
\(622\) 0 0
\(623\) 3.87879 + 4.86384i 0.155400 + 0.194866i
\(624\) 0 0
\(625\) −17.6429 + 8.49638i −0.705716 + 0.339855i
\(626\) 0 0
\(627\) 39.0309 18.7963i 1.55874 0.750652i
\(628\) 0 0
\(629\) −17.3247 8.34316i −0.690783 0.332663i
\(630\) 0 0
\(631\) 9.40605 41.2106i 0.374449 1.64057i −0.339671 0.940544i \(-0.610316\pi\)
0.714120 0.700023i \(-0.246827\pi\)
\(632\) 0 0
\(633\) 15.7409 19.7384i 0.625643 0.784532i
\(634\) 0 0
\(635\) −1.32943 + 5.82462i −0.0527569 + 0.231143i
\(636\) 0 0
\(637\) −36.3159 −1.43889
\(638\) 0 0
\(639\) −1.53173 −0.0605942
\(640\) 0 0
\(641\) 2.99155 13.1068i 0.118159 0.517688i −0.880859 0.473379i \(-0.843034\pi\)
0.999018 0.0443094i \(-0.0141087\pi\)
\(642\) 0 0
\(643\) −3.02815 + 3.79719i −0.119419 + 0.149746i −0.837947 0.545751i \(-0.816244\pi\)
0.718529 + 0.695497i \(0.244816\pi\)
\(644\) 0 0
\(645\) 2.76936 12.1333i 0.109043 0.477750i
\(646\) 0 0
\(647\) −11.8422 5.70291i −0.465566 0.224205i 0.186369 0.982480i \(-0.440328\pi\)
−0.651935 + 0.758275i \(0.726042\pi\)
\(648\) 0 0
\(649\) −3.21134 + 1.54650i −0.126056 + 0.0607054i
\(650\) 0 0
\(651\) 3.04692 1.46732i 0.119418 0.0575088i
\(652\) 0 0
\(653\) 7.98269 + 10.0100i 0.312387 + 0.391721i 0.913094 0.407748i \(-0.133686\pi\)
−0.600708 + 0.799469i \(0.705114\pi\)
\(654\) 0 0
\(655\) −1.26978 −0.0496144
\(656\) 0 0
\(657\) −0.286002 1.25305i −0.0111580 0.0488863i
\(658\) 0 0
\(659\) 5.61293 + 2.70304i 0.218649 + 0.105296i 0.540002 0.841664i \(-0.318423\pi\)
−0.321353 + 0.946959i \(0.604138\pi\)
\(660\) 0 0
\(661\) 24.1640 + 30.3007i 0.939872 + 1.17856i 0.983753 + 0.179526i \(0.0574563\pi\)
−0.0438811 + 0.999037i \(0.513972\pi\)
\(662\) 0 0
\(663\) 21.6549 + 94.8764i 0.841007 + 3.68469i
\(664\) 0 0
\(665\) −1.26401 + 1.58502i −0.0490163 + 0.0614645i
\(666\) 0 0
\(667\) −5.31152 6.97929i −0.205663 0.270239i
\(668\) 0 0
\(669\) 1.09198 1.36930i 0.0422183 0.0529400i
\(670\) 0 0
\(671\) 6.42009 + 28.1282i 0.247845 + 1.08588i
\(672\) 0 0
\(673\) 7.61156 + 9.54459i 0.293404 + 0.367917i 0.906583 0.422027i \(-0.138681\pi\)
−0.613179 + 0.789944i \(0.710110\pi\)
\(674\) 0 0
\(675\) −11.1049 5.34782i −0.427427 0.205838i
\(676\) 0 0
\(677\) 5.72363 + 25.0769i 0.219977 + 0.963782i 0.957494 + 0.288453i \(0.0931410\pi\)
−0.737517 + 0.675328i \(0.764002\pi\)
\(678\) 0 0
\(679\) 5.68538 0.218185
\(680\) 0 0
\(681\) 1.84536 + 2.31401i 0.0707143 + 0.0886729i
\(682\) 0 0
\(683\) 29.1088 14.0180i 1.11382 0.536386i 0.215840 0.976429i \(-0.430751\pi\)
0.897977 + 0.440043i \(0.145037\pi\)
\(684\) 0 0
\(685\) −3.57475 + 1.72151i −0.136584 + 0.0657755i
\(686\) 0 0
\(687\) −11.9097 5.73542i −0.454384 0.218820i
\(688\) 0 0
\(689\) −9.50454 + 41.6421i −0.362094 + 1.58644i
\(690\) 0 0
\(691\) −18.2145 + 22.8403i −0.692914 + 0.868886i −0.996472 0.0839266i \(-0.973254\pi\)
0.303558 + 0.952813i \(0.401825\pi\)
\(692\) 0 0
\(693\) −1.83239 + 8.02821i −0.0696066 + 0.304966i
\(694\) 0 0
\(695\) 2.42179 0.0918637
\(696\) 0 0
\(697\) −65.5074 −2.48127
\(698\) 0 0
\(699\) 2.20470 9.65940i 0.0833892 0.365352i
\(700\) 0 0
\(701\) 29.8358 37.4129i 1.12688 1.41306i 0.228668 0.973505i \(-0.426563\pi\)
0.898213 0.439560i \(-0.144866\pi\)
\(702\) 0 0
\(703\) 3.30719 14.4898i 0.124733 0.546492i
\(704\) 0 0
\(705\) 12.0753 + 5.81517i 0.454783 + 0.219012i
\(706\) 0 0
\(707\) 8.49035 4.08873i 0.319312 0.153773i
\(708\) 0 0
\(709\) 20.6001 9.92046i 0.773651 0.372571i −0.00503262 0.999987i \(-0.501602\pi\)
0.778684 + 0.627417i \(0.215888\pi\)
\(710\) 0 0
\(711\) 42.9727 + 53.8861i 1.61160 + 2.02089i
\(712\) 0 0
\(713\) −3.21695 −0.120476
\(714\) 0 0
\(715\) −2.37455 10.4036i −0.0888033 0.389073i
\(716\) 0 0
\(717\) 38.3712 + 18.4786i 1.43300 + 0.690096i
\(718\) 0 0
\(719\) −16.6633 20.8951i −0.621437 0.779257i 0.367109 0.930178i \(-0.380348\pi\)
−0.988546 + 0.150921i \(0.951776\pi\)
\(720\) 0 0
\(721\) −1.41371 6.19385i −0.0526492 0.230671i
\(722\) 0 0
\(723\) 36.5809 45.8710i 1.36046 1.70596i
\(724\) 0 0
\(725\) −4.99540 24.4259i −0.185525 0.907157i
\(726\) 0 0
\(727\) 4.87215 6.10949i 0.180698 0.226588i −0.683230 0.730203i \(-0.739425\pi\)
0.863928 + 0.503615i \(0.167997\pi\)
\(728\) 0 0
\(729\) 9.13499 + 40.0230i 0.338333 + 1.48233i
\(730\) 0 0
\(731\) −32.0997 40.2517i −1.18725 1.48876i
\(732\) 0 0
\(733\) −3.15887 1.52123i −0.116675 0.0561879i 0.374636 0.927172i \(-0.377768\pi\)
−0.491311 + 0.870984i \(0.663482\pi\)
\(734\) 0 0
\(735\) 2.35899 + 10.3354i 0.0870128 + 0.381228i
\(736\) 0 0
\(737\) −39.7316 −1.46353
\(738\) 0 0
\(739\) 8.96361 + 11.2400i 0.329732 + 0.413470i 0.918869 0.394562i \(-0.129104\pi\)
−0.589137 + 0.808033i \(0.700532\pi\)
\(740\) 0 0
\(741\) −67.7684 + 32.6355i −2.48953 + 1.19890i
\(742\) 0 0
\(743\) −29.1030 + 14.0152i −1.06768 + 0.514169i −0.883360 0.468696i \(-0.844724\pi\)
−0.184324 + 0.982865i \(0.559010\pi\)
\(744\) 0 0
\(745\) 6.04677 + 2.91197i 0.221536 + 0.106686i
\(746\) 0 0
\(747\) −7.67180 + 33.6124i −0.280697 + 1.22981i
\(748\) 0 0
\(749\) 0.436642 0.547532i 0.0159546 0.0200064i
\(750\) 0 0
\(751\) −5.48785 + 24.0439i −0.200255 + 0.877373i 0.770527 + 0.637408i \(0.219993\pi\)
−0.970781 + 0.239965i \(0.922864\pi\)
\(752\) 0 0
\(753\) 4.39538 0.160177
\(754\) 0 0
\(755\) −4.96517 −0.180701
\(756\) 0 0
\(757\) −10.3927 + 45.5332i −0.377728 + 1.65493i 0.326678 + 0.945136i \(0.394071\pi\)
−0.704406 + 0.709798i \(0.748786\pi\)
\(758\) 0 0
\(759\) 8.54153 10.7107i 0.310038 0.388775i
\(760\) 0 0
\(761\) −6.86687 + 30.0857i −0.248924 + 1.09061i 0.683702 + 0.729762i \(0.260369\pi\)
−0.932626 + 0.360845i \(0.882488\pi\)
\(762\) 0 0
\(763\) −2.64756 1.27500i −0.0958482 0.0461580i
\(764\) 0 0
\(765\) 14.6348 7.04776i 0.529123 0.254812i
\(766\) 0 0
\(767\) 5.57576 2.68515i 0.201329 0.0969550i
\(768\) 0 0
\(769\) −22.4543 28.1568i −0.809723 1.01536i −0.999438 0.0335214i \(-0.989328\pi\)
0.189715 0.981839i \(-0.439244\pi\)
\(770\) 0 0
\(771\) −49.5018 −1.78276
\(772\) 0 0
\(773\) 7.37251 + 32.3011i 0.265171 + 1.16179i 0.915558 + 0.402186i \(0.131750\pi\)
−0.650387 + 0.759603i \(0.725393\pi\)
\(774\) 0 0
\(775\) −8.23903 3.96771i −0.295955 0.142524i
\(776\) 0 0
\(777\) 3.08058 + 3.86292i 0.110515 + 0.138582i
\(778\) 0 0
\(779\) −11.2666 49.3622i −0.403668 1.76858i
\(780\) 0 0
\(781\) 0.757647 0.950059i 0.0271107 0.0339958i
\(782\) 0 0
\(783\) 9.19064 11.0035i 0.328447 0.393232i
\(784\) 0 0
\(785\) −6.93693 + 8.69864i −0.247590 + 0.310468i
\(786\) 0 0
\(787\) −2.24673 9.84358i −0.0800874 0.350886i 0.918968 0.394331i \(-0.129024\pi\)
−0.999056 + 0.0434453i \(0.986167\pi\)
\(788\) 0 0
\(789\) −18.4282 23.1082i −0.656060 0.822674i
\(790\) 0 0
\(791\) −0.764063 0.367953i −0.0271670 0.0130829i
\(792\) 0 0
\(793\) −11.1470 48.8383i −0.395843 1.73430i
\(794\) 0 0
\(795\) 12.4687 0.442217
\(796\) 0 0
\(797\) 17.8407 + 22.3716i 0.631952 + 0.792442i 0.989971 0.141272i \(-0.0451192\pi\)
−0.358019 + 0.933714i \(0.616548\pi\)
\(798\) 0 0
\(799\) 49.9531 24.0561i 1.76721 0.851044i
\(800\) 0 0
\(801\) 34.7107 16.7158i 1.22644 0.590623i
\(802\) 0 0
\(803\) 0.918678 + 0.442412i 0.0324194 + 0.0156124i
\(804\) 0 0
\(805\) −0.142659 + 0.625032i −0.00502808 + 0.0220295i
\(806\) 0 0
\(807\) −25.8849 + 32.4587i −0.911193 + 1.14260i
\(808\) 0 0
\(809\) 1.03868 4.55073i 0.0365179 0.159995i −0.953381 0.301768i \(-0.902423\pi\)
0.989899 + 0.141773i \(0.0452803\pi\)
\(810\) 0 0
\(811\) 37.5173 1.31741 0.658706 0.752400i \(-0.271104\pi\)
0.658706 + 0.752400i \(0.271104\pi\)
\(812\) 0 0
\(813\) −43.4788 −1.52487
\(814\) 0 0
\(815\) 2.62829 11.5153i 0.0920651 0.403364i
\(816\) 0 0
\(817\) 24.8103 31.1111i 0.868003 1.08844i
\(818\) 0 0
\(819\) 3.18152 13.9392i 0.111171 0.487074i
\(820\) 0 0
\(821\) −22.9446 11.0496i −0.800773 0.385632i −0.0117002 0.999932i \(-0.503724\pi\)
−0.789073 + 0.614300i \(0.789439\pi\)
\(822\) 0 0
\(823\) −23.3418 + 11.2408i −0.813644 + 0.391830i −0.793956 0.607976i \(-0.791982\pi\)
−0.0196886 + 0.999806i \(0.506267\pi\)
\(824\) 0 0
\(825\) 35.0863 16.8967i 1.22155 0.588267i
\(826\) 0 0
\(827\) −8.88368 11.1398i −0.308916 0.387368i 0.603003 0.797739i \(-0.293971\pi\)
−0.911919 + 0.410371i \(0.865399\pi\)
\(828\) 0 0
\(829\) −37.1504 −1.29029 −0.645143 0.764062i \(-0.723202\pi\)
−0.645143 + 0.764062i \(0.723202\pi\)
\(830\) 0 0
\(831\) −1.30761 5.72903i −0.0453606 0.198738i
\(832\) 0 0
\(833\) 39.5120 + 19.0280i 1.36901 + 0.659281i
\(834\) 0 0
\(835\) −9.07068 11.3743i −0.313904 0.393623i
\(836\) 0 0
\(837\) −1.17015 5.12676i −0.0404462 0.177207i
\(838\) 0 0
\(839\) 17.3506 21.7570i 0.599010 0.751135i −0.386213 0.922410i \(-0.626217\pi\)
0.985223 + 0.171274i \(0.0547884\pi\)
\(840\) 0 0
\(841\) 28.9702 + 1.31435i 0.998972 + 0.0453225i
\(842\) 0 0
\(843\) −8.31726 + 10.4295i −0.286462 + 0.359212i
\(844\) 0 0
\(845\) 2.36248 + 10.3507i 0.0812718 + 0.356075i
\(846\) 0 0
\(847\) 0.363205 + 0.455444i 0.0124799 + 0.0156493i
\(848\) 0 0
\(849\) 29.3578 + 14.1380i 1.00756 + 0.485214i
\(850\) 0 0
\(851\) −1.04584 4.58214i −0.0358511 0.157074i
\(852\) 0 0
\(853\) 11.2969 0.386800 0.193400 0.981120i \(-0.438049\pi\)
0.193400 + 0.981120i \(0.438049\pi\)
\(854\) 0 0
\(855\) 7.82778 + 9.81572i 0.267704 + 0.335691i
\(856\) 0 0
\(857\) 5.81994 2.80274i 0.198805 0.0957397i −0.331832 0.943338i \(-0.607667\pi\)
0.530638 + 0.847599i \(0.321952\pi\)
\(858\) 0 0
\(859\) 15.2289 7.33383i 0.519602 0.250227i −0.155653 0.987812i \(-0.549748\pi\)
0.675254 + 0.737585i \(0.264034\pi\)
\(860\) 0 0
\(861\) 15.1651 + 7.30314i 0.516826 + 0.248890i
\(862\) 0 0
\(863\) −11.2652 + 49.3560i −0.383471 + 1.68010i 0.303039 + 0.952978i \(0.401999\pi\)
−0.686511 + 0.727120i \(0.740859\pi\)
\(864\) 0 0
\(865\) −0.391155 + 0.490493i −0.0132997 + 0.0166773i
\(866\) 0 0
\(867\) 16.1378 70.7042i 0.548067 2.40124i
\(868\) 0 0
\(869\) −54.6789 −1.85485
\(870\) 0 0
\(871\) 68.9850 2.33747
\(872\) 0 0
\(873\) 7.83462 34.3257i 0.265162 1.16175i
\(874\) 0 0
\(875\) −2.36343 + 2.96364i −0.0798984 + 0.100189i
\(876\) 0 0
\(877\) 8.66815 37.9777i 0.292703 1.28241i −0.588045 0.808828i \(-0.700102\pi\)
0.880747 0.473586i \(-0.157041\pi\)
\(878\) 0 0
\(879\) 53.1500 + 25.5957i 1.79271 + 0.863321i
\(880\) 0 0
\(881\) 4.20644 2.02572i 0.141719 0.0682481i −0.361680 0.932302i \(-0.617797\pi\)
0.503399 + 0.864054i \(0.332083\pi\)
\(882\) 0 0
\(883\) −19.1275 + 9.21133i −0.643692 + 0.309986i −0.727102 0.686529i \(-0.759133\pi\)
0.0834097 + 0.996515i \(0.473419\pi\)
\(884\) 0 0
\(885\) −1.12638 1.41243i −0.0378627 0.0474783i
\(886\) 0 0
\(887\) −18.2793 −0.613760 −0.306880 0.951748i \(-0.599285\pi\)
−0.306880 + 0.951748i \(0.599285\pi\)
\(888\) 0 0
\(889\) −1.41311 6.19123i −0.0473941 0.207647i
\(890\) 0 0
\(891\) −14.2327 6.85409i −0.476813 0.229621i
\(892\) 0 0
\(893\) 26.7186 + 33.5040i 0.894103 + 1.12117i
\(894\) 0 0
\(895\) 2.34819 + 10.2881i 0.0784915 + 0.343894i
\(896\) 0 0
\(897\) −14.8304 + 18.5968i −0.495174 + 0.620929i
\(898\) 0 0
\(899\) 6.81880 8.16380i 0.227420 0.272278i
\(900\) 0 0
\(901\) 32.1597 40.3270i 1.07140 1.34349i
\(902\) 0 0
\(903\) 2.94366 + 12.8970i 0.0979590 + 0.429186i
\(904\) 0 0
\(905\) −1.28658 1.61332i −0.0427674 0.0536287i
\(906\) 0 0
\(907\) 15.3852 + 7.40912i 0.510857 + 0.246016i 0.671511 0.740995i \(-0.265646\pi\)
−0.160653 + 0.987011i \(0.551360\pi\)
\(908\) 0 0
\(909\) −12.9859 56.8951i −0.430717 1.88709i
\(910\) 0 0
\(911\) −33.9161 −1.12369 −0.561846 0.827242i \(-0.689909\pi\)
−0.561846 + 0.827242i \(0.689909\pi\)
\(912\) 0 0
\(913\) −17.0534 21.3843i −0.564386 0.707718i
\(914\) 0 0
\(915\) −13.1752 + 6.34484i −0.435559 + 0.209754i
\(916\) 0 0
\(917\) 1.21604 0.585614i 0.0401571 0.0193387i
\(918\) 0 0
\(919\) −1.48458 0.714935i −0.0489717 0.0235835i 0.409238 0.912428i \(-0.365795\pi\)
−0.458209 + 0.888844i \(0.651509\pi\)
\(920\) 0 0
\(921\) 7.73321 33.8814i 0.254818 1.11643i
\(922\) 0 0
\(923\) −1.31548 + 1.64956i −0.0432997 + 0.0542960i
\(924\) 0 0
\(925\) 2.97296 13.0254i 0.0977502 0.428272i
\(926\) 0 0
\(927\) −39.3437 −1.29222
\(928\) 0 0
\(929\) 4.05397 0.133006 0.0665032 0.997786i \(-0.478816\pi\)
0.0665032 + 0.997786i \(0.478816\pi\)
\(930\) 0 0
\(931\) −7.54261 + 33.0464i −0.247199 + 1.08305i
\(932\) 0 0
\(933\) −49.1602 + 61.6449i −1.60943 + 2.01817i
\(934\) 0 0
\(935\) −2.86751 + 12.5634i −0.0937775 + 0.410866i
\(936\) 0 0
\(937\) 16.5794 + 7.98424i 0.541627 + 0.260834i 0.684633 0.728888i \(-0.259963\pi\)
−0.143006 + 0.989722i \(0.545677\pi\)
\(938\) 0 0
\(939\) −63.8230 + 30.7356i −2.08279 + 1.00302i
\(940\) 0 0
\(941\) 38.0680 18.3326i 1.24098 0.597625i 0.305901 0.952063i \(-0.401042\pi\)
0.935079 + 0.354439i \(0.115328\pi\)
\(942\) 0 0
\(943\) −9.98294 12.5182i −0.325089 0.407649i
\(944\) 0 0
\(945\) −1.04799 −0.0340910
\(946\) 0 0
\(947\) −8.32199 36.4610i −0.270428 1.18482i −0.909509 0.415684i \(-0.863542\pi\)
0.639081 0.769140i \(-0.279315\pi\)
\(948\) 0 0
\(949\) −1.59508 0.768149i −0.0517784 0.0249352i
\(950\) 0 0
\(951\) −50.2917 63.0638i −1.63082 2.04498i
\(952\) 0 0
\(953\) 0.775737 + 3.39873i 0.0251286 + 0.110096i 0.985937 0.167118i \(-0.0534461\pi\)
−0.960808 + 0.277214i \(0.910589\pi\)
\(954\) 0 0
\(955\) −6.73259 + 8.44241i −0.217862 + 0.273190i
\(956\) 0 0
\(957\) 9.07610 + 44.3792i 0.293389 + 1.43458i
\(958\) 0 0
\(959\) 2.62951 3.29730i 0.0849113 0.106475i
\(960\) 0 0
\(961\) 6.02998 + 26.4191i 0.194516 + 0.852228i
\(962\) 0 0
\(963\) −2.70404 3.39076i −0.0871364 0.109266i
\(964\) 0 0
\(965\) 2.57607 + 1.24057i 0.0829265 + 0.0399353i
\(966\) 0 0
\(967\) −1.25765 5.51014i −0.0404434 0.177194i 0.950672 0.310197i \(-0.100395\pi\)
−0.991116 + 0.133003i \(0.957538\pi\)
\(968\) 0 0
\(969\) 90.8322 2.91795
\(970\) 0 0
\(971\) 21.3905 + 26.8229i 0.686455 + 0.860787i 0.995931 0.0901202i \(-0.0287251\pi\)
−0.309476 + 0.950907i \(0.600154\pi\)
\(972\) 0 0
\(973\) −2.31929 + 1.11691i −0.0743531 + 0.0358066i
\(974\) 0 0
\(975\) −60.9195 + 29.3373i −1.95098 + 0.939544i
\(976\) 0 0
\(977\) −29.2767 14.0989i −0.936644 0.451064i −0.0976602 0.995220i \(-0.531136\pi\)
−0.838984 + 0.544156i \(0.816850\pi\)
\(978\) 0 0
\(979\) −6.80112 + 29.7976i −0.217365 + 0.952337i
\(980\) 0 0
\(981\) −11.3463 + 14.2278i −0.362258 + 0.454257i
\(982\) 0 0
\(983\) −2.58321 + 11.3178i −0.0823917 + 0.360982i −0.999271 0.0381835i \(-0.987843\pi\)
0.916879 + 0.399165i \(0.130700\pi\)
\(984\) 0 0
\(985\) 8.93473 0.284684
\(986\) 0 0
\(987\) −14.2462 −0.453461
\(988\) 0 0
\(989\) 2.80015 12.2683i 0.0890396 0.390108i
\(990\) 0 0
\(991\) −11.6945 + 14.6644i −0.371488 + 0.465831i −0.932075 0.362264i \(-0.882004\pi\)
0.560588 + 0.828095i \(0.310575\pi\)
\(992\) 0 0
\(993\) −5.22845 + 22.9073i −0.165920 + 0.726942i
\(994\) 0 0
\(995\) 7.38135 + 3.55467i 0.234005 + 0.112691i
\(996\) 0 0
\(997\) −5.13512 + 2.47294i −0.162631 + 0.0783189i −0.513428 0.858132i \(-0.671625\pi\)
0.350798 + 0.936451i \(0.385911\pi\)
\(998\) 0 0
\(999\) 6.92200 3.33346i 0.219002 0.105466i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 116.2.g.b.81.2 yes 12
3.2 odd 2 1044.2.u.c.1009.2 12
4.3 odd 2 464.2.u.g.81.1 12
29.11 odd 28 3364.2.c.j.1681.11 12
29.13 even 14 3364.2.a.p.1.5 6
29.16 even 7 3364.2.a.m.1.2 6
29.18 odd 28 3364.2.c.j.1681.2 12
29.24 even 7 inner 116.2.g.b.53.2 12
87.53 odd 14 1044.2.u.c.865.2 12
116.111 odd 14 464.2.u.g.401.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
116.2.g.b.53.2 12 29.24 even 7 inner
116.2.g.b.81.2 yes 12 1.1 even 1 trivial
464.2.u.g.81.1 12 4.3 odd 2
464.2.u.g.401.1 12 116.111 odd 14
1044.2.u.c.865.2 12 87.53 odd 14
1044.2.u.c.1009.2 12 3.2 odd 2
3364.2.a.m.1.2 6 29.16 even 7
3364.2.a.p.1.5 6 29.13 even 14
3364.2.c.j.1681.2 12 29.18 odd 28
3364.2.c.j.1681.11 12 29.11 odd 28