Properties

Label 464.2.u.g.401.1
Level $464$
Weight $2$
Character 464.401
Analytic conductor $3.705$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,2,Mod(49,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 0, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.u (of order \(7\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.70505865379\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5 x^{11} + 12 x^{10} - 16 x^{9} + 22 x^{8} + 28 x^{7} + 71 x^{6} + 154 x^{5} + 442 x^{4} + \cdots + 841 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 116)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 401.1
Root \(-0.366459 - 1.60556i\) of defining polynomial
Character \(\chi\) \(=\) 464.401
Dual form 464.2.u.g.81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.588980 - 2.58049i) q^{3} +(-0.379425 - 0.475783i) q^{5} +(-0.143938 - 0.630635i) q^{7} +(-3.60913 + 1.73806i) q^{9} +(-2.86324 - 1.37887i) q^{11} +(-4.97137 - 2.39409i) q^{13} +(-1.00428 + 1.25933i) q^{15} +6.66330 q^{17} +(-1.14602 + 5.02104i) q^{19} +(-1.54257 + 0.742863i) q^{21} +(-1.01545 + 1.27333i) q^{23} +(1.03020 - 4.51359i) q^{25} +(1.65990 + 2.08145i) q^{27} +(-5.38378 + 0.122066i) q^{29} +(1.23153 + 1.54429i) q^{31} +(-1.87176 + 8.20070i) q^{33} +(-0.245432 + 0.307762i) q^{35} +(-2.60003 + 1.25211i) q^{37} +(-3.24988 + 14.2387i) q^{39} -9.83108 q^{41} +(4.81739 - 6.04081i) q^{43} +(2.19633 + 1.05770i) q^{45} +(-7.49675 - 3.61024i) q^{47} +(5.92980 - 2.85564i) q^{49} +(-3.92455 - 17.1946i) q^{51} +(4.82640 + 6.05211i) q^{53} +(0.430344 + 1.88546i) q^{55} +13.6317 q^{57} +1.12157 q^{59} +(-2.02019 - 8.85104i) q^{61} +(1.61557 + 2.02587i) q^{63} +(0.747195 + 3.27367i) q^{65} +(11.2641 - 5.42452i) q^{67} +(3.88390 + 1.87039i) q^{69} +(-0.344508 - 0.165906i) q^{71} +(0.200048 - 0.250852i) q^{73} -12.2540 q^{75} +(-0.457430 + 2.00413i) q^{77} +(15.5018 - 7.46526i) q^{79} +(-3.09926 + 3.88635i) q^{81} +(1.91516 - 8.39086i) q^{83} +(-2.52822 - 3.17029i) q^{85} +(3.48593 + 13.8209i) q^{87} +(-5.99640 - 7.51924i) q^{89} +(-0.794224 + 3.47972i) q^{91} +(3.25968 - 4.08751i) q^{93} +(2.82375 - 1.35985i) q^{95} +(1.95580 - 8.56894i) q^{97} +12.7304 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{3} - q^{5} + 7 q^{7} + q^{9} - 3 q^{11} - 21 q^{13} - 29 q^{15} - 10 q^{17} - 17 q^{19} + 3 q^{21} + 19 q^{23} - 3 q^{25} - 9 q^{27} - 5 q^{29} + 27 q^{31} - 47 q^{33} - 27 q^{35} - 3 q^{37}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.588980 2.58049i −0.340048 1.48985i −0.798970 0.601371i \(-0.794622\pi\)
0.458922 0.888476i \(-0.348236\pi\)
\(4\) 0 0
\(5\) −0.379425 0.475783i −0.169684 0.212777i 0.689717 0.724079i \(-0.257735\pi\)
−0.859401 + 0.511302i \(0.829163\pi\)
\(6\) 0 0
\(7\) −0.143938 0.630635i −0.0544035 0.238357i 0.940414 0.340031i \(-0.110438\pi\)
−0.994818 + 0.101673i \(0.967580\pi\)
\(8\) 0 0
\(9\) −3.60913 + 1.73806i −1.20304 + 0.579355i
\(10\) 0 0
\(11\) −2.86324 1.37887i −0.863300 0.415744i −0.0508032 0.998709i \(-0.516178\pi\)
−0.812497 + 0.582965i \(0.801892\pi\)
\(12\) 0 0
\(13\) −4.97137 2.39409i −1.37881 0.664001i −0.410065 0.912056i \(-0.634494\pi\)
−0.968746 + 0.248056i \(0.920208\pi\)
\(14\) 0 0
\(15\) −1.00428 + 1.25933i −0.259304 + 0.325157i
\(16\) 0 0
\(17\) 6.66330 1.61609 0.808043 0.589123i \(-0.200527\pi\)
0.808043 + 0.589123i \(0.200527\pi\)
\(18\) 0 0
\(19\) −1.14602 + 5.02104i −0.262915 + 1.15190i 0.655158 + 0.755492i \(0.272602\pi\)
−0.918073 + 0.396412i \(0.870255\pi\)
\(20\) 0 0
\(21\) −1.54257 + 0.742863i −0.336616 + 0.162106i
\(22\) 0 0
\(23\) −1.01545 + 1.27333i −0.211735 + 0.265508i −0.876346 0.481682i \(-0.840026\pi\)
0.664611 + 0.747190i \(0.268597\pi\)
\(24\) 0 0
\(25\) 1.03020 4.51359i 0.206040 0.902718i
\(26\) 0 0
\(27\) 1.65990 + 2.08145i 0.319449 + 0.400576i
\(28\) 0 0
\(29\) −5.38378 + 0.122066i −0.999743 + 0.0226671i
\(30\) 0 0
\(31\) 1.23153 + 1.54429i 0.221190 + 0.277363i 0.880028 0.474921i \(-0.157523\pi\)
−0.658839 + 0.752284i \(0.728952\pi\)
\(32\) 0 0
\(33\) −1.87176 + 8.20070i −0.325831 + 1.42756i
\(34\) 0 0
\(35\) −0.245432 + 0.307762i −0.0414855 + 0.0520212i
\(36\) 0 0
\(37\) −2.60003 + 1.25211i −0.427442 + 0.205845i −0.635221 0.772331i \(-0.719091\pi\)
0.207779 + 0.978176i \(0.433377\pi\)
\(38\) 0 0
\(39\) −3.24988 + 14.2387i −0.520397 + 2.28001i
\(40\) 0 0
\(41\) −9.83108 −1.53536 −0.767678 0.640836i \(-0.778588\pi\)
−0.767678 + 0.640836i \(0.778588\pi\)
\(42\) 0 0
\(43\) 4.81739 6.04081i 0.734644 0.921215i −0.264422 0.964407i \(-0.585181\pi\)
0.999067 + 0.0431920i \(0.0137527\pi\)
\(44\) 0 0
\(45\) 2.19633 + 1.05770i 0.327410 + 0.157672i
\(46\) 0 0
\(47\) −7.49675 3.61024i −1.09351 0.526608i −0.201900 0.979406i \(-0.564712\pi\)
−0.891613 + 0.452798i \(0.850426\pi\)
\(48\) 0 0
\(49\) 5.92980 2.85564i 0.847114 0.407949i
\(50\) 0 0
\(51\) −3.92455 17.1946i −0.549547 2.40772i
\(52\) 0 0
\(53\) 4.82640 + 6.05211i 0.662957 + 0.831321i 0.993662 0.112413i \(-0.0358580\pi\)
−0.330705 + 0.943734i \(0.607287\pi\)
\(54\) 0 0
\(55\) 0.430344 + 1.88546i 0.0580275 + 0.254235i
\(56\) 0 0
\(57\) 13.6317 1.80556
\(58\) 0 0
\(59\) 1.12157 0.146016 0.0730082 0.997331i \(-0.476740\pi\)
0.0730082 + 0.997331i \(0.476740\pi\)
\(60\) 0 0
\(61\) −2.02019 8.85104i −0.258659 1.13326i −0.922687 0.385551i \(-0.874011\pi\)
0.664027 0.747708i \(-0.268846\pi\)
\(62\) 0 0
\(63\) 1.61557 + 2.02587i 0.203543 + 0.255235i
\(64\) 0 0
\(65\) 0.747195 + 3.27367i 0.0926781 + 0.406049i
\(66\) 0 0
\(67\) 11.2641 5.42452i 1.37613 0.662711i 0.407961 0.912999i \(-0.366240\pi\)
0.968171 + 0.250289i \(0.0805255\pi\)
\(68\) 0 0
\(69\) 3.88390 + 1.87039i 0.467566 + 0.225168i
\(70\) 0 0
\(71\) −0.344508 0.165906i −0.0408855 0.0196894i 0.413329 0.910582i \(-0.364366\pi\)
−0.454215 + 0.890892i \(0.650080\pi\)
\(72\) 0 0
\(73\) 0.200048 0.250852i 0.0234139 0.0293601i −0.769987 0.638060i \(-0.779737\pi\)
0.793401 + 0.608700i \(0.208309\pi\)
\(74\) 0 0
\(75\) −12.2540 −1.41498
\(76\) 0 0
\(77\) −0.457430 + 2.00413i −0.0521290 + 0.228392i
\(78\) 0 0
\(79\) 15.5018 7.46526i 1.74408 0.839907i 0.762982 0.646420i \(-0.223735\pi\)
0.981103 0.193487i \(-0.0619797\pi\)
\(80\) 0 0
\(81\) −3.09926 + 3.88635i −0.344362 + 0.431816i
\(82\) 0 0
\(83\) 1.91516 8.39086i 0.210216 0.921017i −0.754204 0.656641i \(-0.771977\pi\)
0.964420 0.264376i \(-0.0851660\pi\)
\(84\) 0 0
\(85\) −2.52822 3.17029i −0.274224 0.343866i
\(86\) 0 0
\(87\) 3.48593 + 13.8209i 0.373731 + 1.48176i
\(88\) 0 0
\(89\) −5.99640 7.51924i −0.635617 0.797038i 0.354830 0.934931i \(-0.384539\pi\)
−0.990447 + 0.137892i \(0.955967\pi\)
\(90\) 0 0
\(91\) −0.794224 + 3.47972i −0.0832573 + 0.364774i
\(92\) 0 0
\(93\) 3.25968 4.08751i 0.338013 0.423855i
\(94\) 0 0
\(95\) 2.82375 1.35985i 0.289711 0.139517i
\(96\) 0 0
\(97\) 1.95580 8.56894i 0.198582 0.870044i −0.773200 0.634162i \(-0.781345\pi\)
0.971782 0.235882i \(-0.0757978\pi\)
\(98\) 0 0
\(99\) 12.7304 1.27945
\(100\) 0 0
\(101\) 9.08321 11.3900i 0.903814 1.13335i −0.0867414 0.996231i \(-0.527645\pi\)
0.990555 0.137116i \(-0.0437832\pi\)
\(102\) 0 0
\(103\) −8.84897 4.26144i −0.871915 0.419892i −0.0562500 0.998417i \(-0.517914\pi\)
−0.815665 + 0.578525i \(0.803629\pi\)
\(104\) 0 0
\(105\) 0.938731 + 0.452069i 0.0916107 + 0.0441174i
\(106\) 0 0
\(107\) −0.975441 + 0.469747i −0.0942994 + 0.0454122i −0.480439 0.877028i \(-0.659523\pi\)
0.386139 + 0.922440i \(0.373808\pi\)
\(108\) 0 0
\(109\) 1.01089 + 4.42898i 0.0968252 + 0.424219i 0.999987 0.00508113i \(-0.00161738\pi\)
−0.903162 + 0.429300i \(0.858760\pi\)
\(110\) 0 0
\(111\) 4.76241 + 5.97188i 0.452028 + 0.566826i
\(112\) 0 0
\(113\) 0.291733 + 1.27816i 0.0274439 + 0.120240i 0.986794 0.161978i \(-0.0517873\pi\)
−0.959351 + 0.282217i \(0.908930\pi\)
\(114\) 0 0
\(115\) 0.991116 0.0924220
\(116\) 0 0
\(117\) 22.1034 2.04346
\(118\) 0 0
\(119\) −0.959103 4.20211i −0.0879208 0.385206i
\(120\) 0 0
\(121\) −0.561495 0.704093i −0.0510450 0.0640085i
\(122\) 0 0
\(123\) 5.79031 + 25.3690i 0.522094 + 2.28745i
\(124\) 0 0
\(125\) −5.27980 + 2.54262i −0.472239 + 0.227418i
\(126\) 0 0
\(127\) −8.84522 4.25963i −0.784886 0.377981i −0.00188260 0.999998i \(-0.500599\pi\)
−0.783004 + 0.622017i \(0.786314\pi\)
\(128\) 0 0
\(129\) −18.4256 8.87330i −1.62228 0.781251i
\(130\) 0 0
\(131\) −1.30095 + 1.63134i −0.113665 + 0.142531i −0.835409 0.549629i \(-0.814769\pi\)
0.721744 + 0.692160i \(0.243341\pi\)
\(132\) 0 0
\(133\) 3.33139 0.288869
\(134\) 0 0
\(135\) 0.360513 1.57951i 0.0310280 0.135943i
\(136\) 0 0
\(137\) 5.87422 2.82887i 0.501868 0.241687i −0.165782 0.986163i \(-0.553015\pi\)
0.667650 + 0.744475i \(0.267300\pi\)
\(138\) 0 0
\(139\) 2.48124 3.11138i 0.210456 0.263904i −0.665388 0.746498i \(-0.731734\pi\)
0.875844 + 0.482594i \(0.160305\pi\)
\(140\) 0 0
\(141\) −4.90076 + 21.4716i −0.412719 + 1.80824i
\(142\) 0 0
\(143\) 10.9331 + 13.7097i 0.914274 + 1.14646i
\(144\) 0 0
\(145\) 2.10082 + 2.51520i 0.174463 + 0.208876i
\(146\) 0 0
\(147\) −10.8615 13.6199i −0.895841 1.12335i
\(148\) 0 0
\(149\) −2.45408 + 10.7520i −0.201046 + 0.880840i 0.769256 + 0.638941i \(0.220627\pi\)
−0.970302 + 0.241898i \(0.922230\pi\)
\(150\) 0 0
\(151\) −5.08706 + 6.37897i −0.413979 + 0.519113i −0.944479 0.328572i \(-0.893433\pi\)
0.530500 + 0.847685i \(0.322004\pi\)
\(152\) 0 0
\(153\) −24.0487 + 11.5812i −1.94422 + 0.936287i
\(154\) 0 0
\(155\) 0.267475 1.17188i 0.0214841 0.0941280i
\(156\) 0 0
\(157\) 18.2828 1.45912 0.729562 0.683915i \(-0.239724\pi\)
0.729562 + 0.683915i \(0.239724\pi\)
\(158\) 0 0
\(159\) 12.7748 16.0190i 1.01310 1.27039i
\(160\) 0 0
\(161\) 0.949169 + 0.457095i 0.0748050 + 0.0360242i
\(162\) 0 0
\(163\) 17.4871 + 8.42132i 1.36969 + 0.659609i 0.966775 0.255628i \(-0.0822821\pi\)
0.402917 + 0.915237i \(0.367996\pi\)
\(164\) 0 0
\(165\) 4.61194 2.22100i 0.359039 0.172904i
\(166\) 0 0
\(167\) 5.31968 + 23.3070i 0.411649 + 1.80355i 0.576344 + 0.817207i \(0.304479\pi\)
−0.164695 + 0.986345i \(0.552664\pi\)
\(168\) 0 0
\(169\) 10.8775 + 13.6400i 0.836734 + 1.04923i
\(170\) 0 0
\(171\) −4.59075 20.1134i −0.351064 1.53811i
\(172\) 0 0
\(173\) 1.03092 0.0783792 0.0391896 0.999232i \(-0.487522\pi\)
0.0391896 + 0.999232i \(0.487522\pi\)
\(174\) 0 0
\(175\) −2.99471 −0.226379
\(176\) 0 0
\(177\) −0.660585 2.89421i −0.0496526 0.217542i
\(178\) 0 0
\(179\) −10.8118 13.5575i −0.808109 1.01334i −0.999494 0.0318212i \(-0.989869\pi\)
0.191385 0.981515i \(-0.438702\pi\)
\(180\) 0 0
\(181\) −0.754541 3.30586i −0.0560846 0.245723i 0.939113 0.343608i \(-0.111649\pi\)
−0.995198 + 0.0978856i \(0.968792\pi\)
\(182\) 0 0
\(183\) −21.6502 + 10.4262i −1.60043 + 0.770725i
\(184\) 0 0
\(185\) 1.58225 + 0.761969i 0.116329 + 0.0560211i
\(186\) 0 0
\(187\) −19.0786 9.18779i −1.39517 0.671878i
\(188\) 0 0
\(189\) 1.07371 1.34639i 0.0781012 0.0979358i
\(190\) 0 0
\(191\) −17.7442 −1.28393 −0.641963 0.766735i \(-0.721880\pi\)
−0.641963 + 0.766735i \(0.721880\pi\)
\(192\) 0 0
\(193\) −1.04550 + 4.58061i −0.0752564 + 0.329720i −0.998516 0.0544565i \(-0.982657\pi\)
0.923260 + 0.384176i \(0.125515\pi\)
\(194\) 0 0
\(195\) 8.00760 3.85626i 0.573436 0.276152i
\(196\) 0 0
\(197\) −9.15408 + 11.4788i −0.652201 + 0.817834i −0.992469 0.122494i \(-0.960911\pi\)
0.340268 + 0.940328i \(0.389482\pi\)
\(198\) 0 0
\(199\) 2.99572 13.1251i 0.212361 0.930414i −0.750597 0.660761i \(-0.770234\pi\)
0.962958 0.269653i \(-0.0869091\pi\)
\(200\) 0 0
\(201\) −20.6323 25.8721i −1.45529 1.82487i
\(202\) 0 0
\(203\) 0.851911 + 3.37763i 0.0597924 + 0.237063i
\(204\) 0 0
\(205\) 3.73015 + 4.67746i 0.260525 + 0.326688i
\(206\) 0 0
\(207\) 1.45175 6.36053i 0.100904 0.442087i
\(208\) 0 0
\(209\) 10.2047 12.7962i 0.705871 0.885134i
\(210\) 0 0
\(211\) −8.59368 + 4.13850i −0.591613 + 0.284906i −0.705639 0.708572i \(-0.749340\pi\)
0.114025 + 0.993478i \(0.463625\pi\)
\(212\) 0 0
\(213\) −0.225211 + 0.986714i −0.0154312 + 0.0676086i
\(214\) 0 0
\(215\) −4.70195 −0.320670
\(216\) 0 0
\(217\) 0.796620 0.998929i 0.0540781 0.0678117i
\(218\) 0 0
\(219\) −0.765147 0.368475i −0.0517038 0.0248992i
\(220\) 0 0
\(221\) −33.1257 15.9525i −2.22828 1.07308i
\(222\) 0 0
\(223\) −0.596162 + 0.287096i −0.0399219 + 0.0192254i −0.453738 0.891135i \(-0.649910\pi\)
0.413816 + 0.910360i \(0.364196\pi\)
\(224\) 0 0
\(225\) 4.12680 + 18.0807i 0.275120 + 1.20538i
\(226\) 0 0
\(227\) 0.697190 + 0.874248i 0.0462741 + 0.0580259i 0.804430 0.594047i \(-0.202471\pi\)
−0.758156 + 0.652073i \(0.773899\pi\)
\(228\) 0 0
\(229\) 1.11130 + 4.86894i 0.0734370 + 0.321749i 0.998282 0.0585962i \(-0.0186624\pi\)
−0.924845 + 0.380345i \(0.875805\pi\)
\(230\) 0 0
\(231\) 5.44106 0.357995
\(232\) 0 0
\(233\) 3.74324 0.245228 0.122614 0.992454i \(-0.460872\pi\)
0.122614 + 0.992454i \(0.460872\pi\)
\(234\) 0 0
\(235\) 1.12676 + 4.93664i 0.0735015 + 0.322031i
\(236\) 0 0
\(237\) −28.3943 35.6053i −1.84440 2.31281i
\(238\) 0 0
\(239\) 3.58045 + 15.6870i 0.231600 + 1.01470i 0.948313 + 0.317337i \(0.102789\pi\)
−0.716713 + 0.697368i \(0.754354\pi\)
\(240\) 0 0
\(241\) 19.9713 9.61765i 1.28646 0.619527i 0.339419 0.940635i \(-0.389770\pi\)
0.947043 + 0.321108i \(0.104055\pi\)
\(242\) 0 0
\(243\) 19.0500 + 9.17398i 1.22206 + 0.588511i
\(244\) 0 0
\(245\) −3.60858 1.73780i −0.230544 0.111024i
\(246\) 0 0
\(247\) 17.7181 22.2178i 1.12737 1.41368i
\(248\) 0 0
\(249\) −22.7805 −1.44366
\(250\) 0 0
\(251\) −0.369520 + 1.61897i −0.0233239 + 0.102189i −0.985250 0.171121i \(-0.945261\pi\)
0.961926 + 0.273309i \(0.0881183\pi\)
\(252\) 0 0
\(253\) 4.66323 2.24569i 0.293175 0.141185i
\(254\) 0 0
\(255\) −6.69182 + 8.39128i −0.419058 + 0.525482i
\(256\) 0 0
\(257\) −4.16162 + 18.2332i −0.259595 + 1.13736i 0.662092 + 0.749423i \(0.269669\pi\)
−0.921686 + 0.387936i \(0.873188\pi\)
\(258\) 0 0
\(259\) 1.16387 + 1.45944i 0.0723191 + 0.0906852i
\(260\) 0 0
\(261\) 19.2186 9.79791i 1.18960 0.606475i
\(262\) 0 0
\(263\) −6.96230 8.73044i −0.429314 0.538342i 0.519378 0.854544i \(-0.326164\pi\)
−0.948692 + 0.316202i \(0.897592\pi\)
\(264\) 0 0
\(265\) 1.04824 4.59264i 0.0643929 0.282124i
\(266\) 0 0
\(267\) −15.8716 + 19.9023i −0.971325 + 1.21800i
\(268\) 0 0
\(269\) −14.1318 + 6.80552i −0.861632 + 0.414940i −0.811882 0.583822i \(-0.801557\pi\)
−0.0497499 + 0.998762i \(0.515842\pi\)
\(270\) 0 0
\(271\) 3.65527 16.0148i 0.222042 0.972828i −0.733897 0.679261i \(-0.762300\pi\)
0.955938 0.293567i \(-0.0948424\pi\)
\(272\) 0 0
\(273\) 9.44717 0.571769
\(274\) 0 0
\(275\) −9.17334 + 11.5030i −0.553173 + 0.693657i
\(276\) 0 0
\(277\) 2.00027 + 0.963280i 0.120185 + 0.0578779i 0.493010 0.870024i \(-0.335897\pi\)
−0.372825 + 0.927902i \(0.621611\pi\)
\(278\) 0 0
\(279\) −7.12883 3.43307i −0.426792 0.205532i
\(280\) 0 0
\(281\) −4.54079 + 2.18673i −0.270881 + 0.130449i −0.564393 0.825506i \(-0.690890\pi\)
0.293513 + 0.955955i \(0.405176\pi\)
\(282\) 0 0
\(283\) 2.73940 + 12.0021i 0.162840 + 0.713449i 0.988741 + 0.149635i \(0.0478097\pi\)
−0.825901 + 0.563815i \(0.809333\pi\)
\(284\) 0 0
\(285\) −5.17221 6.48574i −0.306375 0.384182i
\(286\) 0 0
\(287\) 1.41507 + 6.19982i 0.0835288 + 0.365964i
\(288\) 0 0
\(289\) 27.3995 1.61174
\(290\) 0 0
\(291\) −23.2640 −1.36376
\(292\) 0 0
\(293\) −4.95946 21.7288i −0.289735 1.26941i −0.884890 0.465801i \(-0.845766\pi\)
0.595155 0.803611i \(-0.297091\pi\)
\(294\) 0 0
\(295\) −0.425553 0.533626i −0.0247766 0.0310689i
\(296\) 0 0
\(297\) −1.88267 8.24850i −0.109243 0.478626i
\(298\) 0 0
\(299\) 8.09664 3.89914i 0.468241 0.225493i
\(300\) 0 0
\(301\) −4.50295 2.16851i −0.259546 0.124991i
\(302\) 0 0
\(303\) −34.7416 16.7307i −1.99585 0.961152i
\(304\) 0 0
\(305\) −3.44467 + 4.31947i −0.197241 + 0.247332i
\(306\) 0 0
\(307\) −13.1298 −0.749360 −0.374680 0.927154i \(-0.622247\pi\)
−0.374680 + 0.927154i \(0.622247\pi\)
\(308\) 0 0
\(309\) −5.78474 + 25.3446i −0.329082 + 1.44180i
\(310\) 0 0
\(311\) 26.8389 12.9249i 1.52189 0.732905i 0.528637 0.848848i \(-0.322703\pi\)
0.993256 + 0.115943i \(0.0369889\pi\)
\(312\) 0 0
\(313\) −16.6866 + 20.9243i −0.943181 + 1.18271i 0.0398375 + 0.999206i \(0.487316\pi\)
−0.983019 + 0.183506i \(0.941255\pi\)
\(314\) 0 0
\(315\) 0.350885 1.53733i 0.0197701 0.0866186i
\(316\) 0 0
\(317\) 19.0006 + 23.8259i 1.06718 + 1.33820i 0.938023 + 0.346574i \(0.112655\pi\)
0.129155 + 0.991624i \(0.458773\pi\)
\(318\) 0 0
\(319\) 15.5834 + 7.07400i 0.872502 + 0.396068i
\(320\) 0 0
\(321\) 1.78669 + 2.24044i 0.0997235 + 0.125049i
\(322\) 0 0
\(323\) −7.63626 + 33.4566i −0.424893 + 1.86158i
\(324\) 0 0
\(325\) −15.9274 + 19.9724i −0.883495 + 1.10787i
\(326\) 0 0
\(327\) 10.8335 5.21716i 0.599096 0.288510i
\(328\) 0 0
\(329\) −1.19768 + 5.24736i −0.0660300 + 0.289296i
\(330\) 0 0
\(331\) 8.87712 0.487931 0.243965 0.969784i \(-0.421552\pi\)
0.243965 + 0.969784i \(0.421552\pi\)
\(332\) 0 0
\(333\) 7.20758 9.03802i 0.394973 0.495281i
\(334\) 0 0
\(335\) −6.85478 3.30109i −0.374517 0.180358i
\(336\) 0 0
\(337\) 6.72814 + 3.24010i 0.366505 + 0.176500i 0.608067 0.793886i \(-0.291945\pi\)
−0.241561 + 0.970386i \(0.577660\pi\)
\(338\) 0 0
\(339\) 3.12646 1.50563i 0.169806 0.0817744i
\(340\) 0 0
\(341\) −1.39680 6.11980i −0.0756412 0.331406i
\(342\) 0 0
\(343\) −5.47753 6.86861i −0.295759 0.370870i
\(344\) 0 0
\(345\) −0.583747 2.55756i −0.0314279 0.137695i
\(346\) 0 0
\(347\) 35.4169 1.90128 0.950639 0.310299i \(-0.100429\pi\)
0.950639 + 0.310299i \(0.100429\pi\)
\(348\) 0 0
\(349\) −20.1279 −1.07742 −0.538712 0.842490i \(-0.681089\pi\)
−0.538712 + 0.842490i \(0.681089\pi\)
\(350\) 0 0
\(351\) −3.26882 14.3216i −0.174477 0.764433i
\(352\) 0 0
\(353\) 18.5997 + 23.3233i 0.989964 + 1.24138i 0.970384 + 0.241568i \(0.0776616\pi\)
0.0195804 + 0.999808i \(0.493767\pi\)
\(354\) 0 0
\(355\) 0.0517793 + 0.226860i 0.00274816 + 0.0120405i
\(356\) 0 0
\(357\) −10.2786 + 4.94991i −0.544001 + 0.261977i
\(358\) 0 0
\(359\) −21.6181 10.4107i −1.14096 0.549458i −0.234655 0.972079i \(-0.575396\pi\)
−0.906307 + 0.422620i \(0.861110\pi\)
\(360\) 0 0
\(361\) −6.77903 3.26461i −0.356791 0.171821i
\(362\) 0 0
\(363\) −1.48620 + 1.86363i −0.0780050 + 0.0978152i
\(364\) 0 0
\(365\) −0.195255 −0.0102201
\(366\) 0 0
\(367\) −0.447103 + 1.95889i −0.0233386 + 0.102253i −0.985256 0.171088i \(-0.945272\pi\)
0.961917 + 0.273341i \(0.0881288\pi\)
\(368\) 0 0
\(369\) 35.4816 17.0870i 1.84710 0.889516i
\(370\) 0 0
\(371\) 3.12197 3.91482i 0.162084 0.203247i
\(372\) 0 0
\(373\) −1.42888 + 6.26031i −0.0739844 + 0.324147i −0.998354 0.0573512i \(-0.981735\pi\)
0.924370 + 0.381498i \(0.124592\pi\)
\(374\) 0 0
\(375\) 9.67089 + 12.1269i 0.499403 + 0.626231i
\(376\) 0 0
\(377\) 27.0570 + 12.2824i 1.39351 + 0.632576i
\(378\) 0 0
\(379\) 7.98938 + 10.0184i 0.410387 + 0.514609i 0.943472 0.331453i \(-0.107539\pi\)
−0.533085 + 0.846062i \(0.678967\pi\)
\(380\) 0 0
\(381\) −5.78229 + 25.3338i −0.296235 + 1.29789i
\(382\) 0 0
\(383\) 14.1165 17.7016i 0.721320 0.904507i −0.277092 0.960844i \(-0.589371\pi\)
0.998412 + 0.0563364i \(0.0179419\pi\)
\(384\) 0 0
\(385\) 1.12709 0.542779i 0.0574420 0.0276626i
\(386\) 0 0
\(387\) −6.88724 + 30.1750i −0.350098 + 1.53388i
\(388\) 0 0
\(389\) 8.34460 0.423088 0.211544 0.977368i \(-0.432151\pi\)
0.211544 + 0.977368i \(0.432151\pi\)
\(390\) 0 0
\(391\) −6.76623 + 8.48458i −0.342183 + 0.429084i
\(392\) 0 0
\(393\) 4.97590 + 2.39627i 0.251001 + 0.120876i
\(394\) 0 0
\(395\) −9.43359 4.54298i −0.474656 0.228582i
\(396\) 0 0
\(397\) 15.2601 7.34888i 0.765883 0.368830i −0.00980058 0.999952i \(-0.503120\pi\)
0.775683 + 0.631122i \(0.217405\pi\)
\(398\) 0 0
\(399\) −1.96213 8.59663i −0.0982291 0.430370i
\(400\) 0 0
\(401\) −10.6691 13.3786i −0.532789 0.668096i 0.440481 0.897762i \(-0.354808\pi\)
−0.973269 + 0.229666i \(0.926237\pi\)
\(402\) 0 0
\(403\) −2.42524 10.6257i −0.120810 0.529301i
\(404\) 0 0
\(405\) 3.02499 0.150313
\(406\) 0 0
\(407\) 9.17099 0.454589
\(408\) 0 0
\(409\) −2.91969 12.7920i −0.144369 0.632523i −0.994390 0.105774i \(-0.966268\pi\)
0.850021 0.526749i \(-0.176589\pi\)
\(410\) 0 0
\(411\) −10.7597 13.4922i −0.530736 0.665522i
\(412\) 0 0
\(413\) −0.161437 0.707303i −0.00794381 0.0348041i
\(414\) 0 0
\(415\) −4.71889 + 2.27250i −0.231641 + 0.111553i
\(416\) 0 0
\(417\) −9.49030 4.57029i −0.464742 0.223808i
\(418\) 0 0
\(419\) 8.68443 + 4.18220i 0.424262 + 0.204314i 0.633817 0.773483i \(-0.281487\pi\)
−0.209555 + 0.977797i \(0.567201\pi\)
\(420\) 0 0
\(421\) 14.3621 18.0096i 0.699968 0.877732i −0.297053 0.954861i \(-0.596004\pi\)
0.997021 + 0.0771289i \(0.0245753\pi\)
\(422\) 0 0
\(423\) 33.3316 1.62064
\(424\) 0 0
\(425\) 6.86451 30.0754i 0.332978 1.45887i
\(426\) 0 0
\(427\) −5.29099 + 2.54801i −0.256049 + 0.123307i
\(428\) 0 0
\(429\) 28.9384 36.2876i 1.39716 1.75198i
\(430\) 0 0
\(431\) −2.01619 + 8.83352i −0.0971166 + 0.425496i −0.999990 0.00441028i \(-0.998596\pi\)
0.902874 + 0.429906i \(0.141453\pi\)
\(432\) 0 0
\(433\) 1.20618 + 1.51250i 0.0579653 + 0.0726862i 0.809969 0.586473i \(-0.199484\pi\)
−0.752004 + 0.659159i \(0.770912\pi\)
\(434\) 0 0
\(435\) 5.25311 6.90254i 0.251867 0.330951i
\(436\) 0 0
\(437\) −5.22972 6.55786i −0.250171 0.313705i
\(438\) 0 0
\(439\) −0.490574 + 2.14935i −0.0234138 + 0.102583i −0.985285 0.170921i \(-0.945326\pi\)
0.961871 + 0.273504i \(0.0881827\pi\)
\(440\) 0 0
\(441\) −16.4381 + 20.6127i −0.782767 + 0.981559i
\(442\) 0 0
\(443\) −1.03099 + 0.496499i −0.0489839 + 0.0235894i −0.458215 0.888841i \(-0.651511\pi\)
0.409231 + 0.912431i \(0.365797\pi\)
\(444\) 0 0
\(445\) −1.30235 + 5.70597i −0.0617373 + 0.270489i
\(446\) 0 0
\(447\) 29.1909 1.38068
\(448\) 0 0
\(449\) −5.33964 + 6.69570i −0.251993 + 0.315990i −0.891698 0.452631i \(-0.850485\pi\)
0.639704 + 0.768621i \(0.279057\pi\)
\(450\) 0 0
\(451\) 28.1488 + 13.5557i 1.32547 + 0.638314i
\(452\) 0 0
\(453\) 19.4571 + 9.37002i 0.914172 + 0.440242i
\(454\) 0 0
\(455\) 1.95694 0.942414i 0.0917428 0.0441810i
\(456\) 0 0
\(457\) −4.52455 19.8233i −0.211649 0.927296i −0.963446 0.267902i \(-0.913670\pi\)
0.751797 0.659395i \(-0.229187\pi\)
\(458\) 0 0
\(459\) 11.0604 + 13.8693i 0.516257 + 0.647366i
\(460\) 0 0
\(461\) −3.56144 15.6037i −0.165873 0.726735i −0.987618 0.156880i \(-0.949856\pi\)
0.821745 0.569855i \(-0.193001\pi\)
\(462\) 0 0
\(463\) 6.22178 0.289151 0.144575 0.989494i \(-0.453818\pi\)
0.144575 + 0.989494i \(0.453818\pi\)
\(464\) 0 0
\(465\) −3.18157 −0.147542
\(466\) 0 0
\(467\) −5.86388 25.6913i −0.271348 1.18885i −0.908423 0.418051i \(-0.862713\pi\)
0.637076 0.770801i \(-0.280144\pi\)
\(468\) 0 0
\(469\) −5.04223 6.32276i −0.232829 0.291958i
\(470\) 0 0
\(471\) −10.7682 47.1785i −0.496172 2.17387i
\(472\) 0 0
\(473\) −22.1228 + 10.6538i −1.01721 + 0.489862i
\(474\) 0 0
\(475\) 21.4823 + 10.3453i 0.985674 + 0.474676i
\(476\) 0 0
\(477\) −27.9380 13.4542i −1.27919 0.616028i
\(478\) 0 0
\(479\) −24.2468 + 30.4045i −1.10786 + 1.38922i −0.195072 + 0.980789i \(0.562494\pi\)
−0.912791 + 0.408427i \(0.866077\pi\)
\(480\) 0 0
\(481\) 15.9234 0.726043
\(482\) 0 0
\(483\) 0.620489 2.71854i 0.0282332 0.123698i
\(484\) 0 0
\(485\) −4.81904 + 2.32073i −0.218821 + 0.105379i
\(486\) 0 0
\(487\) 12.6125 15.8156i 0.571527 0.716672i −0.409115 0.912483i \(-0.634162\pi\)
0.980642 + 0.195811i \(0.0627339\pi\)
\(488\) 0 0
\(489\) 11.4316 50.0852i 0.516956 2.26493i
\(490\) 0 0
\(491\) −13.9463 17.4882i −0.629389 0.789229i 0.360242 0.932859i \(-0.382694\pi\)
−0.989632 + 0.143629i \(0.954123\pi\)
\(492\) 0 0
\(493\) −35.8737 + 0.813361i −1.61567 + 0.0366319i
\(494\) 0 0
\(495\) −4.83021 6.05690i −0.217102 0.272237i
\(496\) 0 0
\(497\) −0.0550383 + 0.241139i −0.00246881 + 0.0108166i
\(498\) 0 0
\(499\) −22.6465 + 28.3979i −1.01380 + 1.27126i −0.0516701 + 0.998664i \(0.516454\pi\)
−0.962128 + 0.272598i \(0.912117\pi\)
\(500\) 0 0
\(501\) 57.0104 27.4548i 2.54704 1.22659i
\(502\) 0 0
\(503\) −1.30663 + 5.72473i −0.0582598 + 0.255253i −0.995668 0.0929795i \(-0.970361\pi\)
0.937408 + 0.348233i \(0.113218\pi\)
\(504\) 0 0
\(505\) −8.86556 −0.394512
\(506\) 0 0
\(507\) 28.7913 36.1031i 1.27866 1.60339i
\(508\) 0 0
\(509\) −2.06644 0.995143i −0.0915932 0.0441090i 0.387526 0.921859i \(-0.373330\pi\)
−0.479119 + 0.877750i \(0.659044\pi\)
\(510\) 0 0
\(511\) −0.186991 0.0900500i −0.00827199 0.00398358i
\(512\) 0 0
\(513\) −12.3533 + 5.94905i −0.545413 + 0.262657i
\(514\) 0 0
\(515\) 1.32999 + 5.82709i 0.0586066 + 0.256772i
\(516\) 0 0
\(517\) 16.4870 + 20.6740i 0.725096 + 0.909242i
\(518\) 0 0
\(519\) −0.607190 2.66027i −0.0266527 0.116773i
\(520\) 0 0
\(521\) 28.1445 1.23303 0.616517 0.787342i \(-0.288543\pi\)
0.616517 + 0.787342i \(0.288543\pi\)
\(522\) 0 0
\(523\) 22.9140 1.00196 0.500980 0.865459i \(-0.332973\pi\)
0.500980 + 0.865459i \(0.332973\pi\)
\(524\) 0 0
\(525\) 1.76383 + 7.72783i 0.0769797 + 0.337270i
\(526\) 0 0
\(527\) 8.20606 + 10.2901i 0.357462 + 0.448243i
\(528\) 0 0
\(529\) 4.52774 + 19.8373i 0.196858 + 0.862493i
\(530\) 0 0
\(531\) −4.04790 + 1.94937i −0.175664 + 0.0845953i
\(532\) 0 0
\(533\) 48.8740 + 23.5365i 2.11697 + 1.01948i
\(534\) 0 0
\(535\) 0.593604 + 0.285865i 0.0256637 + 0.0123590i
\(536\) 0 0
\(537\) −28.6171 + 35.8847i −1.23492 + 1.54854i
\(538\) 0 0
\(539\) −20.9160 −0.900916
\(540\) 0 0
\(541\) 6.29296 27.5713i 0.270556 1.18538i −0.638803 0.769370i \(-0.720570\pi\)
0.909359 0.416012i \(-0.136573\pi\)
\(542\) 0 0
\(543\) −8.08633 + 3.89417i −0.347018 + 0.167115i
\(544\) 0 0
\(545\) 1.72368 2.16143i 0.0738343 0.0925853i
\(546\) 0 0
\(547\) −10.1039 + 44.2679i −0.432010 + 1.89276i 0.0181984 + 0.999834i \(0.494207\pi\)
−0.450208 + 0.892924i \(0.648650\pi\)
\(548\) 0 0
\(549\) 22.6748 + 28.4333i 0.967737 + 1.21350i
\(550\) 0 0
\(551\) 5.55702 27.1720i 0.236737 1.15757i
\(552\) 0 0
\(553\) −6.93915 8.70141i −0.295082 0.370022i
\(554\) 0 0
\(555\) 1.03434 4.53175i 0.0439054 0.192362i
\(556\) 0 0
\(557\) −8.86884 + 11.1212i −0.375785 + 0.471219i −0.933378 0.358895i \(-0.883154\pi\)
0.557593 + 0.830114i \(0.311725\pi\)
\(558\) 0 0
\(559\) −38.4113 + 18.4979i −1.62462 + 0.782377i
\(560\) 0 0
\(561\) −12.4721 + 54.6437i −0.526571 + 2.30706i
\(562\) 0 0
\(563\) −33.6042 −1.41625 −0.708124 0.706088i \(-0.750458\pi\)
−0.708124 + 0.706088i \(0.750458\pi\)
\(564\) 0 0
\(565\) 0.497439 0.623768i 0.0209274 0.0262421i
\(566\) 0 0
\(567\) 2.89697 + 1.39511i 0.121661 + 0.0585889i
\(568\) 0 0
\(569\) 15.1015 + 7.27249i 0.633087 + 0.304879i 0.722767 0.691092i \(-0.242870\pi\)
−0.0896797 + 0.995971i \(0.528584\pi\)
\(570\) 0 0
\(571\) 6.53857 3.14881i 0.273631 0.131774i −0.292037 0.956407i \(-0.594333\pi\)
0.565667 + 0.824634i \(0.308619\pi\)
\(572\) 0 0
\(573\) 10.4510 + 45.7888i 0.436597 + 1.91285i
\(574\) 0 0
\(575\) 4.70119 + 5.89510i 0.196053 + 0.245843i
\(576\) 0 0
\(577\) −9.66876 42.3616i −0.402516 1.76354i −0.617153 0.786844i \(-0.711714\pi\)
0.214637 0.976694i \(-0.431143\pi\)
\(578\) 0 0
\(579\) 12.4360 0.516823
\(580\) 0 0
\(581\) −5.56723 −0.230968
\(582\) 0 0
\(583\) −5.47410 23.9836i −0.226714 0.993300i
\(584\) 0 0
\(585\) −8.38657 10.5164i −0.346742 0.434801i
\(586\) 0 0
\(587\) −7.24630 31.7481i −0.299087 1.31039i −0.871490 0.490413i \(-0.836846\pi\)
0.572403 0.819972i \(-0.306011\pi\)
\(588\) 0 0
\(589\) −9.16530 + 4.41378i −0.377650 + 0.181867i
\(590\) 0 0
\(591\) 35.0126 + 16.8612i 1.44023 + 0.693577i
\(592\) 0 0
\(593\) −23.6346 11.3818i −0.970555 0.467394i −0.119708 0.992809i \(-0.538196\pi\)
−0.850846 + 0.525415i \(0.823910\pi\)
\(594\) 0 0
\(595\) −1.63538 + 2.05071i −0.0670442 + 0.0840708i
\(596\) 0 0
\(597\) −35.6336 −1.45839
\(598\) 0 0
\(599\) 3.61237 15.8268i 0.147597 0.646666i −0.845951 0.533260i \(-0.820967\pi\)
0.993549 0.113406i \(-0.0361762\pi\)
\(600\) 0 0
\(601\) −13.4796 + 6.49142i −0.549843 + 0.264790i −0.688112 0.725604i \(-0.741560\pi\)
0.138269 + 0.990395i \(0.455846\pi\)
\(602\) 0 0
\(603\) −31.2255 + 39.1556i −1.27160 + 1.59454i
\(604\) 0 0
\(605\) −0.121951 + 0.534300i −0.00495800 + 0.0217224i
\(606\) 0 0
\(607\) −16.4040 20.5699i −0.665817 0.834908i 0.328146 0.944627i \(-0.393576\pi\)
−0.993963 + 0.109719i \(0.965005\pi\)
\(608\) 0 0
\(609\) 8.21418 4.18770i 0.332855 0.169694i
\(610\) 0 0
\(611\) 28.6259 + 35.8957i 1.15808 + 1.45219i
\(612\) 0 0
\(613\) −4.99932 + 21.9034i −0.201921 + 0.884672i 0.767846 + 0.640635i \(0.221329\pi\)
−0.969766 + 0.244037i \(0.921528\pi\)
\(614\) 0 0
\(615\) 9.87316 12.3806i 0.398124 0.499232i
\(616\) 0 0
\(617\) −1.81423 + 0.873689i −0.0730383 + 0.0351734i −0.470046 0.882642i \(-0.655763\pi\)
0.397008 + 0.917815i \(0.370049\pi\)
\(618\) 0 0
\(619\) −2.72335 + 11.9318i −0.109461 + 0.479579i 0.890249 + 0.455475i \(0.150530\pi\)
−0.999709 + 0.0241040i \(0.992327\pi\)
\(620\) 0 0
\(621\) −4.33593 −0.173995
\(622\) 0 0
\(623\) −3.87879 + 4.86384i −0.155400 + 0.194866i
\(624\) 0 0
\(625\) −17.6429 8.49638i −0.705716 0.339855i
\(626\) 0 0
\(627\) −39.0309 18.7963i −1.55874 0.750652i
\(628\) 0 0
\(629\) −17.3247 + 8.34316i −0.690783 + 0.332663i
\(630\) 0 0
\(631\) −9.40605 41.2106i −0.374449 1.64057i −0.714120 0.700023i \(-0.753173\pi\)
0.339671 0.940544i \(-0.389684\pi\)
\(632\) 0 0
\(633\) 15.7409 + 19.7384i 0.625643 + 0.784532i
\(634\) 0 0
\(635\) 1.32943 + 5.82462i 0.0527569 + 0.231143i
\(636\) 0 0
\(637\) −36.3159 −1.43889
\(638\) 0 0
\(639\) 1.53173 0.0605942
\(640\) 0 0
\(641\) 2.99155 + 13.1068i 0.118159 + 0.517688i 0.999018 + 0.0443094i \(0.0141087\pi\)
−0.880859 + 0.473379i \(0.843034\pi\)
\(642\) 0 0
\(643\) 3.02815 + 3.79719i 0.119419 + 0.149746i 0.837947 0.545751i \(-0.183756\pi\)
−0.718529 + 0.695497i \(0.755184\pi\)
\(644\) 0 0
\(645\) 2.76936 + 12.1333i 0.109043 + 0.477750i
\(646\) 0 0
\(647\) 11.8422 5.70291i 0.465566 0.224205i −0.186369 0.982480i \(-0.559672\pi\)
0.651935 + 0.758275i \(0.273958\pi\)
\(648\) 0 0
\(649\) −3.21134 1.54650i −0.126056 0.0607054i
\(650\) 0 0
\(651\) −3.04692 1.46732i −0.119418 0.0575088i
\(652\) 0 0
\(653\) 7.98269 10.0100i 0.312387 0.391721i −0.600708 0.799469i \(-0.705114\pi\)
0.913094 + 0.407748i \(0.133686\pi\)
\(654\) 0 0
\(655\) 1.26978 0.0496144
\(656\) 0 0
\(657\) −0.286002 + 1.25305i −0.0111580 + 0.0488863i
\(658\) 0 0
\(659\) −5.61293 + 2.70304i −0.218649 + 0.105296i −0.540002 0.841664i \(-0.681577\pi\)
0.321353 + 0.946959i \(0.395862\pi\)
\(660\) 0 0
\(661\) 24.1640 30.3007i 0.939872 1.17856i −0.0438811 0.999037i \(-0.513972\pi\)
0.983753 0.179526i \(-0.0574563\pi\)
\(662\) 0 0
\(663\) −21.6549 + 94.8764i −0.841007 + 3.68469i
\(664\) 0 0
\(665\) −1.26401 1.58502i −0.0490163 0.0614645i
\(666\) 0 0
\(667\) 5.31152 6.97929i 0.205663 0.270239i
\(668\) 0 0
\(669\) 1.09198 + 1.36930i 0.0422183 + 0.0529400i
\(670\) 0 0
\(671\) −6.42009 + 28.1282i −0.247845 + 1.08588i
\(672\) 0 0
\(673\) 7.61156 9.54459i 0.293404 0.367917i −0.613179 0.789944i \(-0.710110\pi\)
0.906583 + 0.422027i \(0.138681\pi\)
\(674\) 0 0
\(675\) 11.1049 5.34782i 0.427427 0.205838i
\(676\) 0 0
\(677\) 5.72363 25.0769i 0.219977 0.963782i −0.737517 0.675328i \(-0.764002\pi\)
0.957494 0.288453i \(-0.0931410\pi\)
\(678\) 0 0
\(679\) −5.68538 −0.218185
\(680\) 0 0
\(681\) 1.84536 2.31401i 0.0707143 0.0886729i
\(682\) 0 0
\(683\) −29.1088 14.0180i −1.11382 0.536386i −0.215840 0.976429i \(-0.569249\pi\)
−0.897977 + 0.440043i \(0.854963\pi\)
\(684\) 0 0
\(685\) −3.57475 1.72151i −0.136584 0.0657755i
\(686\) 0 0
\(687\) 11.9097 5.73542i 0.454384 0.218820i
\(688\) 0 0
\(689\) −9.50454 41.6421i −0.362094 1.58644i
\(690\) 0 0
\(691\) 18.2145 + 22.8403i 0.692914 + 0.868886i 0.996472 0.0839266i \(-0.0267461\pi\)
−0.303558 + 0.952813i \(0.598175\pi\)
\(692\) 0 0
\(693\) −1.83239 8.02821i −0.0696066 0.304966i
\(694\) 0 0
\(695\) −2.42179 −0.0918637
\(696\) 0 0
\(697\) −65.5074 −2.48127
\(698\) 0 0
\(699\) −2.20470 9.65940i −0.0833892 0.365352i
\(700\) 0 0
\(701\) 29.8358 + 37.4129i 1.12688 + 1.41306i 0.898213 + 0.439560i \(0.144866\pi\)
0.228668 + 0.973505i \(0.426563\pi\)
\(702\) 0 0
\(703\) −3.30719 14.4898i −0.124733 0.546492i
\(704\) 0 0
\(705\) 12.0753 5.81517i 0.454783 0.219012i
\(706\) 0 0
\(707\) −8.49035 4.08873i −0.319312 0.153773i
\(708\) 0 0
\(709\) 20.6001 + 9.92046i 0.773651 + 0.372571i 0.778684 0.627417i \(-0.215888\pi\)
−0.00503262 + 0.999987i \(0.501602\pi\)
\(710\) 0 0
\(711\) −42.9727 + 53.8861i −1.61160 + 2.02089i
\(712\) 0 0
\(713\) −3.21695 −0.120476
\(714\) 0 0
\(715\) 2.37455 10.4036i 0.0888033 0.389073i
\(716\) 0 0
\(717\) 38.3712 18.4786i 1.43300 0.690096i
\(718\) 0 0
\(719\) 16.6633 20.8951i 0.621437 0.779257i −0.367109 0.930178i \(-0.619652\pi\)
0.988546 + 0.150921i \(0.0482238\pi\)
\(720\) 0 0
\(721\) −1.41371 + 6.19385i −0.0526492 + 0.230671i
\(722\) 0 0
\(723\) −36.5809 45.8710i −1.36046 1.70596i
\(724\) 0 0
\(725\) −4.99540 + 24.4259i −0.185525 + 0.907157i
\(726\) 0 0
\(727\) −4.87215 6.10949i −0.180698 0.226588i 0.683230 0.730203i \(-0.260575\pi\)
−0.863928 + 0.503615i \(0.832003\pi\)
\(728\) 0 0
\(729\) 9.13499 40.0230i 0.338333 1.48233i
\(730\) 0 0
\(731\) 32.0997 40.2517i 1.18725 1.48876i
\(732\) 0 0
\(733\) −3.15887 + 1.52123i −0.116675 + 0.0561879i −0.491311 0.870984i \(-0.663482\pi\)
0.374636 + 0.927172i \(0.377768\pi\)
\(734\) 0 0
\(735\) −2.35899 + 10.3354i −0.0870128 + 0.381228i
\(736\) 0 0
\(737\) −39.7316 −1.46353
\(738\) 0 0
\(739\) −8.96361 + 11.2400i −0.329732 + 0.413470i −0.918869 0.394562i \(-0.870896\pi\)
0.589137 + 0.808033i \(0.299468\pi\)
\(740\) 0 0
\(741\) −67.7684 32.6355i −2.48953 1.19890i
\(742\) 0 0
\(743\) 29.1030 + 14.0152i 1.06768 + 0.514169i 0.883360 0.468696i \(-0.155276\pi\)
0.184324 + 0.982865i \(0.440990\pi\)
\(744\) 0 0
\(745\) 6.04677 2.91197i 0.221536 0.106686i
\(746\) 0 0
\(747\) 7.67180 + 33.6124i 0.280697 + 1.22981i
\(748\) 0 0
\(749\) 0.436642 + 0.547532i 0.0159546 + 0.0200064i
\(750\) 0 0
\(751\) 5.48785 + 24.0439i 0.200255 + 0.877373i 0.970781 + 0.239965i \(0.0771361\pi\)
−0.770527 + 0.637408i \(0.780007\pi\)
\(752\) 0 0
\(753\) 4.39538 0.160177
\(754\) 0 0
\(755\) 4.96517 0.180701
\(756\) 0 0
\(757\) −10.3927 45.5332i −0.377728 1.65493i −0.704406 0.709798i \(-0.748786\pi\)
0.326678 0.945136i \(-0.394071\pi\)
\(758\) 0 0
\(759\) −8.54153 10.7107i −0.310038 0.388775i
\(760\) 0 0
\(761\) −6.86687 30.0857i −0.248924 1.09061i −0.932626 0.360845i \(-0.882488\pi\)
0.683702 0.729762i \(-0.260369\pi\)
\(762\) 0 0
\(763\) 2.64756 1.27500i 0.0958482 0.0461580i
\(764\) 0 0
\(765\) 14.6348 + 7.04776i 0.529123 + 0.254812i
\(766\) 0 0
\(767\) −5.57576 2.68515i −0.201329 0.0969550i
\(768\) 0 0
\(769\) −22.4543 + 28.1568i −0.809723 + 1.01536i 0.189715 + 0.981839i \(0.439244\pi\)
−0.999438 + 0.0335214i \(0.989328\pi\)
\(770\) 0 0
\(771\) 49.5018 1.78276
\(772\) 0 0
\(773\) 7.37251 32.3011i 0.265171 1.16179i −0.650387 0.759603i \(-0.725393\pi\)
0.915558 0.402186i \(-0.131750\pi\)
\(774\) 0 0
\(775\) 8.23903 3.96771i 0.295955 0.142524i
\(776\) 0 0
\(777\) 3.08058 3.86292i 0.110515 0.138582i
\(778\) 0 0
\(779\) 11.2666 49.3622i 0.403668 1.76858i
\(780\) 0 0
\(781\) 0.757647 + 0.950059i 0.0271107 + 0.0339958i
\(782\) 0 0
\(783\) −9.19064 11.0035i −0.328447 0.393232i
\(784\) 0 0
\(785\) −6.93693 8.69864i −0.247590 0.310468i
\(786\) 0 0
\(787\) 2.24673 9.84358i 0.0800874 0.350886i −0.918968 0.394331i \(-0.870976\pi\)
0.999056 + 0.0434453i \(0.0138334\pi\)
\(788\) 0 0
\(789\) −18.4282 + 23.1082i −0.656060 + 0.822674i
\(790\) 0 0
\(791\) 0.764063 0.367953i 0.0271670 0.0130829i
\(792\) 0 0
\(793\) −11.1470 + 48.8383i −0.395843 + 1.73430i
\(794\) 0 0
\(795\) −12.4687 −0.442217
\(796\) 0 0
\(797\) 17.8407 22.3716i 0.631952 0.792442i −0.358019 0.933714i \(-0.616548\pi\)
0.989971 + 0.141272i \(0.0451192\pi\)
\(798\) 0 0
\(799\) −49.9531 24.0561i −1.76721 0.851044i
\(800\) 0 0
\(801\) 34.7107 + 16.7158i 1.22644 + 0.590623i
\(802\) 0 0
\(803\) −0.918678 + 0.442412i −0.0324194 + 0.0156124i
\(804\) 0 0
\(805\) −0.142659 0.625032i −0.00502808 0.0220295i
\(806\) 0 0
\(807\) 25.8849 + 32.4587i 0.911193 + 1.14260i
\(808\) 0 0
\(809\) 1.03868 + 4.55073i 0.0365179 + 0.159995i 0.989899 0.141773i \(-0.0452803\pi\)
−0.953381 + 0.301768i \(0.902423\pi\)
\(810\) 0 0
\(811\) −37.5173 −1.31741 −0.658706 0.752400i \(-0.728896\pi\)
−0.658706 + 0.752400i \(0.728896\pi\)
\(812\) 0 0
\(813\) −43.4788 −1.52487
\(814\) 0 0
\(815\) −2.62829 11.5153i −0.0920651 0.403364i
\(816\) 0 0
\(817\) 24.8103 + 31.1111i 0.868003 + 1.08844i
\(818\) 0 0
\(819\) −3.18152 13.9392i −0.111171 0.487074i
\(820\) 0 0
\(821\) −22.9446 + 11.0496i −0.800773 + 0.385632i −0.789073 0.614300i \(-0.789439\pi\)
−0.0117002 + 0.999932i \(0.503724\pi\)
\(822\) 0 0
\(823\) 23.3418 + 11.2408i 0.813644 + 0.391830i 0.793956 0.607976i \(-0.208018\pi\)
0.0196886 + 0.999806i \(0.493733\pi\)
\(824\) 0 0
\(825\) 35.0863 + 16.8967i 1.22155 + 0.588267i
\(826\) 0 0
\(827\) 8.88368 11.1398i 0.308916 0.387368i −0.603003 0.797739i \(-0.706029\pi\)
0.911919 + 0.410371i \(0.134601\pi\)
\(828\) 0 0
\(829\) −37.1504 −1.29029 −0.645143 0.764062i \(-0.723202\pi\)
−0.645143 + 0.764062i \(0.723202\pi\)
\(830\) 0 0
\(831\) 1.30761 5.72903i 0.0453606 0.198738i
\(832\) 0 0
\(833\) 39.5120 19.0280i 1.36901 0.659281i
\(834\) 0 0
\(835\) 9.07068 11.3743i 0.313904 0.393623i
\(836\) 0 0
\(837\) −1.17015 + 5.12676i −0.0404462 + 0.177207i
\(838\) 0 0
\(839\) −17.3506 21.7570i −0.599010 0.751135i 0.386213 0.922410i \(-0.373783\pi\)
−0.985223 + 0.171274i \(0.945212\pi\)
\(840\) 0 0
\(841\) 28.9702 1.31435i 0.998972 0.0453225i
\(842\) 0 0
\(843\) 8.31726 + 10.4295i 0.286462 + 0.359212i
\(844\) 0 0
\(845\) 2.36248 10.3507i 0.0812718 0.356075i
\(846\) 0 0
\(847\) −0.363205 + 0.455444i −0.0124799 + 0.0156493i
\(848\) 0 0
\(849\) 29.3578 14.1380i 1.00756 0.485214i
\(850\) 0 0
\(851\) 1.04584 4.58214i 0.0358511 0.157074i
\(852\) 0 0
\(853\) 11.2969 0.386800 0.193400 0.981120i \(-0.438049\pi\)
0.193400 + 0.981120i \(0.438049\pi\)
\(854\) 0 0
\(855\) −7.82778 + 9.81572i −0.267704 + 0.335691i
\(856\) 0 0
\(857\) 5.81994 + 2.80274i 0.198805 + 0.0957397i 0.530638 0.847599i \(-0.321952\pi\)
−0.331832 + 0.943338i \(0.607667\pi\)
\(858\) 0 0
\(859\) −15.2289 7.33383i −0.519602 0.250227i 0.155653 0.987812i \(-0.450252\pi\)
−0.675254 + 0.737585i \(0.735966\pi\)
\(860\) 0 0
\(861\) 15.1651 7.30314i 0.516826 0.248890i
\(862\) 0 0
\(863\) 11.2652 + 49.3560i 0.383471 + 1.68010i 0.686511 + 0.727120i \(0.259141\pi\)
−0.303039 + 0.952978i \(0.598001\pi\)
\(864\) 0 0
\(865\) −0.391155 0.490493i −0.0132997 0.0166773i
\(866\) 0 0
\(867\) −16.1378 70.7042i −0.548067 2.40124i
\(868\) 0 0
\(869\) −54.6789 −1.85485
\(870\) 0 0
\(871\) −68.9850 −2.33747
\(872\) 0 0
\(873\) 7.83462 + 34.3257i 0.265162 + 1.16175i
\(874\) 0 0
\(875\) 2.36343 + 2.96364i 0.0798984 + 0.100189i
\(876\) 0 0
\(877\) 8.66815 + 37.9777i 0.292703 + 1.28241i 0.880747 + 0.473586i \(0.157041\pi\)
−0.588045 + 0.808828i \(0.700102\pi\)
\(878\) 0 0
\(879\) −53.1500 + 25.5957i −1.79271 + 0.863321i
\(880\) 0 0
\(881\) 4.20644 + 2.02572i 0.141719 + 0.0682481i 0.503399 0.864054i \(-0.332083\pi\)
−0.361680 + 0.932302i \(0.617797\pi\)
\(882\) 0 0
\(883\) 19.1275 + 9.21133i 0.643692 + 0.309986i 0.727102 0.686529i \(-0.240867\pi\)
−0.0834097 + 0.996515i \(0.526581\pi\)
\(884\) 0 0
\(885\) −1.12638 + 1.41243i −0.0378627 + 0.0474783i
\(886\) 0 0
\(887\) 18.2793 0.613760 0.306880 0.951748i \(-0.400715\pi\)
0.306880 + 0.951748i \(0.400715\pi\)
\(888\) 0 0
\(889\) −1.41311 + 6.19123i −0.0473941 + 0.207647i
\(890\) 0 0
\(891\) 14.2327 6.85409i 0.476813 0.229621i
\(892\) 0 0
\(893\) 26.7186 33.5040i 0.894103 1.12117i
\(894\) 0 0
\(895\) −2.34819 + 10.2881i −0.0784915 + 0.343894i
\(896\) 0 0
\(897\) −14.8304 18.5968i −0.495174 0.620929i
\(898\) 0 0
\(899\) −6.81880 8.16380i −0.227420 0.272278i
\(900\) 0 0
\(901\) 32.1597 + 40.3270i 1.07140 + 1.34349i
\(902\) 0 0
\(903\) −2.94366 + 12.8970i −0.0979590 + 0.429186i
\(904\) 0 0
\(905\) −1.28658 + 1.61332i −0.0427674 + 0.0536287i
\(906\) 0 0
\(907\) −15.3852 + 7.40912i −0.510857 + 0.246016i −0.671511 0.740995i \(-0.734354\pi\)
0.160653 + 0.987011i \(0.448640\pi\)
\(908\) 0 0
\(909\) −12.9859 + 56.8951i −0.430717 + 1.88709i
\(910\) 0 0
\(911\) 33.9161 1.12369 0.561846 0.827242i \(-0.310091\pi\)
0.561846 + 0.827242i \(0.310091\pi\)
\(912\) 0 0
\(913\) −17.0534 + 21.3843i −0.564386 + 0.707718i
\(914\) 0 0
\(915\) 13.1752 + 6.34484i 0.435559 + 0.209754i
\(916\) 0 0
\(917\) 1.21604 + 0.585614i 0.0401571 + 0.0193387i
\(918\) 0 0
\(919\) 1.48458 0.714935i 0.0489717 0.0235835i −0.409238 0.912428i \(-0.634205\pi\)
0.458209 + 0.888844i \(0.348491\pi\)
\(920\) 0 0
\(921\) 7.73321 + 33.8814i 0.254818 + 1.11643i
\(922\) 0 0
\(923\) 1.31548 + 1.64956i 0.0432997 + 0.0542960i
\(924\) 0 0
\(925\) 2.97296 + 13.0254i 0.0977502 + 0.428272i
\(926\) 0 0
\(927\) 39.3437 1.29222
\(928\) 0 0
\(929\) 4.05397 0.133006 0.0665032 0.997786i \(-0.478816\pi\)
0.0665032 + 0.997786i \(0.478816\pi\)
\(930\) 0 0
\(931\) 7.54261 + 33.0464i 0.247199 + 1.08305i
\(932\) 0 0
\(933\) −49.1602 61.6449i −1.60943 2.01817i
\(934\) 0 0
\(935\) 2.86751 + 12.5634i 0.0937775 + 0.410866i
\(936\) 0 0
\(937\) 16.5794 7.98424i 0.541627 0.260834i −0.143006 0.989722i \(-0.545677\pi\)
0.684633 + 0.728888i \(0.259963\pi\)
\(938\) 0 0
\(939\) 63.8230 + 30.7356i 2.08279 + 1.00302i
\(940\) 0 0
\(941\) 38.0680 + 18.3326i 1.24098 + 0.597625i 0.935079 0.354439i \(-0.115328\pi\)
0.305901 + 0.952063i \(0.401042\pi\)
\(942\) 0 0
\(943\) 9.98294 12.5182i 0.325089 0.407649i
\(944\) 0 0
\(945\) −1.04799 −0.0340910
\(946\) 0 0
\(947\) 8.32199 36.4610i 0.270428 1.18482i −0.639081 0.769140i \(-0.720685\pi\)
0.909509 0.415684i \(-0.136458\pi\)
\(948\) 0 0
\(949\) −1.59508 + 0.768149i −0.0517784 + 0.0249352i
\(950\) 0 0
\(951\) 50.2917 63.0638i 1.63082 2.04498i
\(952\) 0 0
\(953\) 0.775737 3.39873i 0.0251286 0.110096i −0.960808 0.277214i \(-0.910589\pi\)
0.985937 + 0.167118i \(0.0534461\pi\)
\(954\) 0 0
\(955\) 6.73259 + 8.44241i 0.217862 + 0.273190i
\(956\) 0 0
\(957\) 9.07610 44.3792i 0.293389 1.43458i
\(958\) 0 0
\(959\) −2.62951 3.29730i −0.0849113 0.106475i
\(960\) 0 0
\(961\) 6.02998 26.4191i 0.194516 0.852228i
\(962\) 0 0
\(963\) 2.70404 3.39076i 0.0871364 0.109266i
\(964\) 0 0
\(965\) 2.57607 1.24057i 0.0829265 0.0399353i
\(966\) 0 0
\(967\) 1.25765 5.51014i 0.0404434 0.177194i −0.950672 0.310197i \(-0.899605\pi\)
0.991116 + 0.133003i \(0.0424621\pi\)
\(968\) 0 0
\(969\) 90.8322 2.91795
\(970\) 0 0
\(971\) −21.3905 + 26.8229i −0.686455 + 0.860787i −0.995931 0.0901202i \(-0.971275\pi\)
0.309476 + 0.950907i \(0.399846\pi\)
\(972\) 0 0
\(973\) −2.31929 1.11691i −0.0743531 0.0358066i
\(974\) 0 0
\(975\) 60.9195 + 29.3373i 1.95098 + 0.939544i
\(976\) 0 0
\(977\) −29.2767 + 14.0989i −0.936644 + 0.451064i −0.838984 0.544156i \(-0.816850\pi\)
−0.0976602 + 0.995220i \(0.531136\pi\)
\(978\) 0 0
\(979\) 6.80112 + 29.7976i 0.217365 + 0.952337i
\(980\) 0 0
\(981\) −11.3463 14.2278i −0.362258 0.454257i
\(982\) 0 0
\(983\) 2.58321 + 11.3178i 0.0823917 + 0.360982i 0.999271 0.0381835i \(-0.0121571\pi\)
−0.916879 + 0.399165i \(0.869300\pi\)
\(984\) 0 0
\(985\) 8.93473 0.284684
\(986\) 0 0
\(987\) 14.2462 0.453461
\(988\) 0 0
\(989\) 2.80015 + 12.2683i 0.0890396 + 0.390108i
\(990\) 0 0
\(991\) 11.6945 + 14.6644i 0.371488 + 0.465831i 0.932075 0.362264i \(-0.117996\pi\)
−0.560588 + 0.828095i \(0.689425\pi\)
\(992\) 0 0
\(993\) −5.22845 22.9073i −0.165920 0.726942i
\(994\) 0 0
\(995\) −7.38135 + 3.55467i −0.234005 + 0.112691i
\(996\) 0 0
\(997\) −5.13512 2.47294i −0.162631 0.0783189i 0.350798 0.936451i \(-0.385911\pi\)
−0.513428 + 0.858132i \(0.671625\pi\)
\(998\) 0 0
\(999\) −6.92200 3.33346i −0.219002 0.105466i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.2.u.g.401.1 12
4.3 odd 2 116.2.g.b.53.2 12
12.11 even 2 1044.2.u.c.865.2 12
29.23 even 7 inner 464.2.u.g.81.1 12
116.23 odd 14 116.2.g.b.81.2 yes 12
116.67 odd 14 3364.2.a.p.1.5 6
116.79 even 28 3364.2.c.j.1681.11 12
116.95 even 28 3364.2.c.j.1681.2 12
116.107 odd 14 3364.2.a.m.1.2 6
348.23 even 14 1044.2.u.c.1009.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
116.2.g.b.53.2 12 4.3 odd 2
116.2.g.b.81.2 yes 12 116.23 odd 14
464.2.u.g.81.1 12 29.23 even 7 inner
464.2.u.g.401.1 12 1.1 even 1 trivial
1044.2.u.c.865.2 12 12.11 even 2
1044.2.u.c.1009.2 12 348.23 even 14
3364.2.a.m.1.2 6 116.107 odd 14
3364.2.a.p.1.5 6 116.67 odd 14
3364.2.c.j.1681.2 12 116.95 even 28
3364.2.c.j.1681.11 12 116.79 even 28