Properties

Label 117.3.bd.b.28.1
Level $117$
Weight $3$
Character 117.28
Analytic conductor $3.188$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(19,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.bd (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 28.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 117.28
Dual form 117.3.bd.b.46.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.133975i) q^{2} +(-3.23205 - 1.86603i) q^{4} +(2.63397 - 2.63397i) q^{5} +(5.73205 - 1.53590i) q^{7} +(-2.83013 - 2.83013i) q^{8} +(1.66987 - 0.964102i) q^{10} +(4.19615 - 15.6603i) q^{11} +(-6.50000 - 11.2583i) q^{13} +3.07180 q^{14} +(6.42820 + 11.1340i) q^{16} +(15.9904 + 9.23205i) q^{17} +(1.63397 + 6.09808i) q^{19} +(-13.4282 + 3.59808i) q^{20} +(4.19615 - 7.26795i) q^{22} +(-17.4904 + 10.0981i) q^{23} +11.1244i q^{25} +(-1.74167 - 6.50000i) q^{26} +(-21.3923 - 5.73205i) q^{28} +(4.69615 + 8.13397i) q^{29} +(-11.9282 + 11.9282i) q^{31} +(5.86603 + 21.8923i) q^{32} +(6.75833 + 6.75833i) q^{34} +(11.0526 - 19.1436i) q^{35} +(8.11474 - 30.2846i) q^{37} +3.26795i q^{38} -14.9090 q^{40} +(-44.9186 - 12.0359i) q^{41} +(45.0000 + 25.9808i) q^{43} +(-42.7846 + 42.7846i) q^{44} +(-10.0981 + 2.70577i) q^{46} +(34.3205 + 34.3205i) q^{47} +(-11.9378 + 6.89230i) q^{49} +(-1.49038 + 5.56218i) q^{50} +48.5167i q^{52} +14.7654 q^{53} +(-30.1962 - 52.3013i) q^{55} +(-20.5692 - 11.8756i) q^{56} +(1.25833 + 4.69615i) q^{58} +(92.9615 - 24.9090i) q^{59} +(-12.8135 + 22.1936i) q^{61} +(-7.56218 + 4.36603i) q^{62} -39.6936i q^{64} +(-46.7750 - 12.5333i) q^{65} +(39.0263 + 10.4571i) q^{67} +(-34.4545 - 59.6769i) q^{68} +(8.09103 - 8.09103i) q^{70} +(11.9737 + 44.6865i) q^{71} +(-19.2750 - 19.2750i) q^{73} +(8.11474 - 14.0551i) q^{74} +(6.09808 - 22.7583i) q^{76} -96.2102i q^{77} +62.7461 q^{79} +(46.2583 + 12.3949i) q^{80} +(-20.8468 - 12.0359i) q^{82} +(24.4833 - 24.4833i) q^{83} +(66.4352 - 17.8013i) q^{85} +(19.0192 + 19.0192i) q^{86} +(-56.1962 + 32.4449i) q^{88} +(23.1699 - 86.4711i) q^{89} +(-54.5500 - 54.5500i) q^{91} +75.3731 q^{92} +(12.5622 + 21.7583i) q^{94} +(20.3660 + 11.7583i) q^{95} +(14.1891 + 52.9545i) q^{97} +(-6.89230 + 1.84679i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 6 q^{4} + 14 q^{5} + 16 q^{7} + 6 q^{8} + 24 q^{10} - 4 q^{11} - 26 q^{13} + 40 q^{14} - 2 q^{16} + 12 q^{17} + 10 q^{19} - 26 q^{20} - 4 q^{22} - 18 q^{23} - 52 q^{26} - 44 q^{28} - 2 q^{29}+ \cdots + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.133975i 0.250000 + 0.0669873i 0.381643 0.924310i \(-0.375358\pi\)
−0.131643 + 0.991297i \(0.542025\pi\)
\(3\) 0 0
\(4\) −3.23205 1.86603i −0.808013 0.466506i
\(5\) 2.63397 2.63397i 0.526795 0.526795i −0.392820 0.919615i \(-0.628501\pi\)
0.919615 + 0.392820i \(0.128501\pi\)
\(6\) 0 0
\(7\) 5.73205 1.53590i 0.818864 0.219414i 0.175014 0.984566i \(-0.444003\pi\)
0.643850 + 0.765152i \(0.277336\pi\)
\(8\) −2.83013 2.83013i −0.353766 0.353766i
\(9\) 0 0
\(10\) 1.66987 0.964102i 0.166987 0.0964102i
\(11\) 4.19615 15.6603i 0.381468 1.42366i −0.462191 0.886780i \(-0.652937\pi\)
0.843659 0.536879i \(-0.180397\pi\)
\(12\) 0 0
\(13\) −6.50000 11.2583i −0.500000 0.866025i
\(14\) 3.07180 0.219414
\(15\) 0 0
\(16\) 6.42820 + 11.1340i 0.401763 + 0.695873i
\(17\) 15.9904 + 9.23205i 0.940611 + 0.543062i 0.890152 0.455664i \(-0.150598\pi\)
0.0504590 + 0.998726i \(0.483932\pi\)
\(18\) 0 0
\(19\) 1.63397 + 6.09808i 0.0859987 + 0.320951i 0.995501 0.0947465i \(-0.0302040\pi\)
−0.909503 + 0.415698i \(0.863537\pi\)
\(20\) −13.4282 + 3.59808i −0.671410 + 0.179904i
\(21\) 0 0
\(22\) 4.19615 7.26795i 0.190734 0.330361i
\(23\) −17.4904 + 10.0981i −0.760451 + 0.439047i −0.829458 0.558569i \(-0.811350\pi\)
0.0690064 + 0.997616i \(0.478017\pi\)
\(24\) 0 0
\(25\) 11.1244i 0.444974i
\(26\) −1.74167 6.50000i −0.0669873 0.250000i
\(27\) 0 0
\(28\) −21.3923 5.73205i −0.764011 0.204716i
\(29\) 4.69615 + 8.13397i 0.161936 + 0.280482i 0.935563 0.353160i \(-0.114893\pi\)
−0.773627 + 0.633642i \(0.781559\pi\)
\(30\) 0 0
\(31\) −11.9282 + 11.9282i −0.384781 + 0.384781i −0.872821 0.488040i \(-0.837712\pi\)
0.488040 + 0.872821i \(0.337712\pi\)
\(32\) 5.86603 + 21.8923i 0.183313 + 0.684135i
\(33\) 0 0
\(34\) 6.75833 + 6.75833i 0.198774 + 0.198774i
\(35\) 11.0526 19.1436i 0.315787 0.546960i
\(36\) 0 0
\(37\) 8.11474 30.2846i 0.219317 0.818503i −0.765285 0.643692i \(-0.777402\pi\)
0.984602 0.174811i \(-0.0559315\pi\)
\(38\) 3.26795i 0.0859987i
\(39\) 0 0
\(40\) −14.9090 −0.372724
\(41\) −44.9186 12.0359i −1.09558 0.293558i −0.334614 0.942355i \(-0.608606\pi\)
−0.760962 + 0.648797i \(0.775272\pi\)
\(42\) 0 0
\(43\) 45.0000 + 25.9808i 1.04651 + 0.604204i 0.921671 0.387973i \(-0.126825\pi\)
0.124841 + 0.992177i \(0.460158\pi\)
\(44\) −42.7846 + 42.7846i −0.972377 + 0.972377i
\(45\) 0 0
\(46\) −10.0981 + 2.70577i −0.219523 + 0.0588211i
\(47\) 34.3205 + 34.3205i 0.730224 + 0.730224i 0.970664 0.240440i \(-0.0772918\pi\)
−0.240440 + 0.970664i \(0.577292\pi\)
\(48\) 0 0
\(49\) −11.9378 + 6.89230i −0.243629 + 0.140659i
\(50\) −1.49038 + 5.56218i −0.0298076 + 0.111244i
\(51\) 0 0
\(52\) 48.5167i 0.933013i
\(53\) 14.7654 0.278592 0.139296 0.990251i \(-0.455516\pi\)
0.139296 + 0.990251i \(0.455516\pi\)
\(54\) 0 0
\(55\) −30.1962 52.3013i −0.549021 0.950932i
\(56\) −20.5692 11.8756i −0.367307 0.212065i
\(57\) 0 0
\(58\) 1.25833 + 4.69615i 0.0216953 + 0.0809681i
\(59\) 92.9615 24.9090i 1.57562 0.422186i 0.638053 0.769993i \(-0.279740\pi\)
0.937566 + 0.347807i \(0.113073\pi\)
\(60\) 0 0
\(61\) −12.8135 + 22.1936i −0.210057 + 0.363829i −0.951732 0.306930i \(-0.900698\pi\)
0.741675 + 0.670759i \(0.234032\pi\)
\(62\) −7.56218 + 4.36603i −0.121971 + 0.0704198i
\(63\) 0 0
\(64\) 39.6936i 0.620212i
\(65\) −46.7750 12.5333i −0.719615 0.192820i
\(66\) 0 0
\(67\) 39.0263 + 10.4571i 0.582482 + 0.156076i 0.538015 0.842935i \(-0.319174\pi\)
0.0444669 + 0.999011i \(0.485841\pi\)
\(68\) −34.4545 59.6769i −0.506684 0.877602i
\(69\) 0 0
\(70\) 8.09103 8.09103i 0.115586 0.115586i
\(71\) 11.9737 + 44.6865i 0.168644 + 0.629388i 0.997547 + 0.0699959i \(0.0222986\pi\)
−0.828903 + 0.559392i \(0.811035\pi\)
\(72\) 0 0
\(73\) −19.2750 19.2750i −0.264041 0.264041i 0.562653 0.826693i \(-0.309781\pi\)
−0.826693 + 0.562653i \(0.809781\pi\)
\(74\) 8.11474 14.0551i 0.109659 0.189934i
\(75\) 0 0
\(76\) 6.09808 22.7583i 0.0802378 0.299452i
\(77\) 96.2102i 1.24948i
\(78\) 0 0
\(79\) 62.7461 0.794255 0.397127 0.917763i \(-0.370007\pi\)
0.397127 + 0.917763i \(0.370007\pi\)
\(80\) 46.2583 + 12.3949i 0.578229 + 0.154936i
\(81\) 0 0
\(82\) −20.8468 12.0359i −0.254229 0.146779i
\(83\) 24.4833 24.4833i 0.294980 0.294980i −0.544064 0.839044i \(-0.683115\pi\)
0.839044 + 0.544064i \(0.183115\pi\)
\(84\) 0 0
\(85\) 66.4352 17.8013i 0.781591 0.209427i
\(86\) 19.0192 + 19.0192i 0.221154 + 0.221154i
\(87\) 0 0
\(88\) −56.1962 + 32.4449i −0.638593 + 0.368692i
\(89\) 23.1699 86.4711i 0.260336 0.971586i −0.704708 0.709497i \(-0.748922\pi\)
0.965044 0.262089i \(-0.0844113\pi\)
\(90\) 0 0
\(91\) −54.5500 54.5500i −0.599450 0.599450i
\(92\) 75.3731 0.819272
\(93\) 0 0
\(94\) 12.5622 + 21.7583i 0.133640 + 0.231472i
\(95\) 20.3660 + 11.7583i 0.214379 + 0.123772i
\(96\) 0 0
\(97\) 14.1891 + 52.9545i 0.146279 + 0.545923i 0.999695 + 0.0246915i \(0.00786034\pi\)
−0.853416 + 0.521231i \(0.825473\pi\)
\(98\) −6.89230 + 1.84679i −0.0703296 + 0.0188448i
\(99\) 0 0
\(100\) 20.7583 35.9545i 0.207583 0.359545i
\(101\) −138.560 + 79.9974i −1.37188 + 0.792054i −0.991164 0.132640i \(-0.957655\pi\)
−0.380713 + 0.924693i \(0.624321\pi\)
\(102\) 0 0
\(103\) 78.7705i 0.764762i −0.924005 0.382381i \(-0.875104\pi\)
0.924005 0.382381i \(-0.124896\pi\)
\(104\) −13.4667 + 50.2583i −0.129487 + 0.483253i
\(105\) 0 0
\(106\) 7.38269 + 1.97818i 0.0696480 + 0.0186621i
\(107\) −47.6673 82.5622i −0.445489 0.771609i 0.552597 0.833448i \(-0.313637\pi\)
−0.998086 + 0.0618392i \(0.980303\pi\)
\(108\) 0 0
\(109\) −51.9808 + 51.9808i −0.476888 + 0.476888i −0.904135 0.427247i \(-0.859483\pi\)
0.427247 + 0.904135i \(0.359483\pi\)
\(110\) −8.09103 30.1962i −0.0735549 0.274510i
\(111\) 0 0
\(112\) 53.9474 + 53.9474i 0.481674 + 0.481674i
\(113\) −71.9904 + 124.691i −0.637083 + 1.10346i 0.348987 + 0.937128i \(0.386526\pi\)
−0.986070 + 0.166332i \(0.946808\pi\)
\(114\) 0 0
\(115\) −19.4711 + 72.6673i −0.169314 + 0.631890i
\(116\) 35.0526i 0.302177i
\(117\) 0 0
\(118\) 49.8179 0.422186
\(119\) 105.837 + 28.3590i 0.889388 + 0.238311i
\(120\) 0 0
\(121\) −122.847 70.9256i −1.01526 0.586162i
\(122\) −9.38011 + 9.38011i −0.0768861 + 0.0768861i
\(123\) 0 0
\(124\) 60.8109 16.2942i 0.490410 0.131405i
\(125\) 95.1506 + 95.1506i 0.761205 + 0.761205i
\(126\) 0 0
\(127\) −24.6673 + 14.2417i −0.194231 + 0.112139i −0.593962 0.804493i \(-0.702437\pi\)
0.399731 + 0.916633i \(0.369104\pi\)
\(128\) 28.7820 107.416i 0.224860 0.839188i
\(129\) 0 0
\(130\) −21.7083 12.5333i −0.166987 0.0964102i
\(131\) 2.98076 0.0227539 0.0113770 0.999935i \(-0.496379\pi\)
0.0113770 + 0.999935i \(0.496379\pi\)
\(132\) 0 0
\(133\) 18.7321 + 32.4449i 0.140842 + 0.243946i
\(134\) 18.1122 + 10.4571i 0.135165 + 0.0780378i
\(135\) 0 0
\(136\) −19.1269 71.3827i −0.140639 0.524873i
\(137\) −94.6051 + 25.3494i −0.690548 + 0.185032i −0.586993 0.809592i \(-0.699688\pi\)
−0.103555 + 0.994624i \(0.533022\pi\)
\(138\) 0 0
\(139\) −16.2154 + 28.0859i −0.116657 + 0.202057i −0.918441 0.395558i \(-0.870551\pi\)
0.801784 + 0.597614i \(0.203885\pi\)
\(140\) −71.4449 + 41.2487i −0.510320 + 0.294634i
\(141\) 0 0
\(142\) 23.9474i 0.168644i
\(143\) −203.583 + 54.5500i −1.42366 + 0.381468i
\(144\) 0 0
\(145\) 33.7942 + 9.05514i 0.233064 + 0.0624492i
\(146\) −7.05514 12.2199i −0.0483229 0.0836976i
\(147\) 0 0
\(148\) −82.7391 + 82.7391i −0.559048 + 0.559048i
\(149\) 33.0903 + 123.495i 0.222083 + 0.828824i 0.983552 + 0.180624i \(0.0578116\pi\)
−0.761469 + 0.648201i \(0.775522\pi\)
\(150\) 0 0
\(151\) 127.995 + 127.995i 0.847648 + 0.847648i 0.989839 0.142191i \(-0.0454148\pi\)
−0.142191 + 0.989839i \(0.545415\pi\)
\(152\) 12.6340 21.8827i 0.0831183 0.143965i
\(153\) 0 0
\(154\) 12.8897 48.1051i 0.0836995 0.312371i
\(155\) 62.8372i 0.405401i
\(156\) 0 0
\(157\) −97.7461 −0.622587 −0.311293 0.950314i \(-0.600762\pi\)
−0.311293 + 0.950314i \(0.600762\pi\)
\(158\) 31.3731 + 8.40639i 0.198564 + 0.0532050i
\(159\) 0 0
\(160\) 73.1147 + 42.2128i 0.456967 + 0.263830i
\(161\) −84.7461 + 84.7461i −0.526374 + 0.526374i
\(162\) 0 0
\(163\) −122.282 + 32.7654i −0.750197 + 0.201015i −0.613605 0.789613i \(-0.710281\pi\)
−0.136591 + 0.990627i \(0.543615\pi\)
\(164\) 122.720 + 122.720i 0.748292 + 0.748292i
\(165\) 0 0
\(166\) 15.5218 8.96152i 0.0935049 0.0539851i
\(167\) 13.5936 50.7321i 0.0813989 0.303785i −0.913209 0.407491i \(-0.866404\pi\)
0.994608 + 0.103707i \(0.0330703\pi\)
\(168\) 0 0
\(169\) −84.5000 + 146.358i −0.500000 + 0.866025i
\(170\) 35.6025 0.209427
\(171\) 0 0
\(172\) −96.9615 167.942i −0.563730 0.976409i
\(173\) −118.865 68.6269i −0.687083 0.396687i 0.115435 0.993315i \(-0.463174\pi\)
−0.802518 + 0.596628i \(0.796507\pi\)
\(174\) 0 0
\(175\) 17.0859 + 63.7654i 0.0976336 + 0.364374i
\(176\) 201.335 53.9474i 1.14395 0.306520i
\(177\) 0 0
\(178\) 23.1699 40.1314i 0.130168 0.225457i
\(179\) −0.903811 + 0.521815i −0.00504922 + 0.00291517i −0.502522 0.864564i \(-0.667595\pi\)
0.497473 + 0.867479i \(0.334261\pi\)
\(180\) 0 0
\(181\) 23.0807i 0.127518i −0.997965 0.0637589i \(-0.979691\pi\)
0.997965 0.0637589i \(-0.0203089\pi\)
\(182\) −19.9667 34.5833i −0.109707 0.190018i
\(183\) 0 0
\(184\) 78.0788 + 20.9212i 0.424342 + 0.113702i
\(185\) −58.3949 101.143i −0.315648 0.546718i
\(186\) 0 0
\(187\) 211.674 211.674i 1.13195 1.13195i
\(188\) −46.8827 174.969i −0.249376 0.930684i
\(189\) 0 0
\(190\) 8.60770 + 8.60770i 0.0453037 + 0.0453037i
\(191\) 147.002 254.615i 0.769643 1.33306i −0.168113 0.985768i \(-0.553767\pi\)
0.937756 0.347294i \(-0.112899\pi\)
\(192\) 0 0
\(193\) 85.5507 319.279i 0.443268 1.65430i −0.277202 0.960812i \(-0.589407\pi\)
0.720470 0.693486i \(-0.243926\pi\)
\(194\) 28.3782i 0.146279i
\(195\) 0 0
\(196\) 51.4449 0.262474
\(197\) −85.1122 22.8057i −0.432041 0.115765i 0.0362429 0.999343i \(-0.488461\pi\)
−0.468284 + 0.883578i \(0.655128\pi\)
\(198\) 0 0
\(199\) 174.452 + 100.720i 0.876643 + 0.506130i 0.869550 0.493845i \(-0.164409\pi\)
0.00709275 + 0.999975i \(0.497742\pi\)
\(200\) 31.4833 31.4833i 0.157417 0.157417i
\(201\) 0 0
\(202\) −79.9974 + 21.4352i −0.396027 + 0.106115i
\(203\) 39.4115 + 39.4115i 0.194146 + 0.194146i
\(204\) 0 0
\(205\) −150.017 + 86.6122i −0.731789 + 0.422498i
\(206\) 10.5532 39.3853i 0.0512294 0.191191i
\(207\) 0 0
\(208\) 83.5666 144.742i 0.401763 0.695873i
\(209\) 102.354 0.489731
\(210\) 0 0
\(211\) −36.6481 63.4763i −0.173687 0.300836i 0.766019 0.642818i \(-0.222235\pi\)
−0.939706 + 0.341983i \(0.888902\pi\)
\(212\) −47.7224 27.5526i −0.225106 0.129965i
\(213\) 0 0
\(214\) −12.7724 47.6673i −0.0596842 0.222744i
\(215\) 186.962 50.0962i 0.869588 0.233006i
\(216\) 0 0
\(217\) −50.0526 + 86.6936i −0.230657 + 0.399510i
\(218\) −32.9545 + 19.0263i −0.151167 + 0.0872765i
\(219\) 0 0
\(220\) 225.387i 1.02449i
\(221\) 240.033i 1.08612i
\(222\) 0 0
\(223\) −367.533 98.4801i −1.64813 0.441615i −0.689040 0.724723i \(-0.741968\pi\)
−0.959088 + 0.283108i \(0.908634\pi\)
\(224\) 67.2487 + 116.478i 0.300217 + 0.519992i
\(225\) 0 0
\(226\) −52.7006 + 52.7006i −0.233189 + 0.233189i
\(227\) 108.280 + 404.107i 0.477005 + 1.78021i 0.613640 + 0.789586i \(0.289704\pi\)
−0.136635 + 0.990621i \(0.543629\pi\)
\(228\) 0 0
\(229\) −72.2679 72.2679i −0.315581 0.315581i 0.531486 0.847067i \(-0.321634\pi\)
−0.847067 + 0.531486i \(0.821634\pi\)
\(230\) −19.4711 + 33.7250i −0.0846571 + 0.146630i
\(231\) 0 0
\(232\) 9.72947 36.3109i 0.0419374 0.156512i
\(233\) 256.592i 1.10125i −0.834751 0.550627i \(-0.814389\pi\)
0.834751 0.550627i \(-0.185611\pi\)
\(234\) 0 0
\(235\) 180.799 0.769356
\(236\) −346.937 92.9615i −1.47007 0.393905i
\(237\) 0 0
\(238\) 49.1192 + 28.3590i 0.206383 + 0.119155i
\(239\) −39.3449 + 39.3449i −0.164623 + 0.164623i −0.784611 0.619988i \(-0.787137\pi\)
0.619988 + 0.784611i \(0.287137\pi\)
\(240\) 0 0
\(241\) 233.351 62.5263i 0.968262 0.259445i 0.260168 0.965563i \(-0.416222\pi\)
0.708094 + 0.706118i \(0.249555\pi\)
\(242\) −51.9212 51.9212i −0.214550 0.214550i
\(243\) 0 0
\(244\) 82.8275 47.8205i 0.339457 0.195986i
\(245\) −13.2898 + 49.5981i −0.0542439 + 0.202441i
\(246\) 0 0
\(247\) 58.0333 58.0333i 0.234953 0.234953i
\(248\) 67.5167 0.272245
\(249\) 0 0
\(250\) 34.8275 + 60.3231i 0.139310 + 0.241292i
\(251\) 221.375 + 127.811i 0.881972 + 0.509207i 0.871308 0.490736i \(-0.163272\pi\)
0.0106638 + 0.999943i \(0.496606\pi\)
\(252\) 0 0
\(253\) 84.7461 + 316.277i 0.334965 + 1.25011i
\(254\) −14.2417 + 3.81604i −0.0560696 + 0.0150238i
\(255\) 0 0
\(256\) −50.6051 + 87.6506i −0.197676 + 0.342385i
\(257\) −85.7731 + 49.5211i −0.333747 + 0.192689i −0.657504 0.753451i \(-0.728388\pi\)
0.323756 + 0.946141i \(0.395054\pi\)
\(258\) 0 0
\(259\) 186.056i 0.718364i
\(260\) 127.792 + 127.792i 0.491506 + 0.491506i
\(261\) 0 0
\(262\) 1.49038 + 0.399346i 0.00568848 + 0.00152422i
\(263\) −127.669 221.130i −0.485434 0.840797i 0.514426 0.857535i \(-0.328005\pi\)
−0.999860 + 0.0167383i \(0.994672\pi\)
\(264\) 0 0
\(265\) 38.8916 38.8916i 0.146761 0.146761i
\(266\) 5.01924 + 18.7321i 0.0188693 + 0.0704212i
\(267\) 0 0
\(268\) −106.622 106.622i −0.397842 0.397842i
\(269\) −46.3538 + 80.2872i −0.172319 + 0.298465i −0.939230 0.343288i \(-0.888459\pi\)
0.766911 + 0.641753i \(0.221793\pi\)
\(270\) 0 0
\(271\) −113.133 + 422.219i −0.417466 + 1.55800i 0.362379 + 0.932031i \(0.381965\pi\)
−0.779845 + 0.625973i \(0.784702\pi\)
\(272\) 237.382i 0.872728i
\(273\) 0 0
\(274\) −50.6987 −0.185032
\(275\) 174.210 + 46.6795i 0.633492 + 0.169744i
\(276\) 0 0
\(277\) −302.110 174.423i −1.09065 0.629686i −0.156899 0.987615i \(-0.550150\pi\)
−0.933749 + 0.357929i \(0.883483\pi\)
\(278\) −11.8705 + 11.8705i −0.0426996 + 0.0426996i
\(279\) 0 0
\(280\) −85.4589 + 22.8987i −0.305211 + 0.0817809i
\(281\) −91.9737 91.9737i −0.327309 0.327309i 0.524254 0.851562i \(-0.324344\pi\)
−0.851562 + 0.524254i \(0.824344\pi\)
\(282\) 0 0
\(283\) −30.8038 + 17.7846i −0.108848 + 0.0628431i −0.553435 0.832892i \(-0.686683\pi\)
0.444588 + 0.895735i \(0.353350\pi\)
\(284\) 44.6865 166.772i 0.157347 0.587227i
\(285\) 0 0
\(286\) −109.100 −0.381468
\(287\) −275.962 −0.961538
\(288\) 0 0
\(289\) 25.9615 + 44.9667i 0.0898323 + 0.155594i
\(290\) 15.6840 + 9.05514i 0.0540826 + 0.0312246i
\(291\) 0 0
\(292\) 26.3301 + 98.2654i 0.0901717 + 0.336525i
\(293\) −386.758 + 103.631i −1.31999 + 0.353691i −0.848975 0.528433i \(-0.822780\pi\)
−0.471017 + 0.882124i \(0.656113\pi\)
\(294\) 0 0
\(295\) 179.249 310.468i 0.607623 1.05243i
\(296\) −108.675 + 62.7436i −0.367145 + 0.211971i
\(297\) 0 0
\(298\) 66.1807i 0.222083i
\(299\) 227.375 + 131.275i 0.760451 + 0.439047i
\(300\) 0 0
\(301\) 297.846 + 79.8076i 0.989522 + 0.265142i
\(302\) 46.8494 + 81.1455i 0.155130 + 0.268694i
\(303\) 0 0
\(304\) −57.3923 + 57.3923i −0.188790 + 0.188790i
\(305\) 24.7070 + 92.2077i 0.0810065 + 0.302320i
\(306\) 0 0
\(307\) 260.219 + 260.219i 0.847619 + 0.847619i 0.989836 0.142216i \(-0.0454228\pi\)
−0.142216 + 0.989836i \(0.545423\pi\)
\(308\) −179.531 + 310.956i −0.582892 + 1.00960i
\(309\) 0 0
\(310\) −8.41858 + 31.4186i −0.0271567 + 0.101350i
\(311\) 71.4782i 0.229833i 0.993375 + 0.114917i \(0.0366601\pi\)
−0.993375 + 0.114917i \(0.963340\pi\)
\(312\) 0 0
\(313\) −394.315 −1.25979 −0.629897 0.776679i \(-0.716903\pi\)
−0.629897 + 0.776679i \(0.716903\pi\)
\(314\) −48.8731 13.0955i −0.155647 0.0417054i
\(315\) 0 0
\(316\) −202.799 117.086i −0.641768 0.370525i
\(317\) 206.054 206.054i 0.650014 0.650014i −0.302982 0.952996i \(-0.597982\pi\)
0.952996 + 0.302982i \(0.0979823\pi\)
\(318\) 0 0
\(319\) 147.086 39.4115i 0.461084 0.123547i
\(320\) −104.552 104.552i −0.326725 0.326725i
\(321\) 0 0
\(322\) −53.7269 + 31.0192i −0.166854 + 0.0963330i
\(323\) −30.1699 + 112.595i −0.0934052 + 0.348593i
\(324\) 0 0
\(325\) 125.242 72.3083i 0.385359 0.222487i
\(326\) −65.5307 −0.201015
\(327\) 0 0
\(328\) 93.0622 + 161.188i 0.283726 + 0.491428i
\(329\) 249.440 + 144.014i 0.758175 + 0.437733i
\(330\) 0 0
\(331\) −119.397 445.597i −0.360717 1.34622i −0.873135 0.487479i \(-0.837917\pi\)
0.512417 0.858737i \(-0.328750\pi\)
\(332\) −124.818 + 33.4449i −0.375958 + 0.100738i
\(333\) 0 0
\(334\) 13.5936 23.5448i 0.0406994 0.0704935i
\(335\) 130.338 75.2506i 0.389068 0.224629i
\(336\) 0 0
\(337\) 144.779i 0.429613i 0.976657 + 0.214806i \(0.0689120\pi\)
−0.976657 + 0.214806i \(0.931088\pi\)
\(338\) −61.8583 + 61.8583i −0.183013 + 0.183013i
\(339\) 0 0
\(340\) −247.940 66.4352i −0.729234 0.195398i
\(341\) 136.746 + 236.851i 0.401015 + 0.694578i
\(342\) 0 0
\(343\) −263.454 + 263.454i −0.768087 + 0.768087i
\(344\) −53.8269 200.885i −0.156473 0.583967i
\(345\) 0 0
\(346\) −50.2384 50.2384i −0.145198 0.145198i
\(347\) 243.590 421.911i 0.701989 1.21588i −0.265778 0.964034i \(-0.585629\pi\)
0.967767 0.251847i \(-0.0810380\pi\)
\(348\) 0 0
\(349\) −3.04036 + 11.3468i −0.00871164 + 0.0325123i −0.970145 0.242526i \(-0.922024\pi\)
0.961433 + 0.275039i \(0.0886906\pi\)
\(350\) 34.1718i 0.0976336i
\(351\) 0 0
\(352\) 367.454 1.04390
\(353\) 276.169 + 73.9993i 0.782349 + 0.209630i 0.627820 0.778358i \(-0.283947\pi\)
0.154529 + 0.987988i \(0.450614\pi\)
\(354\) 0 0
\(355\) 149.242 + 86.1647i 0.420399 + 0.242718i
\(356\) −236.244 + 236.244i −0.663605 + 0.663605i
\(357\) 0 0
\(358\) −0.521815 + 0.139820i −0.00145758 + 0.000390559i
\(359\) −92.0770 92.0770i −0.256482 0.256482i 0.567140 0.823622i \(-0.308050\pi\)
−0.823622 + 0.567140i \(0.808050\pi\)
\(360\) 0 0
\(361\) 278.119 160.572i 0.770411 0.444797i
\(362\) 3.09223 11.5404i 0.00854207 0.0318795i
\(363\) 0 0
\(364\) 74.5167 + 278.100i 0.204716 + 0.764011i
\(365\) −101.540 −0.278191
\(366\) 0 0
\(367\) −6.27499 10.8686i −0.0170981 0.0296147i 0.857350 0.514734i \(-0.172109\pi\)
−0.874448 + 0.485120i \(0.838776\pi\)
\(368\) −224.863 129.825i −0.611042 0.352785i
\(369\) 0 0
\(370\) −15.6469 58.3949i −0.0422888 0.157824i
\(371\) 84.6359 22.6781i 0.228129 0.0611270i
\(372\) 0 0
\(373\) 155.638 269.574i 0.417261 0.722718i −0.578402 0.815752i \(-0.696323\pi\)
0.995663 + 0.0930345i \(0.0296567\pi\)
\(374\) 134.196 77.4782i 0.358813 0.207161i
\(375\) 0 0
\(376\) 194.263i 0.516656i
\(377\) 61.0500 105.742i 0.161936 0.280482i
\(378\) 0 0
\(379\) 379.858 + 101.783i 1.00226 + 0.268556i 0.722394 0.691482i \(-0.243042\pi\)
0.279871 + 0.960038i \(0.409708\pi\)
\(380\) −43.8827 76.0070i −0.115481 0.200019i
\(381\) 0 0
\(382\) 107.613 107.613i 0.281709 0.281709i
\(383\) −191.061 713.051i −0.498855 1.86175i −0.507269 0.861788i \(-0.669345\pi\)
0.00841386 0.999965i \(-0.497322\pi\)
\(384\) 0 0
\(385\) −253.415 253.415i −0.658222 0.658222i
\(386\) 85.5507 148.178i 0.221634 0.383881i
\(387\) 0 0
\(388\) 52.9545 197.629i 0.136481 0.509353i
\(389\) 344.478i 0.885548i −0.896633 0.442774i \(-0.853994\pi\)
0.896633 0.442774i \(-0.146006\pi\)
\(390\) 0 0
\(391\) −372.904 −0.953718
\(392\) 53.2917 + 14.2795i 0.135948 + 0.0364272i
\(393\) 0 0
\(394\) −39.5007 22.8057i −0.100256 0.0578826i
\(395\) 165.272 165.272i 0.418409 0.418409i
\(396\) 0 0
\(397\) −678.422 + 181.783i −1.70887 + 0.457891i −0.975148 0.221556i \(-0.928886\pi\)
−0.733725 + 0.679447i \(0.762220\pi\)
\(398\) 73.7321 + 73.7321i 0.185256 + 0.185256i
\(399\) 0 0
\(400\) −123.858 + 71.5096i −0.309646 + 0.178774i
\(401\) −146.833 + 547.989i −0.366168 + 1.36656i 0.499663 + 0.866220i \(0.333457\pi\)
−0.865831 + 0.500336i \(0.833210\pi\)
\(402\) 0 0
\(403\) 211.825 + 56.7583i 0.525620 + 0.140840i
\(404\) 597.109 1.47799
\(405\) 0 0
\(406\) 14.4256 + 24.9859i 0.0355311 + 0.0615417i
\(407\) −440.214 254.158i −1.08161 0.624466i
\(408\) 0 0
\(409\) 26.3212 + 98.2321i 0.0643550 + 0.240176i 0.990609 0.136723i \(-0.0436570\pi\)
−0.926254 + 0.376899i \(0.876990\pi\)
\(410\) −86.6122 + 23.2077i −0.211249 + 0.0566040i
\(411\) 0 0
\(412\) −146.988 + 254.590i −0.356767 + 0.617938i
\(413\) 494.603 285.559i 1.19758 0.691426i
\(414\) 0 0
\(415\) 128.977i 0.310788i
\(416\) 208.342 208.342i 0.500821 0.500821i
\(417\) 0 0
\(418\) 51.1769 + 13.7128i 0.122433 + 0.0328058i
\(419\) 322.279 + 558.203i 0.769162 + 1.33223i 0.938018 + 0.346587i \(0.112659\pi\)
−0.168856 + 0.985641i \(0.554007\pi\)
\(420\) 0 0
\(421\) 346.619 346.619i 0.823322 0.823322i −0.163261 0.986583i \(-0.552201\pi\)
0.986583 + 0.163261i \(0.0522013\pi\)
\(422\) −9.81982 36.6481i −0.0232697 0.0868437i
\(423\) 0 0
\(424\) −41.7879 41.7879i −0.0985563 0.0985563i
\(425\) −102.701 + 177.883i −0.241649 + 0.418547i
\(426\) 0 0
\(427\) −39.3604 + 146.895i −0.0921788 + 0.344016i
\(428\) 355.794i 0.831293i
\(429\) 0 0
\(430\) 100.192 0.233006
\(431\) −101.699 27.2501i −0.235960 0.0632253i 0.138901 0.990306i \(-0.455643\pi\)
−0.374861 + 0.927081i \(0.622310\pi\)
\(432\) 0 0
\(433\) 596.892 + 344.616i 1.37850 + 0.795880i 0.991979 0.126399i \(-0.0403421\pi\)
0.386525 + 0.922279i \(0.373675\pi\)
\(434\) −36.6410 + 36.6410i −0.0844263 + 0.0844263i
\(435\) 0 0
\(436\) 265.002 71.0070i 0.607802 0.162860i
\(437\) −90.1577 90.1577i −0.206310 0.206310i
\(438\) 0 0
\(439\) 78.0577 45.0666i 0.177808 0.102657i −0.408454 0.912779i \(-0.633932\pi\)
0.586262 + 0.810121i \(0.300599\pi\)
\(440\) −62.5603 + 233.478i −0.142182 + 0.530632i
\(441\) 0 0
\(442\) 32.1584 120.017i 0.0727565 0.271531i
\(443\) −642.277 −1.44983 −0.724917 0.688836i \(-0.758122\pi\)
−0.724917 + 0.688836i \(0.758122\pi\)
\(444\) 0 0
\(445\) −166.734 288.792i −0.374683 0.648970i
\(446\) −170.572 98.4801i −0.382450 0.220807i
\(447\) 0 0
\(448\) −60.9653 227.526i −0.136083 0.507870i
\(449\) −22.6007 + 6.05583i −0.0503355 + 0.0134874i −0.283899 0.958854i \(-0.591628\pi\)
0.233563 + 0.972342i \(0.424961\pi\)
\(450\) 0 0
\(451\) −376.970 + 652.932i −0.835855 + 1.44774i
\(452\) 465.353 268.672i 1.02954 0.594407i
\(453\) 0 0
\(454\) 216.560i 0.477005i
\(455\) −287.367 −0.631575
\(456\) 0 0
\(457\) 228.698 + 61.2795i 0.500433 + 0.134091i 0.500201 0.865909i \(-0.333259\pi\)
0.000232237 1.00000i \(0.499926\pi\)
\(458\) −26.4519 45.8160i −0.0577553 0.100035i
\(459\) 0 0
\(460\) 198.531 198.531i 0.431589 0.431589i
\(461\) 12.6032 + 47.0359i 0.0273389 + 0.102030i 0.978247 0.207443i \(-0.0665141\pi\)
−0.950908 + 0.309473i \(0.899847\pi\)
\(462\) 0 0
\(463\) −521.191 521.191i −1.12568 1.12568i −0.990871 0.134811i \(-0.956957\pi\)
−0.134811 0.990871i \(-0.543043\pi\)
\(464\) −60.3756 + 104.574i −0.130120 + 0.225374i
\(465\) 0 0
\(466\) 34.3768 128.296i 0.0737700 0.275314i
\(467\) 141.415i 0.302817i 0.988471 + 0.151408i \(0.0483808\pi\)
−0.988471 + 0.151408i \(0.951619\pi\)
\(468\) 0 0
\(469\) 239.762 0.511219
\(470\) 90.3993 + 24.2224i 0.192339 + 0.0515371i
\(471\) 0 0
\(472\) −333.588 192.597i −0.706755 0.408045i
\(473\) 595.692 595.692i 1.25939 1.25939i
\(474\) 0 0
\(475\) −67.8372 + 18.1769i −0.142815 + 0.0382672i
\(476\) −289.153 289.153i −0.607463 0.607463i
\(477\) 0 0
\(478\) −24.9437 + 14.4012i −0.0521834 + 0.0301281i
\(479\) −193.783 + 723.207i −0.404557 + 1.50983i 0.400315 + 0.916378i \(0.368901\pi\)
−0.804872 + 0.593449i \(0.797766\pi\)
\(480\) 0 0
\(481\) −393.700 + 105.492i −0.818503 + 0.219317i
\(482\) 125.053 0.259445
\(483\) 0 0
\(484\) 264.698 + 458.470i 0.546897 + 0.947253i
\(485\) 176.855 + 102.107i 0.364648 + 0.210530i
\(486\) 0 0
\(487\) −62.9371 234.885i −0.129234 0.482309i 0.870721 0.491778i \(-0.163653\pi\)
−0.999955 + 0.00946847i \(0.996986\pi\)
\(488\) 99.0744 26.5469i 0.203021 0.0543994i
\(489\) 0 0
\(490\) −13.2898 + 23.0185i −0.0271220 + 0.0469766i
\(491\) 73.3191 42.3308i 0.149326 0.0862135i −0.423475 0.905908i \(-0.639190\pi\)
0.572801 + 0.819694i \(0.305857\pi\)
\(492\) 0 0
\(493\) 173.420i 0.351766i
\(494\) 36.7917 21.2417i 0.0744770 0.0429993i
\(495\) 0 0
\(496\) −209.485 56.1314i −0.422349 0.113168i
\(497\) 137.268 + 237.755i 0.276193 + 0.478380i
\(498\) 0 0
\(499\) −134.397 + 134.397i −0.269334 + 0.269334i −0.828832 0.559498i \(-0.810994\pi\)
0.559498 + 0.828832i \(0.310994\pi\)
\(500\) −129.978 485.085i −0.259956 0.970170i
\(501\) 0 0
\(502\) 93.5641 + 93.5641i 0.186383 + 0.186383i
\(503\) −398.200 + 689.703i −0.791650 + 1.37118i 0.133295 + 0.991076i \(0.457444\pi\)
−0.924945 + 0.380102i \(0.875889\pi\)
\(504\) 0 0
\(505\) −154.251 + 575.674i −0.305448 + 1.13995i
\(506\) 169.492i 0.334965i
\(507\) 0 0
\(508\) 106.301 0.209254
\(509\) −79.6051 21.3301i −0.156395 0.0419059i 0.179772 0.983708i \(-0.442464\pi\)
−0.336167 + 0.941802i \(0.609131\pi\)
\(510\) 0 0
\(511\) −140.090 80.8808i −0.274148 0.158279i
\(512\) −351.581 + 351.581i −0.686682 + 0.686682i
\(513\) 0 0
\(514\) −49.5211 + 13.2691i −0.0963446 + 0.0258155i
\(515\) −207.480 207.480i −0.402873 0.402873i
\(516\) 0 0
\(517\) 681.482 393.454i 1.31815 0.761032i
\(518\) 24.9268 93.0282i 0.0481213 0.179591i
\(519\) 0 0
\(520\) 96.9083 + 167.850i 0.186362 + 0.322789i
\(521\) −677.011 −1.29945 −0.649723 0.760171i \(-0.725115\pi\)
−0.649723 + 0.760171i \(0.725115\pi\)
\(522\) 0 0
\(523\) 91.8269 + 159.049i 0.175577 + 0.304109i 0.940361 0.340179i \(-0.110488\pi\)
−0.764784 + 0.644287i \(0.777154\pi\)
\(524\) −9.63397 5.56218i −0.0183854 0.0106148i
\(525\) 0 0
\(526\) −34.2089 127.669i −0.0650358 0.242717i
\(527\) −300.858 + 80.6147i −0.570889 + 0.152969i
\(528\) 0 0
\(529\) −60.5577 + 104.889i −0.114476 + 0.198278i
\(530\) 24.6563 14.2353i 0.0465213 0.0268591i
\(531\) 0 0
\(532\) 139.818i 0.262816i
\(533\) 156.467 + 583.942i 0.293558 + 1.09558i
\(534\) 0 0
\(535\) −343.021 91.9122i −0.641161 0.171799i
\(536\) −80.8545 140.044i −0.150848 0.261276i
\(537\) 0 0
\(538\) −33.9334 + 33.9334i −0.0630732 + 0.0630732i
\(539\) 57.8423 + 215.870i 0.107314 + 0.400502i
\(540\) 0 0
\(541\) 317.629 + 317.629i 0.587114 + 0.587114i 0.936849 0.349735i \(-0.113728\pi\)
−0.349735 + 0.936849i \(0.613728\pi\)
\(542\) −113.133 + 195.953i −0.208733 + 0.361536i
\(543\) 0 0
\(544\) −108.311 + 404.222i −0.199101 + 0.743055i
\(545\) 273.832i 0.502444i
\(546\) 0 0
\(547\) −724.904 −1.32524 −0.662618 0.748958i \(-0.730555\pi\)
−0.662618 + 0.748958i \(0.730555\pi\)
\(548\) 353.071 + 94.6051i 0.644290 + 0.172637i
\(549\) 0 0
\(550\) 80.8513 + 46.6795i 0.147002 + 0.0848718i
\(551\) −41.9282 + 41.9282i −0.0760947 + 0.0760947i
\(552\) 0 0
\(553\) 359.664 96.3717i 0.650387 0.174271i
\(554\) −127.687 127.687i −0.230481 0.230481i
\(555\) 0 0
\(556\) 104.818 60.5167i 0.188521 0.108843i
\(557\) 31.0641 115.933i 0.0557703 0.208138i −0.932418 0.361381i \(-0.882305\pi\)
0.988188 + 0.153244i \(0.0489719\pi\)
\(558\) 0 0
\(559\) 675.500i 1.20841i
\(560\) 284.192 0.507486
\(561\) 0 0
\(562\) −33.6647 58.3090i −0.0599016 0.103753i
\(563\) 534.888 + 308.818i 0.950068 + 0.548522i 0.893102 0.449854i \(-0.148524\pi\)
0.0569660 + 0.998376i \(0.481857\pi\)
\(564\) 0 0
\(565\) 138.812 + 518.054i 0.245685 + 0.916909i
\(566\) −17.7846 + 4.76537i −0.0314216 + 0.00841938i
\(567\) 0 0
\(568\) 92.5814 160.356i 0.162995 0.282316i
\(569\) 381.315 220.153i 0.670150 0.386911i −0.125983 0.992032i \(-0.540209\pi\)
0.796133 + 0.605121i \(0.206875\pi\)
\(570\) 0 0
\(571\) 618.249i 1.08275i 0.840782 + 0.541374i \(0.182096\pi\)
−0.840782 + 0.541374i \(0.817904\pi\)
\(572\) 759.783 + 203.583i 1.32829 + 0.355915i
\(573\) 0 0
\(574\) −137.981 36.9718i −0.240385 0.0644109i
\(575\) −112.335 194.569i −0.195365 0.338381i
\(576\) 0 0
\(577\) −266.237 + 266.237i −0.461415 + 0.461415i −0.899119 0.437704i \(-0.855792\pi\)
0.437704 + 0.899119i \(0.355792\pi\)
\(578\) 6.95637 + 25.9615i 0.0120352 + 0.0449161i
\(579\) 0 0
\(580\) −92.3275 92.3275i −0.159185 0.159185i
\(581\) 102.736 177.944i 0.176826 0.306271i
\(582\) 0 0
\(583\) 61.9578 231.229i 0.106274 0.396620i
\(584\) 109.101i 0.186817i
\(585\) 0 0
\(586\) −207.263 −0.353691
\(587\) −465.123 124.629i −0.792373 0.212316i −0.160140 0.987094i \(-0.551195\pi\)
−0.632233 + 0.774779i \(0.717861\pi\)
\(588\) 0 0
\(589\) −92.2295 53.2487i −0.156587 0.0904053i
\(590\) 131.219 131.219i 0.222405 0.222405i
\(591\) 0 0
\(592\) 389.351 104.326i 0.657688 0.176227i
\(593\) −389.671 389.671i −0.657118 0.657118i 0.297579 0.954697i \(-0.403821\pi\)
−0.954697 + 0.297579i \(0.903821\pi\)
\(594\) 0 0
\(595\) 353.469 204.076i 0.594066 0.342984i
\(596\) 123.495 460.889i 0.207206 0.773304i
\(597\) 0 0
\(598\) 96.1000 + 96.1000i 0.160702 + 0.160702i
\(599\) −808.596 −1.34991 −0.674955 0.737859i \(-0.735837\pi\)
−0.674955 + 0.737859i \(0.735837\pi\)
\(600\) 0 0
\(601\) 221.344 + 383.379i 0.368293 + 0.637903i 0.989299 0.145904i \(-0.0466089\pi\)
−0.621006 + 0.783806i \(0.713276\pi\)
\(602\) 138.231 + 79.8076i 0.229619 + 0.132571i
\(603\) 0 0
\(604\) −174.844 652.527i −0.289477 1.08034i
\(605\) −510.392 + 136.759i −0.843623 + 0.226048i
\(606\) 0 0
\(607\) 471.398 816.485i 0.776603 1.34512i −0.157286 0.987553i \(-0.550275\pi\)
0.933889 0.357563i \(-0.116392\pi\)
\(608\) −123.916 + 71.5429i −0.203809 + 0.117669i
\(609\) 0 0
\(610\) 49.4139i 0.0810065i
\(611\) 163.308 609.475i 0.267280 0.997504i
\(612\) 0 0
\(613\) −973.161 260.758i −1.58754 0.425380i −0.646289 0.763093i \(-0.723680\pi\)
−0.941249 + 0.337713i \(0.890347\pi\)
\(614\) 95.2468 + 164.972i 0.155125 + 0.268685i
\(615\) 0 0
\(616\) −272.287 + 272.287i −0.442025 + 0.442025i
\(617\) 71.9115 + 268.378i 0.116550 + 0.434972i 0.999398 0.0346873i \(-0.0110435\pi\)
−0.882848 + 0.469659i \(0.844377\pi\)
\(618\) 0 0
\(619\) 206.483 + 206.483i 0.333576 + 0.333576i 0.853943 0.520367i \(-0.174205\pi\)
−0.520367 + 0.853943i \(0.674205\pi\)
\(620\) 117.256 203.093i 0.189122 0.327569i
\(621\) 0 0
\(622\) −9.57626 + 35.7391i −0.0153959 + 0.0574583i
\(623\) 531.244i 0.852718i
\(624\) 0 0
\(625\) 223.140 0.357024
\(626\) −197.158 52.8282i −0.314948 0.0843902i
\(627\) 0 0
\(628\) 315.920 + 182.397i 0.503058 + 0.290441i
\(629\) 409.347 409.347i 0.650790 0.650790i
\(630\) 0 0
\(631\) −428.813 + 114.900i −0.679577 + 0.182092i −0.582065 0.813142i \(-0.697755\pi\)
−0.0975117 + 0.995234i \(0.531088\pi\)
\(632\) −177.580 177.580i −0.280980 0.280980i
\(633\) 0 0
\(634\) 130.633 75.4212i 0.206046 0.118961i
\(635\) −27.4608 + 102.485i −0.0432454 + 0.161394i
\(636\) 0 0
\(637\) 155.192 + 89.6000i 0.243629 + 0.140659i
\(638\) 78.8231 0.123547
\(639\) 0 0
\(640\) −207.120 358.742i −0.323625 0.560535i
\(641\) 471.717 + 272.346i 0.735908 + 0.424877i 0.820580 0.571532i \(-0.193651\pi\)
−0.0846714 + 0.996409i \(0.526984\pi\)
\(642\) 0 0
\(643\) 100.073 + 373.478i 0.155635 + 0.580837i 0.999050 + 0.0435749i \(0.0138747\pi\)
−0.843415 + 0.537262i \(0.819459\pi\)
\(644\) 432.042 115.765i 0.670873 0.179760i
\(645\) 0 0
\(646\) −30.1699 + 52.2558i −0.0467026 + 0.0808913i
\(647\) 436.056 251.757i 0.673966 0.389114i −0.123612 0.992331i \(-0.539448\pi\)
0.797578 + 0.603216i \(0.206114\pi\)
\(648\) 0 0
\(649\) 1560.32i 2.40420i
\(650\) 72.3083 19.3750i 0.111244 0.0298076i
\(651\) 0 0
\(652\) 456.363 + 122.282i 0.699943 + 0.187549i
\(653\) 15.5692 + 26.9667i 0.0238426 + 0.0412966i 0.877701 0.479210i \(-0.159077\pi\)
−0.853858 + 0.520506i \(0.825743\pi\)
\(654\) 0 0
\(655\) 7.85125 7.85125i 0.0119866 0.0119866i
\(656\) −154.738 577.492i −0.235882 0.880323i
\(657\) 0 0
\(658\) 105.426 + 105.426i 0.160221 + 0.160221i
\(659\) 379.488 657.293i 0.575855 0.997410i −0.420093 0.907481i \(-0.638003\pi\)
0.995948 0.0899292i \(-0.0286641\pi\)
\(660\) 0 0
\(661\) 67.8083 253.064i 0.102584 0.382850i −0.895475 0.445111i \(-0.853164\pi\)
0.998060 + 0.0622605i \(0.0198310\pi\)
\(662\) 238.795i 0.360717i
\(663\) 0 0
\(664\) −138.582 −0.208708
\(665\) 134.799 + 36.1192i 0.202705 + 0.0543146i
\(666\) 0 0
\(667\) −164.275 94.8442i −0.246289 0.142195i
\(668\) −138.603 + 138.603i −0.207489 + 0.207489i
\(669\) 0 0
\(670\) 75.2506 20.1633i 0.112314 0.0300945i
\(671\) 293.790 + 293.790i 0.437839 + 0.437839i
\(672\) 0 0
\(673\) −272.210 + 157.160i −0.404472 + 0.233522i −0.688412 0.725320i \(-0.741692\pi\)
0.283940 + 0.958842i \(0.408358\pi\)
\(674\) −19.3968 + 72.3897i −0.0287786 + 0.107403i
\(675\) 0 0
\(676\) 546.217 315.358i 0.808013 0.466506i
\(677\) 547.384 0.808544 0.404272 0.914639i \(-0.367525\pi\)
0.404272 + 0.914639i \(0.367525\pi\)
\(678\) 0 0
\(679\) 162.665 + 281.745i 0.239566 + 0.414941i
\(680\) −238.400 137.640i −0.350588 0.202412i
\(681\) 0 0
\(682\) 36.6410 + 136.746i 0.0537258 + 0.200508i
\(683\) −252.954 + 67.7789i −0.370358 + 0.0992371i −0.439197 0.898391i \(-0.644737\pi\)
0.0688393 + 0.997628i \(0.478070\pi\)
\(684\) 0 0
\(685\) −182.418 + 315.957i −0.266303 + 0.461251i
\(686\) −167.023 + 96.4308i −0.243474 + 0.140570i
\(687\) 0 0
\(688\) 668.038i 0.970986i
\(689\) −95.9749 166.233i −0.139296 0.241268i
\(690\) 0 0
\(691\) 1062.75 + 284.764i 1.53799 + 0.412104i 0.925617 0.378462i \(-0.123547\pi\)
0.612377 + 0.790566i \(0.290214\pi\)
\(692\) 256.119 + 443.611i 0.370114 + 0.641057i
\(693\) 0 0
\(694\) 178.321 178.321i 0.256946 0.256946i
\(695\) 31.2666 + 116.688i 0.0449879 + 0.167897i
\(696\) 0 0
\(697\) −607.149 607.149i −0.871089 0.871089i
\(698\) −3.04036 + 5.26606i −0.00435582 + 0.00754450i
\(699\) 0 0
\(700\) 63.7654 237.976i 0.0910934 0.339965i
\(701\) 638.323i 0.910589i 0.890341 + 0.455295i \(0.150466\pi\)
−0.890341 + 0.455295i \(0.849534\pi\)
\(702\) 0 0
\(703\) 197.937 0.281561
\(704\) −621.611 166.560i −0.882971 0.236591i
\(705\) 0 0
\(706\) 128.171 + 73.9993i 0.181545 + 0.104815i
\(707\) −671.363 + 671.363i −0.949594 + 0.949594i
\(708\) 0 0
\(709\) −625.185 + 167.518i −0.881784 + 0.236273i −0.671177 0.741297i \(-0.734211\pi\)
−0.210608 + 0.977571i \(0.567544\pi\)
\(710\) 63.0770 + 63.0770i 0.0888408 + 0.0888408i
\(711\) 0 0
\(712\) −310.298 + 179.151i −0.435812 + 0.251616i
\(713\) 88.1769 329.081i 0.123670 0.461544i
\(714\) 0 0
\(715\) −392.550 + 679.917i −0.549021 + 0.950932i
\(716\) 3.89488 0.00543978
\(717\) 0 0
\(718\) −33.7025 58.3744i −0.0469394 0.0813015i
\(719\) −1058.38 611.056i −1.47202 0.849870i −0.472512 0.881324i \(-0.656653\pi\)
−0.999505 + 0.0314543i \(0.989986\pi\)
\(720\) 0 0
\(721\) −120.984 451.517i −0.167800 0.626237i
\(722\) 160.572 43.0251i 0.222399 0.0595915i
\(723\) 0 0
\(724\) −43.0692 + 74.5981i −0.0594879 + 0.103036i
\(725\) −90.4852 + 52.2417i −0.124807 + 0.0720575i
\(726\) 0 0
\(727\) 508.974i 0.700102i 0.936731 + 0.350051i \(0.113836\pi\)
−0.936731 + 0.350051i \(0.886164\pi\)
\(728\) 308.767i 0.424130i
\(729\) 0 0
\(730\) −50.7698 13.6037i −0.0695477 0.0186353i
\(731\) 479.711 + 830.885i 0.656240 + 1.13664i
\(732\) 0 0
\(733\) 861.681 861.681i 1.17555 1.17555i 0.194689 0.980865i \(-0.437630\pi\)
0.980865 0.194689i \(-0.0623699\pi\)
\(734\) −1.68138 6.27499i −0.00229071 0.00854903i
\(735\) 0 0
\(736\) −323.669 323.669i −0.439768 0.439768i
\(737\) 327.520 567.282i 0.444397 0.769718i
\(738\) 0 0
\(739\) 40.4242 150.865i 0.0547013 0.204148i −0.933167 0.359444i \(-0.882966\pi\)
0.987868 + 0.155296i \(0.0496331\pi\)
\(740\) 435.865i 0.589007i
\(741\) 0 0
\(742\) 45.3562 0.0611270
\(743\) 369.252 + 98.9409i 0.496975 + 0.133164i 0.498596 0.866835i \(-0.333849\pi\)
−0.00162070 + 0.999999i \(0.500516\pi\)
\(744\) 0 0
\(745\) 412.441 + 238.123i 0.553613 + 0.319628i
\(746\) 113.935 113.935i 0.152728 0.152728i
\(747\) 0 0
\(748\) −1079.13 + 289.153i −1.44269 + 0.386568i
\(749\) −400.038 400.038i −0.534097 0.534097i
\(750\) 0 0
\(751\) −906.415 + 523.319i −1.20694 + 0.696830i −0.962091 0.272730i \(-0.912073\pi\)
−0.244854 + 0.969560i \(0.578740\pi\)
\(752\) −161.504 + 602.743i −0.214767 + 0.801520i
\(753\) 0 0
\(754\) 44.6917 44.6917i 0.0592728 0.0592728i
\(755\) 674.270 0.893073
\(756\) 0 0
\(757\) 188.415 + 326.345i 0.248897 + 0.431103i 0.963220 0.268713i \(-0.0865985\pi\)
−0.714323 + 0.699816i \(0.753265\pi\)
\(758\) 176.293 + 101.783i 0.232576 + 0.134278i
\(759\) 0 0
\(760\) −24.3609 90.9160i −0.0320538 0.119626i
\(761\) 742.044 198.830i 0.975091 0.261275i 0.264115 0.964491i \(-0.414920\pi\)
0.710976 + 0.703216i \(0.248253\pi\)
\(762\) 0 0
\(763\) −218.119 + 377.794i −0.285871 + 0.495142i
\(764\) −950.235 + 548.619i −1.24376 + 0.718087i
\(765\) 0 0
\(766\) 382.123i 0.498855i
\(767\) −884.683 884.683i −1.15343 1.15343i
\(768\) 0 0
\(769\) −65.7006 17.6044i −0.0854364 0.0228926i 0.215848 0.976427i \(-0.430749\pi\)
−0.301284 + 0.953534i \(0.597415\pi\)
\(770\) −92.7564 160.659i −0.120463 0.208648i
\(771\) 0 0
\(772\) −872.288 + 872.288i −1.12991 + 1.12991i
\(773\) 238.681 + 890.771i 0.308773 + 1.15236i 0.929649 + 0.368447i \(0.120110\pi\)
−0.620876 + 0.783909i \(0.713223\pi\)
\(774\) 0 0
\(775\) −132.694 132.694i −0.171218 0.171218i
\(776\) 109.711 190.025i 0.141380 0.244877i
\(777\) 0 0
\(778\) 46.1513 172.239i 0.0593205 0.221387i
\(779\) 293.583i 0.376872i
\(780\) 0 0
\(781\) 750.046 0.960366
\(782\) −186.452 49.9596i −0.238430 0.0638870i
\(783\) 0 0
\(784\) −153.477 88.6103i −0.195762 0.113023i
\(785\) −257.461 + 257.461i −0.327976 + 0.327976i
\(786\) 0 0
\(787\) 1188.62 318.489i 1.51031 0.404687i 0.593774 0.804632i \(-0.297637\pi\)
0.916540 + 0.399944i \(0.130970\pi\)
\(788\) 232.531 + 232.531i 0.295090 + 0.295090i
\(789\) 0 0
\(790\) 104.778 60.4936i 0.132630 0.0765742i
\(791\) −221.140 + 825.305i −0.279570 + 1.04337i
\(792\) 0 0
\(793\) 333.150 0.420114
\(794\) −363.565 −0.457891
\(795\) 0 0
\(796\) −375.892 651.063i −0.472226 0.817919i
\(797\) 22.0615 + 12.7372i 0.0276807 + 0.0159814i 0.513776 0.857924i \(-0.328246\pi\)
−0.486096 + 0.873906i \(0.661579\pi\)
\(798\) 0 0
\(799\) 231.949 + 865.647i 0.290300 + 1.08341i
\(800\) −243.538 + 65.2558i −0.304422 + 0.0815697i
\(801\) 0 0
\(802\) −146.833 + 254.323i −0.183084 + 0.317110i
\(803\) −382.732 + 220.970i −0.476628 + 0.275181i
\(804\) 0 0
\(805\) 446.438i 0.554582i
\(806\) 98.3083 + 56.7583i 0.121971 + 0.0704198i
\(807\) 0 0
\(808\) 618.544 + 165.738i 0.765525 + 0.205122i
\(809\) −351.463 608.752i −0.434442 0.752475i 0.562808 0.826588i \(-0.309721\pi\)
−0.997250 + 0.0741123i \(0.976388\pi\)
\(810\) 0 0
\(811\) 506.292 506.292i 0.624282 0.624282i −0.322342 0.946623i \(-0.604470\pi\)
0.946623 + 0.322342i \(0.104470\pi\)
\(812\) −53.8372 200.923i −0.0663019 0.247442i
\(813\) 0 0
\(814\) −186.056 186.056i −0.228570 0.228570i
\(815\) −235.785 + 408.391i −0.289306 + 0.501093i
\(816\) 0 0
\(817\) −84.9038 + 316.865i −0.103921 + 0.387840i
\(818\) 52.6424i 0.0643550i
\(819\) 0 0
\(820\) 646.482 0.788393
\(821\) 1090.79 + 292.276i 1.32861 + 0.356000i 0.852197 0.523220i \(-0.175270\pi\)
0.476414 + 0.879221i \(0.341936\pi\)
\(822\) 0 0
\(823\) −449.858 259.726i −0.546607 0.315584i 0.201145 0.979561i \(-0.435534\pi\)
−0.747752 + 0.663978i \(0.768867\pi\)
\(824\) −222.931 + 222.931i −0.270547 + 0.270547i
\(825\) 0 0
\(826\) 285.559 76.5153i 0.345713 0.0926335i
\(827\) 571.769 + 571.769i 0.691377 + 0.691377i 0.962535 0.271158i \(-0.0874064\pi\)
−0.271158 + 0.962535i \(0.587406\pi\)
\(828\) 0 0
\(829\) −848.094 + 489.647i −1.02303 + 0.590648i −0.914981 0.403497i \(-0.867795\pi\)
−0.108052 + 0.994145i \(0.534461\pi\)
\(830\) 17.2796 64.4885i 0.0208188 0.0776970i
\(831\) 0 0
\(832\) −446.883 + 258.008i −0.537119 + 0.310106i
\(833\) −254.520 −0.305547
\(834\) 0 0
\(835\) −97.8217 169.432i −0.117152 0.202913i
\(836\) −330.813 190.995i −0.395709 0.228463i
\(837\) 0 0
\(838\) 86.3543 + 322.279i 0.103048 + 0.384581i
\(839\) −513.757 + 137.661i −0.612344 + 0.164077i −0.551645 0.834079i \(-0.686000\pi\)
−0.0606993 + 0.998156i \(0.519333\pi\)
\(840\) 0 0
\(841\) 376.392 651.931i 0.447553 0.775185i
\(842\) 219.747 126.871i 0.260983 0.150678i
\(843\) 0 0
\(844\) 273.545i 0.324105i
\(845\) 162.933 + 608.075i 0.192820 + 0.719615i
\(846\) 0 0
\(847\) −813.099 217.869i −0.959975 0.257224i
\(848\) 94.9148 + 164.397i 0.111928 + 0.193865i
\(849\) 0 0
\(850\) −75.1821 + 75.1821i −0.0884495 + 0.0884495i
\(851\) 163.886 + 611.633i 0.192581 + 0.718722i
\(852\) 0 0
\(853\) 713.043 + 713.043i 0.835924 + 0.835924i 0.988320 0.152396i \(-0.0486989\pi\)
−0.152396 + 0.988320i \(0.548699\pi\)
\(854\) −39.3604 + 68.1742i −0.0460894 + 0.0798292i
\(855\) 0 0
\(856\) −98.7569 + 368.566i −0.115370 + 0.430568i
\(857\) 311.663i 0.363667i −0.983329 0.181834i \(-0.941797\pi\)
0.983329 0.181834i \(-0.0582032\pi\)
\(858\) 0 0
\(859\) −1475.02 −1.71714 −0.858568 0.512700i \(-0.828645\pi\)
−0.858568 + 0.512700i \(0.828645\pi\)
\(860\) −697.750 186.962i −0.811337 0.217397i
\(861\) 0 0
\(862\) −47.1985 27.2501i −0.0547547 0.0316126i
\(863\) 700.396 700.396i 0.811583 0.811583i −0.173288 0.984871i \(-0.555439\pi\)
0.984871 + 0.173288i \(0.0554392\pi\)
\(864\) 0 0
\(865\) −493.850 + 132.327i −0.570925 + 0.152979i
\(866\) 252.276 + 252.276i 0.291312 + 0.291312i
\(867\) 0 0
\(868\) 323.545 186.799i 0.372747 0.215206i
\(869\) 263.292 982.620i 0.302983 1.13075i
\(870\) 0 0
\(871\) −135.942 507.342i −0.156076 0.582482i
\(872\) 294.224 0.337413
\(873\) 0 0
\(874\) −33.0000 57.1577i −0.0377574 0.0653978i
\(875\) 691.550 + 399.267i 0.790343 + 0.456305i
\(876\) 0 0
\(877\) −35.4498 132.301i −0.0404217 0.150856i 0.942765 0.333457i \(-0.108215\pi\)
−0.983187 + 0.182601i \(0.941548\pi\)
\(878\) 45.0666 12.0756i 0.0513287 0.0137535i
\(879\) 0 0
\(880\) 388.214 672.406i 0.441152 0.764098i
\(881\) −383.677 + 221.516i −0.435502 + 0.251437i −0.701688 0.712485i \(-0.747570\pi\)
0.266186 + 0.963922i \(0.414236\pi\)
\(882\) 0 0
\(883\) 1305.20i 1.47814i −0.673630 0.739069i \(-0.735266\pi\)
0.673630 0.739069i \(-0.264734\pi\)
\(884\) −447.908 + 775.800i −0.506684 + 0.877602i
\(885\) 0 0
\(886\) −321.138 86.0488i −0.362459 0.0971205i
\(887\) −861.377 1491.95i −0.971113 1.68202i −0.692209 0.721697i \(-0.743362\pi\)
−0.278904 0.960319i \(-0.589971\pi\)
\(888\) 0 0
\(889\) −119.520 + 119.520i −0.134444 + 0.134444i
\(890\) −44.6762 166.734i −0.0501980 0.187342i
\(891\) 0 0
\(892\) 1004.12 + 1004.12i 1.12569 + 1.12569i
\(893\) −153.210 + 265.368i −0.171568 + 0.297165i
\(894\) 0 0
\(895\) −1.00617 + 3.75506i −0.00112421 + 0.00419560i
\(896\) 659.920i 0.736518i
\(897\) 0 0
\(898\) −12.1117 −0.0134874
\(899\) −153.040 41.0070i −0.170234 0.0456141i
\(900\) 0 0
\(901\) 236.104 + 136.315i 0.262047 + 0.151293i
\(902\) −275.962 + 275.962i −0.305944 + 0.305944i
\(903\) 0 0
\(904\) 556.633 149.149i 0.615745 0.164988i
\(905\) −60.7940 60.7940i −0.0671757 0.0671757i
\(906\) 0 0
\(907\) 758.800 438.093i 0.836604 0.483014i −0.0195043 0.999810i \(-0.506209\pi\)
0.856109 + 0.516796i \(0.172875\pi\)
\(908\) 404.107 1508.15i 0.445052 1.66096i
\(909\) 0 0
\(910\) −143.683 38.4998i −0.157894 0.0423075i
\(911\) 1103.35 1.21114 0.605569 0.795793i \(-0.292946\pi\)
0.605569 + 0.795793i \(0.292946\pi\)
\(912\) 0 0
\(913\) −280.679 486.151i −0.307426 0.532477i
\(914\) 106.139 + 61.2795i 0.116126 + 0.0670454i
\(915\) 0 0
\(916\) 98.7199 + 368.428i 0.107773 + 0.402213i
\(917\) 17.0859 4.57815i 0.0186324 0.00499253i
\(918\) 0 0
\(919\) 328.160 568.389i 0.357083 0.618486i −0.630389 0.776279i \(-0.717105\pi\)
0.987472 + 0.157793i \(0.0504379\pi\)
\(920\) 260.763 150.552i 0.283439 0.163643i
\(921\) 0 0
\(922\) 25.2065i 0.0273389i
\(923\) 425.267 425.267i 0.460744 0.460744i
\(924\) 0 0
\(925\) 336.897 + 90.2712i 0.364213 + 0.0975905i
\(926\) −190.769 330.422i −0.206014 0.356827i
\(927\) 0 0
\(928\) −150.524 + 150.524i −0.162202 + 0.162202i
\(929\) −219.574 819.460i −0.236355 0.882088i −0.977533 0.210780i \(-0.932399\pi\)
0.741179 0.671308i \(-0.234267\pi\)
\(930\) 0 0
\(931\) −61.5359 61.5359i −0.0660966 0.0660966i
\(932\) −478.808 + 829.319i −0.513742 + 0.889827i
\(933\) 0 0
\(934\) −18.9461 + 70.7077i −0.0202849 + 0.0757041i
\(935\) 1115.09i 1.19261i
\(936\) 0 0
\(937\) 842.615 0.899269 0.449635 0.893213i \(-0.351554\pi\)
0.449635 + 0.893213i \(0.351554\pi\)
\(938\) 119.881 + 32.1220i 0.127805 + 0.0342452i
\(939\) 0 0
\(940\) −584.351 337.375i −0.621650 0.358910i
\(941\) 471.659 471.659i 0.501232 0.501232i −0.410589 0.911821i \(-0.634677\pi\)
0.911821 + 0.410589i \(0.134677\pi\)
\(942\) 0 0
\(943\) 907.183 243.079i 0.962018 0.257772i
\(944\) 874.911 + 874.911i 0.926813 + 0.926813i
\(945\) 0 0
\(946\) 377.654 218.038i 0.399211 0.230485i
\(947\) 131.110 489.308i 0.138447 0.516693i −0.861512 0.507737i \(-0.830482\pi\)
0.999960 0.00895652i \(-0.00285099\pi\)
\(948\) 0 0
\(949\) −91.7168 + 342.292i −0.0966457 + 0.360687i
\(950\) −36.3538 −0.0382672
\(951\) 0 0
\(952\) −219.273 379.792i −0.230329 0.398941i
\(953\) 770.092 + 444.613i 0.808071 + 0.466540i 0.846286 0.532729i \(-0.178834\pi\)
−0.0382143 + 0.999270i \(0.512167\pi\)
\(954\) 0 0
\(955\) −283.450 1057.85i −0.296806 1.10769i
\(956\) 200.583 53.7461i 0.209815 0.0562198i
\(957\) 0 0
\(958\) −193.783 + 335.642i −0.202278 + 0.350356i
\(959\) −503.347 + 290.608i −0.524867 + 0.303032i
\(960\) 0 0
\(961\) 676.436i 0.703888i
\(962\) −210.983 −0.219317
\(963\) 0 0
\(964\) −870.879 233.351i −0.903401 0.242066i
\(965\) −615.636 1066.31i −0.637964 1.10499i
\(966\) 0 0
\(967\) −384.317 + 384.317i −0.397432 + 0.397432i −0.877326 0.479894i \(-0.840675\pi\)
0.479894 + 0.877326i \(0.340675\pi\)
\(968\) 146.943 + 548.401i 0.151801 + 0.566529i
\(969\) 0 0
\(970\) 74.7475 + 74.7475i 0.0770593 + 0.0770593i
\(971\) −121.863 + 211.074i −0.125503 + 0.217378i −0.921929 0.387358i \(-0.873388\pi\)
0.796426 + 0.604735i \(0.206721\pi\)
\(972\) 0 0
\(973\) −49.8104 + 185.895i −0.0511926 + 0.191053i
\(974\) 125.874i 0.129234i
\(975\) 0 0
\(976\) −329.470 −0.337572
\(977\) 1110.01 + 297.426i 1.13614 + 0.304428i 0.777398 0.629009i \(-0.216539\pi\)
0.358742 + 0.933437i \(0.383206\pi\)
\(978\) 0 0
\(979\) −1256.94 725.692i −1.28390 0.741259i
\(980\) 135.504 135.504i 0.138270 0.138270i
\(981\) 0 0
\(982\) 42.3308 11.3425i 0.0431067 0.0115504i
\(983\) 774.213 + 774.213i 0.787602 + 0.787602i 0.981101 0.193499i \(-0.0619835\pi\)
−0.193499 + 0.981101i \(0.561984\pi\)
\(984\) 0 0
\(985\) −284.253 + 164.114i −0.288582 + 0.166613i
\(986\) −23.2339 + 86.7102i −0.0235638 + 0.0879414i
\(987\) 0 0
\(988\) −295.858 + 79.2750i −0.299452 + 0.0802378i
\(989\) −1049.42 −1.06109
\(990\) 0 0
\(991\) 391.733 + 678.501i 0.395290 + 0.684663i 0.993138 0.116947i \(-0.0373107\pi\)
−0.597848 + 0.801609i \(0.703977\pi\)
\(992\) −331.107 191.165i −0.333777 0.192706i
\(993\) 0 0
\(994\) 36.7808 + 137.268i 0.0370029 + 0.138097i
\(995\) 724.795 194.208i 0.728438 0.195184i
\(996\) 0 0
\(997\) −250.817 + 434.428i −0.251572 + 0.435735i −0.963959 0.266052i \(-0.914281\pi\)
0.712387 + 0.701787i \(0.247614\pi\)
\(998\) −85.2046 + 49.1929i −0.0853753 + 0.0492915i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.bd.b.28.1 4
3.2 odd 2 13.3.f.a.2.1 4
12.11 even 2 208.3.bd.d.145.1 4
13.7 odd 12 inner 117.3.bd.b.46.1 4
15.2 even 4 325.3.w.b.249.1 4
15.8 even 4 325.3.w.a.249.1 4
15.14 odd 2 325.3.t.a.301.1 4
39.2 even 12 169.3.d.c.99.1 4
39.5 even 4 169.3.f.a.89.1 4
39.8 even 4 169.3.f.c.89.1 4
39.11 even 12 169.3.d.a.99.2 4
39.17 odd 6 169.3.f.a.19.1 4
39.20 even 12 13.3.f.a.7.1 yes 4
39.23 odd 6 169.3.d.c.70.1 4
39.29 odd 6 169.3.d.a.70.2 4
39.32 even 12 169.3.f.b.150.1 4
39.35 odd 6 169.3.f.c.19.1 4
39.38 odd 2 169.3.f.b.80.1 4
156.59 odd 12 208.3.bd.d.33.1 4
195.59 even 12 325.3.t.a.176.1 4
195.98 odd 12 325.3.w.b.124.1 4
195.137 odd 12 325.3.w.a.124.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.3.f.a.2.1 4 3.2 odd 2
13.3.f.a.7.1 yes 4 39.20 even 12
117.3.bd.b.28.1 4 1.1 even 1 trivial
117.3.bd.b.46.1 4 13.7 odd 12 inner
169.3.d.a.70.2 4 39.29 odd 6
169.3.d.a.99.2 4 39.11 even 12
169.3.d.c.70.1 4 39.23 odd 6
169.3.d.c.99.1 4 39.2 even 12
169.3.f.a.19.1 4 39.17 odd 6
169.3.f.a.89.1 4 39.5 even 4
169.3.f.b.80.1 4 39.38 odd 2
169.3.f.b.150.1 4 39.32 even 12
169.3.f.c.19.1 4 39.35 odd 6
169.3.f.c.89.1 4 39.8 even 4
208.3.bd.d.33.1 4 156.59 odd 12
208.3.bd.d.145.1 4 12.11 even 2
325.3.t.a.176.1 4 195.59 even 12
325.3.t.a.301.1 4 15.14 odd 2
325.3.w.a.124.1 4 195.137 odd 12
325.3.w.a.249.1 4 15.8 even 4
325.3.w.b.124.1 4 195.98 odd 12
325.3.w.b.249.1 4 15.2 even 4