Properties

Label 325.3.w.b.124.1
Level $325$
Weight $3$
Character 325.124
Analytic conductor $8.856$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,3,Mod(24,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 7]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.24");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 325.w (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.85560859171\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 124.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 325.124
Dual form 325.3.w.b.249.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.133975 + 0.500000i) q^{2} +(0.633975 + 0.366025i) q^{3} +(3.23205 - 1.86603i) q^{4} +(-0.0980762 + 0.366025i) q^{6} +(1.53590 - 5.73205i) q^{7} +(2.83013 + 2.83013i) q^{8} +(-4.23205 - 7.33013i) q^{9} +(-4.19615 - 15.6603i) q^{11} +2.73205 q^{12} +(-11.2583 - 6.50000i) q^{13} +3.07180 q^{14} +(6.42820 - 11.1340i) q^{16} +(9.23205 + 15.9904i) q^{17} +(3.09808 - 3.09808i) q^{18} +(-1.63397 + 6.09808i) q^{19} +(3.07180 - 3.07180i) q^{21} +(7.26795 - 4.19615i) q^{22} +(-10.0981 + 17.4904i) q^{23} +(0.758330 + 2.83013i) q^{24} +(1.74167 - 6.50000i) q^{26} -12.7846i q^{27} +(-5.73205 - 21.3923i) q^{28} +(4.69615 - 8.13397i) q^{29} +(-11.9282 - 11.9282i) q^{31} +(21.8923 + 5.86603i) q^{32} +(3.07180 - 11.4641i) q^{33} +(-6.75833 + 6.75833i) q^{34} +(-27.3564 - 15.7942i) q^{36} +(30.2846 - 8.11474i) q^{37} -3.26795 q^{38} +(-4.75833 - 8.24167i) q^{39} +(44.9186 - 12.0359i) q^{41} +(1.94744 + 1.12436i) q^{42} +(25.9808 + 45.0000i) q^{43} +(-42.7846 - 42.7846i) q^{44} +(-10.0981 - 2.70577i) q^{46} +(34.3205 + 34.3205i) q^{47} +(8.15064 - 4.70577i) q^{48} +(11.9378 + 6.89230i) q^{49} +13.5167i q^{51} -48.5167 q^{52} -14.7654i q^{53} +(6.39230 - 1.71281i) q^{54} +(20.5692 - 11.8756i) q^{56} +(-3.26795 + 3.26795i) q^{57} +(4.69615 + 1.25833i) q^{58} +(92.9615 + 24.9090i) q^{59} +(-12.8135 - 22.1936i) q^{61} +(4.36603 - 7.56218i) q^{62} +(-48.5167 + 13.0000i) q^{63} -39.6936i q^{64} +6.14359 q^{66} +(-10.4571 - 39.0263i) q^{67} +(59.6769 + 34.4545i) q^{68} +(-12.8038 + 7.39230i) q^{69} +(-11.9737 + 44.6865i) q^{71} +(8.76795 - 32.7224i) q^{72} +(-19.2750 - 19.2750i) q^{73} +(8.11474 + 14.0551i) q^{74} +(6.09808 + 22.7583i) q^{76} -96.2102 q^{77} +(3.48334 - 3.48334i) q^{78} -62.7461 q^{79} +(-33.4090 + 57.8660i) q^{81} +(12.0359 + 20.8468i) q^{82} +(24.4833 - 24.4833i) q^{83} +(4.19615 - 15.6603i) q^{84} +(-19.0192 + 19.0192i) q^{86} +(5.95448 - 3.43782i) q^{87} +(32.4449 - 56.1962i) q^{88} +(23.1699 + 86.4711i) q^{89} +(-54.5500 + 54.5500i) q^{91} +75.3731i q^{92} +(-3.19615 - 11.9282i) q^{93} +(-12.5622 + 21.7583i) q^{94} +(11.7321 + 11.7321i) q^{96} +(-52.9545 - 14.1891i) q^{97} +(-1.84679 + 6.89230i) q^{98} +(-97.0333 + 97.0333i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 6 q^{3} + 6 q^{4} + 10 q^{6} + 20 q^{7} - 6 q^{8} - 10 q^{9} + 4 q^{11} + 4 q^{12} + 40 q^{14} - 2 q^{16} + 30 q^{17} + 2 q^{18} - 10 q^{19} + 40 q^{21} + 36 q^{22} - 30 q^{23} - 42 q^{24}+ \cdots - 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.133975 + 0.500000i 0.0669873 + 0.250000i 0.991297 0.131643i \(-0.0420252\pi\)
−0.924310 + 0.381643i \(0.875358\pi\)
\(3\) 0.633975 + 0.366025i 0.211325 + 0.122008i 0.601927 0.798551i \(-0.294400\pi\)
−0.390602 + 0.920560i \(0.627733\pi\)
\(4\) 3.23205 1.86603i 0.808013 0.466506i
\(5\) 0 0
\(6\) −0.0980762 + 0.366025i −0.0163460 + 0.0610042i
\(7\) 1.53590 5.73205i 0.219414 0.818864i −0.765152 0.643850i \(-0.777336\pi\)
0.984566 0.175014i \(-0.0559972\pi\)
\(8\) 2.83013 + 2.83013i 0.353766 + 0.353766i
\(9\) −4.23205 7.33013i −0.470228 0.814459i
\(10\) 0 0
\(11\) −4.19615 15.6603i −0.381468 1.42366i −0.843659 0.536879i \(-0.819603\pi\)
0.462191 0.886780i \(-0.347063\pi\)
\(12\) 2.73205 0.227671
\(13\) −11.2583 6.50000i −0.866025 0.500000i
\(14\) 3.07180 0.219414
\(15\) 0 0
\(16\) 6.42820 11.1340i 0.401763 0.695873i
\(17\) 9.23205 + 15.9904i 0.543062 + 0.940611i 0.998726 + 0.0504590i \(0.0160684\pi\)
−0.455664 + 0.890152i \(0.650598\pi\)
\(18\) 3.09808 3.09808i 0.172115 0.172115i
\(19\) −1.63397 + 6.09808i −0.0859987 + 0.320951i −0.995501 0.0947465i \(-0.969796\pi\)
0.909503 + 0.415698i \(0.136463\pi\)
\(20\) 0 0
\(21\) 3.07180 3.07180i 0.146276 0.146276i
\(22\) 7.26795 4.19615i 0.330361 0.190734i
\(23\) −10.0981 + 17.4904i −0.439047 + 0.760451i −0.997616 0.0690064i \(-0.978017\pi\)
0.558569 + 0.829458i \(0.311350\pi\)
\(24\) 0.758330 + 2.83013i 0.0315971 + 0.117922i
\(25\) 0 0
\(26\) 1.74167 6.50000i 0.0669873 0.250000i
\(27\) 12.7846i 0.473504i
\(28\) −5.73205 21.3923i −0.204716 0.764011i
\(29\) 4.69615 8.13397i 0.161936 0.280482i −0.773627 0.633642i \(-0.781559\pi\)
0.935563 + 0.353160i \(0.114893\pi\)
\(30\) 0 0
\(31\) −11.9282 11.9282i −0.384781 0.384781i 0.488040 0.872821i \(-0.337712\pi\)
−0.872821 + 0.488040i \(0.837712\pi\)
\(32\) 21.8923 + 5.86603i 0.684135 + 0.183313i
\(33\) 3.07180 11.4641i 0.0930848 0.347397i
\(34\) −6.75833 + 6.75833i −0.198774 + 0.198774i
\(35\) 0 0
\(36\) −27.3564 15.7942i −0.759900 0.438729i
\(37\) 30.2846 8.11474i 0.818503 0.219317i 0.174811 0.984602i \(-0.444069\pi\)
0.643692 + 0.765285i \(0.277402\pi\)
\(38\) −3.26795 −0.0859987
\(39\) −4.75833 8.24167i −0.122008 0.211325i
\(40\) 0 0
\(41\) 44.9186 12.0359i 1.09558 0.293558i 0.334614 0.942355i \(-0.391394\pi\)
0.760962 + 0.648797i \(0.224728\pi\)
\(42\) 1.94744 + 1.12436i 0.0463676 + 0.0267704i
\(43\) 25.9808 + 45.0000i 0.604204 + 1.04651i 0.992177 + 0.124841i \(0.0398420\pi\)
−0.387973 + 0.921671i \(0.626825\pi\)
\(44\) −42.7846 42.7846i −0.972377 0.972377i
\(45\) 0 0
\(46\) −10.0981 2.70577i −0.219523 0.0588211i
\(47\) 34.3205 + 34.3205i 0.730224 + 0.730224i 0.970664 0.240440i \(-0.0772918\pi\)
−0.240440 + 0.970664i \(0.577292\pi\)
\(48\) 8.15064 4.70577i 0.169805 0.0980369i
\(49\) 11.9378 + 6.89230i 0.243629 + 0.140659i
\(50\) 0 0
\(51\) 13.5167i 0.265033i
\(52\) −48.5167 −0.933013
\(53\) 14.7654i 0.278592i −0.990251 0.139296i \(-0.955516\pi\)
0.990251 0.139296i \(-0.0444839\pi\)
\(54\) 6.39230 1.71281i 0.118376 0.0317188i
\(55\) 0 0
\(56\) 20.5692 11.8756i 0.367307 0.212065i
\(57\) −3.26795 + 3.26795i −0.0573324 + 0.0573324i
\(58\) 4.69615 + 1.25833i 0.0809681 + 0.0216953i
\(59\) 92.9615 + 24.9090i 1.57562 + 0.422186i 0.937566 0.347807i \(-0.113073\pi\)
0.638053 + 0.769993i \(0.279740\pi\)
\(60\) 0 0
\(61\) −12.8135 22.1936i −0.210057 0.363829i 0.741675 0.670759i \(-0.234032\pi\)
−0.951732 + 0.306930i \(0.900698\pi\)
\(62\) 4.36603 7.56218i 0.0704198 0.121971i
\(63\) −48.5167 + 13.0000i −0.770106 + 0.206349i
\(64\) 39.6936i 0.620212i
\(65\) 0 0
\(66\) 6.14359 0.0930848
\(67\) −10.4571 39.0263i −0.156076 0.582482i −0.999011 0.0444669i \(-0.985841\pi\)
0.842935 0.538015i \(-0.180826\pi\)
\(68\) 59.6769 + 34.4545i 0.877602 + 0.506684i
\(69\) −12.8038 + 7.39230i −0.185563 + 0.107135i
\(70\) 0 0
\(71\) −11.9737 + 44.6865i −0.168644 + 0.629388i 0.828903 + 0.559392i \(0.188965\pi\)
−0.997547 + 0.0699959i \(0.977701\pi\)
\(72\) 8.76795 32.7224i 0.121777 0.454478i
\(73\) −19.2750 19.2750i −0.264041 0.264041i 0.562653 0.826693i \(-0.309781\pi\)
−0.826693 + 0.562653i \(0.809781\pi\)
\(74\) 8.11474 + 14.0551i 0.109659 + 0.189934i
\(75\) 0 0
\(76\) 6.09808 + 22.7583i 0.0802378 + 0.299452i
\(77\) −96.2102 −1.24948
\(78\) 3.48334 3.48334i 0.0446582 0.0446582i
\(79\) −62.7461 −0.794255 −0.397127 0.917763i \(-0.629993\pi\)
−0.397127 + 0.917763i \(0.629993\pi\)
\(80\) 0 0
\(81\) −33.4090 + 57.8660i −0.412456 + 0.714395i
\(82\) 12.0359 + 20.8468i 0.146779 + 0.254229i
\(83\) 24.4833 24.4833i 0.294980 0.294980i −0.544064 0.839044i \(-0.683115\pi\)
0.839044 + 0.544064i \(0.183115\pi\)
\(84\) 4.19615 15.6603i 0.0499542 0.186432i
\(85\) 0 0
\(86\) −19.0192 + 19.0192i −0.221154 + 0.221154i
\(87\) 5.95448 3.43782i 0.0684423 0.0395152i
\(88\) 32.4449 56.1962i 0.368692 0.638593i
\(89\) 23.1699 + 86.4711i 0.260336 + 0.971586i 0.965044 + 0.262089i \(0.0844113\pi\)
−0.704708 + 0.709497i \(0.748922\pi\)
\(90\) 0 0
\(91\) −54.5500 + 54.5500i −0.599450 + 0.599450i
\(92\) 75.3731i 0.819272i
\(93\) −3.19615 11.9282i −0.0343672 0.128260i
\(94\) −12.5622 + 21.7583i −0.133640 + 0.231472i
\(95\) 0 0
\(96\) 11.7321 + 11.7321i 0.122209 + 0.122209i
\(97\) −52.9545 14.1891i −0.545923 0.146279i −0.0246915 0.999695i \(-0.507860\pi\)
−0.521231 + 0.853416i \(0.674527\pi\)
\(98\) −1.84679 + 6.89230i −0.0188448 + 0.0703296i
\(99\) −97.0333 + 97.0333i −0.980135 + 0.980135i
\(100\) 0 0
\(101\) 138.560 + 79.9974i 1.37188 + 0.792054i 0.991164 0.132640i \(-0.0423453\pi\)
0.380713 + 0.924693i \(0.375679\pi\)
\(102\) −6.75833 + 1.81089i −0.0662581 + 0.0177538i
\(103\) −78.7705 −0.764762 −0.382381 0.924005i \(-0.624896\pi\)
−0.382381 + 0.924005i \(0.624896\pi\)
\(104\) −13.4667 50.2583i −0.129487 0.483253i
\(105\) 0 0
\(106\) 7.38269 1.97818i 0.0696480 0.0186621i
\(107\) −82.5622 47.6673i −0.771609 0.445489i 0.0618392 0.998086i \(-0.480303\pi\)
−0.833448 + 0.552597i \(0.813637\pi\)
\(108\) −23.8564 41.3205i −0.220893 0.382597i
\(109\) 51.9808 + 51.9808i 0.476888 + 0.476888i 0.904135 0.427247i \(-0.140517\pi\)
−0.427247 + 0.904135i \(0.640517\pi\)
\(110\) 0 0
\(111\) 22.1699 + 5.94040i 0.199729 + 0.0535171i
\(112\) −53.9474 53.9474i −0.481674 0.481674i
\(113\) −124.691 + 71.9904i −1.10346 + 0.637083i −0.937128 0.348987i \(-0.886526\pi\)
−0.166332 + 0.986070i \(0.553192\pi\)
\(114\) −2.07180 1.19615i −0.0181737 0.0104926i
\(115\) 0 0
\(116\) 35.0526i 0.302177i
\(117\) 110.033i 0.940456i
\(118\) 49.8179i 0.422186i
\(119\) 105.837 28.3590i 0.889388 0.238311i
\(120\) 0 0
\(121\) −122.847 + 70.9256i −1.01526 + 0.586162i
\(122\) 9.38011 9.38011i 0.0768861 0.0768861i
\(123\) 32.8827 + 8.81089i 0.267339 + 0.0716332i
\(124\) −60.8109 16.2942i −0.490410 0.131405i
\(125\) 0 0
\(126\) −13.0000 22.5167i −0.103175 0.178704i
\(127\) −14.2417 + 24.6673i −0.112139 + 0.194231i −0.916633 0.399731i \(-0.869104\pi\)
0.804493 + 0.593962i \(0.202437\pi\)
\(128\) 107.416 28.7820i 0.839188 0.224860i
\(129\) 38.0385i 0.294872i
\(130\) 0 0
\(131\) −2.98076 −0.0227539 −0.0113770 0.999935i \(-0.503621\pi\)
−0.0113770 + 0.999935i \(0.503621\pi\)
\(132\) −11.4641 42.7846i −0.0868493 0.324126i
\(133\) 32.4449 + 18.7321i 0.243946 + 0.140842i
\(134\) 18.1122 10.4571i 0.135165 0.0780378i
\(135\) 0 0
\(136\) −19.1269 + 71.3827i −0.140639 + 0.524873i
\(137\) 25.3494 94.6051i 0.185032 0.690548i −0.809592 0.586993i \(-0.800312\pi\)
0.994624 0.103555i \(-0.0330218\pi\)
\(138\) −5.41154 5.41154i −0.0392141 0.0392141i
\(139\) 16.2154 + 28.0859i 0.116657 + 0.202057i 0.918441 0.395558i \(-0.129449\pi\)
−0.801784 + 0.597614i \(0.796115\pi\)
\(140\) 0 0
\(141\) 9.19615 + 34.3205i 0.0652209 + 0.243408i
\(142\) −23.9474 −0.168644
\(143\) −54.5500 + 203.583i −0.381468 + 1.42366i
\(144\) −108.818 −0.755680
\(145\) 0 0
\(146\) 7.05514 12.2199i 0.0483229 0.0836976i
\(147\) 5.04552 + 8.73909i 0.0343232 + 0.0594496i
\(148\) 82.7391 82.7391i 0.559048 0.559048i
\(149\) 33.0903 123.495i 0.222083 0.828824i −0.761469 0.648201i \(-0.775522\pi\)
0.983552 0.180624i \(-0.0578116\pi\)
\(150\) 0 0
\(151\) 127.995 127.995i 0.847648 0.847648i −0.142191 0.989839i \(-0.545415\pi\)
0.989839 + 0.142191i \(0.0454148\pi\)
\(152\) −21.8827 + 12.6340i −0.143965 + 0.0831183i
\(153\) 78.1410 135.344i 0.510726 0.884603i
\(154\) −12.8897 48.1051i −0.0836995 0.312371i
\(155\) 0 0
\(156\) −30.7583 17.7583i −0.197169 0.113835i
\(157\) 97.7461i 0.622587i 0.950314 + 0.311293i \(0.100762\pi\)
−0.950314 + 0.311293i \(0.899238\pi\)
\(158\) −8.40639 31.3731i −0.0532050 0.198564i
\(159\) 5.40450 9.36087i 0.0339906 0.0588734i
\(160\) 0 0
\(161\) 84.7461 + 84.7461i 0.526374 + 0.526374i
\(162\) −33.4090 8.95191i −0.206228 0.0552587i
\(163\) 32.7654 122.282i 0.201015 0.750197i −0.789613 0.613605i \(-0.789719\pi\)
0.990627 0.136591i \(-0.0436147\pi\)
\(164\) 122.720 122.720i 0.748292 0.748292i
\(165\) 0 0
\(166\) 15.5218 + 8.96152i 0.0935049 + 0.0539851i
\(167\) −50.7321 + 13.5936i −0.303785 + 0.0813989i −0.407491 0.913209i \(-0.633596\pi\)
0.103707 + 0.994608i \(0.466930\pi\)
\(168\) 17.3872 0.103495
\(169\) 84.5000 + 146.358i 0.500000 + 0.866025i
\(170\) 0 0
\(171\) 51.6147 13.8301i 0.301841 0.0808779i
\(172\) 167.942 + 96.9615i 0.976409 + 0.563730i
\(173\) 68.6269 + 118.865i 0.396687 + 0.687083i 0.993315 0.115435i \(-0.0368263\pi\)
−0.596628 + 0.802518i \(0.703493\pi\)
\(174\) 2.51666 + 2.51666i 0.0144636 + 0.0144636i
\(175\) 0 0
\(176\) −201.335 53.9474i −1.14395 0.306520i
\(177\) 49.8179 + 49.8179i 0.281457 + 0.281457i
\(178\) −40.1314 + 23.1699i −0.225457 + 0.130168i
\(179\) −0.903811 0.521815i −0.00504922 0.00291517i 0.497473 0.867479i \(-0.334261\pi\)
−0.502522 + 0.864564i \(0.667595\pi\)
\(180\) 0 0
\(181\) 23.0807i 0.127518i 0.997965 + 0.0637589i \(0.0203089\pi\)
−0.997965 + 0.0637589i \(0.979691\pi\)
\(182\) −34.5833 19.9667i −0.190018 0.109707i
\(183\) 18.7602i 0.102515i
\(184\) −78.0788 + 20.9212i −0.424342 + 0.113702i
\(185\) 0 0
\(186\) 5.53590 3.19615i 0.0297629 0.0171836i
\(187\) 211.674 211.674i 1.13195 1.13195i
\(188\) 174.969 + 46.8827i 0.930684 + 0.249376i
\(189\) −73.2820 19.6359i −0.387736 0.103893i
\(190\) 0 0
\(191\) −147.002 254.615i −0.769643 1.33306i −0.937756 0.347294i \(-0.887101\pi\)
0.168113 0.985768i \(-0.446233\pi\)
\(192\) 14.5289 25.1647i 0.0756711 0.131066i
\(193\) −319.279 + 85.5507i −1.65430 + 0.443268i −0.960812 0.277202i \(-0.910593\pi\)
−0.693486 + 0.720470i \(0.743926\pi\)
\(194\) 28.3782i 0.146279i
\(195\) 0 0
\(196\) 51.4449 0.262474
\(197\) −22.8057 85.1122i −0.115765 0.432041i 0.883578 0.468284i \(-0.155128\pi\)
−0.999343 + 0.0362429i \(0.988461\pi\)
\(198\) −61.5167 35.5167i −0.310690 0.179377i
\(199\) −174.452 + 100.720i −0.876643 + 0.506130i −0.869550 0.493845i \(-0.835591\pi\)
−0.00709275 + 0.999975i \(0.502258\pi\)
\(200\) 0 0
\(201\) 7.65510 28.5692i 0.0380851 0.142135i
\(202\) −21.4352 + 79.9974i −0.106115 + 0.396027i
\(203\) −39.4115 39.4115i −0.194146 0.194146i
\(204\) 25.2224 + 43.6865i 0.123639 + 0.214150i
\(205\) 0 0
\(206\) −10.5532 39.3853i −0.0512294 0.191191i
\(207\) 170.942 0.825808
\(208\) −144.742 + 83.5666i −0.695873 + 0.401763i
\(209\) 102.354 0.489731
\(210\) 0 0
\(211\) −36.6481 + 63.4763i −0.173687 + 0.300836i −0.939706 0.341983i \(-0.888902\pi\)
0.766019 + 0.642818i \(0.222235\pi\)
\(212\) −27.5526 47.7224i −0.129965 0.225106i
\(213\) −23.9474 + 23.9474i −0.112429 + 0.112429i
\(214\) 12.7724 47.6673i 0.0596842 0.222744i
\(215\) 0 0
\(216\) 36.1821 36.1821i 0.167510 0.167510i
\(217\) −86.6936 + 50.0526i −0.399510 + 0.230657i
\(218\) −19.0263 + 32.9545i −0.0872765 + 0.151167i
\(219\) −5.16472 19.2750i −0.0235832 0.0880137i
\(220\) 0 0
\(221\) 240.033i 1.08612i
\(222\) 11.8808i 0.0535171i
\(223\) −98.4801 367.533i −0.441615 1.64813i −0.724723 0.689040i \(-0.758032\pi\)
0.283108 0.959088i \(-0.408634\pi\)
\(224\) 67.2487 116.478i 0.300217 0.519992i
\(225\) 0 0
\(226\) −52.7006 52.7006i −0.233189 0.233189i
\(227\) 404.107 + 108.280i 1.78021 + 0.477005i 0.990621 0.136635i \(-0.0436289\pi\)
0.789586 + 0.613640i \(0.210296\pi\)
\(228\) −4.46410 + 16.6603i −0.0195794 + 0.0730713i
\(229\) 72.2679 72.2679i 0.315581 0.315581i −0.531486 0.847067i \(-0.678366\pi\)
0.847067 + 0.531486i \(0.178366\pi\)
\(230\) 0 0
\(231\) −60.9948 35.2154i −0.264047 0.152448i
\(232\) 36.3109 9.72947i 0.156512 0.0419374i
\(233\) 256.592 1.10125 0.550627 0.834751i \(-0.314389\pi\)
0.550627 + 0.834751i \(0.314389\pi\)
\(234\) −55.0167 + 14.7417i −0.235114 + 0.0629986i
\(235\) 0 0
\(236\) 346.937 92.9615i 1.47007 0.393905i
\(237\) −39.7795 22.9667i −0.167846 0.0969058i
\(238\) 28.3590 + 49.1192i 0.119155 + 0.206383i
\(239\) −39.3449 39.3449i −0.164623 0.164623i 0.619988 0.784611i \(-0.287137\pi\)
−0.784611 + 0.619988i \(0.787137\pi\)
\(240\) 0 0
\(241\) 233.351 + 62.5263i 0.968262 + 0.259445i 0.708094 0.706118i \(-0.249555\pi\)
0.260168 + 0.965563i \(0.416222\pi\)
\(242\) −51.9212 51.9212i −0.214550 0.214550i
\(243\) −142.007 + 81.9878i −0.584391 + 0.337398i
\(244\) −82.8275 47.8205i −0.339457 0.195986i
\(245\) 0 0
\(246\) 17.6218i 0.0716332i
\(247\) 58.0333 58.0333i 0.234953 0.234953i
\(248\) 67.5167i 0.272245i
\(249\) 24.4833 6.56029i 0.0983267 0.0263466i
\(250\) 0 0
\(251\) −221.375 + 127.811i −0.881972 + 0.509207i −0.871308 0.490736i \(-0.836728\pi\)
−0.0106638 + 0.999943i \(0.503394\pi\)
\(252\) −132.550 + 132.550i −0.525992 + 0.525992i
\(253\) 316.277 + 84.7461i 1.25011 + 0.334965i
\(254\) −14.2417 3.81604i −0.0560696 0.0150238i
\(255\) 0 0
\(256\) −50.6051 87.6506i −0.197676 0.342385i
\(257\) 49.5211 85.7731i 0.192689 0.333747i −0.753451 0.657504i \(-0.771612\pi\)
0.946141 + 0.323756i \(0.104946\pi\)
\(258\) −19.0192 + 5.09619i −0.0737180 + 0.0197527i
\(259\) 186.056i 0.718364i
\(260\) 0 0
\(261\) −79.4974 −0.304588
\(262\) −0.399346 1.49038i −0.00152422 0.00568848i
\(263\) 221.130 + 127.669i 0.840797 + 0.485434i 0.857535 0.514426i \(-0.171995\pi\)
−0.0167383 + 0.999860i \(0.505328\pi\)
\(264\) 41.1384 23.7513i 0.155827 0.0899670i
\(265\) 0 0
\(266\) −5.01924 + 18.7321i −0.0188693 + 0.0704212i
\(267\) −16.9615 + 63.3013i −0.0635263 + 0.237083i
\(268\) −106.622 106.622i −0.397842 0.397842i
\(269\) −46.3538 80.2872i −0.172319 0.298465i 0.766911 0.641753i \(-0.221793\pi\)
−0.939230 + 0.343288i \(0.888459\pi\)
\(270\) 0 0
\(271\) −113.133 422.219i −0.417466 1.55800i −0.779845 0.625973i \(-0.784702\pi\)
0.362379 0.932031i \(-0.381965\pi\)
\(272\) 237.382 0.872728
\(273\) −54.5500 + 14.6166i −0.199817 + 0.0535407i
\(274\) 50.6987 0.185032
\(275\) 0 0
\(276\) −27.5885 + 47.7846i −0.0999582 + 0.173133i
\(277\) 174.423 + 302.110i 0.629686 + 1.09065i 0.987615 + 0.156899i \(0.0501498\pi\)
−0.357929 + 0.933749i \(0.616517\pi\)
\(278\) −11.8705 + 11.8705i −0.0426996 + 0.0426996i
\(279\) −36.9545 + 137.916i −0.132453 + 0.494323i
\(280\) 0 0
\(281\) 91.9737 91.9737i 0.327309 0.327309i −0.524254 0.851562i \(-0.675656\pi\)
0.851562 + 0.524254i \(0.175656\pi\)
\(282\) −15.9282 + 9.19615i −0.0564830 + 0.0326105i
\(283\) 17.7846 30.8038i 0.0628431 0.108848i −0.832892 0.553435i \(-0.813317\pi\)
0.895735 + 0.444588i \(0.146650\pi\)
\(284\) 44.6865 + 166.772i 0.157347 + 0.587227i
\(285\) 0 0
\(286\) −109.100 −0.381468
\(287\) 275.962i 0.961538i
\(288\) −49.6506 185.299i −0.172398 0.643398i
\(289\) −25.9615 + 44.9667i −0.0898323 + 0.155594i
\(290\) 0 0
\(291\) −28.3782 28.3782i −0.0975197 0.0975197i
\(292\) −98.2654 26.3301i −0.336525 0.0901717i
\(293\) −103.631 + 386.758i −0.353691 + 1.31999i 0.528433 + 0.848975i \(0.322780\pi\)
−0.882124 + 0.471017i \(0.843887\pi\)
\(294\) −3.69358 + 3.69358i −0.0125632 + 0.0125632i
\(295\) 0 0
\(296\) 108.675 + 62.7436i 0.367145 + 0.211971i
\(297\) −200.210 + 53.6462i −0.674109 + 0.180627i
\(298\) 66.1807 0.222083
\(299\) 227.375 131.275i 0.760451 0.439047i
\(300\) 0 0
\(301\) 297.846 79.8076i 0.989522 0.265142i
\(302\) 81.1455 + 46.8494i 0.268694 + 0.155130i
\(303\) 58.5622 + 101.433i 0.193275 + 0.334761i
\(304\) 57.3923 + 57.3923i 0.188790 + 0.188790i
\(305\) 0 0
\(306\) 78.1410 + 20.9378i 0.255363 + 0.0684243i
\(307\) −260.219 260.219i −0.847619 0.847619i 0.142216 0.989836i \(-0.454577\pi\)
−0.989836 + 0.142216i \(0.954577\pi\)
\(308\) −310.956 + 179.531i −1.00960 + 0.582892i
\(309\) −49.9385 28.8320i −0.161613 0.0933075i
\(310\) 0 0
\(311\) 71.4782i 0.229833i 0.993375 + 0.114917i \(0.0366601\pi\)
−0.993375 + 0.114917i \(0.963340\pi\)
\(312\) 9.85829 36.7917i 0.0315971 0.117922i
\(313\) 394.315i 1.25979i −0.776679 0.629897i \(-0.783097\pi\)
0.776679 0.629897i \(-0.216903\pi\)
\(314\) −48.8731 + 13.0955i −0.155647 + 0.0417054i
\(315\) 0 0
\(316\) −202.799 + 117.086i −0.641768 + 0.370525i
\(317\) −206.054 + 206.054i −0.650014 + 0.650014i −0.952996 0.302982i \(-0.902018\pi\)
0.302982 + 0.952996i \(0.402018\pi\)
\(318\) 5.40450 + 1.44813i 0.0169953 + 0.00455387i
\(319\) −147.086 39.4115i −0.461084 0.123547i
\(320\) 0 0
\(321\) −34.8949 60.4397i −0.108707 0.188286i
\(322\) −31.0192 + 53.7269i −0.0963330 + 0.166854i
\(323\) −112.595 + 30.1699i −0.348593 + 0.0934052i
\(324\) 249.368i 0.769654i
\(325\) 0 0
\(326\) 65.5307 0.201015
\(327\) 13.9282 + 51.9808i 0.0425939 + 0.158963i
\(328\) 161.188 + 93.0622i 0.491428 + 0.283726i
\(329\) 249.440 144.014i 0.758175 0.437733i
\(330\) 0 0
\(331\) −119.397 + 445.597i −0.360717 + 1.34622i 0.512417 + 0.858737i \(0.328750\pi\)
−0.873135 + 0.487479i \(0.837917\pi\)
\(332\) 33.4449 124.818i 0.100738 0.375958i
\(333\) −187.648 187.648i −0.563508 0.563508i
\(334\) −13.5936 23.5448i −0.0406994 0.0704935i
\(335\) 0 0
\(336\) −14.4552 53.9474i −0.0430213 0.160558i
\(337\) −144.779 −0.429613 −0.214806 0.976657i \(-0.568912\pi\)
−0.214806 + 0.976657i \(0.568912\pi\)
\(338\) −61.8583 + 61.8583i −0.183013 + 0.183013i
\(339\) −105.401 −0.310918
\(340\) 0 0
\(341\) −136.746 + 236.851i −0.401015 + 0.694578i
\(342\) 13.8301 + 23.9545i 0.0404390 + 0.0700423i
\(343\) 263.454 263.454i 0.768087 0.768087i
\(344\) −53.8269 + 200.885i −0.156473 + 0.583967i
\(345\) 0 0
\(346\) −50.2384 + 50.2384i −0.145198 + 0.145198i
\(347\) −421.911 + 243.590i −1.21588 + 0.701989i −0.964034 0.265778i \(-0.914371\pi\)
−0.251847 + 0.967767i \(0.581038\pi\)
\(348\) 12.8301 22.2224i 0.0368682 0.0638576i
\(349\) 3.04036 + 11.3468i 0.00871164 + 0.0325123i 0.970145 0.242526i \(-0.0779761\pi\)
−0.961433 + 0.275039i \(0.911309\pi\)
\(350\) 0 0
\(351\) −83.1000 + 143.933i −0.236752 + 0.410067i
\(352\) 367.454i 1.04390i
\(353\) −73.9993 276.169i −0.209630 0.782349i −0.987988 0.154529i \(-0.950614\pi\)
0.778358 0.627820i \(-0.216053\pi\)
\(354\) −18.2346 + 31.5833i −0.0515102 + 0.0892184i
\(355\) 0 0
\(356\) 236.244 + 236.244i 0.663605 + 0.663605i
\(357\) 77.4782 + 20.7602i 0.217026 + 0.0581519i
\(358\) 0.139820 0.521815i 0.000390559 0.00145758i
\(359\) −92.0770 + 92.0770i −0.256482 + 0.256482i −0.823622 0.567140i \(-0.808050\pi\)
0.567140 + 0.823622i \(0.308050\pi\)
\(360\) 0 0
\(361\) 278.119 + 160.572i 0.770411 + 0.444797i
\(362\) −11.5404 + 3.09223i −0.0318795 + 0.00854207i
\(363\) −103.842 −0.286067
\(364\) −74.5167 + 278.100i −0.204716 + 0.764011i
\(365\) 0 0
\(366\) 9.38011 2.51339i 0.0256287 0.00686719i
\(367\) 10.8686 + 6.27499i 0.0296147 + 0.0170981i 0.514734 0.857350i \(-0.327891\pi\)
−0.485120 + 0.874448i \(0.661224\pi\)
\(368\) 129.825 + 224.863i 0.352785 + 0.611042i
\(369\) −278.322 278.322i −0.754261 0.754261i
\(370\) 0 0
\(371\) −84.6359 22.6781i −0.228129 0.0611270i
\(372\) −32.5885 32.5885i −0.0876034 0.0876034i
\(373\) −269.574 + 155.638i −0.722718 + 0.417261i −0.815752 0.578402i \(-0.803677\pi\)
0.0930345 + 0.995663i \(0.470343\pi\)
\(374\) 134.196 + 77.4782i 0.358813 + 0.207161i
\(375\) 0 0
\(376\) 194.263i 0.516656i
\(377\) −105.742 + 61.0500i −0.280482 + 0.161936i
\(378\) 39.2717i 0.103893i
\(379\) −379.858 + 101.783i −1.00226 + 0.268556i −0.722394 0.691482i \(-0.756958\pi\)
−0.279871 + 0.960038i \(0.590292\pi\)
\(380\) 0 0
\(381\) −18.0577 + 10.4256i −0.0473956 + 0.0273638i
\(382\) 107.613 107.613i 0.281709 0.281709i
\(383\) 713.051 + 191.061i 1.86175 + 0.498855i 0.999965 0.00841386i \(-0.00267825\pi\)
0.861788 + 0.507269i \(0.169345\pi\)
\(384\) 78.6340 + 21.0699i 0.204776 + 0.0548696i
\(385\) 0 0
\(386\) −85.5507 148.178i −0.221634 0.383881i
\(387\) 219.904 380.885i 0.568227 0.984198i
\(388\) −197.629 + 52.9545i −0.509353 + 0.136481i
\(389\) 344.478i 0.885548i 0.896633 + 0.442774i \(0.146006\pi\)
−0.896633 + 0.442774i \(0.853994\pi\)
\(390\) 0 0
\(391\) −372.904 −0.953718
\(392\) 14.2795 + 53.2917i 0.0364272 + 0.135948i
\(393\) −1.88973 1.09103i −0.00480847 0.00277617i
\(394\) 39.5007 22.8057i 0.100256 0.0578826i
\(395\) 0 0
\(396\) −132.550 + 494.683i −0.334722 + 1.24920i
\(397\) −181.783 + 678.422i −0.457891 + 1.70887i 0.221556 + 0.975148i \(0.428886\pi\)
−0.679447 + 0.733725i \(0.737780\pi\)
\(398\) −73.7321 73.7321i −0.185256 0.185256i
\(399\) 13.7128 + 23.7513i 0.0343680 + 0.0595270i
\(400\) 0 0
\(401\) 146.833 + 547.989i 0.366168 + 1.36656i 0.865831 + 0.500336i \(0.166790\pi\)
−0.499663 + 0.866220i \(0.666543\pi\)
\(402\) 15.3102 0.0380851
\(403\) 56.7583 + 211.825i 0.140840 + 0.525620i
\(404\) 597.109 1.47799
\(405\) 0 0
\(406\) 14.4256 24.9859i 0.0355311 0.0615417i
\(407\) −254.158 440.214i −0.624466 1.08161i
\(408\) −38.2539 + 38.2539i −0.0937595 + 0.0937595i
\(409\) −26.3212 + 98.2321i −0.0643550 + 0.240176i −0.990609 0.136723i \(-0.956343\pi\)
0.926254 + 0.376899i \(0.123010\pi\)
\(410\) 0 0
\(411\) 50.6987 50.6987i 0.123355 0.123355i
\(412\) −254.590 + 146.988i −0.617938 + 0.356767i
\(413\) 285.559 494.603i 0.691426 1.19758i
\(414\) 22.9019 + 85.4711i 0.0553187 + 0.206452i
\(415\) 0 0
\(416\) −208.342 208.342i −0.500821 0.500821i
\(417\) 23.7410i 0.0569328i
\(418\) 13.7128 + 51.1769i 0.0328058 + 0.122433i
\(419\) 322.279 558.203i 0.769162 1.33223i −0.168856 0.985641i \(-0.554007\pi\)
0.938018 0.346587i \(-0.112659\pi\)
\(420\) 0 0
\(421\) 346.619 + 346.619i 0.823322 + 0.823322i 0.986583 0.163261i \(-0.0522013\pi\)
−0.163261 + 0.986583i \(0.552201\pi\)
\(422\) −36.6481 9.81982i −0.0868437 0.0232697i
\(423\) 106.328 396.820i 0.251365 0.938108i
\(424\) 41.7879 41.7879i 0.0985563 0.0985563i
\(425\) 0 0
\(426\) −15.1821 8.76537i −0.0356387 0.0205760i
\(427\) −146.895 + 39.3604i −0.344016 + 0.0921788i
\(428\) −355.794 −0.831293
\(429\) −109.100 + 109.100i −0.254312 + 0.254312i
\(430\) 0 0
\(431\) 101.699 27.2501i 0.235960 0.0632253i −0.138901 0.990306i \(-0.544357\pi\)
0.374861 + 0.927081i \(0.377690\pi\)
\(432\) −142.344 82.1821i −0.329499 0.190236i
\(433\) 344.616 + 596.892i 0.795880 + 1.37850i 0.922279 + 0.386525i \(0.126325\pi\)
−0.126399 + 0.991979i \(0.540342\pi\)
\(434\) −36.6410 36.6410i −0.0844263 0.0844263i
\(435\) 0 0
\(436\) 265.002 + 71.0070i 0.607802 + 0.162860i
\(437\) −90.1577 90.1577i −0.206310 0.206310i
\(438\) 8.94555 5.16472i 0.0204236 0.0117916i
\(439\) −78.0577 45.0666i −0.177808 0.102657i 0.408454 0.912779i \(-0.366068\pi\)
−0.586262 + 0.810121i \(0.699401\pi\)
\(440\) 0 0
\(441\) 116.674i 0.264568i
\(442\) 120.017 32.1584i 0.271531 0.0727565i
\(443\) 642.277i 1.44983i 0.688836 + 0.724917i \(0.258122\pi\)
−0.688836 + 0.724917i \(0.741878\pi\)
\(444\) 82.7391 22.1699i 0.186349 0.0499321i
\(445\) 0 0
\(446\) 170.572 98.4801i 0.382450 0.220807i
\(447\) 66.1807 66.1807i 0.148055 0.148055i
\(448\) −227.526 60.9653i −0.507870 0.136083i
\(449\) −22.6007 6.05583i −0.0503355 0.0134874i 0.233563 0.972342i \(-0.424961\pi\)
−0.283899 + 0.958854i \(0.591628\pi\)
\(450\) 0 0
\(451\) −376.970 652.932i −0.835855 1.44774i
\(452\) −268.672 + 465.353i −0.594407 + 1.02954i
\(453\) 127.995 34.2961i 0.282549 0.0757089i
\(454\) 216.560i 0.477005i
\(455\) 0 0
\(456\) −18.4974 −0.0405645
\(457\) −61.2795 228.698i −0.134091 0.500433i −1.00000 0.000232237i \(-0.999926\pi\)
0.865909 0.500201i \(-0.166741\pi\)
\(458\) 45.8160 + 26.4519i 0.100035 + 0.0577553i
\(459\) 204.431 118.028i 0.445383 0.257142i
\(460\) 0 0
\(461\) −12.6032 + 47.0359i −0.0273389 + 0.102030i −0.978247 0.207443i \(-0.933486\pi\)
0.950908 + 0.309473i \(0.100153\pi\)
\(462\) 9.43594 35.2154i 0.0204241 0.0762238i
\(463\) −521.191 521.191i −1.12568 1.12568i −0.990871 0.134811i \(-0.956957\pi\)
−0.134811 0.990871i \(-0.543043\pi\)
\(464\) −60.3756 104.574i −0.130120 0.225374i
\(465\) 0 0
\(466\) 34.3768 + 128.296i 0.0737700 + 0.275314i
\(467\) 141.415 0.302817 0.151408 0.988471i \(-0.451619\pi\)
0.151408 + 0.988471i \(0.451619\pi\)
\(468\) 205.325 + 355.633i 0.438729 + 0.759900i
\(469\) −239.762 −0.511219
\(470\) 0 0
\(471\) −35.7776 + 61.9686i −0.0759609 + 0.131568i
\(472\) 192.597 + 333.588i 0.408045 + 0.706755i
\(473\) 595.692 595.692i 1.25939 1.25939i
\(474\) 6.15390 22.9667i 0.0129829 0.0484529i
\(475\) 0 0
\(476\) 289.153 289.153i 0.607463 0.607463i
\(477\) −108.232 + 62.4878i −0.226902 + 0.131002i
\(478\) 14.4012 24.9437i 0.0301281 0.0521834i
\(479\) −193.783 723.207i −0.404557 1.50983i −0.804872 0.593449i \(-0.797766\pi\)
0.400315 0.916378i \(-0.368901\pi\)
\(480\) 0 0
\(481\) −393.700 105.492i −0.818503 0.219317i
\(482\) 125.053i 0.259445i
\(483\) 22.7077 + 84.7461i 0.0470138 + 0.175458i
\(484\) −264.698 + 458.470i −0.546897 + 0.947253i
\(485\) 0 0
\(486\) −60.0192 60.0192i −0.123496 0.123496i
\(487\) 234.885 + 62.9371i 0.482309 + 0.129234i 0.491778 0.870721i \(-0.336347\pi\)
−0.00946847 + 0.999955i \(0.503014\pi\)
\(488\) 26.5469 99.0744i 0.0543994 0.203021i
\(489\) 65.5307 65.5307i 0.134010 0.134010i
\(490\) 0 0
\(491\) −73.3191 42.3308i −0.149326 0.0862135i 0.423475 0.905908i \(-0.360810\pi\)
−0.572801 + 0.819694i \(0.694143\pi\)
\(492\) 122.720 32.8827i 0.249431 0.0668347i
\(493\) 173.420 0.351766
\(494\) 36.7917 + 21.2417i 0.0744770 + 0.0429993i
\(495\) 0 0
\(496\) −209.485 + 56.1314i −0.422349 + 0.113168i
\(497\) 237.755 + 137.268i 0.478380 + 0.276193i
\(498\) 6.56029 + 11.3628i 0.0131733 + 0.0228168i
\(499\) 134.397 + 134.397i 0.269334 + 0.269334i 0.828832 0.559498i \(-0.189006\pi\)
−0.559498 + 0.828832i \(0.689006\pi\)
\(500\) 0 0
\(501\) −37.1384 9.95121i −0.0741286 0.0198627i
\(502\) −93.5641 93.5641i −0.186383 0.186383i
\(503\) −689.703 + 398.200i −1.37118 + 0.791650i −0.991076 0.133295i \(-0.957444\pi\)
−0.380102 + 0.924945i \(0.624111\pi\)
\(504\) −174.100 100.517i −0.345436 0.199438i
\(505\) 0 0
\(506\) 169.492i 0.334965i
\(507\) 123.717i 0.244017i
\(508\) 106.301i 0.209254i
\(509\) −79.6051 + 21.3301i −0.156395 + 0.0419059i −0.336167 0.941802i \(-0.609131\pi\)
0.179772 + 0.983708i \(0.442464\pi\)
\(510\) 0 0
\(511\) −140.090 + 80.8808i −0.274148 + 0.158279i
\(512\) 351.581 351.581i 0.686682 0.686682i
\(513\) 77.9615 + 20.8897i 0.151972 + 0.0407207i
\(514\) 49.5211 + 13.2691i 0.0963446 + 0.0258155i
\(515\) 0 0
\(516\) 70.9808 + 122.942i 0.137560 + 0.238260i
\(517\) 393.454 681.482i 0.761032 1.31815i
\(518\) 93.0282 24.9268i 0.179591 0.0481213i
\(519\) 100.477i 0.193597i
\(520\) 0 0
\(521\) 677.011 1.29945 0.649723 0.760171i \(-0.274885\pi\)
0.649723 + 0.760171i \(0.274885\pi\)
\(522\) −10.6506 39.7487i −0.0204035 0.0761470i
\(523\) 159.049 + 91.8269i 0.304109 + 0.175577i 0.644287 0.764784i \(-0.277154\pi\)
−0.340179 + 0.940361i \(0.610488\pi\)
\(524\) −9.63397 + 5.56218i −0.0183854 + 0.0106148i
\(525\) 0 0
\(526\) −34.2089 + 127.669i −0.0650358 + 0.242717i
\(527\) 80.6147 300.858i 0.152969 0.570889i
\(528\) −107.895 107.895i −0.204346 0.204346i
\(529\) 60.5577 + 104.889i 0.114476 + 0.198278i
\(530\) 0 0
\(531\) −210.832 786.836i −0.397047 1.48180i
\(532\) 139.818 0.262816
\(533\) −583.942 156.467i −1.09558 0.293558i
\(534\) −33.9230 −0.0635263
\(535\) 0 0
\(536\) 80.8545 140.044i 0.150848 0.261276i
\(537\) −0.381995 0.661635i −0.000711351 0.00123210i
\(538\) 33.9334 33.9334i 0.0630732 0.0630732i
\(539\) 57.8423 215.870i 0.107314 0.400502i
\(540\) 0 0
\(541\) 317.629 317.629i 0.587114 0.587114i −0.349735 0.936849i \(-0.613728\pi\)
0.936849 + 0.349735i \(0.113728\pi\)
\(542\) 195.953 113.133i 0.361536 0.208733i
\(543\) −8.44813 + 14.6326i −0.0155583 + 0.0269477i
\(544\) 108.311 + 404.222i 0.199101 + 0.743055i
\(545\) 0 0
\(546\) −14.6166 25.3167i −0.0267704 0.0463676i
\(547\) 724.904i 1.32524i 0.748958 + 0.662618i \(0.230555\pi\)
−0.748958 + 0.662618i \(0.769445\pi\)
\(548\) −94.6051 353.071i −0.172637 0.644290i
\(549\) −108.454 + 187.849i −0.197549 + 0.342165i
\(550\) 0 0
\(551\) 41.9282 + 41.9282i 0.0760947 + 0.0760947i
\(552\) −57.1577 15.3154i −0.103547 0.0277452i
\(553\) −96.3717 + 359.664i −0.174271 + 0.650387i
\(554\) −127.687 + 127.687i −0.230481 + 0.230481i
\(555\) 0 0
\(556\) 104.818 + 60.5167i 0.188521 + 0.108843i
\(557\) −115.933 + 31.0641i −0.208138 + 0.0557703i −0.361381 0.932418i \(-0.617695\pi\)
0.153244 + 0.988188i \(0.451028\pi\)
\(558\) −73.9090 −0.132453
\(559\) 675.500i 1.20841i
\(560\) 0 0
\(561\) 211.674 56.7180i 0.377316 0.101102i
\(562\) 58.3090 + 33.6647i 0.103753 + 0.0599016i
\(563\) −308.818 534.888i −0.548522 0.950068i −0.998376 0.0569660i \(-0.981857\pi\)
0.449854 0.893102i \(-0.351476\pi\)
\(564\) 93.7654 + 93.7654i 0.166251 + 0.166251i
\(565\) 0 0
\(566\) 17.7846 + 4.76537i 0.0314216 + 0.00841938i
\(567\) 280.378 + 280.378i 0.494494 + 0.494494i
\(568\) −160.356 + 92.5814i −0.282316 + 0.162995i
\(569\) 381.315 + 220.153i 0.670150 + 0.386911i 0.796133 0.605121i \(-0.206875\pi\)
−0.125983 + 0.992032i \(0.540209\pi\)
\(570\) 0 0
\(571\) 618.249i 1.08275i −0.840782 0.541374i \(-0.817904\pi\)
0.840782 0.541374i \(-0.182096\pi\)
\(572\) 203.583 + 759.783i 0.355915 + 1.32829i
\(573\) 215.226i 0.375612i
\(574\) 137.981 36.9718i 0.240385 0.0644109i
\(575\) 0 0
\(576\) −290.959 + 167.985i −0.505137 + 0.291641i
\(577\) −266.237 + 266.237i −0.461415 + 0.461415i −0.899119 0.437704i \(-0.855792\pi\)
0.437704 + 0.899119i \(0.355792\pi\)
\(578\) −25.9615 6.95637i −0.0449161 0.0120352i
\(579\) −233.729 62.6274i −0.403677 0.108165i
\(580\) 0 0
\(581\) −102.736 177.944i −0.176826 0.306271i
\(582\) 10.3872 17.9911i 0.0178473 0.0309125i
\(583\) −231.229 + 61.9578i −0.396620 + 0.106274i
\(584\) 109.101i 0.186817i
\(585\) 0 0
\(586\) −207.263 −0.353691
\(587\) −124.629 465.123i −0.212316 0.792373i −0.987094 0.160140i \(-0.948805\pi\)
0.774779 0.632233i \(-0.217861\pi\)
\(588\) 32.6147 + 18.8301i 0.0554672 + 0.0320240i
\(589\) 92.2295 53.2487i 0.156587 0.0904053i
\(590\) 0 0
\(591\) 16.6950 62.3064i 0.0282487 0.105425i
\(592\) 104.326 389.351i 0.176227 0.657688i
\(593\) 389.671 + 389.671i 0.657118 + 0.657118i 0.954697 0.297579i \(-0.0961792\pi\)
−0.297579 + 0.954697i \(0.596179\pi\)
\(594\) −53.6462 92.9179i −0.0903134 0.156427i
\(595\) 0 0
\(596\) −123.495 460.889i −0.207206 0.773304i
\(597\) −147.464 −0.247009
\(598\) 96.1000 + 96.1000i 0.160702 + 0.160702i
\(599\) −808.596 −1.34991 −0.674955 0.737859i \(-0.735837\pi\)
−0.674955 + 0.737859i \(0.735837\pi\)
\(600\) 0 0
\(601\) 221.344 383.379i 0.368293 0.637903i −0.621006 0.783806i \(-0.713276\pi\)
0.989299 + 0.145904i \(0.0466089\pi\)
\(602\) 79.8076 + 138.231i 0.132571 + 0.229619i
\(603\) −241.813 + 241.813i −0.401016 + 0.401016i
\(604\) 174.844 652.527i 0.289477 1.08034i
\(605\) 0 0
\(606\) −42.8705 + 42.8705i −0.0707434 + 0.0707434i
\(607\) 816.485 471.398i 1.34512 0.776603i 0.357563 0.933889i \(-0.383608\pi\)
0.987553 + 0.157286i \(0.0502745\pi\)
\(608\) −71.5429 + 123.916i −0.117669 + 0.203809i
\(609\) −10.5603 39.4115i −0.0173404 0.0647152i
\(610\) 0 0
\(611\) −163.308 609.475i −0.267280 0.997504i
\(612\) 583.252i 0.953027i
\(613\) −260.758 973.161i −0.425380 1.58754i −0.763093 0.646289i \(-0.776320\pi\)
0.337713 0.941249i \(-0.390347\pi\)
\(614\) 95.2468 164.972i 0.155125 0.268685i
\(615\) 0 0
\(616\) −272.287 272.287i −0.442025 0.442025i
\(617\) 268.378 + 71.9115i 0.434972 + 0.116550i 0.469659 0.882848i \(-0.344377\pi\)
−0.0346873 + 0.999398i \(0.511044\pi\)
\(618\) 7.72551 28.8320i 0.0125008 0.0466537i
\(619\) −206.483 + 206.483i −0.333576 + 0.333576i −0.853943 0.520367i \(-0.825795\pi\)
0.520367 + 0.853943i \(0.325795\pi\)
\(620\) 0 0
\(621\) 223.608 + 129.100i 0.360077 + 0.207890i
\(622\) −35.7391 + 9.57626i −0.0574583 + 0.0153959i
\(623\) 531.244 0.852718
\(624\) −122.350 −0.196074
\(625\) 0 0
\(626\) 197.158 52.8282i 0.314948 0.0843902i
\(627\) 64.8897 + 37.4641i 0.103492 + 0.0597514i
\(628\) 182.397 + 315.920i 0.290441 + 0.503058i
\(629\) 409.347 + 409.347i 0.650790 + 0.650790i
\(630\) 0 0
\(631\) −428.813 114.900i −0.679577 0.182092i −0.0975117 0.995234i \(-0.531088\pi\)
−0.582065 + 0.813142i \(0.697755\pi\)
\(632\) −177.580 177.580i −0.280980 0.280980i
\(633\) −46.4679 + 26.8282i −0.0734090 + 0.0423827i
\(634\) −130.633 75.4212i −0.206046 0.118961i
\(635\) 0 0
\(636\) 40.3397i 0.0634273i
\(637\) −89.6000 155.192i −0.140659 0.243629i
\(638\) 78.8231i 0.123547i
\(639\) 378.231 101.347i 0.591911 0.158602i
\(640\) 0 0
\(641\) −471.717 + 272.346i −0.735908 + 0.424877i −0.820580 0.571532i \(-0.806349\pi\)
0.0846714 + 0.996409i \(0.473016\pi\)
\(642\) 25.5448 25.5448i 0.0397894 0.0397894i
\(643\) 373.478 + 100.073i 0.580837 + 0.155635i 0.537262 0.843415i \(-0.319459\pi\)
0.0435749 + 0.999050i \(0.486125\pi\)
\(644\) 432.042 + 115.765i 0.670873 + 0.179760i
\(645\) 0 0
\(646\) −30.1699 52.2558i −0.0467026 0.0808913i
\(647\) −251.757 + 436.056i −0.389114 + 0.673966i −0.992331 0.123612i \(-0.960552\pi\)
0.603216 + 0.797578i \(0.293886\pi\)
\(648\) −258.320 + 69.2166i −0.398642 + 0.106816i
\(649\) 1560.32i 2.40420i
\(650\) 0 0
\(651\) −73.2820 −0.112568
\(652\) −122.282 456.363i −0.187549 0.699943i
\(653\) −26.9667 15.5692i −0.0412966 0.0238426i 0.479210 0.877701i \(-0.340923\pi\)
−0.520506 + 0.853858i \(0.674257\pi\)
\(654\) −24.1244 + 13.9282i −0.0368874 + 0.0212969i
\(655\) 0 0
\(656\) 154.738 577.492i 0.235882 0.880323i
\(657\) −59.7154 + 222.861i −0.0908910 + 0.339210i
\(658\) 105.426 + 105.426i 0.160221 + 0.160221i
\(659\) 379.488 + 657.293i 0.575855 + 0.997410i 0.995948 + 0.0899292i \(0.0286641\pi\)
−0.420093 + 0.907481i \(0.638003\pi\)
\(660\) 0 0
\(661\) 67.8083 + 253.064i 0.102584 + 0.382850i 0.998060 0.0622605i \(-0.0198310\pi\)
−0.895475 + 0.445111i \(0.853164\pi\)
\(662\) −238.795 −0.360717
\(663\) 87.8583 152.175i 0.132516 0.229525i
\(664\) 138.582 0.208708
\(665\) 0 0
\(666\) 68.6840 118.964i 0.103129 0.178625i
\(667\) 94.8442 + 164.275i 0.142195 + 0.246289i
\(668\) −138.603 + 138.603i −0.207489 + 0.207489i
\(669\) 72.0924 269.053i 0.107761 0.402171i
\(670\) 0 0
\(671\) −293.790 + 293.790i −0.437839 + 0.437839i
\(672\) 85.2679 49.2295i 0.126887 0.0732581i
\(673\) 157.160 272.210i 0.233522 0.404472i −0.725320 0.688412i \(-0.758308\pi\)
0.958842 + 0.283940i \(0.0916416\pi\)
\(674\) −19.3968 72.3897i −0.0287786 0.107403i
\(675\) 0 0
\(676\) 546.217 + 315.358i 0.808013 + 0.466506i
\(677\) 547.384i 0.808544i 0.914639 + 0.404272i \(0.132475\pi\)
−0.914639 + 0.404272i \(0.867525\pi\)
\(678\) −14.1211 52.7006i −0.0208276 0.0777295i
\(679\) −162.665 + 281.745i −0.239566 + 0.414941i
\(680\) 0 0
\(681\) 216.560 + 216.560i 0.318003 + 0.318003i
\(682\) −136.746 36.6410i −0.200508 0.0537258i
\(683\) −67.7789 + 252.954i −0.0992371 + 0.370358i −0.997628 0.0688393i \(-0.978070\pi\)
0.898391 + 0.439197i \(0.144737\pi\)
\(684\) 141.014 141.014i 0.206161 0.206161i
\(685\) 0 0
\(686\) 167.023 + 96.4308i 0.243474 + 0.140570i
\(687\) 72.2679 19.3641i 0.105194 0.0281865i
\(688\) 668.038 0.970986
\(689\) −95.9749 + 166.233i −0.139296 + 0.241268i
\(690\) 0 0
\(691\) 1062.75 284.764i 1.53799 0.412104i 0.612377 0.790566i \(-0.290214\pi\)
0.925617 + 0.378462i \(0.123547\pi\)
\(692\) 443.611 + 256.119i 0.641057 + 0.370114i
\(693\) 407.167 + 705.233i 0.587542 + 1.01765i
\(694\) −178.321 178.321i −0.256946 0.256946i
\(695\) 0 0
\(696\) 26.5814 + 7.12247i 0.0381917 + 0.0102334i
\(697\) 607.149 + 607.149i 0.871089 + 0.871089i
\(698\) −5.26606 + 3.04036i −0.00754450 + 0.00435582i
\(699\) 162.673 + 93.9193i 0.232722 + 0.134362i
\(700\) 0 0
\(701\) 638.323i 0.910589i 0.890341 + 0.455295i \(0.150466\pi\)
−0.890341 + 0.455295i \(0.849534\pi\)
\(702\) −83.1000 22.2666i −0.118376 0.0317188i
\(703\) 197.937i 0.281561i
\(704\) −621.611 + 166.560i −0.882971 + 0.236591i
\(705\) 0 0
\(706\) 128.171 73.9993i 0.181545 0.104815i
\(707\) 671.363 671.363i 0.949594 0.949594i
\(708\) 253.976 + 68.0526i 0.358723 + 0.0961194i
\(709\) 625.185 + 167.518i 0.881784 + 0.236273i 0.671177 0.741297i \(-0.265789\pi\)
0.210608 + 0.977571i \(0.432456\pi\)
\(710\) 0 0
\(711\) 265.545 + 459.937i 0.373481 + 0.646888i
\(712\) −179.151 + 310.298i −0.251616 + 0.435812i
\(713\) 329.081 88.1769i 0.461544 0.123670i
\(714\) 41.5204i 0.0581519i
\(715\) 0 0
\(716\) −3.89488 −0.00543978
\(717\) −10.5424 39.3449i −0.0147035 0.0548743i
\(718\) −58.3744 33.7025i −0.0813015 0.0469394i
\(719\) −1058.38 + 611.056i −1.47202 + 0.849870i −0.999505 0.0314543i \(-0.989986\pi\)
−0.472512 + 0.881324i \(0.656653\pi\)
\(720\) 0 0
\(721\) −120.984 + 451.517i −0.167800 + 0.626237i
\(722\) −43.0251 + 160.572i −0.0595915 + 0.222399i
\(723\) 125.053 + 125.053i 0.172963 + 0.172963i
\(724\) 43.0692 + 74.5981i 0.0594879 + 0.103036i
\(725\) 0 0
\(726\) −13.9122 51.9212i −0.0191629 0.0715168i
\(727\) −508.974 −0.700102 −0.350051 0.936731i \(-0.613836\pi\)
−0.350051 + 0.936731i \(0.613836\pi\)
\(728\) −308.767 −0.424130
\(729\) 481.323 0.660251
\(730\) 0 0
\(731\) −479.711 + 830.885i −0.656240 + 1.13664i
\(732\) −35.0070 60.6340i −0.0478238 0.0828333i
\(733\) −861.681 + 861.681i −1.17555 + 1.17555i −0.194689 + 0.980865i \(0.562370\pi\)
−0.980865 + 0.194689i \(0.937630\pi\)
\(734\) −1.68138 + 6.27499i −0.00229071 + 0.00854903i
\(735\) 0 0
\(736\) −323.669 + 323.669i −0.439768 + 0.439768i
\(737\) −567.282 + 327.520i −0.769718 + 0.444397i
\(738\) 101.873 176.449i 0.138039 0.239091i
\(739\) −40.4242 150.865i −0.0547013 0.204148i 0.933167 0.359444i \(-0.117034\pi\)
−0.987868 + 0.155296i \(0.950367\pi\)
\(740\) 0 0
\(741\) 58.0333 15.5500i 0.0783176 0.0209851i
\(742\) 45.3562i 0.0611270i
\(743\) −98.9409 369.252i −0.133164 0.496975i 0.866835 0.498596i \(-0.166151\pi\)
−0.999999 + 0.00162070i \(0.999484\pi\)
\(744\) 24.7128 42.8038i 0.0332161 0.0575321i
\(745\) 0 0
\(746\) −113.935 113.935i −0.152728 0.152728i
\(747\) −283.081 75.8513i −0.378957 0.101541i
\(748\) 289.153 1079.13i 0.386568 1.44269i
\(749\) −400.038 + 400.038i −0.534097 + 0.534097i
\(750\) 0 0
\(751\) −906.415 523.319i −1.20694 0.696830i −0.244854 0.969560i \(-0.578740\pi\)
−0.962091 + 0.272730i \(0.912073\pi\)
\(752\) 602.743 161.504i 0.801520 0.214767i
\(753\) −187.128 −0.248510
\(754\) −44.6917 44.6917i −0.0592728 0.0592728i
\(755\) 0 0
\(756\) −273.492 + 73.2820i −0.361762 + 0.0969339i
\(757\) −326.345 188.415i −0.431103 0.248897i 0.268713 0.963220i \(-0.413402\pi\)
−0.699816 + 0.714323i \(0.746735\pi\)
\(758\) −101.783 176.293i −0.134278 0.232576i
\(759\) 169.492 + 169.492i 0.223310 + 0.223310i
\(760\) 0 0
\(761\) −742.044 198.830i −0.975091 0.261275i −0.264115 0.964491i \(-0.585080\pi\)
−0.710976 + 0.703216i \(0.751747\pi\)
\(762\) −7.63209 7.63209i −0.0100159 0.0100159i
\(763\) 377.794 218.119i 0.495142 0.285871i
\(764\) −950.235 548.619i −1.24376 0.718087i
\(765\) 0 0
\(766\) 382.123i 0.498855i
\(767\) −884.683 884.683i −1.15343 1.15343i
\(768\) 74.0910i 0.0964727i
\(769\) 65.7006 17.6044i 0.0854364 0.0228926i −0.215848 0.976427i \(-0.569251\pi\)
0.301284 + 0.953534i \(0.402585\pi\)
\(770\) 0 0
\(771\) 62.7903 36.2520i 0.0814400 0.0470194i
\(772\) −872.288 + 872.288i −1.12991 + 1.12991i
\(773\) −890.771 238.681i −1.15236 0.308773i −0.368447 0.929649i \(-0.620110\pi\)
−0.783909 + 0.620876i \(0.786777\pi\)
\(774\) 219.904 + 58.9230i 0.284113 + 0.0761280i
\(775\) 0 0
\(776\) −109.711 190.025i −0.141380 0.244877i
\(777\) 68.1013 117.955i 0.0876465 0.151808i
\(778\) −172.239 + 46.1513i −0.221387 + 0.0593205i
\(779\) 293.583i 0.376872i
\(780\) 0 0
\(781\) 750.046 0.960366
\(782\) −49.9596 186.452i −0.0638870 0.238430i
\(783\) −103.990 60.0385i −0.132809 0.0766775i
\(784\) 153.477 88.6103i 0.195762 0.113023i
\(785\) 0 0
\(786\) 0.292342 1.09103i 0.000371936 0.00138808i
\(787\) 318.489 1188.62i 0.404687 1.51031i −0.399944 0.916540i \(-0.630970\pi\)
0.804632 0.593774i \(-0.202363\pi\)
\(788\) −232.531 232.531i −0.295090 0.295090i
\(789\) 93.4603 + 161.878i 0.118454 + 0.205169i
\(790\) 0 0
\(791\) 221.140 + 825.305i 0.279570 + 1.04337i
\(792\) −549.233 −0.693476
\(793\) 333.150i 0.420114i
\(794\) −363.565 −0.457891
\(795\) 0 0
\(796\) −375.892 + 651.063i −0.472226 + 0.817919i
\(797\) 12.7372 + 22.0615i 0.0159814 + 0.0276807i 0.873906 0.486096i \(-0.161579\pi\)
−0.857924 + 0.513776i \(0.828246\pi\)
\(798\) −10.0385 + 10.0385i −0.0125795 + 0.0125795i
\(799\) −231.949 + 865.647i −0.290300 + 1.08341i
\(800\) 0 0
\(801\) 535.788 535.788i 0.668899 0.668899i
\(802\) −254.323 + 146.833i −0.317110 + 0.183084i
\(803\) −220.970 + 382.732i −0.275181 + 0.476628i
\(804\) −28.5692 106.622i −0.0355339 0.132614i
\(805\) 0 0
\(806\) −98.3083 + 56.7583i −0.121971 + 0.0704198i
\(807\) 67.8667i 0.0840975i
\(808\) 165.738 + 618.544i 0.205122 + 0.765525i
\(809\) −351.463 + 608.752i −0.434442 + 0.752475i −0.997250 0.0741123i \(-0.976388\pi\)
0.562808 + 0.826588i \(0.309721\pi\)
\(810\) 0 0
\(811\) 506.292 + 506.292i 0.624282 + 0.624282i 0.946623 0.322342i \(-0.104470\pi\)
−0.322342 + 0.946623i \(0.604470\pi\)
\(812\) −200.923 53.8372i −0.247442 0.0663019i
\(813\) 82.8193 309.086i 0.101869 0.380179i
\(814\) 186.056 186.056i 0.228570 0.228570i
\(815\) 0 0
\(816\) 150.494 + 86.8878i 0.184429 + 0.106480i
\(817\) −316.865 + 84.9038i −0.387840 + 0.103921i
\(818\) −52.6424 −0.0643550
\(819\) 630.717 + 169.000i 0.770106 + 0.206349i
\(820\) 0 0
\(821\) −1090.79 + 292.276i −1.32861 + 0.356000i −0.852197 0.523220i \(-0.824730\pi\)
−0.476414 + 0.879221i \(0.658064\pi\)
\(822\) 32.1417 + 18.5570i 0.0391018 + 0.0225755i
\(823\) −259.726 449.858i −0.315584 0.546607i 0.663978 0.747752i \(-0.268867\pi\)
−0.979561 + 0.201145i \(0.935534\pi\)
\(824\) −222.931 222.931i −0.270547 0.270547i
\(825\) 0 0
\(826\) 285.559 + 76.5153i 0.345713 + 0.0926335i
\(827\) 571.769 + 571.769i 0.691377 + 0.691377i 0.962535 0.271158i \(-0.0874064\pi\)
−0.271158 + 0.962535i \(0.587406\pi\)
\(828\) 552.494 318.983i 0.667263 0.385245i
\(829\) 848.094 + 489.647i 1.02303 + 0.590648i 0.914981 0.403497i \(-0.132205\pi\)
0.108052 + 0.994145i \(0.465539\pi\)
\(830\) 0 0
\(831\) 255.373i 0.307308i
\(832\) −258.008 + 446.883i −0.310106 + 0.537119i
\(833\) 254.520i 0.305547i
\(834\) −11.8705 + 3.18069i −0.0142332 + 0.00381377i
\(835\) 0 0
\(836\) 330.813 190.995i 0.395709 0.228463i
\(837\) −152.497 + 152.497i −0.182195 + 0.182195i
\(838\) 322.279 + 86.3543i 0.384581 + 0.103048i
\(839\) −513.757 137.661i −0.612344 0.164077i −0.0606993 0.998156i \(-0.519333\pi\)
−0.551645 + 0.834079i \(0.686000\pi\)
\(840\) 0 0
\(841\) 376.392 + 651.931i 0.447553 + 0.775185i
\(842\) −126.871 + 219.747i −0.150678 + 0.260983i
\(843\) 91.9737 24.6443i 0.109103 0.0292340i
\(844\) 273.545i 0.324105i
\(845\) 0 0
\(846\) 212.655 0.251365
\(847\) 217.869 + 813.099i 0.257224 + 0.959975i
\(848\) −164.397 94.9148i −0.193865 0.111928i
\(849\) 22.5500 13.0192i 0.0265606 0.0153348i
\(850\) 0 0
\(851\) −163.886 + 611.633i −0.192581 + 0.718722i
\(852\) −32.7128 + 122.086i −0.0383953 + 0.143293i
\(853\) 713.043 + 713.043i 0.835924 + 0.835924i 0.988320 0.152396i \(-0.0486989\pi\)
−0.152396 + 0.988320i \(0.548699\pi\)
\(854\) −39.3604 68.1742i −0.0460894 0.0798292i
\(855\) 0 0
\(856\) −98.7569 368.566i −0.115370 0.430568i
\(857\) −311.663 −0.363667 −0.181834 0.983329i \(-0.558203\pi\)
−0.181834 + 0.983329i \(0.558203\pi\)
\(858\) −69.1666 39.9334i −0.0806138 0.0465424i
\(859\) 1475.02 1.71714 0.858568 0.512700i \(-0.171355\pi\)
0.858568 + 0.512700i \(0.171355\pi\)
\(860\) 0 0
\(861\) 101.009 174.953i 0.117316 0.203197i
\(862\) 27.2501 + 47.1985i 0.0316126 + 0.0547547i
\(863\) 700.396 700.396i 0.811583 0.811583i −0.173288 0.984871i \(-0.555439\pi\)
0.984871 + 0.173288i \(0.0554392\pi\)
\(864\) 74.9948 279.885i 0.0867996 0.323940i
\(865\) 0 0
\(866\) −252.276 + 252.276i −0.291312 + 0.291312i
\(867\) −32.9179 + 19.0052i −0.0379676 + 0.0219206i
\(868\) −186.799 + 323.545i −0.215206 + 0.372747i
\(869\) 263.292 + 982.620i 0.302983 + 1.13075i
\(870\) 0 0
\(871\) −135.942 + 507.342i −0.156076 + 0.582482i
\(872\) 294.224i 0.337413i
\(873\) 120.098 + 448.212i 0.137569 + 0.513416i
\(874\) 33.0000 57.1577i 0.0377574 0.0653978i
\(875\) 0 0
\(876\) −52.6603 52.6603i −0.0601144 0.0601144i
\(877\) 132.301 + 35.4498i 0.150856 + 0.0404217i 0.333457 0.942765i \(-0.391785\pi\)
−0.182601 + 0.983187i \(0.558452\pi\)
\(878\) 12.0756 45.0666i 0.0137535 0.0513287i
\(879\) −207.263 + 207.263i −0.235794 + 0.235794i
\(880\) 0 0
\(881\) 383.677 + 221.516i 0.435502 + 0.251437i 0.701688 0.712485i \(-0.252430\pi\)
−0.266186 + 0.963922i \(0.585764\pi\)
\(882\) 58.3372 15.6314i 0.0661419 0.0177227i
\(883\) −1305.20 −1.47814 −0.739069 0.673630i \(-0.764734\pi\)
−0.739069 + 0.673630i \(0.764734\pi\)
\(884\) −447.908 775.800i −0.506684 0.877602i
\(885\) 0 0
\(886\) −321.138 + 86.0488i −0.362459 + 0.0971205i
\(887\) −1491.95 861.377i −1.68202 0.971113i −0.960319 0.278904i \(-0.910029\pi\)
−0.721697 0.692209i \(-0.756638\pi\)
\(888\) 45.9315 + 79.5556i 0.0517246 + 0.0895897i
\(889\) 119.520 + 119.520i 0.134444 + 0.134444i
\(890\) 0 0
\(891\) 1046.39 + 280.378i 1.17439 + 0.314678i
\(892\) −1004.12 1004.12i −1.12569 1.12569i
\(893\) −265.368 + 153.210i −0.297165 + 0.171568i
\(894\) 41.9569 + 24.2238i 0.0469316 + 0.0270960i
\(895\) 0 0
\(896\) 659.920i 0.736518i
\(897\) 192.200 0.214270
\(898\) 12.1117i 0.0134874i
\(899\) −153.040 + 41.0070i −0.170234 + 0.0456141i
\(900\) 0 0
\(901\) 236.104 136.315i 0.262047 0.151293i
\(902\) 275.962 275.962i 0.305944 0.305944i
\(903\) 218.038 + 58.4232i 0.241460 + 0.0646990i
\(904\) −556.633 149.149i −0.615745 0.164988i
\(905\) 0 0
\(906\) 34.2961 + 59.4026i 0.0378544 + 0.0655658i
\(907\) 438.093 758.800i 0.483014 0.836604i −0.516796 0.856109i \(-0.672875\pi\)
0.999810 + 0.0195043i \(0.00620879\pi\)
\(908\) 1508.15 404.107i 1.66096 0.445052i
\(909\) 1354.21i 1.48978i
\(910\) 0 0
\(911\) −1103.35 −1.21114 −0.605569 0.795793i \(-0.707054\pi\)
−0.605569 + 0.795793i \(0.707054\pi\)
\(912\) 15.3782 + 57.3923i 0.0168621 + 0.0629302i
\(913\) −486.151 280.679i −0.532477 0.307426i
\(914\) 106.139 61.2795i 0.116126 0.0670454i
\(915\) 0 0
\(916\) 98.7199 368.428i 0.107773 0.402213i
\(917\) −4.57815 + 17.0859i −0.00499253 + 0.0186324i
\(918\) 86.4026 + 86.4026i 0.0941205 + 0.0941205i
\(919\) −328.160 568.389i −0.357083 0.618486i 0.630389 0.776279i \(-0.282895\pi\)
−0.987472 + 0.157793i \(0.949562\pi\)
\(920\) 0 0
\(921\) −69.7255 260.219i −0.0757063 0.282540i
\(922\) −25.2065 −0.0273389
\(923\) 425.267 425.267i 0.460744 0.460744i
\(924\) −262.851 −0.284471
\(925\) 0 0
\(926\) 190.769 330.422i 0.206014 0.356827i
\(927\) 333.361 + 577.398i 0.359613 + 0.622867i
\(928\) 150.524 150.524i 0.162202 0.162202i
\(929\) −219.574 + 819.460i −0.236355 + 0.882088i 0.741179 + 0.671308i \(0.234267\pi\)
−0.977533 + 0.210780i \(0.932399\pi\)
\(930\) 0 0
\(931\) −61.5359 + 61.5359i −0.0660966 + 0.0660966i
\(932\) 829.319 478.808i 0.889827 0.513742i
\(933\) −26.1628 + 45.3154i −0.0280416 + 0.0485695i
\(934\) 18.9461 + 70.7077i 0.0202849 + 0.0757041i
\(935\) 0 0
\(936\) −311.408 + 311.408i −0.332701 + 0.332701i
\(937\) 842.615i 0.899269i −0.893213 0.449635i \(-0.851554\pi\)
0.893213 0.449635i \(-0.148446\pi\)
\(938\) −32.1220 119.881i −0.0342452 0.127805i
\(939\) 144.329 249.986i 0.153705 0.266226i
\(940\) 0 0
\(941\) −471.659 471.659i −0.501232 0.501232i 0.410589 0.911821i \(-0.365323\pi\)
−0.911821 + 0.410589i \(0.865323\pi\)
\(942\) −35.7776 9.58657i −0.0379804 0.0101768i
\(943\) −243.079 + 907.183i −0.257772 + 0.962018i
\(944\) 874.911 874.911i 0.926813 0.926813i
\(945\) 0 0
\(946\) 377.654 + 218.038i 0.399211 + 0.230485i
\(947\) −489.308 + 131.110i −0.516693 + 0.138447i −0.507737 0.861512i \(-0.669518\pi\)
−0.00895652 + 0.999960i \(0.502851\pi\)
\(948\) −171.426 −0.180829
\(949\) 91.7168 + 342.292i 0.0966457 + 0.360687i
\(950\) 0 0
\(951\) −206.054 + 55.2121i −0.216671 + 0.0580569i
\(952\) 379.792 + 219.273i 0.398941 + 0.230329i
\(953\) −444.613 770.092i −0.466540 0.808071i 0.532729 0.846286i \(-0.321166\pi\)
−0.999270 + 0.0382143i \(0.987833\pi\)
\(954\) −45.7442 45.7442i −0.0479499 0.0479499i
\(955\) 0 0
\(956\) −200.583 53.7461i −0.209815 0.0562198i
\(957\) −78.8231 78.8231i −0.0823648 0.0823648i
\(958\) 335.642 193.783i 0.350356 0.202278i
\(959\) −503.347 290.608i −0.524867 0.303032i
\(960\) 0 0
\(961\) 676.436i 0.703888i
\(962\) 210.983i 0.219317i
\(963\) 806.922i 0.837925i
\(964\) 870.879 233.351i 0.903401 0.242066i
\(965\) 0 0
\(966\) −39.3308 + 22.7077i −0.0407151 + 0.0235069i
\(967\) −384.317 + 384.317i −0.397432 + 0.397432i −0.877326 0.479894i \(-0.840675\pi\)
0.479894 + 0.877326i \(0.340675\pi\)
\(968\) −548.401 146.943i −0.566529 0.151801i
\(969\) −82.4256 22.0859i −0.0850626 0.0227924i
\(970\) 0 0
\(971\) 121.863 + 211.074i 0.125503 + 0.217378i 0.921929 0.387358i \(-0.126612\pi\)
−0.796426 + 0.604735i \(0.793279\pi\)
\(972\) −305.983 + 529.977i −0.314797 + 0.545244i
\(973\) 185.895 49.8104i 0.191053 0.0511926i
\(974\) 125.874i 0.129234i
\(975\) 0 0
\(976\) −329.470 −0.337572
\(977\) 297.426 + 1110.01i 0.304428 + 1.13614i 0.933437 + 0.358742i \(0.116794\pi\)
−0.629009 + 0.777398i \(0.716539\pi\)
\(978\) 41.5448 + 23.9859i 0.0424794 + 0.0245255i
\(979\) 1256.94 725.692i 1.28390 0.741259i
\(980\) 0 0
\(981\) 161.040 601.011i 0.164159 0.612651i
\(982\) 11.3425 42.3308i 0.0115504 0.0431067i
\(983\) −774.213 774.213i −0.787602 0.787602i 0.193499 0.981101i \(-0.438016\pi\)
−0.981101 + 0.193499i \(0.938016\pi\)
\(984\) 68.1262 + 117.998i 0.0692340 + 0.119917i
\(985\) 0 0
\(986\) 23.2339 + 86.7102i 0.0235638 + 0.0879414i
\(987\) 210.851 0.213628
\(988\) 79.2750 295.858i 0.0802378 0.299452i
\(989\) −1049.42 −1.06109
\(990\) 0 0
\(991\) 391.733 678.501i 0.395290 0.684663i −0.597848 0.801609i \(-0.703977\pi\)
0.993138 + 0.116947i \(0.0373107\pi\)
\(992\) −191.165 331.107i −0.192706 0.333777i
\(993\) −238.795 + 238.795i −0.240478 + 0.240478i
\(994\) −36.7808 + 137.268i −0.0370029 + 0.138097i
\(995\) 0 0
\(996\) 66.8897 66.8897i 0.0671584 0.0671584i
\(997\) −434.428 + 250.817i −0.435735 + 0.251572i −0.701787 0.712387i \(-0.747614\pi\)
0.266052 + 0.963959i \(0.414281\pi\)
\(998\) −49.1929 + 85.2046i −0.0492915 + 0.0853753i
\(999\) −103.744 387.177i −0.103848 0.387564i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.3.w.b.124.1 4
5.2 odd 4 13.3.f.a.7.1 yes 4
5.3 odd 4 325.3.t.a.176.1 4
5.4 even 2 325.3.w.a.124.1 4
13.2 odd 12 325.3.w.a.249.1 4
15.2 even 4 117.3.bd.b.46.1 4
20.7 even 4 208.3.bd.d.33.1 4
65.2 even 12 13.3.f.a.2.1 4
65.7 even 12 169.3.d.c.70.1 4
65.12 odd 4 169.3.f.b.150.1 4
65.17 odd 12 169.3.d.c.99.1 4
65.22 odd 12 169.3.d.a.99.2 4
65.28 even 12 325.3.t.a.301.1 4
65.32 even 12 169.3.d.a.70.2 4
65.37 even 12 169.3.f.b.80.1 4
65.42 odd 12 169.3.f.c.89.1 4
65.47 even 4 169.3.f.a.19.1 4
65.54 odd 12 inner 325.3.w.b.249.1 4
65.57 even 4 169.3.f.c.19.1 4
65.62 odd 12 169.3.f.a.89.1 4
195.2 odd 12 117.3.bd.b.28.1 4
260.67 odd 12 208.3.bd.d.145.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.3.f.a.2.1 4 65.2 even 12
13.3.f.a.7.1 yes 4 5.2 odd 4
117.3.bd.b.28.1 4 195.2 odd 12
117.3.bd.b.46.1 4 15.2 even 4
169.3.d.a.70.2 4 65.32 even 12
169.3.d.a.99.2 4 65.22 odd 12
169.3.d.c.70.1 4 65.7 even 12
169.3.d.c.99.1 4 65.17 odd 12
169.3.f.a.19.1 4 65.47 even 4
169.3.f.a.89.1 4 65.62 odd 12
169.3.f.b.80.1 4 65.37 even 12
169.3.f.b.150.1 4 65.12 odd 4
169.3.f.c.19.1 4 65.57 even 4
169.3.f.c.89.1 4 65.42 odd 12
208.3.bd.d.33.1 4 20.7 even 4
208.3.bd.d.145.1 4 260.67 odd 12
325.3.t.a.176.1 4 5.3 odd 4
325.3.t.a.301.1 4 65.28 even 12
325.3.w.a.124.1 4 5.4 even 2
325.3.w.a.249.1 4 13.2 odd 12
325.3.w.b.124.1 4 1.1 even 1 trivial
325.3.w.b.249.1 4 65.54 odd 12 inner