Properties

Label 169.3.f.c.19.1
Level $169$
Weight $3$
Character 169.19
Analytic conductor $4.605$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,3,Mod(19,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 169.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.60491646769\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 19.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 169.19
Dual form 169.3.f.c.89.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.133975 + 0.500000i) q^{2} +(0.366025 - 0.633975i) q^{3} +(3.23205 - 1.86603i) q^{4} +(-2.63397 + 2.63397i) q^{5} +(0.366025 + 0.0980762i) q^{6} +(-1.53590 + 5.73205i) q^{7} +(2.83013 + 2.83013i) q^{8} +(4.23205 + 7.33013i) q^{9} +(-1.66987 - 0.964102i) q^{10} +(15.6603 - 4.19615i) q^{11} -2.73205i q^{12} -3.07180 q^{14} +(0.705771 + 2.63397i) q^{15} +(6.42820 - 11.1340i) q^{16} +(15.9904 - 9.23205i) q^{17} +(-3.09808 + 3.09808i) q^{18} +(-6.09808 - 1.63397i) q^{19} +(-3.59808 + 13.4282i) q^{20} +(3.07180 + 3.07180i) q^{21} +(4.19615 + 7.26795i) q^{22} +(-17.4904 - 10.0981i) q^{23} +(2.83013 - 0.758330i) q^{24} +11.1244i q^{25} +12.7846 q^{27} +(5.73205 + 21.3923i) q^{28} +(-4.69615 + 8.13397i) q^{29} +(-1.22243 + 0.705771i) q^{30} +(-11.9282 + 11.9282i) q^{31} +(21.8923 + 5.86603i) q^{32} +(3.07180 - 11.4641i) q^{33} +(6.75833 + 6.75833i) q^{34} +(-11.0526 - 19.1436i) q^{35} +(27.3564 + 15.7942i) q^{36} +(-30.2846 + 8.11474i) q^{37} -3.26795i q^{38} -14.9090 q^{40} +(-12.0359 - 44.9186i) q^{41} +(-1.12436 + 1.94744i) q^{42} +(-45.0000 + 25.9808i) q^{43} +(42.7846 - 42.7846i) q^{44} +(-30.4545 - 8.16025i) q^{45} +(2.70577 - 10.0981i) q^{46} +(-34.3205 - 34.3205i) q^{47} +(-4.70577 - 8.15064i) q^{48} +(11.9378 + 6.89230i) q^{49} +(-5.56218 + 1.49038i) q^{50} -13.5167i q^{51} -14.7654 q^{53} +(1.71281 + 6.39230i) q^{54} +(-30.1962 + 52.3013i) q^{55} +(-20.5692 + 11.8756i) q^{56} +(-3.26795 + 3.26795i) q^{57} +(-4.69615 - 1.25833i) q^{58} +(24.9090 - 92.9615i) q^{59} +(7.19615 + 7.19615i) q^{60} +(-12.8135 - 22.1936i) q^{61} +(-7.56218 - 4.36603i) q^{62} +(-48.5167 + 13.0000i) q^{63} -39.6936i q^{64} +6.14359 q^{66} +(-10.4571 - 39.0263i) q^{67} +(34.4545 - 59.6769i) q^{68} +(-12.8038 + 7.39230i) q^{69} +(8.09103 - 8.09103i) q^{70} +(44.6865 + 11.9737i) q^{71} +(-8.76795 + 32.7224i) q^{72} +(-19.2750 - 19.2750i) q^{73} +(-8.11474 - 14.0551i) q^{74} +(7.05256 + 4.07180i) q^{75} +(-22.7583 + 6.09808i) q^{76} +96.2102i q^{77} +62.7461 q^{79} +(12.3949 + 46.2583i) q^{80} +(-33.4090 + 57.8660i) q^{81} +(20.8468 - 12.0359i) q^{82} +(-24.4833 + 24.4833i) q^{83} +(15.6603 + 4.19615i) q^{84} +(-17.8013 + 66.4352i) q^{85} +(-19.0192 - 19.0192i) q^{86} +(3.43782 + 5.95448i) q^{87} +(56.1962 + 32.4449i) q^{88} +(86.4711 - 23.1699i) q^{89} -16.3205i q^{90} -75.3731 q^{92} +(3.19615 + 11.9282i) q^{93} +(12.5622 - 21.7583i) q^{94} +(20.3660 - 11.7583i) q^{95} +(11.7321 - 11.7321i) q^{96} +(-52.9545 - 14.1891i) q^{97} +(-1.84679 + 6.89230i) q^{98} +(97.0333 + 97.0333i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 2 q^{3} + 6 q^{4} - 14 q^{5} - 2 q^{6} - 20 q^{7} - 6 q^{8} + 10 q^{9} - 24 q^{10} + 28 q^{11} - 40 q^{14} + 34 q^{15} - 2 q^{16} + 12 q^{17} - 2 q^{18} - 14 q^{19} - 4 q^{20} + 40 q^{21}+ \cdots + 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.133975 + 0.500000i 0.0669873 + 0.250000i 0.991297 0.131643i \(-0.0420252\pi\)
−0.924310 + 0.381643i \(0.875358\pi\)
\(3\) 0.366025 0.633975i 0.122008 0.211325i −0.798551 0.601927i \(-0.794400\pi\)
0.920560 + 0.390602i \(0.127733\pi\)
\(4\) 3.23205 1.86603i 0.808013 0.466506i
\(5\) −2.63397 + 2.63397i −0.526795 + 0.526795i −0.919615 0.392820i \(-0.871499\pi\)
0.392820 + 0.919615i \(0.371499\pi\)
\(6\) 0.366025 + 0.0980762i 0.0610042 + 0.0163460i
\(7\) −1.53590 + 5.73205i −0.219414 + 0.818864i 0.765152 + 0.643850i \(0.222664\pi\)
−0.984566 + 0.175014i \(0.944003\pi\)
\(8\) 2.83013 + 2.83013i 0.353766 + 0.353766i
\(9\) 4.23205 + 7.33013i 0.470228 + 0.814459i
\(10\) −1.66987 0.964102i −0.166987 0.0964102i
\(11\) 15.6603 4.19615i 1.42366 0.381468i 0.536879 0.843659i \(-0.319603\pi\)
0.886780 + 0.462191i \(0.152937\pi\)
\(12\) 2.73205i 0.227671i
\(13\) 0 0
\(14\) −3.07180 −0.219414
\(15\) 0.705771 + 2.63397i 0.0470514 + 0.175598i
\(16\) 6.42820 11.1340i 0.401763 0.695873i
\(17\) 15.9904 9.23205i 0.940611 0.543062i 0.0504590 0.998726i \(-0.483932\pi\)
0.890152 + 0.455664i \(0.150598\pi\)
\(18\) −3.09808 + 3.09808i −0.172115 + 0.172115i
\(19\) −6.09808 1.63397i −0.320951 0.0859987i 0.0947465 0.995501i \(-0.469796\pi\)
−0.415698 + 0.909503i \(0.636463\pi\)
\(20\) −3.59808 + 13.4282i −0.179904 + 0.671410i
\(21\) 3.07180 + 3.07180i 0.146276 + 0.146276i
\(22\) 4.19615 + 7.26795i 0.190734 + 0.330361i
\(23\) −17.4904 10.0981i −0.760451 0.439047i 0.0690064 0.997616i \(-0.478017\pi\)
−0.829458 + 0.558569i \(0.811350\pi\)
\(24\) 2.83013 0.758330i 0.117922 0.0315971i
\(25\) 11.1244i 0.444974i
\(26\) 0 0
\(27\) 12.7846 0.473504
\(28\) 5.73205 + 21.3923i 0.204716 + 0.764011i
\(29\) −4.69615 + 8.13397i −0.161936 + 0.280482i −0.935563 0.353160i \(-0.885107\pi\)
0.773627 + 0.633642i \(0.218441\pi\)
\(30\) −1.22243 + 0.705771i −0.0407477 + 0.0235257i
\(31\) −11.9282 + 11.9282i −0.384781 + 0.384781i −0.872821 0.488040i \(-0.837712\pi\)
0.488040 + 0.872821i \(0.337712\pi\)
\(32\) 21.8923 + 5.86603i 0.684135 + 0.183313i
\(33\) 3.07180 11.4641i 0.0930848 0.347397i
\(34\) 6.75833 + 6.75833i 0.198774 + 0.198774i
\(35\) −11.0526 19.1436i −0.315787 0.546960i
\(36\) 27.3564 + 15.7942i 0.759900 + 0.438729i
\(37\) −30.2846 + 8.11474i −0.818503 + 0.219317i −0.643692 0.765285i \(-0.722598\pi\)
−0.174811 + 0.984602i \(0.555931\pi\)
\(38\) 3.26795i 0.0859987i
\(39\) 0 0
\(40\) −14.9090 −0.372724
\(41\) −12.0359 44.9186i −0.293558 1.09558i −0.942355 0.334614i \(-0.891394\pi\)
0.648797 0.760962i \(-0.275272\pi\)
\(42\) −1.12436 + 1.94744i −0.0267704 + 0.0463676i
\(43\) −45.0000 + 25.9808i −1.04651 + 0.604204i −0.921671 0.387973i \(-0.873175\pi\)
−0.124841 + 0.992177i \(0.539842\pi\)
\(44\) 42.7846 42.7846i 0.972377 0.972377i
\(45\) −30.4545 8.16025i −0.676766 0.181339i
\(46\) 2.70577 10.0981i 0.0588211 0.219523i
\(47\) −34.3205 34.3205i −0.730224 0.730224i 0.240440 0.970664i \(-0.422708\pi\)
−0.970664 + 0.240440i \(0.922708\pi\)
\(48\) −4.70577 8.15064i −0.0980369 0.169805i
\(49\) 11.9378 + 6.89230i 0.243629 + 0.140659i
\(50\) −5.56218 + 1.49038i −0.111244 + 0.0298076i
\(51\) 13.5167i 0.265033i
\(52\) 0 0
\(53\) −14.7654 −0.278592 −0.139296 0.990251i \(-0.544484\pi\)
−0.139296 + 0.990251i \(0.544484\pi\)
\(54\) 1.71281 + 6.39230i 0.0317188 + 0.118376i
\(55\) −30.1962 + 52.3013i −0.549021 + 0.950932i
\(56\) −20.5692 + 11.8756i −0.367307 + 0.212065i
\(57\) −3.26795 + 3.26795i −0.0573324 + 0.0573324i
\(58\) −4.69615 1.25833i −0.0809681 0.0216953i
\(59\) 24.9090 92.9615i 0.422186 1.57562i −0.347807 0.937566i \(-0.613073\pi\)
0.769993 0.638053i \(-0.220260\pi\)
\(60\) 7.19615 + 7.19615i 0.119936 + 0.119936i
\(61\) −12.8135 22.1936i −0.210057 0.363829i 0.741675 0.670759i \(-0.234032\pi\)
−0.951732 + 0.306930i \(0.900698\pi\)
\(62\) −7.56218 4.36603i −0.121971 0.0704198i
\(63\) −48.5167 + 13.0000i −0.770106 + 0.206349i
\(64\) 39.6936i 0.620212i
\(65\) 0 0
\(66\) 6.14359 0.0930848
\(67\) −10.4571 39.0263i −0.156076 0.582482i −0.999011 0.0444669i \(-0.985841\pi\)
0.842935 0.538015i \(-0.180826\pi\)
\(68\) 34.4545 59.6769i 0.506684 0.877602i
\(69\) −12.8038 + 7.39230i −0.185563 + 0.107135i
\(70\) 8.09103 8.09103i 0.115586 0.115586i
\(71\) 44.6865 + 11.9737i 0.629388 + 0.168644i 0.559392 0.828903i \(-0.311035\pi\)
0.0699959 + 0.997547i \(0.477701\pi\)
\(72\) −8.76795 + 32.7224i −0.121777 + 0.454478i
\(73\) −19.2750 19.2750i −0.264041 0.264041i 0.562653 0.826693i \(-0.309781\pi\)
−0.826693 + 0.562653i \(0.809781\pi\)
\(74\) −8.11474 14.0551i −0.109659 0.189934i
\(75\) 7.05256 + 4.07180i 0.0940341 + 0.0542906i
\(76\) −22.7583 + 6.09808i −0.299452 + 0.0802378i
\(77\) 96.2102i 1.24948i
\(78\) 0 0
\(79\) 62.7461 0.794255 0.397127 0.917763i \(-0.370007\pi\)
0.397127 + 0.917763i \(0.370007\pi\)
\(80\) 12.3949 + 46.2583i 0.154936 + 0.578229i
\(81\) −33.4090 + 57.8660i −0.412456 + 0.714395i
\(82\) 20.8468 12.0359i 0.254229 0.146779i
\(83\) −24.4833 + 24.4833i −0.294980 + 0.294980i −0.839044 0.544064i \(-0.816885\pi\)
0.544064 + 0.839044i \(0.316885\pi\)
\(84\) 15.6603 + 4.19615i 0.186432 + 0.0499542i
\(85\) −17.8013 + 66.4352i −0.209427 + 0.781591i
\(86\) −19.0192 19.0192i −0.221154 0.221154i
\(87\) 3.43782 + 5.95448i 0.0395152 + 0.0684423i
\(88\) 56.1962 + 32.4449i 0.638593 + 0.368692i
\(89\) 86.4711 23.1699i 0.971586 0.260336i 0.262089 0.965044i \(-0.415589\pi\)
0.709497 + 0.704708i \(0.248922\pi\)
\(90\) 16.3205i 0.181339i
\(91\) 0 0
\(92\) −75.3731 −0.819272
\(93\) 3.19615 + 11.9282i 0.0343672 + 0.128260i
\(94\) 12.5622 21.7583i 0.133640 0.231472i
\(95\) 20.3660 11.7583i 0.214379 0.123772i
\(96\) 11.7321 11.7321i 0.122209 0.122209i
\(97\) −52.9545 14.1891i −0.545923 0.146279i −0.0246915 0.999695i \(-0.507860\pi\)
−0.521231 + 0.853416i \(0.674527\pi\)
\(98\) −1.84679 + 6.89230i −0.0188448 + 0.0703296i
\(99\) 97.0333 + 97.0333i 0.980135 + 0.980135i
\(100\) 20.7583 + 35.9545i 0.207583 + 0.359545i
\(101\) −138.560 79.9974i −1.37188 0.792054i −0.380713 0.924693i \(-0.624321\pi\)
−0.991164 + 0.132640i \(0.957655\pi\)
\(102\) 6.75833 1.81089i 0.0662581 0.0177538i
\(103\) 78.7705i 0.764762i −0.924005 0.382381i \(-0.875104\pi\)
0.924005 0.382381i \(-0.124896\pi\)
\(104\) 0 0
\(105\) −16.1821 −0.154115
\(106\) −1.97818 7.38269i −0.0186621 0.0696480i
\(107\) 47.6673 82.5622i 0.445489 0.771609i −0.552597 0.833448i \(-0.686363\pi\)
0.998086 + 0.0618392i \(0.0196966\pi\)
\(108\) 41.3205 23.8564i 0.382597 0.220893i
\(109\) −51.9808 + 51.9808i −0.476888 + 0.476888i −0.904135 0.427247i \(-0.859483\pi\)
0.427247 + 0.904135i \(0.359483\pi\)
\(110\) −30.1962 8.09103i −0.274510 0.0735549i
\(111\) −5.94040 + 22.1699i −0.0535171 + 0.199729i
\(112\) 53.9474 + 53.9474i 0.481674 + 0.481674i
\(113\) 71.9904 + 124.691i 0.637083 + 1.10346i 0.986070 + 0.166332i \(0.0531925\pi\)
−0.348987 + 0.937128i \(0.613474\pi\)
\(114\) −2.07180 1.19615i −0.0181737 0.0104926i
\(115\) 72.6673 19.4711i 0.631890 0.169314i
\(116\) 35.0526i 0.302177i
\(117\) 0 0
\(118\) 49.8179 0.422186
\(119\) 28.3590 + 105.837i 0.238311 + 0.889388i
\(120\) −5.45706 + 9.45191i −0.0454755 + 0.0787659i
\(121\) 122.847 70.9256i 1.01526 0.586162i
\(122\) 9.38011 9.38011i 0.0768861 0.0768861i
\(123\) −32.8827 8.81089i −0.267339 0.0716332i
\(124\) −16.2942 + 60.8109i −0.131405 + 0.490410i
\(125\) −95.1506 95.1506i −0.761205 0.761205i
\(126\) −13.0000 22.5167i −0.103175 0.178704i
\(127\) 24.6673 + 14.2417i 0.194231 + 0.112139i 0.593962 0.804493i \(-0.297563\pi\)
−0.399731 + 0.916633i \(0.630896\pi\)
\(128\) 107.416 28.7820i 0.839188 0.224860i
\(129\) 38.0385i 0.294872i
\(130\) 0 0
\(131\) −2.98076 −0.0227539 −0.0113770 0.999935i \(-0.503621\pi\)
−0.0113770 + 0.999935i \(0.503621\pi\)
\(132\) −11.4641 42.7846i −0.0868493 0.324126i
\(133\) 18.7321 32.4449i 0.140842 0.243946i
\(134\) 18.1122 10.4571i 0.135165 0.0780378i
\(135\) −33.6743 + 33.6743i −0.249440 + 0.249440i
\(136\) 71.3827 + 19.1269i 0.524873 + 0.140639i
\(137\) −25.3494 + 94.6051i −0.185032 + 0.690548i 0.809592 + 0.586993i \(0.199688\pi\)
−0.994624 + 0.103555i \(0.966978\pi\)
\(138\) −5.41154 5.41154i −0.0392141 0.0392141i
\(139\) −16.2154 28.0859i −0.116657 0.202057i 0.801784 0.597614i \(-0.203885\pi\)
−0.918441 + 0.395558i \(0.870551\pi\)
\(140\) −71.4449 41.2487i −0.510320 0.294634i
\(141\) −34.3205 + 9.19615i −0.243408 + 0.0652209i
\(142\) 23.9474i 0.168644i
\(143\) 0 0
\(144\) 108.818 0.755680
\(145\) −9.05514 33.7942i −0.0624492 0.233064i
\(146\) 7.05514 12.2199i 0.0483229 0.0836976i
\(147\) 8.73909 5.04552i 0.0594496 0.0343232i
\(148\) −82.7391 + 82.7391i −0.559048 + 0.559048i
\(149\) 123.495 + 33.0903i 0.828824 + 0.222083i 0.648201 0.761469i \(-0.275522\pi\)
0.180624 + 0.983552i \(0.442188\pi\)
\(150\) −1.09103 + 4.07180i −0.00727356 + 0.0271453i
\(151\) 127.995 + 127.995i 0.847648 + 0.847648i 0.989839 0.142191i \(-0.0454148\pi\)
−0.142191 + 0.989839i \(0.545415\pi\)
\(152\) −12.6340 21.8827i −0.0831183 0.143965i
\(153\) 135.344 + 78.1410i 0.884603 + 0.510726i
\(154\) −48.1051 + 12.8897i −0.312371 + 0.0836995i
\(155\) 62.8372i 0.405401i
\(156\) 0 0
\(157\) −97.7461 −0.622587 −0.311293 0.950314i \(-0.600762\pi\)
−0.311293 + 0.950314i \(0.600762\pi\)
\(158\) 8.40639 + 31.3731i 0.0532050 + 0.198564i
\(159\) −5.40450 + 9.36087i −0.0339906 + 0.0588734i
\(160\) −73.1147 + 42.2128i −0.456967 + 0.263830i
\(161\) 84.7461 84.7461i 0.526374 0.526374i
\(162\) −33.4090 8.95191i −0.206228 0.0552587i
\(163\) 32.7654 122.282i 0.201015 0.750197i −0.789613 0.613605i \(-0.789719\pi\)
0.990627 0.136591i \(-0.0436147\pi\)
\(164\) −122.720 122.720i −0.748292 0.748292i
\(165\) 22.1051 + 38.2872i 0.133970 + 0.232044i
\(166\) −15.5218 8.96152i −0.0935049 0.0539851i
\(167\) 50.7321 13.5936i 0.303785 0.0813989i −0.103707 0.994608i \(-0.533070\pi\)
0.407491 + 0.913209i \(0.366404\pi\)
\(168\) 17.3872i 0.103495i
\(169\) 0 0
\(170\) −35.6025 −0.209427
\(171\) −13.8301 51.6147i −0.0808779 0.301841i
\(172\) −96.9615 + 167.942i −0.563730 + 0.976409i
\(173\) −118.865 + 68.6269i −0.687083 + 0.396687i −0.802518 0.596628i \(-0.796507\pi\)
0.115435 + 0.993315i \(0.463174\pi\)
\(174\) −2.51666 + 2.51666i −0.0144636 + 0.0144636i
\(175\) −63.7654 17.0859i −0.364374 0.0976336i
\(176\) 53.9474 201.335i 0.306520 1.14395i
\(177\) −49.8179 49.8179i −0.281457 0.281457i
\(178\) 23.1699 + 40.1314i 0.130168 + 0.225457i
\(179\) −0.903811 0.521815i −0.00504922 0.00291517i 0.497473 0.867479i \(-0.334261\pi\)
−0.502522 + 0.864564i \(0.667595\pi\)
\(180\) −113.658 + 30.4545i −0.631432 + 0.169192i
\(181\) 23.0807i 0.127518i −0.997965 0.0637589i \(-0.979691\pi\)
0.997965 0.0637589i \(-0.0203089\pi\)
\(182\) 0 0
\(183\) −18.7602 −0.102515
\(184\) −20.9212 78.0788i −0.113702 0.424342i
\(185\) 58.3949 101.143i 0.315648 0.546718i
\(186\) −5.53590 + 3.19615i −0.0297629 + 0.0171836i
\(187\) 211.674 211.674i 1.13195 1.13195i
\(188\) −174.969 46.8827i −0.930684 0.249376i
\(189\) −19.6359 + 73.2820i −0.103893 + 0.387736i
\(190\) 8.60770 + 8.60770i 0.0453037 + 0.0453037i
\(191\) −147.002 254.615i −0.769643 1.33306i −0.937756 0.347294i \(-0.887101\pi\)
0.168113 0.985768i \(-0.446233\pi\)
\(192\) −25.1647 14.5289i −0.131066 0.0756711i
\(193\) −319.279 + 85.5507i −1.65430 + 0.443268i −0.960812 0.277202i \(-0.910593\pi\)
−0.693486 + 0.720470i \(0.743926\pi\)
\(194\) 28.3782i 0.146279i
\(195\) 0 0
\(196\) 51.4449 0.262474
\(197\) −22.8057 85.1122i −0.115765 0.432041i 0.883578 0.468284i \(-0.155128\pi\)
−0.999343 + 0.0362429i \(0.988461\pi\)
\(198\) −35.5167 + 61.5167i −0.179377 + 0.310690i
\(199\) −174.452 + 100.720i −0.876643 + 0.506130i −0.869550 0.493845i \(-0.835591\pi\)
−0.00709275 + 0.999975i \(0.502258\pi\)
\(200\) −31.4833 + 31.4833i −0.157417 + 0.157417i
\(201\) −28.5692 7.65510i −0.142135 0.0380851i
\(202\) 21.4352 79.9974i 0.106115 0.396027i
\(203\) −39.4115 39.4115i −0.194146 0.194146i
\(204\) −25.2224 43.6865i −0.123639 0.214150i
\(205\) 150.017 + 86.6122i 0.731789 + 0.422498i
\(206\) 39.3853 10.5532i 0.191191 0.0512294i
\(207\) 170.942i 0.825808i
\(208\) 0 0
\(209\) −102.354 −0.489731
\(210\) −2.16799 8.09103i −0.0103237 0.0385287i
\(211\) −36.6481 + 63.4763i −0.173687 + 0.300836i −0.939706 0.341983i \(-0.888902\pi\)
0.766019 + 0.642818i \(0.222235\pi\)
\(212\) −47.7224 + 27.5526i −0.225106 + 0.129965i
\(213\) 23.9474 23.9474i 0.112429 0.112429i
\(214\) 47.6673 + 12.7724i 0.222744 + 0.0596842i
\(215\) 50.0962 186.962i 0.233006 0.869588i
\(216\) 36.1821 + 36.1821i 0.167510 + 0.167510i
\(217\) −50.0526 86.6936i −0.230657 0.399510i
\(218\) −32.9545 19.0263i −0.151167 0.0872765i
\(219\) −19.2750 + 5.16472i −0.0880137 + 0.0235832i
\(220\) 225.387i 1.02449i
\(221\) 0 0
\(222\) −11.8808 −0.0535171
\(223\) 98.4801 + 367.533i 0.441615 + 1.64813i 0.724723 + 0.689040i \(0.241968\pi\)
−0.283108 + 0.959088i \(0.591366\pi\)
\(224\) −67.2487 + 116.478i −0.300217 + 0.519992i
\(225\) −81.5429 + 47.0788i −0.362413 + 0.209239i
\(226\) −52.7006 + 52.7006i −0.233189 + 0.233189i
\(227\) 404.107 + 108.280i 1.78021 + 0.477005i 0.990621 0.136635i \(-0.0436289\pi\)
0.789586 + 0.613640i \(0.210296\pi\)
\(228\) −4.46410 + 16.6603i −0.0195794 + 0.0730713i
\(229\) −72.2679 72.2679i −0.315581 0.315581i 0.531486 0.847067i \(-0.321634\pi\)
−0.847067 + 0.531486i \(0.821634\pi\)
\(230\) 19.4711 + 33.7250i 0.0846571 + 0.146630i
\(231\) 60.9948 + 35.2154i 0.264047 + 0.152448i
\(232\) −36.3109 + 9.72947i −0.156512 + 0.0419374i
\(233\) 256.592i 1.10125i 0.834751 + 0.550627i \(0.185611\pi\)
−0.834751 + 0.550627i \(0.814389\pi\)
\(234\) 0 0
\(235\) 180.799 0.769356
\(236\) −92.9615 346.937i −0.393905 1.47007i
\(237\) 22.9667 39.7795i 0.0969058 0.167846i
\(238\) −49.1192 + 28.3590i −0.206383 + 0.119155i
\(239\) 39.3449 39.3449i 0.164623 0.164623i −0.619988 0.784611i \(-0.712863\pi\)
0.784611 + 0.619988i \(0.212863\pi\)
\(240\) 33.8634 + 9.07368i 0.141098 + 0.0378070i
\(241\) −62.5263 + 233.351i −0.259445 + 0.968262i 0.706118 + 0.708094i \(0.250445\pi\)
−0.965563 + 0.260168i \(0.916222\pi\)
\(242\) 51.9212 + 51.9212i 0.214550 + 0.214550i
\(243\) 81.9878 + 142.007i 0.337398 + 0.584391i
\(244\) −82.8275 47.8205i −0.339457 0.195986i
\(245\) −49.5981 + 13.2898i −0.202441 + 0.0542439i
\(246\) 17.6218i 0.0716332i
\(247\) 0 0
\(248\) −67.5167 −0.272245
\(249\) 6.56029 + 24.4833i 0.0263466 + 0.0983267i
\(250\) 34.8275 60.3231i 0.139310 0.241292i
\(251\) 221.375 127.811i 0.881972 0.509207i 0.0106638 0.999943i \(-0.496606\pi\)
0.871308 + 0.490736i \(0.163272\pi\)
\(252\) −132.550 + 132.550i −0.525992 + 0.525992i
\(253\) −316.277 84.7461i −1.25011 0.334965i
\(254\) −3.81604 + 14.2417i −0.0150238 + 0.0560696i
\(255\) 35.6025 + 35.6025i 0.139618 + 0.139618i
\(256\) −50.6051 87.6506i −0.197676 0.342385i
\(257\) −85.7731 49.5211i −0.333747 0.192689i 0.323756 0.946141i \(-0.395054\pi\)
−0.657504 + 0.753451i \(0.728388\pi\)
\(258\) −19.0192 + 5.09619i −0.0737180 + 0.0197527i
\(259\) 186.056i 0.718364i
\(260\) 0 0
\(261\) −79.4974 −0.304588
\(262\) −0.399346 1.49038i −0.00152422 0.00568848i
\(263\) 127.669 221.130i 0.485434 0.840797i −0.514426 0.857535i \(-0.671995\pi\)
0.999860 + 0.0167383i \(0.00532822\pi\)
\(264\) 41.1384 23.7513i 0.155827 0.0899670i
\(265\) 38.8916 38.8916i 0.146761 0.146761i
\(266\) 18.7321 + 5.01924i 0.0704212 + 0.0188693i
\(267\) 16.9615 63.3013i 0.0635263 0.237083i
\(268\) −106.622 106.622i −0.397842 0.397842i
\(269\) 46.3538 + 80.2872i 0.172319 + 0.298465i 0.939230 0.343288i \(-0.111541\pi\)
−0.766911 + 0.641753i \(0.778207\pi\)
\(270\) −21.3487 12.3257i −0.0790692 0.0456506i
\(271\) 422.219 113.133i 1.55800 0.417466i 0.625973 0.779845i \(-0.284702\pi\)
0.932031 + 0.362379i \(0.118035\pi\)
\(272\) 237.382i 0.872728i
\(273\) 0 0
\(274\) −50.6987 −0.185032
\(275\) 46.6795 + 174.210i 0.169744 + 0.633492i
\(276\) −27.5885 + 47.7846i −0.0999582 + 0.173133i
\(277\) 302.110 174.423i 1.09065 0.629686i 0.156899 0.987615i \(-0.449850\pi\)
0.933749 + 0.357929i \(0.116517\pi\)
\(278\) 11.8705 11.8705i 0.0426996 0.0426996i
\(279\) −137.916 36.9545i −0.494323 0.132453i
\(280\) 22.8987 85.4589i 0.0817809 0.305211i
\(281\) 91.9737 + 91.9737i 0.327309 + 0.327309i 0.851562 0.524254i \(-0.175656\pi\)
−0.524254 + 0.851562i \(0.675656\pi\)
\(282\) −9.19615 15.9282i −0.0326105 0.0564830i
\(283\) 30.8038 + 17.7846i 0.108848 + 0.0628431i 0.553435 0.832892i \(-0.313317\pi\)
−0.444588 + 0.895735i \(0.646650\pi\)
\(284\) 166.772 44.6865i 0.587227 0.157347i
\(285\) 17.2154i 0.0604049i
\(286\) 0 0
\(287\) 275.962 0.961538
\(288\) 49.6506 + 185.299i 0.172398 + 0.643398i
\(289\) 25.9615 44.9667i 0.0898323 0.155594i
\(290\) 15.6840 9.05514i 0.0540826 0.0312246i
\(291\) −28.3782 + 28.3782i −0.0975197 + 0.0975197i
\(292\) −98.2654 26.3301i −0.336525 0.0901717i
\(293\) −103.631 + 386.758i −0.353691 + 1.31999i 0.528433 + 0.848975i \(0.322780\pi\)
−0.882124 + 0.471017i \(0.843887\pi\)
\(294\) 3.69358 + 3.69358i 0.0125632 + 0.0125632i
\(295\) 179.249 + 310.468i 0.607623 + 1.05243i
\(296\) −108.675 62.7436i −0.367145 0.211971i
\(297\) 200.210 53.6462i 0.674109 0.180627i
\(298\) 66.1807i 0.222083i
\(299\) 0 0
\(300\) 30.3923 0.101308
\(301\) −79.8076 297.846i −0.265142 0.989522i
\(302\) −46.8494 + 81.1455i −0.155130 + 0.268694i
\(303\) −101.433 + 58.5622i −0.334761 + 0.193275i
\(304\) −57.3923 + 57.3923i −0.188790 + 0.188790i
\(305\) 92.2077 + 24.7070i 0.302320 + 0.0810065i
\(306\) −20.9378 + 78.1410i −0.0684243 + 0.255363i
\(307\) 260.219 + 260.219i 0.847619 + 0.847619i 0.989836 0.142216i \(-0.0454228\pi\)
−0.142216 + 0.989836i \(0.545423\pi\)
\(308\) 179.531 + 310.956i 0.582892 + 1.00960i
\(309\) −49.9385 28.8320i −0.161613 0.0933075i
\(310\) 31.4186 8.41858i 0.101350 0.0271567i
\(311\) 71.4782i 0.229833i −0.993375 0.114917i \(-0.963340\pi\)
0.993375 0.114917i \(-0.0366601\pi\)
\(312\) 0 0
\(313\) −394.315 −1.25979 −0.629897 0.776679i \(-0.716903\pi\)
−0.629897 + 0.776679i \(0.716903\pi\)
\(314\) −13.0955 48.8731i −0.0417054 0.155647i
\(315\) 93.5500 162.033i 0.296984 0.514391i
\(316\) 202.799 117.086i 0.641768 0.370525i
\(317\) −206.054 + 206.054i −0.650014 + 0.650014i −0.952996 0.302982i \(-0.902018\pi\)
0.302982 + 0.952996i \(0.402018\pi\)
\(318\) −5.40450 1.44813i −0.0169953 0.00455387i
\(319\) −39.4115 + 147.086i −0.123547 + 0.461084i
\(320\) 104.552 + 104.552i 0.326725 + 0.326725i
\(321\) −34.8949 60.4397i −0.108707 0.188286i
\(322\) 53.7269 + 31.0192i 0.166854 + 0.0963330i
\(323\) −112.595 + 30.1699i −0.348593 + 0.0934052i
\(324\) 249.368i 0.769654i
\(325\) 0 0
\(326\) 65.5307 0.201015
\(327\) 13.9282 + 51.9808i 0.0425939 + 0.158963i
\(328\) 93.0622 161.188i 0.283726 0.491428i
\(329\) 249.440 144.014i 0.758175 0.437733i
\(330\) −16.1821 + 16.1821i −0.0490366 + 0.0490366i
\(331\) 445.597 + 119.397i 1.34622 + 0.360717i 0.858737 0.512417i \(-0.171250\pi\)
0.487479 + 0.873135i \(0.337917\pi\)
\(332\) −33.4449 + 124.818i −0.100738 + 0.375958i
\(333\) −187.648 187.648i −0.563508 0.563508i
\(334\) 13.5936 + 23.5448i 0.0406994 + 0.0704935i
\(335\) 130.338 + 75.2506i 0.389068 + 0.224629i
\(336\) 53.9474 14.4552i 0.160558 0.0430213i
\(337\) 144.779i 0.429613i 0.976657 + 0.214806i \(0.0689120\pi\)
−0.976657 + 0.214806i \(0.931088\pi\)
\(338\) 0 0
\(339\) 105.401 0.310918
\(340\) 66.4352 + 247.940i 0.195398 + 0.729234i
\(341\) −136.746 + 236.851i −0.401015 + 0.694578i
\(342\) 23.9545 13.8301i 0.0700423 0.0404390i
\(343\) −263.454 + 263.454i −0.768087 + 0.768087i
\(344\) −200.885 53.8269i −0.583967 0.156473i
\(345\) 14.2539 53.1962i 0.0413156 0.154192i
\(346\) −50.2384 50.2384i −0.145198 0.145198i
\(347\) −243.590 421.911i −0.701989 1.21588i −0.967767 0.251847i \(-0.918962\pi\)
0.265778 0.964034i \(-0.414371\pi\)
\(348\) 22.2224 + 12.8301i 0.0638576 + 0.0368682i
\(349\) 11.3468 3.04036i 0.0325123 0.00871164i −0.242526 0.970145i \(-0.577976\pi\)
0.275039 + 0.961433i \(0.411309\pi\)
\(350\) 34.1718i 0.0976336i
\(351\) 0 0
\(352\) 367.454 1.04390
\(353\) 73.9993 + 276.169i 0.209630 + 0.782349i 0.987988 + 0.154529i \(0.0493860\pi\)
−0.778358 + 0.627820i \(0.783947\pi\)
\(354\) 18.2346 31.5833i 0.0515102 0.0892184i
\(355\) −149.242 + 86.1647i −0.420399 + 0.242718i
\(356\) 236.244 236.244i 0.663605 0.663605i
\(357\) 77.4782 + 20.7602i 0.217026 + 0.0581519i
\(358\) 0.139820 0.521815i 0.000390559 0.00145758i
\(359\) 92.0770 + 92.0770i 0.256482 + 0.256482i 0.823622 0.567140i \(-0.191950\pi\)
−0.567140 + 0.823622i \(0.691950\pi\)
\(360\) −63.0955 109.285i −0.175265 0.303568i
\(361\) −278.119 160.572i −0.770411 0.444797i
\(362\) 11.5404 3.09223i 0.0318795 0.00854207i
\(363\) 103.842i 0.286067i
\(364\) 0 0
\(365\) 101.540 0.278191
\(366\) −2.51339 9.38011i −0.00686719 0.0256287i
\(367\) −6.27499 + 10.8686i −0.0170981 + 0.0296147i −0.874448 0.485120i \(-0.838776\pi\)
0.857350 + 0.514734i \(0.172109\pi\)
\(368\) −224.863 + 129.825i −0.611042 + 0.352785i
\(369\) 278.322 278.322i 0.754261 0.754261i
\(370\) 58.3949 + 15.6469i 0.157824 + 0.0422888i
\(371\) 22.6781 84.6359i 0.0611270 0.228129i
\(372\) 32.5885 + 32.5885i 0.0876034 + 0.0876034i
\(373\) 155.638 + 269.574i 0.417261 + 0.722718i 0.995663 0.0930345i \(-0.0296567\pi\)
−0.578402 + 0.815752i \(0.696323\pi\)
\(374\) 134.196 + 77.4782i 0.358813 + 0.207161i
\(375\) −95.1506 + 25.4955i −0.253735 + 0.0679881i
\(376\) 194.263i 0.516656i
\(377\) 0 0
\(378\) −39.2717 −0.103893
\(379\) −101.783 379.858i −0.268556 1.00226i −0.960038 0.279871i \(-0.909708\pi\)
0.691482 0.722394i \(-0.256958\pi\)
\(380\) 43.8827 76.0070i 0.115481 0.200019i
\(381\) 18.0577 10.4256i 0.0473956 0.0273638i
\(382\) 107.613 107.613i 0.281709 0.281709i
\(383\) −713.051 191.061i −1.86175 0.498855i −0.861788 0.507269i \(-0.830655\pi\)
−0.999965 + 0.00841386i \(0.997322\pi\)
\(384\) 21.0699 78.6340i 0.0548696 0.204776i
\(385\) −253.415 253.415i −0.658222 0.658222i
\(386\) −85.5507 148.178i −0.221634 0.383881i
\(387\) −380.885 219.904i −0.984198 0.568227i
\(388\) −197.629 + 52.9545i −0.509353 + 0.136481i
\(389\) 344.478i 0.885548i 0.896633 + 0.442774i \(0.146006\pi\)
−0.896633 + 0.442774i \(0.853994\pi\)
\(390\) 0 0
\(391\) −372.904 −0.953718
\(392\) 14.2795 + 53.2917i 0.0364272 + 0.135948i
\(393\) −1.09103 + 1.88973i −0.00277617 + 0.00480847i
\(394\) 39.5007 22.8057i 0.100256 0.0578826i
\(395\) −165.272 + 165.272i −0.418409 + 0.418409i
\(396\) 494.683 + 132.550i 1.24920 + 0.334722i
\(397\) 181.783 678.422i 0.457891 1.70887i −0.221556 0.975148i \(-0.571114\pi\)
0.679447 0.733725i \(-0.262220\pi\)
\(398\) −73.7321 73.7321i −0.185256 0.185256i
\(399\) −13.7128 23.7513i −0.0343680 0.0595270i
\(400\) 123.858 + 71.5096i 0.309646 + 0.178774i
\(401\) −547.989 + 146.833i −1.36656 + 0.366168i −0.866220 0.499663i \(-0.833457\pi\)
−0.500336 + 0.865831i \(0.666790\pi\)
\(402\) 15.3102i 0.0380851i
\(403\) 0 0
\(404\) −597.109 −1.47799
\(405\) −64.4193 240.416i −0.159060 0.593620i
\(406\) 14.4256 24.9859i 0.0355311 0.0615417i
\(407\) −440.214 + 254.158i −1.08161 + 0.624466i
\(408\) 38.2539 38.2539i 0.0937595 0.0937595i
\(409\) −98.2321 26.3212i −0.240176 0.0643550i 0.136723 0.990609i \(-0.456343\pi\)
−0.376899 + 0.926254i \(0.623010\pi\)
\(410\) −23.2077 + 86.6122i −0.0566040 + 0.211249i
\(411\) 50.6987 + 50.6987i 0.123355 + 0.123355i
\(412\) −146.988 254.590i −0.356767 0.617938i
\(413\) 494.603 + 285.559i 1.19758 + 0.691426i
\(414\) 85.4711 22.9019i 0.206452 0.0553187i
\(415\) 128.977i 0.310788i
\(416\) 0 0
\(417\) −23.7410 −0.0569328
\(418\) −13.7128 51.1769i −0.0328058 0.122433i
\(419\) −322.279 + 558.203i −0.769162 + 1.33223i 0.168856 + 0.985641i \(0.445993\pi\)
−0.938018 + 0.346587i \(0.887341\pi\)
\(420\) −52.3013 + 30.1962i −0.124527 + 0.0718956i
\(421\) 346.619 346.619i 0.823322 0.823322i −0.163261 0.986583i \(-0.552201\pi\)
0.986583 + 0.163261i \(0.0522013\pi\)
\(422\) −36.6481 9.81982i −0.0868437 0.0232697i
\(423\) 106.328 396.820i 0.251365 0.938108i
\(424\) −41.7879 41.7879i −0.0985563 0.0985563i
\(425\) 102.701 + 177.883i 0.241649 + 0.418547i
\(426\) 15.1821 + 8.76537i 0.0356387 + 0.0205760i
\(427\) 146.895 39.3604i 0.344016 0.0921788i
\(428\) 355.794i 0.831293i
\(429\) 0 0
\(430\) 100.192 0.233006
\(431\) −27.2501 101.699i −0.0632253 0.235960i 0.927081 0.374861i \(-0.122310\pi\)
−0.990306 + 0.138901i \(0.955643\pi\)
\(432\) 82.1821 142.344i 0.190236 0.329499i
\(433\) −596.892 + 344.616i −1.37850 + 0.795880i −0.991979 0.126399i \(-0.959658\pi\)
−0.386525 + 0.922279i \(0.626325\pi\)
\(434\) 36.6410 36.6410i 0.0844263 0.0844263i
\(435\) −24.7391 6.62882i −0.0568715 0.0152387i
\(436\) −71.0070 + 265.002i −0.162860 + 0.607802i
\(437\) 90.1577 + 90.1577i 0.206310 + 0.206310i
\(438\) −5.16472 8.94555i −0.0117916 0.0204236i
\(439\) −78.0577 45.0666i −0.177808 0.102657i 0.408454 0.912779i \(-0.366068\pi\)
−0.586262 + 0.810121i \(0.699401\pi\)
\(440\) −233.478 + 62.5603i −0.530632 + 0.142182i
\(441\) 116.674i 0.264568i
\(442\) 0 0
\(443\) 642.277 1.44983 0.724917 0.688836i \(-0.241878\pi\)
0.724917 + 0.688836i \(0.241878\pi\)
\(444\) 22.1699 + 82.7391i 0.0499321 + 0.186349i
\(445\) −166.734 + 288.792i −0.374683 + 0.648970i
\(446\) −170.572 + 98.4801i −0.382450 + 0.220807i
\(447\) 66.1807 66.1807i 0.148055 0.148055i
\(448\) 227.526 + 60.9653i 0.507870 + 0.136083i
\(449\) −6.05583 + 22.6007i −0.0134874 + 0.0503355i −0.972342 0.233563i \(-0.924961\pi\)
0.958854 + 0.283899i \(0.0916280\pi\)
\(450\) −34.4641 34.4641i −0.0765869 0.0765869i
\(451\) −376.970 652.932i −0.835855 1.44774i
\(452\) 465.353 + 268.672i 1.02954 + 0.594407i
\(453\) 127.995 34.2961i 0.282549 0.0757089i
\(454\) 216.560i 0.477005i
\(455\) 0 0
\(456\) −18.4974 −0.0405645
\(457\) −61.2795 228.698i −0.134091 0.500433i −1.00000 0.000232237i \(-0.999926\pi\)
0.865909 0.500201i \(-0.166741\pi\)
\(458\) 26.4519 45.8160i 0.0577553 0.100035i
\(459\) 204.431 118.028i 0.445383 0.257142i
\(460\) 198.531 198.531i 0.431589 0.431589i
\(461\) 47.0359 + 12.6032i 0.102030 + 0.0273389i 0.309473 0.950908i \(-0.399847\pi\)
−0.207443 + 0.978247i \(0.566514\pi\)
\(462\) −9.43594 + 35.2154i −0.0204241 + 0.0762238i
\(463\) −521.191 521.191i −1.12568 1.12568i −0.990871 0.134811i \(-0.956957\pi\)
−0.134811 0.990871i \(-0.543043\pi\)
\(464\) 60.3756 + 104.574i 0.130120 + 0.225374i
\(465\) −39.8372 23.0000i −0.0856713 0.0494624i
\(466\) −128.296 + 34.3768i −0.275314 + 0.0737700i
\(467\) 141.415i 0.302817i −0.988471 0.151408i \(-0.951619\pi\)
0.988471 0.151408i \(-0.0483808\pi\)
\(468\) 0 0
\(469\) 239.762 0.511219
\(470\) 24.2224 + 90.3993i 0.0515371 + 0.192339i
\(471\) −35.7776 + 61.9686i −0.0759609 + 0.131568i
\(472\) 333.588 192.597i 0.706755 0.408045i
\(473\) −595.692 + 595.692i −1.25939 + 1.25939i
\(474\) 22.9667 + 6.15390i 0.0484529 + 0.0129829i
\(475\) 18.1769 67.8372i 0.0382672 0.142815i
\(476\) 289.153 + 289.153i 0.607463 + 0.607463i
\(477\) −62.4878 108.232i −0.131002 0.226902i
\(478\) 24.9437 + 14.4012i 0.0521834 + 0.0301281i
\(479\) −723.207 + 193.783i −1.50983 + 0.404557i −0.916378 0.400315i \(-0.868901\pi\)
−0.593449 + 0.804872i \(0.702234\pi\)
\(480\) 61.8038i 0.128758i
\(481\) 0 0
\(482\) −125.053 −0.259445
\(483\) −22.7077 84.7461i −0.0470138 0.175458i
\(484\) 264.698 458.470i 0.546897 0.947253i
\(485\) 176.855 102.107i 0.364648 0.210530i
\(486\) −60.0192 + 60.0192i −0.123496 + 0.123496i
\(487\) 234.885 + 62.9371i 0.482309 + 0.129234i 0.491778 0.870721i \(-0.336347\pi\)
−0.00946847 + 0.999955i \(0.503014\pi\)
\(488\) 26.5469 99.0744i 0.0543994 0.203021i
\(489\) −65.5307 65.5307i −0.134010 0.134010i
\(490\) −13.2898 23.0185i −0.0271220 0.0469766i
\(491\) 73.3191 + 42.3308i 0.149326 + 0.0862135i 0.572801 0.819694i \(-0.305857\pi\)
−0.423475 + 0.905908i \(0.639190\pi\)
\(492\) −122.720 + 32.8827i −0.249431 + 0.0668347i
\(493\) 173.420i 0.351766i
\(494\) 0 0
\(495\) −511.167 −1.03266
\(496\) 56.1314 + 209.485i 0.113168 + 0.422349i
\(497\) −137.268 + 237.755i −0.276193 + 0.478380i
\(498\) −11.3628 + 6.56029i −0.0228168 + 0.0131733i
\(499\) −134.397 + 134.397i −0.269334 + 0.269334i −0.828832 0.559498i \(-0.810994\pi\)
0.559498 + 0.828832i \(0.310994\pi\)
\(500\) −485.085 129.978i −0.970170 0.259956i
\(501\) 9.95121 37.1384i 0.0198627 0.0741286i
\(502\) 93.5641 + 93.5641i 0.186383 + 0.186383i
\(503\) 398.200 + 689.703i 0.791650 + 1.37118i 0.924945 + 0.380102i \(0.124111\pi\)
−0.133295 + 0.991076i \(0.542556\pi\)
\(504\) −174.100 100.517i −0.345436 0.199438i
\(505\) 575.674 154.251i 1.13995 0.305448i
\(506\) 169.492i 0.334965i
\(507\) 0 0
\(508\) 106.301 0.209254
\(509\) −21.3301 79.6051i −0.0419059 0.156395i 0.941802 0.336167i \(-0.109131\pi\)
−0.983708 + 0.179772i \(0.942464\pi\)
\(510\) −13.0314 + 22.5711i −0.0255518 + 0.0442571i
\(511\) 140.090 80.8808i 0.274148 0.158279i
\(512\) 351.581 351.581i 0.686682 0.686682i
\(513\) −77.9615 20.8897i −0.151972 0.0407207i
\(514\) 13.2691 49.5211i 0.0258155 0.0963446i
\(515\) 207.480 + 207.480i 0.402873 + 0.402873i
\(516\) 70.9808 + 122.942i 0.137560 + 0.238260i
\(517\) −681.482 393.454i −1.31815 0.761032i
\(518\) 93.0282 24.9268i 0.179591 0.0481213i
\(519\) 100.477i 0.193597i
\(520\) 0 0
\(521\) 677.011 1.29945 0.649723 0.760171i \(-0.274885\pi\)
0.649723 + 0.760171i \(0.274885\pi\)
\(522\) −10.6506 39.7487i −0.0204035 0.0761470i
\(523\) 91.8269 159.049i 0.175577 0.304109i −0.764784 0.644287i \(-0.777154\pi\)
0.940361 + 0.340179i \(0.110488\pi\)
\(524\) −9.63397 + 5.56218i −0.0183854 + 0.0106148i
\(525\) −34.1718 + 34.1718i −0.0650891 + 0.0650891i
\(526\) 127.669 + 34.2089i 0.242717 + 0.0650358i
\(527\) −80.6147 + 300.858i −0.152969 + 0.570889i
\(528\) −107.895 107.895i −0.204346 0.204346i
\(529\) −60.5577 104.889i −0.114476 0.198278i
\(530\) 24.6563 + 14.2353i 0.0465213 + 0.0268591i
\(531\) 786.836 210.832i 1.48180 0.397047i
\(532\) 139.818i 0.262816i
\(533\) 0 0
\(534\) 33.9230 0.0635263
\(535\) 91.9122 + 343.021i 0.171799 + 0.641161i
\(536\) 80.8545 140.044i 0.150848 0.261276i
\(537\) −0.661635 + 0.381995i −0.00123210 + 0.000711351i
\(538\) −33.9334 + 33.9334i −0.0630732 + 0.0630732i
\(539\) 215.870 + 57.8423i 0.400502 + 0.107314i
\(540\) −46.0000 + 171.674i −0.0851852 + 0.317915i
\(541\) 317.629 + 317.629i 0.587114 + 0.587114i 0.936849 0.349735i \(-0.113728\pi\)
−0.349735 + 0.936849i \(0.613728\pi\)
\(542\) 113.133 + 195.953i 0.208733 + 0.361536i
\(543\) −14.6326 8.44813i −0.0269477 0.0155583i
\(544\) 404.222 108.311i 0.743055 0.199101i
\(545\) 273.832i 0.502444i
\(546\) 0 0
\(547\) −724.904 −1.32524 −0.662618 0.748958i \(-0.730555\pi\)
−0.662618 + 0.748958i \(0.730555\pi\)
\(548\) 94.6051 + 353.071i 0.172637 + 0.644290i
\(549\) 108.454 187.849i 0.197549 0.342165i
\(550\) −80.8513 + 46.6795i −0.147002 + 0.0848718i
\(551\) 41.9282 41.9282i 0.0760947 0.0760947i
\(552\) −57.1577 15.3154i −0.103547 0.0277452i
\(553\) −96.3717 + 359.664i −0.174271 + 0.650387i
\(554\) 127.687 + 127.687i 0.230481 + 0.230481i
\(555\) −42.7480 74.0417i −0.0770235 0.133409i
\(556\) −104.818 60.5167i −0.188521 0.108843i
\(557\) 115.933 31.0641i 0.208138 0.0557703i −0.153244 0.988188i \(-0.548972\pi\)
0.361381 + 0.932418i \(0.382305\pi\)
\(558\) 73.9090i 0.132453i
\(559\) 0 0
\(560\) −284.192 −0.507486
\(561\) −56.7180 211.674i −0.101102 0.377316i
\(562\) −33.6647 + 58.3090i −0.0599016 + 0.103753i
\(563\) 534.888 308.818i 0.950068 0.548522i 0.0569660 0.998376i \(-0.481857\pi\)
0.893102 + 0.449854i \(0.148524\pi\)
\(564\) −93.7654 + 93.7654i −0.166251 + 0.166251i
\(565\) −518.054 138.812i −0.916909 0.245685i
\(566\) −4.76537 + 17.7846i −0.00841938 + 0.0314216i
\(567\) −280.378 280.378i −0.494494 0.494494i
\(568\) 92.5814 + 160.356i 0.162995 + 0.282316i
\(569\) 381.315 + 220.153i 0.670150 + 0.386911i 0.796133 0.605121i \(-0.206875\pi\)
−0.125983 + 0.992032i \(0.540209\pi\)
\(570\) 8.60770 2.30642i 0.0151012 0.00404636i
\(571\) 618.249i 1.08275i 0.840782 + 0.541374i \(0.182096\pi\)
−0.840782 + 0.541374i \(0.817904\pi\)
\(572\) 0 0
\(573\) −215.226 −0.375612
\(574\) 36.9718 + 137.981i 0.0644109 + 0.240385i
\(575\) 112.335 194.569i 0.195365 0.338381i
\(576\) 290.959 167.985i 0.505137 0.291641i
\(577\) −266.237 + 266.237i −0.461415 + 0.461415i −0.899119 0.437704i \(-0.855792\pi\)
0.437704 + 0.899119i \(0.355792\pi\)
\(578\) 25.9615 + 6.95637i 0.0449161 + 0.0120352i
\(579\) −62.6274 + 233.729i −0.108165 + 0.403677i
\(580\) −92.3275 92.3275i −0.159185 0.159185i
\(581\) −102.736 177.944i −0.176826 0.306271i
\(582\) −17.9911 10.3872i −0.0309125 0.0178473i
\(583\) −231.229 + 61.9578i −0.396620 + 0.106274i
\(584\) 109.101i 0.186817i
\(585\) 0 0
\(586\) −207.263 −0.353691
\(587\) −124.629 465.123i −0.212316 0.792373i −0.987094 0.160140i \(-0.948805\pi\)
0.774779 0.632233i \(-0.217861\pi\)
\(588\) 18.8301 32.6147i 0.0320240 0.0554672i
\(589\) 92.2295 53.2487i 0.156587 0.0904053i
\(590\) −131.219 + 131.219i −0.222405 + 0.222405i
\(591\) −62.3064 16.6950i −0.105425 0.0282487i
\(592\) −104.326 + 389.351i −0.176227 + 0.657688i
\(593\) 389.671 + 389.671i 0.657118 + 0.657118i 0.954697 0.297579i \(-0.0961792\pi\)
−0.297579 + 0.954697i \(0.596179\pi\)
\(594\) 53.6462 + 92.9179i 0.0903134 + 0.156427i
\(595\) −353.469 204.076i −0.594066 0.342984i
\(596\) 460.889 123.495i 0.773304 0.207206i
\(597\) 147.464i 0.247009i
\(598\) 0 0
\(599\) 808.596 1.34991 0.674955 0.737859i \(-0.264163\pi\)
0.674955 + 0.737859i \(0.264163\pi\)
\(600\) 8.43594 + 31.4833i 0.0140599 + 0.0524722i
\(601\) 221.344 383.379i 0.368293 0.637903i −0.621006 0.783806i \(-0.713276\pi\)
0.989299 + 0.145904i \(0.0466089\pi\)
\(602\) 138.231 79.8076i 0.229619 0.132571i
\(603\) 241.813 241.813i 0.401016 0.401016i
\(604\) 652.527 + 174.844i 1.08034 + 0.289477i
\(605\) −136.759 + 510.392i −0.226048 + 0.843623i
\(606\) −42.8705 42.8705i −0.0707434 0.0707434i
\(607\) 471.398 + 816.485i 0.776603 + 1.34512i 0.933889 + 0.357563i \(0.116392\pi\)
−0.157286 + 0.987553i \(0.550275\pi\)
\(608\) −123.916 71.5429i −0.203809 0.117669i
\(609\) −39.4115 + 10.5603i −0.0647152 + 0.0173404i
\(610\) 49.4139i 0.0810065i
\(611\) 0 0
\(612\) 583.252 0.953027
\(613\) 260.758 + 973.161i 0.425380 + 1.58754i 0.763093 + 0.646289i \(0.223680\pi\)
−0.337713 + 0.941249i \(0.609653\pi\)
\(614\) −95.2468 + 164.972i −0.155125 + 0.268685i
\(615\) 109.820 63.4045i 0.178569 0.103097i
\(616\) −272.287 + 272.287i −0.442025 + 0.442025i
\(617\) 268.378 + 71.9115i 0.434972 + 0.116550i 0.469659 0.882848i \(-0.344377\pi\)
−0.0346873 + 0.999398i \(0.511044\pi\)
\(618\) 7.72551 28.8320i 0.0125008 0.0466537i
\(619\) 206.483 + 206.483i 0.333576 + 0.333576i 0.853943 0.520367i \(-0.174205\pi\)
−0.520367 + 0.853943i \(0.674205\pi\)
\(620\) −117.256 203.093i −0.189122 0.327569i
\(621\) −223.608 129.100i −0.360077 0.207890i
\(622\) 35.7391 9.57626i 0.0574583 0.0153959i
\(623\) 531.244i 0.852718i
\(624\) 0 0
\(625\) 223.140 0.357024
\(626\) −52.8282 197.158i −0.0843902 0.314948i
\(627\) −37.4641 + 64.8897i −0.0597514 + 0.103492i
\(628\) −315.920 + 182.397i −0.503058 + 0.290441i
\(629\) −409.347 + 409.347i −0.650790 + 0.650790i
\(630\) 93.5500 + 25.0666i 0.148492 + 0.0397883i
\(631\) 114.900 428.813i 0.182092 0.679577i −0.813142 0.582065i \(-0.802245\pi\)
0.995234 0.0975117i \(-0.0310883\pi\)
\(632\) 177.580 + 177.580i 0.280980 + 0.280980i
\(633\) 26.8282 + 46.4679i 0.0423827 + 0.0734090i
\(634\) −130.633 75.4212i −0.206046 0.118961i
\(635\) −102.485 + 27.4608i −0.161394 + 0.0432454i
\(636\) 40.3397i 0.0634273i
\(637\) 0 0
\(638\) −78.8231 −0.123547
\(639\) 101.347 + 378.231i 0.158602 + 0.591911i
\(640\) −207.120 + 358.742i −0.323625 + 0.560535i
\(641\) 471.717 272.346i 0.735908 0.424877i −0.0846714 0.996409i \(-0.526984\pi\)
0.820580 + 0.571532i \(0.193651\pi\)
\(642\) 25.5448 25.5448i 0.0397894 0.0397894i
\(643\) −373.478 100.073i −0.580837 0.155635i −0.0435749 0.999050i \(-0.513875\pi\)
−0.537262 + 0.843415i \(0.680541\pi\)
\(644\) 115.765 432.042i 0.179760 0.670873i
\(645\) −100.192 100.192i −0.155337 0.155337i
\(646\) −30.1699 52.2558i −0.0467026 0.0808913i
\(647\) 436.056 + 251.757i 0.673966 + 0.389114i 0.797578 0.603216i \(-0.206114\pi\)
−0.123612 + 0.992331i \(0.539448\pi\)
\(648\) −258.320 + 69.2166i −0.398642 + 0.106816i
\(649\) 1560.32i 2.40420i
\(650\) 0 0
\(651\) −73.2820 −0.112568
\(652\) −122.282 456.363i −0.187549 0.699943i
\(653\) −15.5692 + 26.9667i −0.0238426 + 0.0412966i −0.877701 0.479210i \(-0.840923\pi\)
0.853858 + 0.520506i \(0.174257\pi\)
\(654\) −24.1244 + 13.9282i −0.0368874 + 0.0212969i
\(655\) 7.85125 7.85125i 0.0119866 0.0119866i
\(656\) −577.492 154.738i −0.880323 0.235882i
\(657\) 59.7154 222.861i 0.0908910 0.339210i
\(658\) 105.426 + 105.426i 0.160221 + 0.160221i
\(659\) −379.488 657.293i −0.575855 0.997410i −0.995948 0.0899292i \(-0.971336\pi\)
0.420093 0.907481i \(-0.361997\pi\)
\(660\) 142.890 + 82.4974i 0.216500 + 0.124996i
\(661\) −253.064 + 67.8083i −0.382850 + 0.102584i −0.445111 0.895475i \(-0.646836\pi\)
0.0622605 + 0.998060i \(0.480169\pi\)
\(662\) 238.795i 0.360717i
\(663\) 0 0
\(664\) −138.582 −0.208708
\(665\) 36.1192 + 134.799i 0.0543146 + 0.202705i
\(666\) 68.6840 118.964i 0.103129 0.178625i
\(667\) 164.275 94.8442i 0.246289 0.142195i
\(668\) 138.603 138.603i 0.207489 0.207489i
\(669\) 269.053 + 72.0924i 0.402171 + 0.107761i
\(670\) −20.1633 + 75.2506i −0.0300945 + 0.112314i
\(671\) −293.790 293.790i −0.437839 0.437839i
\(672\) 49.2295 + 85.2679i 0.0732581 + 0.126887i
\(673\) 272.210 + 157.160i 0.404472 + 0.233522i 0.688412 0.725320i \(-0.258308\pi\)
−0.283940 + 0.958842i \(0.591642\pi\)
\(674\) −72.3897 + 19.3968i −0.107403 + 0.0287786i
\(675\) 142.221i 0.210697i
\(676\) 0 0
\(677\) −547.384 −0.808544 −0.404272 0.914639i \(-0.632475\pi\)
−0.404272 + 0.914639i \(0.632475\pi\)
\(678\) 14.1211 + 52.7006i 0.0208276 + 0.0777295i
\(679\) 162.665 281.745i 0.239566 0.414941i
\(680\) −238.400 + 137.640i −0.350588 + 0.202412i
\(681\) 216.560 216.560i 0.318003 0.318003i
\(682\) −136.746 36.6410i −0.200508 0.0537258i
\(683\) −67.7789 + 252.954i −0.0992371 + 0.370358i −0.997628 0.0688393i \(-0.978070\pi\)
0.898391 + 0.439197i \(0.144737\pi\)
\(684\) −141.014 141.014i −0.206161 0.206161i
\(685\) −182.418 315.957i −0.266303 0.461251i
\(686\) −167.023 96.4308i −0.243474 0.140570i
\(687\) −72.2679 + 19.3641i −0.105194 + 0.0281865i
\(688\) 668.038i 0.970986i
\(689\) 0 0
\(690\) 28.5077 0.0413156
\(691\) −284.764 1062.75i −0.412104 1.53799i −0.790566 0.612377i \(-0.790214\pi\)
0.378462 0.925617i \(-0.376453\pi\)
\(692\) −256.119 + 443.611i −0.370114 + 0.641057i
\(693\) −705.233 + 407.167i −1.01765 + 0.587542i
\(694\) 178.321 178.321i 0.256946 0.256946i
\(695\) 116.688 + 31.2666i 0.167897 + 0.0449879i
\(696\) −7.12247 + 26.5814i −0.0102334 + 0.0381917i
\(697\) −607.149 607.149i −0.871089 0.871089i
\(698\) 3.04036 + 5.26606i 0.00435582 + 0.00754450i
\(699\) 162.673 + 93.9193i 0.232722 + 0.134362i
\(700\) −237.976 + 63.7654i −0.339965 + 0.0910934i
\(701\) 638.323i 0.910589i −0.890341 0.455295i \(-0.849534\pi\)
0.890341 0.455295i \(-0.150466\pi\)
\(702\) 0 0
\(703\) 197.937 0.281561
\(704\) −166.560 621.611i −0.236591 0.882971i
\(705\) 66.1769 114.622i 0.0938680 0.162584i
\(706\) −128.171 + 73.9993i −0.181545 + 0.104815i
\(707\) 671.363 671.363i 0.949594 0.949594i
\(708\) −253.976 68.0526i −0.358723 0.0961194i
\(709\) 167.518 625.185i 0.236273 0.881784i −0.741297 0.671177i \(-0.765789\pi\)
0.977571 0.210608i \(-0.0675442\pi\)
\(710\) −63.0770 63.0770i −0.0888408 0.0888408i
\(711\) 265.545 + 459.937i 0.373481 + 0.646888i
\(712\) 310.298 + 179.151i 0.435812 + 0.251616i
\(713\) 329.081 88.1769i 0.461544 0.123670i
\(714\) 41.5204i 0.0581519i
\(715\) 0 0
\(716\) −3.89488 −0.00543978
\(717\) −10.5424 39.3449i −0.0147035 0.0548743i
\(718\) −33.7025 + 58.3744i −0.0469394 + 0.0813015i
\(719\) −1058.38 + 611.056i −1.47202 + 0.849870i −0.999505 0.0314543i \(-0.989986\pi\)
−0.472512 + 0.881324i \(0.656653\pi\)
\(720\) −286.624 + 286.624i −0.398088 + 0.398088i
\(721\) 451.517 + 120.984i 0.626237 + 0.167800i
\(722\) 43.0251 160.572i 0.0595915 0.222399i
\(723\) 125.053 + 125.053i 0.172963 + 0.172963i
\(724\) −43.0692 74.5981i −0.0594879 0.103036i
\(725\) −90.4852 52.2417i −0.124807 0.0720575i
\(726\) 51.9212 13.9122i 0.0715168 0.0191629i
\(727\) 508.974i 0.700102i 0.936731 + 0.350051i \(0.113836\pi\)
−0.936731 + 0.350051i \(0.886164\pi\)
\(728\) 0 0
\(729\) −481.323 −0.660251
\(730\) 13.6037 + 50.7698i 0.0186353 + 0.0695477i
\(731\) −479.711 + 830.885i −0.656240 + 1.13664i
\(732\) −60.6340 + 35.0070i −0.0828333 + 0.0478238i
\(733\) 861.681 861.681i 1.17555 1.17555i 0.194689 0.980865i \(-0.437630\pi\)
0.980865 0.194689i \(-0.0623699\pi\)
\(734\) −6.27499 1.68138i −0.00854903 0.00229071i
\(735\) −9.72878 + 36.3083i −0.0132364 + 0.0493991i
\(736\) −323.669 323.669i −0.439768 0.439768i
\(737\) −327.520 567.282i −0.444397 0.769718i
\(738\) 176.449 + 101.873i 0.239091 + 0.138039i
\(739\) −150.865 + 40.4242i −0.204148 + 0.0547013i −0.359444 0.933167i \(-0.617034\pi\)
0.155296 + 0.987868i \(0.450367\pi\)
\(740\) 435.865i 0.589007i
\(741\) 0 0
\(742\) 45.3562 0.0611270
\(743\) 98.9409 + 369.252i 0.133164 + 0.496975i 0.999999 0.00162070i \(-0.000515884\pi\)
−0.866835 + 0.498596i \(0.833849\pi\)
\(744\) −24.7128 + 42.8038i −0.0332161 + 0.0575321i
\(745\) −412.441 + 238.123i −0.553613 + 0.319628i
\(746\) −113.935 + 113.935i −0.152728 + 0.152728i
\(747\) −283.081 75.8513i −0.378957 0.101541i
\(748\) 289.153 1079.13i 0.386568 1.44269i
\(749\) 400.038 + 400.038i 0.534097 + 0.534097i
\(750\) −25.4955 44.1596i −0.0339940 0.0588794i
\(751\) 906.415 + 523.319i 1.20694 + 0.696830i 0.962091 0.272730i \(-0.0879267\pi\)
0.244854 + 0.969560i \(0.421260\pi\)
\(752\) −602.743 + 161.504i −0.801520 + 0.214767i
\(753\) 187.128i 0.248510i
\(754\) 0 0
\(755\) −674.270 −0.893073
\(756\) 73.2820 + 273.492i 0.0969339 + 0.361762i
\(757\) 188.415 326.345i 0.248897 0.431103i −0.714323 0.699816i \(-0.753265\pi\)
0.963220 + 0.268713i \(0.0865985\pi\)
\(758\) 176.293 101.783i 0.232576 0.134278i
\(759\) −169.492 + 169.492i −0.223310 + 0.223310i
\(760\) 90.9160 + 24.3609i 0.119626 + 0.0320538i
\(761\) 198.830 742.044i 0.261275 0.975091i −0.703216 0.710976i \(-0.748253\pi\)
0.964491 0.264115i \(-0.0850798\pi\)
\(762\) 7.63209 + 7.63209i 0.0100159 + 0.0100159i
\(763\) −218.119 377.794i −0.285871 0.495142i
\(764\) −950.235 548.619i −1.24376 0.718087i
\(765\) −562.315 + 150.672i −0.735052 + 0.196957i
\(766\) 382.123i 0.498855i
\(767\) 0 0
\(768\) −74.0910 −0.0964727
\(769\) 17.6044 + 65.7006i 0.0228926 + 0.0854364i 0.976427 0.215848i \(-0.0692514\pi\)
−0.953534 + 0.301284i \(0.902585\pi\)
\(770\) 92.7564 160.659i 0.120463 0.208648i
\(771\) −62.7903 + 36.2520i −0.0814400 + 0.0470194i
\(772\) −872.288 + 872.288i −1.12991 + 1.12991i
\(773\) 890.771 + 238.681i 1.15236 + 0.308773i 0.783909 0.620876i \(-0.213223\pi\)
0.368447 + 0.929649i \(0.379890\pi\)
\(774\) 58.9230 219.904i 0.0761280 0.284113i
\(775\) −132.694 132.694i −0.171218 0.171218i
\(776\) −109.711 190.025i −0.141380 0.244877i
\(777\) −117.955 68.1013i −0.151808 0.0876465i
\(778\) −172.239 + 46.1513i −0.221387 + 0.0593205i
\(779\) 293.583i 0.376872i
\(780\) 0 0
\(781\) 750.046 0.960366
\(782\) −49.9596 186.452i −0.0638870 0.238430i
\(783\) −60.0385 + 103.990i −0.0766775 + 0.132809i
\(784\) 153.477 88.6103i 0.195762 0.113023i
\(785\) 257.461 257.461i 0.327976 0.327976i
\(786\) −1.09103 0.292342i −0.00138808 0.000371936i
\(787\) −318.489 + 1188.62i −0.404687 + 1.51031i 0.399944 + 0.916540i \(0.369030\pi\)
−0.804632 + 0.593774i \(0.797637\pi\)
\(788\) −232.531 232.531i −0.295090 0.295090i
\(789\) −93.4603 161.878i −0.118454 0.205169i
\(790\) −104.778 60.4936i −0.132630 0.0765742i
\(791\) −825.305 + 221.140i −1.04337 + 0.279570i
\(792\) 549.233i 0.693476i
\(793\) 0 0
\(794\) 363.565 0.457891
\(795\) −10.4210 38.8916i −0.0131081 0.0489203i
\(796\) −375.892 + 651.063i −0.472226 + 0.817919i
\(797\) 22.0615 12.7372i 0.0276807 0.0159814i −0.486096 0.873906i \(-0.661579\pi\)
0.513776 + 0.857924i \(0.328246\pi\)
\(798\) 10.0385 10.0385i 0.0125795 0.0125795i
\(799\) −865.647 231.949i −1.08341 0.290300i
\(800\) −65.2558 + 243.538i −0.0815697 + 0.304422i
\(801\) 535.788 + 535.788i 0.668899 + 0.668899i
\(802\) −146.833 254.323i −0.183084 0.317110i
\(803\) −382.732 220.970i −0.476628 0.275181i
\(804\) −106.622 + 28.5692i −0.132614 + 0.0355339i
\(805\) 446.438i 0.554582i
\(806\) 0 0
\(807\) 67.8667 0.0840975
\(808\) −165.738 618.544i −0.205122 0.765525i
\(809\) 351.463 608.752i 0.434442 0.752475i −0.562808 0.826588i \(-0.690279\pi\)
0.997250 + 0.0741123i \(0.0236123\pi\)
\(810\) 111.577 64.4193i 0.137750 0.0795300i
\(811\) 506.292 506.292i 0.624282 0.624282i −0.322342 0.946623i \(-0.604470\pi\)
0.946623 + 0.322342i \(0.104470\pi\)
\(812\) −200.923 53.8372i −0.247442 0.0663019i
\(813\) 82.8193 309.086i 0.101869 0.380179i
\(814\) −186.056 186.056i −0.228570 0.228570i
\(815\) 235.785 + 408.391i 0.289306 + 0.501093i
\(816\) −150.494 86.8878i −0.184429 0.106480i
\(817\) 316.865 84.9038i 0.387840 0.103921i
\(818\) 52.6424i 0.0643550i
\(819\) 0 0
\(820\) 646.482 0.788393
\(821\) 292.276 + 1090.79i 0.356000 + 1.32861i 0.879221 + 0.476414i \(0.158064\pi\)
−0.523220 + 0.852197i \(0.675270\pi\)
\(822\) −18.5570 + 32.1417i −0.0225755 + 0.0391018i
\(823\) 449.858 259.726i 0.546607 0.315584i −0.201145 0.979561i \(-0.564466\pi\)
0.747752 + 0.663978i \(0.231133\pi\)
\(824\) 222.931 222.931i 0.270547 0.270547i
\(825\) 127.531 + 34.1718i 0.154583 + 0.0414203i
\(826\) −76.5153 + 285.559i −0.0926335 + 0.345713i
\(827\) −571.769 571.769i −0.691377 0.691377i 0.271158 0.962535i \(-0.412594\pi\)
−0.962535 + 0.271158i \(0.912594\pi\)
\(828\) −318.983 552.494i −0.385245 0.667263i
\(829\) 848.094 + 489.647i 1.02303 + 0.590648i 0.914981 0.403497i \(-0.132205\pi\)
0.108052 + 0.994145i \(0.465539\pi\)
\(830\) 64.4885 17.2796i 0.0776970 0.0208188i
\(831\) 255.373i 0.307308i
\(832\) 0 0
\(833\) 254.520 0.305547
\(834\) −3.18069 11.8705i −0.00381377 0.0142332i
\(835\) −97.8217 + 169.432i −0.117152 + 0.202913i
\(836\) −330.813 + 190.995i −0.395709 + 0.228463i
\(837\) −152.497 + 152.497i −0.182195 + 0.182195i
\(838\) −322.279 86.3543i −0.384581 0.103048i
\(839\) −137.661 + 513.757i −0.164077 + 0.612344i 0.834079 + 0.551645i \(0.186000\pi\)
−0.998156 + 0.0606993i \(0.980667\pi\)
\(840\) −45.7973 45.7973i −0.0545206 0.0545206i
\(841\) 376.392 + 651.931i 0.447553 + 0.775185i
\(842\) 219.747 + 126.871i 0.260983 + 0.150678i
\(843\) 91.9737 24.6443i 0.109103 0.0292340i
\(844\) 273.545i 0.324105i
\(845\) 0 0
\(846\) 212.655 0.251365
\(847\) 217.869 + 813.099i 0.257224 + 0.959975i
\(848\) −94.9148 + 164.397i −0.111928 + 0.193865i
\(849\) 22.5500 13.0192i 0.0265606 0.0153348i
\(850\) −75.1821 + 75.1821i −0.0884495 + 0.0884495i
\(851\) 611.633 + 163.886i 0.718722 + 0.192581i
\(852\) 32.7128 122.086i 0.0383953 0.143293i
\(853\) 713.043 + 713.043i 0.835924 + 0.835924i 0.988320 0.152396i \(-0.0486989\pi\)
−0.152396 + 0.988320i \(0.548699\pi\)
\(854\) 39.3604 + 68.1742i 0.0460894 + 0.0798292i
\(855\) 172.380 + 99.5237i 0.201614 + 0.116402i
\(856\) 368.566 98.7569i 0.430568 0.115370i
\(857\) 311.663i 0.363667i 0.983329 + 0.181834i \(0.0582032\pi\)
−0.983329 + 0.181834i \(0.941797\pi\)
\(858\) 0 0
\(859\) −1475.02 −1.71714 −0.858568 0.512700i \(-0.828645\pi\)
−0.858568 + 0.512700i \(0.828645\pi\)
\(860\) −186.962 697.750i −0.217397 0.811337i
\(861\) 101.009 174.953i 0.117316 0.203197i
\(862\) 47.1985 27.2501i 0.0547547 0.0316126i
\(863\) −700.396 + 700.396i −0.811583 + 0.811583i −0.984871 0.173288i \(-0.944561\pi\)
0.173288 + 0.984871i \(0.444561\pi\)
\(864\) 279.885 + 74.9948i 0.323940 + 0.0867996i
\(865\) 132.327 493.850i 0.152979 0.570925i
\(866\) −252.276 252.276i −0.291312 0.291312i
\(867\) −19.0052 32.9179i −0.0219206 0.0379676i
\(868\) −323.545 186.799i −0.372747 0.215206i
\(869\) 982.620 263.292i 1.13075 0.302983i
\(870\) 13.2576i 0.0152387i
\(871\) 0 0
\(872\) −294.224 −0.337413
\(873\) −120.098 448.212i −0.137569 0.513416i
\(874\) −33.0000 + 57.1577i −0.0377574 + 0.0653978i
\(875\) 691.550 399.267i 0.790343 0.456305i
\(876\) −52.6603 + 52.6603i −0.0601144 + 0.0601144i
\(877\) 132.301 + 35.4498i 0.150856 + 0.0404217i 0.333457 0.942765i \(-0.391785\pi\)
−0.182601 + 0.983187i \(0.558452\pi\)
\(878\) 12.0756 45.0666i 0.0137535 0.0513287i
\(879\) 207.263 + 207.263i 0.235794 + 0.235794i
\(880\) 388.214 + 672.406i 0.441152 + 0.764098i
\(881\) −383.677 221.516i −0.435502 0.251437i 0.266186 0.963922i \(-0.414236\pi\)
−0.701688 + 0.712485i \(0.747570\pi\)
\(882\) −58.3372 + 15.6314i −0.0661419 + 0.0177227i
\(883\) 1305.20i 1.47814i −0.673630 0.739069i \(-0.735266\pi\)
0.673630 0.739069i \(-0.264734\pi\)
\(884\) 0 0
\(885\) 262.438 0.296540
\(886\) 86.0488 + 321.138i 0.0971205 + 0.362459i
\(887\) 861.377 1491.95i 0.971113 1.68202i 0.278904 0.960319i \(-0.410029\pi\)
0.692209 0.721697i \(-0.256638\pi\)
\(888\) −79.5556 + 45.9315i −0.0895897 + 0.0517246i
\(889\) −119.520 + 119.520i −0.134444 + 0.134444i
\(890\) −166.734 44.6762i −0.187342 0.0501980i
\(891\) −280.378 + 1046.39i −0.314678 + 1.17439i
\(892\) 1004.12 + 1004.12i 1.12569 + 1.12569i
\(893\) 153.210 + 265.368i 0.171568 + 0.297165i
\(894\) 41.9569 + 24.2238i 0.0469316 + 0.0270960i
\(895\) 3.75506 1.00617i 0.00419560 0.00112421i
\(896\) 659.920i 0.736518i
\(897\) 0 0
\(898\) −12.1117 −0.0134874
\(899\) −41.0070 153.040i −0.0456141 0.170234i
\(900\) −175.701 + 304.322i −0.195223 + 0.338136i
\(901\) −236.104 + 136.315i −0.262047 + 0.151293i
\(902\) 275.962 275.962i 0.305944 0.305944i
\(903\) −218.038 58.4232i −0.241460 0.0646990i
\(904\) −149.149 + 556.633i −0.164988 + 0.615745i
\(905\) 60.7940 + 60.7940i 0.0671757 + 0.0671757i
\(906\) 34.2961 + 59.4026i 0.0378544 + 0.0655658i
\(907\) −758.800 438.093i −0.836604 0.483014i 0.0195043 0.999810i \(-0.493791\pi\)
−0.856109 + 0.516796i \(0.827125\pi\)
\(908\) 1508.15 404.107i 1.66096 0.445052i
\(909\) 1354.21i 1.48978i
\(910\) 0 0
\(911\) −1103.35 −1.21114 −0.605569 0.795793i \(-0.707054\pi\)
−0.605569 + 0.795793i \(0.707054\pi\)
\(912\) 15.3782 + 57.3923i 0.0168621 + 0.0629302i
\(913\) −280.679 + 486.151i −0.307426 + 0.532477i
\(914\) 106.139 61.2795i 0.116126 0.0670454i
\(915\) 49.4139 49.4139i 0.0540043 0.0540043i
\(916\) −368.428 98.7199i −0.402213 0.107773i
\(917\) 4.57815 17.0859i 0.00499253 0.0186324i
\(918\) 86.4026 + 86.4026i 0.0941205 + 0.0941205i
\(919\) 328.160 + 568.389i 0.357083 + 0.618486i 0.987472 0.157793i \(-0.0504379\pi\)
−0.630389 + 0.776279i \(0.717105\pi\)
\(920\) 260.763 + 150.552i 0.283439 + 0.163643i
\(921\) 260.219 69.7255i 0.282540 0.0757063i
\(922\) 25.2065i 0.0273389i
\(923\) 0 0
\(924\) 262.851 0.284471
\(925\) −90.2712 336.897i −0.0975905 0.364213i
\(926\) 190.769 330.422i 0.206014 0.356827i
\(927\) 577.398 333.361i 0.622867 0.359613i
\(928\) −150.524 + 150.524i −0.162202 + 0.162202i
\(929\) −819.460 219.574i −0.882088 0.236355i −0.210780 0.977533i \(-0.567601\pi\)
−0.671308 + 0.741179i \(0.734267\pi\)
\(930\) 6.16283 23.0000i 0.00662670 0.0247312i
\(931\) −61.5359 61.5359i −0.0660966 0.0660966i
\(932\) 478.808 + 829.319i 0.513742 + 0.889827i
\(933\) −45.3154 26.1628i −0.0485695 0.0280416i
\(934\) 70.7077 18.9461i 0.0757041 0.0202849i
\(935\) 1115.09i 1.19261i
\(936\) 0 0
\(937\) 842.615 0.899269 0.449635 0.893213i \(-0.351554\pi\)
0.449635 + 0.893213i \(0.351554\pi\)
\(938\) 32.1220 + 119.881i 0.0342452 + 0.127805i
\(939\) −144.329 + 249.986i −0.153705 + 0.266226i
\(940\) 584.351 337.375i 0.621650 0.358910i
\(941\) −471.659 + 471.659i −0.501232 + 0.501232i −0.911821 0.410589i \(-0.865323\pi\)
0.410589 + 0.911821i \(0.365323\pi\)
\(942\) −35.7776 9.58657i −0.0379804 0.0101768i
\(943\) −243.079 + 907.183i −0.257772 + 0.962018i
\(944\) −874.911 874.911i −0.926813 0.926813i
\(945\) −141.303 244.743i −0.149527 0.258988i
\(946\) −377.654 218.038i −0.399211 0.230485i
\(947\) 489.308 131.110i 0.516693 0.138447i 0.00895652 0.999960i \(-0.497149\pi\)
0.507737 + 0.861512i \(0.330482\pi\)
\(948\) 171.426i 0.180829i
\(949\) 0 0
\(950\) 36.3538 0.0382672
\(951\) 55.2121 + 206.054i 0.0580569 + 0.216671i
\(952\) −219.273 + 379.792i −0.230329 + 0.398941i
\(953\) 770.092 444.613i 0.808071 0.466540i −0.0382143 0.999270i \(-0.512167\pi\)
0.846286 + 0.532729i \(0.178834\pi\)
\(954\) 45.7442 45.7442i 0.0479499 0.0479499i
\(955\) 1057.85 + 283.450i 1.10769 + 0.296806i
\(956\) 53.7461 200.583i 0.0562198 0.209815i
\(957\) 78.8231 + 78.8231i 0.0823648 + 0.0823648i
\(958\) −193.783 335.642i −0.202278 0.350356i
\(959\) −503.347 290.608i −0.524867 0.303032i
\(960\) 104.552 28.0146i 0.108908 0.0291819i
\(961\) 676.436i 0.703888i
\(962\) 0 0
\(963\) 806.922 0.837925
\(964\) 233.351 + 870.879i 0.242066 + 0.903401i
\(965\) 615.636 1066.31i 0.637964 1.10499i
\(966\) 39.3308 22.7077i 0.0407151 0.0235069i
\(967\) −384.317 + 384.317i −0.397432 + 0.397432i −0.877326 0.479894i \(-0.840675\pi\)
0.479894 + 0.877326i \(0.340675\pi\)
\(968\) 548.401 + 146.943i 0.566529 + 0.151801i
\(969\) −22.0859 + 82.4256i −0.0227924 + 0.0850626i
\(970\) 74.7475 + 74.7475i 0.0770593 + 0.0770593i
\(971\) 121.863 + 211.074i 0.125503 + 0.217378i 0.921929 0.387358i \(-0.126612\pi\)
−0.796426 + 0.604735i \(0.793279\pi\)
\(972\) 529.977 + 305.983i 0.545244 + 0.314797i
\(973\) 185.895 49.8104i 0.191053 0.0511926i
\(974\) 125.874i 0.129234i
\(975\) 0 0
\(976\) −329.470 −0.337572
\(977\) 297.426 + 1110.01i 0.304428 + 1.13614i 0.933437 + 0.358742i \(0.116794\pi\)
−0.629009 + 0.777398i \(0.716539\pi\)
\(978\) 23.9859 41.5448i 0.0245255 0.0424794i
\(979\) 1256.94 725.692i 1.28390 0.741259i
\(980\) −135.504 + 135.504i −0.138270 + 0.138270i
\(981\) −601.011 161.040i −0.612651 0.164159i
\(982\) −11.3425 + 42.3308i −0.0115504 + 0.0431067i
\(983\) −774.213 774.213i −0.787602 0.787602i 0.193499 0.981101i \(-0.438016\pi\)
−0.981101 + 0.193499i \(0.938016\pi\)
\(984\) −68.1262 117.998i −0.0692340 0.119917i
\(985\) 284.253 + 164.114i 0.288582 + 0.166613i
\(986\) −86.7102 + 23.2339i −0.0879414 + 0.0235638i
\(987\) 210.851i 0.213628i
\(988\) 0 0
\(989\) 1049.42 1.06109
\(990\) −68.4833 255.583i −0.0691751 0.258165i
\(991\) 391.733 678.501i 0.395290 0.684663i −0.597848 0.801609i \(-0.703977\pi\)
0.993138 + 0.116947i \(0.0373107\pi\)
\(992\) −331.107 + 191.165i −0.333777 + 0.192706i
\(993\) 238.795 238.795i 0.240478 0.240478i
\(994\) −137.268 36.7808i −0.138097 0.0370029i
\(995\) 194.208 724.795i 0.195184 0.728438i
\(996\) 66.8897 + 66.8897i 0.0671584 + 0.0671584i
\(997\) −250.817 434.428i −0.251572 0.435735i 0.712387 0.701787i \(-0.247614\pi\)
−0.963959 + 0.266052i \(0.914281\pi\)
\(998\) −85.2046 49.1929i −0.0853753 0.0492915i
\(999\) −387.177 + 103.744i −0.387564 + 0.103848i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.3.f.c.19.1 4
13.2 odd 12 169.3.f.a.89.1 4
13.3 even 3 13.3.f.a.2.1 4
13.4 even 6 169.3.d.c.70.1 4
13.5 odd 4 169.3.f.b.150.1 4
13.6 odd 12 169.3.d.c.99.1 4
13.7 odd 12 169.3.d.a.99.2 4
13.8 odd 4 13.3.f.a.7.1 yes 4
13.9 even 3 169.3.d.a.70.2 4
13.10 even 6 169.3.f.b.80.1 4
13.11 odd 12 inner 169.3.f.c.89.1 4
13.12 even 2 169.3.f.a.19.1 4
39.8 even 4 117.3.bd.b.46.1 4
39.29 odd 6 117.3.bd.b.28.1 4
52.3 odd 6 208.3.bd.d.145.1 4
52.47 even 4 208.3.bd.d.33.1 4
65.3 odd 12 325.3.w.a.249.1 4
65.8 even 4 325.3.w.b.124.1 4
65.29 even 6 325.3.t.a.301.1 4
65.34 odd 4 325.3.t.a.176.1 4
65.42 odd 12 325.3.w.b.249.1 4
65.47 even 4 325.3.w.a.124.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.3.f.a.2.1 4 13.3 even 3
13.3.f.a.7.1 yes 4 13.8 odd 4
117.3.bd.b.28.1 4 39.29 odd 6
117.3.bd.b.46.1 4 39.8 even 4
169.3.d.a.70.2 4 13.9 even 3
169.3.d.a.99.2 4 13.7 odd 12
169.3.d.c.70.1 4 13.4 even 6
169.3.d.c.99.1 4 13.6 odd 12
169.3.f.a.19.1 4 13.12 even 2
169.3.f.a.89.1 4 13.2 odd 12
169.3.f.b.80.1 4 13.10 even 6
169.3.f.b.150.1 4 13.5 odd 4
169.3.f.c.19.1 4 1.1 even 1 trivial
169.3.f.c.89.1 4 13.11 odd 12 inner
208.3.bd.d.33.1 4 52.47 even 4
208.3.bd.d.145.1 4 52.3 odd 6
325.3.t.a.176.1 4 65.34 odd 4
325.3.t.a.301.1 4 65.29 even 6
325.3.w.a.124.1 4 65.47 even 4
325.3.w.a.249.1 4 65.3 odd 12
325.3.w.b.124.1 4 65.8 even 4
325.3.w.b.249.1 4 65.42 odd 12