Properties

Label 117.3.k.a.113.13
Level $117$
Weight $3$
Character 117.113
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 113.13
Character \(\chi\) \(=\) 117.113
Dual form 117.3.k.a.29.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.376029i q^{2} +(-2.92720 + 0.656887i) q^{3} +3.85860 q^{4} +(0.994641 + 0.574256i) q^{5} +(-0.247009 - 1.10071i) q^{6} +(-2.57212 + 4.45503i) q^{7} +2.95506i q^{8} +(8.13700 - 3.84568i) q^{9} +(-0.215937 + 0.374014i) q^{10} +15.0728i q^{11} +(-11.2949 + 2.53467i) q^{12} +(12.9040 + 1.57671i) q^{13} +(-1.67522 - 0.967190i) q^{14} +(-3.28873 - 1.02760i) q^{15} +14.3232 q^{16} +(-24.4307 + 14.1051i) q^{17} +(1.44609 + 3.05975i) q^{18} +(10.6901 + 18.5158i) q^{19} +(3.83792 + 2.21583i) q^{20} +(4.60264 - 14.7304i) q^{21} -5.66781 q^{22} +(12.5928 - 7.27045i) q^{23} +(-1.94114 - 8.65006i) q^{24} +(-11.8405 - 20.5083i) q^{25} +(-0.592890 + 4.85229i) q^{26} +(-21.2924 + 16.6022i) q^{27} +(-9.92477 + 17.1902i) q^{28} -53.9734i q^{29} +(0.386406 - 1.23666i) q^{30} +(20.6940 - 35.8431i) q^{31} +17.2062i q^{32} +(-9.90113 - 44.1211i) q^{33} +(-5.30391 - 9.18664i) q^{34} +(-5.11666 + 2.95411i) q^{35} +(31.3974 - 14.8390i) q^{36} +(26.5470 - 45.9807i) q^{37} +(-6.96249 + 4.01980i) q^{38} +(-38.8084 + 3.86114i) q^{39} +(-1.69696 + 2.93923i) q^{40} +(-24.9941 + 14.4303i) q^{41} +(5.53904 + 1.73073i) q^{42} +(-21.0292 + 36.4236i) q^{43} +58.1599i q^{44} +(10.3018 + 0.847651i) q^{45} +(2.73390 + 4.73525i) q^{46} +(3.48340 - 2.01114i) q^{47} +(-41.9269 + 9.40874i) q^{48} +(11.2684 + 19.5175i) q^{49} +(7.71171 - 4.45236i) q^{50} +(62.2480 - 57.3365i) q^{51} +(49.7915 + 6.08391i) q^{52} +12.6540i q^{53} +(-6.24290 - 8.00658i) q^{54} +(-8.65564 + 14.9920i) q^{55} +(-13.1649 - 7.60076i) q^{56} +(-43.4549 - 47.1774i) q^{57} +20.2956 q^{58} -22.0040i q^{59} +(-12.6899 - 3.96508i) q^{60} +(-5.17426 + 8.96208i) q^{61} +(13.4780 + 7.78155i) q^{62} +(-3.79666 + 46.1421i) q^{63} +50.8229 q^{64} +(11.9294 + 8.97848i) q^{65} +(16.5908 - 3.72311i) q^{66} +(-37.0115 - 64.1058i) q^{67} +(-94.2683 + 54.4258i) q^{68} +(-32.0857 + 29.5541i) q^{69} +(-1.11083 - 1.92401i) q^{70} +(34.1908 - 19.7401i) q^{71} +(11.3642 + 24.0453i) q^{72} -65.2913 q^{73} +(17.2901 + 9.98243i) q^{74} +(48.1310 + 52.2540i) q^{75} +(41.2489 + 71.4453i) q^{76} +(-67.1498 - 38.7690i) q^{77} +(-1.45190 - 14.5931i) q^{78} +(-9.78025 - 16.9399i) q^{79} +(14.2465 + 8.22520i) q^{80} +(51.4215 - 62.5846i) q^{81} +(-5.42622 - 9.39850i) q^{82} +(71.7112 - 41.4025i) q^{83} +(17.7598 - 56.8386i) q^{84} -32.3997 q^{85} +(-13.6963 - 7.90758i) q^{86} +(35.4544 + 157.991i) q^{87} -44.5410 q^{88} +(134.830 + 77.8441i) q^{89} +(-0.318741 + 3.87377i) q^{90} +(-40.2150 + 53.4324i) q^{91} +(48.5905 - 28.0538i) q^{92} +(-37.0306 + 118.513i) q^{93} +(0.756247 + 1.30986i) q^{94} +24.5555i q^{95} +(-11.3025 - 50.3660i) q^{96} +(-9.71984 + 16.8353i) q^{97} +(-7.33915 + 4.23726i) q^{98} +(57.9651 + 122.647i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.376029i 0.188014i 0.995572 + 0.0940072i \(0.0299677\pi\)
−0.995572 + 0.0940072i \(0.970032\pi\)
\(3\) −2.92720 + 0.656887i −0.975733 + 0.218962i
\(4\) 3.85860 0.964651
\(5\) 0.994641 + 0.574256i 0.198928 + 0.114851i 0.596155 0.802869i \(-0.296694\pi\)
−0.397227 + 0.917720i \(0.630028\pi\)
\(6\) −0.247009 1.10071i −0.0411681 0.183452i
\(7\) −2.57212 + 4.45503i −0.367445 + 0.636434i −0.989165 0.146806i \(-0.953101\pi\)
0.621720 + 0.783239i \(0.286434\pi\)
\(8\) 2.95506i 0.369383i
\(9\) 8.13700 3.84568i 0.904111 0.427298i
\(10\) −0.215937 + 0.374014i −0.0215937 + 0.0374014i
\(11\) 15.0728i 1.37025i 0.728424 + 0.685127i \(0.240253\pi\)
−0.728424 + 0.685127i \(0.759747\pi\)
\(12\) −11.2949 + 2.53467i −0.941242 + 0.211222i
\(13\) 12.9040 + 1.57671i 0.992618 + 0.121286i
\(14\) −1.67522 0.967190i −0.119659 0.0690850i
\(15\) −3.28873 1.02760i −0.219249 0.0685064i
\(16\) 14.3232 0.895201
\(17\) −24.4307 + 14.1051i −1.43710 + 0.829709i −0.997647 0.0685572i \(-0.978160\pi\)
−0.439451 + 0.898266i \(0.644827\pi\)
\(18\) 1.44609 + 3.05975i 0.0803382 + 0.169986i
\(19\) 10.6901 + 18.5158i 0.562638 + 0.974518i 0.997265 + 0.0739073i \(0.0235469\pi\)
−0.434627 + 0.900611i \(0.643120\pi\)
\(20\) 3.83792 + 2.21583i 0.191896 + 0.110791i
\(21\) 4.60264 14.7304i 0.219173 0.701446i
\(22\) −5.66781 −0.257628
\(23\) 12.5928 7.27045i 0.547512 0.316106i −0.200606 0.979672i \(-0.564291\pi\)
0.748118 + 0.663566i \(0.230958\pi\)
\(24\) −1.94114 8.65006i −0.0808809 0.360419i
\(25\) −11.8405 20.5083i −0.473618 0.820331i
\(26\) −0.592890 + 4.85229i −0.0228035 + 0.186627i
\(27\) −21.2924 + 16.6022i −0.788609 + 0.614895i
\(28\) −9.92477 + 17.1902i −0.354456 + 0.613936i
\(29\) 53.9734i 1.86115i −0.366100 0.930576i \(-0.619307\pi\)
0.366100 0.930576i \(-0.380693\pi\)
\(30\) 0.386406 1.23666i 0.0128802 0.0412220i
\(31\) 20.6940 35.8431i 0.667549 1.15623i −0.311039 0.950397i \(-0.600677\pi\)
0.978588 0.205831i \(-0.0659897\pi\)
\(32\) 17.2062i 0.537694i
\(33\) −9.90113 44.1211i −0.300034 1.33700i
\(34\) −5.30391 9.18664i −0.155997 0.270195i
\(35\) −5.11666 + 2.95411i −0.146190 + 0.0844030i
\(36\) 31.3974 14.8390i 0.872151 0.412193i
\(37\) 26.5470 45.9807i 0.717486 1.24272i −0.244507 0.969647i \(-0.578626\pi\)
0.961993 0.273074i \(-0.0880405\pi\)
\(38\) −6.96249 + 4.01980i −0.183223 + 0.105784i
\(39\) −38.8084 + 3.86114i −0.995087 + 0.0990035i
\(40\) −1.69696 + 2.93923i −0.0424241 + 0.0734806i
\(41\) −24.9941 + 14.4303i −0.609612 + 0.351959i −0.772813 0.634633i \(-0.781151\pi\)
0.163202 + 0.986593i \(0.447818\pi\)
\(42\) 5.53904 + 1.73073i 0.131882 + 0.0412078i
\(43\) −21.0292 + 36.4236i −0.489050 + 0.847060i −0.999921 0.0125977i \(-0.995990\pi\)
0.510870 + 0.859658i \(0.329323\pi\)
\(44\) 58.1599i 1.32182i
\(45\) 10.3018 + 0.847651i 0.228929 + 0.0188367i
\(46\) 2.73390 + 4.73525i 0.0594326 + 0.102940i
\(47\) 3.48340 2.01114i 0.0741148 0.0427902i −0.462485 0.886627i \(-0.653042\pi\)
0.536599 + 0.843837i \(0.319709\pi\)
\(48\) −41.9269 + 9.40874i −0.873478 + 0.196015i
\(49\) 11.2684 + 19.5175i 0.229968 + 0.398317i
\(50\) 7.71171 4.45236i 0.154234 0.0890471i
\(51\) 62.2480 57.3365i 1.22055 1.12425i
\(52\) 49.7915 + 6.08391i 0.957529 + 0.116998i
\(53\) 12.6540i 0.238755i 0.992849 + 0.119378i \(0.0380899\pi\)
−0.992849 + 0.119378i \(0.961910\pi\)
\(54\) −6.24290 8.00658i −0.115609 0.148270i
\(55\) −8.65564 + 14.9920i −0.157375 + 0.272582i
\(56\) −13.1649 7.60076i −0.235088 0.135728i
\(57\) −43.4549 47.1774i −0.762368 0.827673i
\(58\) 20.2956 0.349923
\(59\) 22.0040i 0.372948i −0.982460 0.186474i \(-0.940294\pi\)
0.982460 0.186474i \(-0.0597061\pi\)
\(60\) −12.6899 3.96508i −0.211499 0.0660847i
\(61\) −5.17426 + 8.96208i −0.0848239 + 0.146919i −0.905316 0.424738i \(-0.860366\pi\)
0.820492 + 0.571658i \(0.193699\pi\)
\(62\) 13.4780 + 7.78155i 0.217388 + 0.125509i
\(63\) −3.79666 + 46.1421i −0.0602644 + 0.732415i
\(64\) 50.8229 0.794107
\(65\) 11.9294 + 8.97848i 0.183530 + 0.138130i
\(66\) 16.5908 3.72311i 0.251376 0.0564108i
\(67\) −37.0115 64.1058i −0.552410 0.956802i −0.998100 0.0616149i \(-0.980375\pi\)
0.445690 0.895187i \(-0.352958\pi\)
\(68\) −94.2683 + 54.4258i −1.38630 + 0.800379i
\(69\) −32.0857 + 29.5541i −0.465011 + 0.428320i
\(70\) −1.11083 1.92401i −0.0158690 0.0274859i
\(71\) 34.1908 19.7401i 0.481561 0.278029i −0.239506 0.970895i \(-0.576985\pi\)
0.721067 + 0.692865i \(0.243652\pi\)
\(72\) 11.3642 + 24.0453i 0.157836 + 0.333963i
\(73\) −65.2913 −0.894402 −0.447201 0.894434i \(-0.647579\pi\)
−0.447201 + 0.894434i \(0.647579\pi\)
\(74\) 17.2901 + 9.98243i 0.233650 + 0.134898i
\(75\) 48.1310 + 52.2540i 0.641747 + 0.696720i
\(76\) 41.2489 + 71.4453i 0.542749 + 0.940069i
\(77\) −67.1498 38.7690i −0.872076 0.503493i
\(78\) −1.45190 14.5931i −0.0186141 0.187091i
\(79\) −9.78025 16.9399i −0.123801 0.214429i 0.797463 0.603368i \(-0.206175\pi\)
−0.921263 + 0.388939i \(0.872842\pi\)
\(80\) 14.2465 + 8.22520i 0.178081 + 0.102815i
\(81\) 51.4215 62.5846i 0.634833 0.772649i
\(82\) −5.42622 9.39850i −0.0661735 0.114616i
\(83\) 71.7112 41.4025i 0.863991 0.498825i −0.00135589 0.999999i \(-0.500432\pi\)
0.865347 + 0.501174i \(0.167098\pi\)
\(84\) 17.7598 56.8386i 0.211426 0.676650i
\(85\) −32.3997 −0.381172
\(86\) −13.6963 7.90758i −0.159260 0.0919486i
\(87\) 35.4544 + 157.991i 0.407522 + 1.81599i
\(88\) −44.5410 −0.506148
\(89\) 134.830 + 77.8441i 1.51494 + 0.874653i 0.999846 + 0.0175212i \(0.00557746\pi\)
0.515097 + 0.857132i \(0.327756\pi\)
\(90\) −0.318741 + 3.87377i −0.00354157 + 0.0430419i
\(91\) −40.2150 + 53.4324i −0.441923 + 0.587169i
\(92\) 48.5905 28.0538i 0.528158 0.304932i
\(93\) −37.0306 + 118.513i −0.398179 + 1.27434i
\(94\) 0.756247 + 1.30986i 0.00804518 + 0.0139347i
\(95\) 24.5555i 0.258479i
\(96\) −11.3025 50.3660i −0.117735 0.524646i
\(97\) −9.71984 + 16.8353i −0.100205 + 0.173559i −0.911769 0.410704i \(-0.865283\pi\)
0.811564 + 0.584263i \(0.198616\pi\)
\(98\) −7.33915 + 4.23726i −0.0748893 + 0.0432374i
\(99\) 57.9651 + 122.647i 0.585507 + 1.23886i
\(100\) −45.6876 79.1333i −0.456876 0.791333i
\(101\) 82.8944i 0.820737i −0.911920 0.410369i \(-0.865400\pi\)
0.911920 0.410369i \(-0.134600\pi\)
\(102\) 21.5602 + 23.4071i 0.211374 + 0.229481i
\(103\) −38.2718 + 66.2886i −0.371571 + 0.643579i −0.989807 0.142413i \(-0.954514\pi\)
0.618237 + 0.785992i \(0.287847\pi\)
\(104\) −4.65929 + 38.1322i −0.0448008 + 0.366656i
\(105\) 13.0370 12.0083i 0.124162 0.114365i
\(106\) −4.75828 −0.0448894
\(107\) 20.6786 + 11.9388i 0.193258 + 0.111578i 0.593507 0.804829i \(-0.297743\pi\)
−0.400249 + 0.916407i \(0.631076\pi\)
\(108\) −82.1591 + 64.0612i −0.760732 + 0.593159i
\(109\) 5.84222 0.0535983 0.0267992 0.999641i \(-0.491469\pi\)
0.0267992 + 0.999641i \(0.491469\pi\)
\(110\) −5.63743 3.25477i −0.0512494 0.0295888i
\(111\) −47.5042 + 152.033i −0.427965 + 1.36967i
\(112\) −36.8410 + 63.8104i −0.328937 + 0.569736i
\(113\) 133.419i 1.18070i −0.807146 0.590351i \(-0.798989\pi\)
0.807146 0.590351i \(-0.201011\pi\)
\(114\) 17.7401 16.3403i 0.155615 0.143336i
\(115\) 16.7004 0.145221
\(116\) 208.262i 1.79536i
\(117\) 111.064 36.7951i 0.949262 0.314488i
\(118\) 8.27412 0.0701197
\(119\) 145.119i 1.21949i
\(120\) 3.03661 9.71841i 0.0253051 0.0809868i
\(121\) −106.189 −0.877596
\(122\) −3.37000 1.94567i −0.0276230 0.0159481i
\(123\) 63.6835 58.6588i 0.517752 0.476900i
\(124\) 79.8499 138.304i 0.643951 1.11536i
\(125\) 55.9106i 0.447285i
\(126\) −17.3508 1.42765i −0.137705 0.0113306i
\(127\) 5.22700 9.05343i 0.0411575 0.0712869i −0.844713 0.535220i \(-0.820229\pi\)
0.885870 + 0.463933i \(0.153562\pi\)
\(128\) 87.9356i 0.686997i
\(129\) 37.6304 120.433i 0.291708 0.933588i
\(130\) −3.37617 + 4.48581i −0.0259705 + 0.0345063i
\(131\) −74.2522 42.8695i −0.566811 0.327248i 0.189064 0.981965i \(-0.439455\pi\)
−0.755875 + 0.654716i \(0.772788\pi\)
\(132\) −38.2045 170.246i −0.289428 1.28974i
\(133\) −109.985 −0.826954
\(134\) 24.1056 13.9174i 0.179893 0.103861i
\(135\) −30.7122 + 4.28587i −0.227498 + 0.0317472i
\(136\) −41.6813 72.1942i −0.306480 0.530839i
\(137\) 96.1691 + 55.5233i 0.701964 + 0.405279i 0.808079 0.589075i \(-0.200508\pi\)
−0.106114 + 0.994354i \(0.533841\pi\)
\(138\) −11.1132 12.0652i −0.0805304 0.0874287i
\(139\) −202.843 −1.45930 −0.729652 0.683818i \(-0.760318\pi\)
−0.729652 + 0.683818i \(0.760318\pi\)
\(140\) −19.7432 + 11.3987i −0.141023 + 0.0814194i
\(141\) −8.87550 + 8.17520i −0.0629468 + 0.0579802i
\(142\) 7.42285 + 12.8567i 0.0522736 + 0.0905405i
\(143\) −23.7655 + 194.500i −0.166192 + 1.36014i
\(144\) 116.548 55.0825i 0.809361 0.382518i
\(145\) 30.9945 53.6841i 0.213755 0.370235i
\(146\) 24.5514i 0.168161i
\(147\) −45.8058 49.7296i −0.311604 0.338296i
\(148\) 102.434 177.421i 0.692123 1.19879i
\(149\) 235.223i 1.57868i −0.613957 0.789340i \(-0.710423\pi\)
0.613957 0.789340i \(-0.289577\pi\)
\(150\) −19.6490 + 18.0987i −0.130993 + 0.120658i
\(151\) 133.267 + 230.825i 0.882561 + 1.52864i 0.848483 + 0.529222i \(0.177516\pi\)
0.0340779 + 0.999419i \(0.489151\pi\)
\(152\) −54.7155 + 31.5900i −0.359970 + 0.207829i
\(153\) −144.549 + 208.725i −0.944764 + 1.36422i
\(154\) 14.5783 25.2503i 0.0946640 0.163963i
\(155\) 41.1662 23.7673i 0.265588 0.153338i
\(156\) −149.746 + 14.8986i −0.959911 + 0.0955038i
\(157\) 29.0426 50.3033i 0.184985 0.320403i −0.758587 0.651572i \(-0.774110\pi\)
0.943571 + 0.331169i \(0.107443\pi\)
\(158\) 6.36989 3.67766i 0.0403158 0.0232763i
\(159\) −8.31226 37.0408i −0.0522784 0.232961i
\(160\) −9.88076 + 17.1140i −0.0617548 + 0.106962i
\(161\) 74.8017i 0.464607i
\(162\) 23.5336 + 19.3360i 0.145269 + 0.119358i
\(163\) −8.10087 14.0311i −0.0496986 0.0860805i 0.840106 0.542422i \(-0.182493\pi\)
−0.889805 + 0.456342i \(0.849159\pi\)
\(164\) −96.4422 + 55.6809i −0.588062 + 0.339518i
\(165\) 15.4887 49.5704i 0.0938711 0.300427i
\(166\) 15.5685 + 26.9655i 0.0937864 + 0.162443i
\(167\) −27.0940 + 15.6427i −0.162240 + 0.0936691i −0.578922 0.815383i \(-0.696526\pi\)
0.416682 + 0.909052i \(0.363193\pi\)
\(168\) 43.5291 + 13.6011i 0.259102 + 0.0809589i
\(169\) 164.028 + 40.6919i 0.970580 + 0.240781i
\(170\) 12.1832i 0.0716659i
\(171\) 158.192 + 109.553i 0.925097 + 0.640658i
\(172\) −81.1432 + 140.544i −0.471763 + 0.817117i
\(173\) 3.74325 + 2.16116i 0.0216373 + 0.0124923i 0.510780 0.859712i \(-0.329357\pi\)
−0.489142 + 0.872204i \(0.662690\pi\)
\(174\) −59.4092 + 13.3319i −0.341432 + 0.0766201i
\(175\) 121.820 0.696115
\(176\) 215.891i 1.22665i
\(177\) 14.4541 + 64.4100i 0.0816617 + 0.363898i
\(178\) −29.2716 + 50.7000i −0.164447 + 0.284831i
\(179\) −1.59962 0.923541i −0.00893642 0.00515945i 0.495525 0.868594i \(-0.334976\pi\)
−0.504462 + 0.863434i \(0.668309\pi\)
\(180\) 39.7505 + 3.27075i 0.220836 + 0.0181708i
\(181\) −10.7339 −0.0593032 −0.0296516 0.999560i \(-0.509440\pi\)
−0.0296516 + 0.999560i \(0.509440\pi\)
\(182\) −20.0921 15.1220i −0.110396 0.0830879i
\(183\) 9.25901 29.6327i 0.0505957 0.161927i
\(184\) 21.4846 + 37.2125i 0.116764 + 0.202242i
\(185\) 52.8094 30.4895i 0.285456 0.164808i
\(186\) −44.5645 13.9246i −0.239594 0.0748634i
\(187\) −212.603 368.239i −1.13691 1.96919i
\(188\) 13.4410 7.76019i 0.0714949 0.0412776i
\(189\) −19.1966 137.561i −0.101569 0.727837i
\(190\) −9.23357 −0.0485977
\(191\) 57.0922 + 32.9622i 0.298912 + 0.172577i 0.641954 0.766743i \(-0.278124\pi\)
−0.343042 + 0.939320i \(0.611457\pi\)
\(192\) −148.769 + 33.3849i −0.774837 + 0.173880i
\(193\) 55.9292 + 96.8723i 0.289789 + 0.501929i 0.973759 0.227581i \(-0.0730816\pi\)
−0.683970 + 0.729510i \(0.739748\pi\)
\(194\) −6.33055 3.65494i −0.0326317 0.0188399i
\(195\) −40.8177 18.4455i −0.209322 0.0945924i
\(196\) 43.4804 + 75.3103i 0.221839 + 0.384236i
\(197\) 10.1710 + 5.87226i 0.0516297 + 0.0298084i 0.525593 0.850736i \(-0.323844\pi\)
−0.473963 + 0.880545i \(0.657177\pi\)
\(198\) −46.1189 + 21.7966i −0.232924 + 0.110084i
\(199\) 9.23826 + 16.0011i 0.0464234 + 0.0804077i 0.888303 0.459257i \(-0.151884\pi\)
−0.841880 + 0.539665i \(0.818551\pi\)
\(200\) 60.6032 34.9893i 0.303016 0.174946i
\(201\) 150.450 + 163.338i 0.748509 + 0.812627i
\(202\) 31.1707 0.154310
\(203\) 240.453 + 138.826i 1.18450 + 0.683871i
\(204\) 240.190 221.239i 1.17740 1.08450i
\(205\) −33.1468 −0.161692
\(206\) −24.9265 14.3913i −0.121002 0.0698607i
\(207\) 74.5076 107.587i 0.359940 0.519746i
\(208\) 184.827 + 22.5836i 0.888593 + 0.108575i
\(209\) −279.085 + 161.130i −1.33534 + 0.770957i
\(210\) 4.51548 + 4.90228i 0.0215023 + 0.0233442i
\(211\) −13.0910 22.6743i −0.0620426 0.107461i 0.833336 0.552767i \(-0.186428\pi\)
−0.895378 + 0.445306i \(0.853095\pi\)
\(212\) 48.8268i 0.230315i
\(213\) −87.1164 + 80.2427i −0.408997 + 0.376726i
\(214\) −4.48934 + 7.77577i −0.0209782 + 0.0363354i
\(215\) −41.8329 + 24.1523i −0.194572 + 0.112336i
\(216\) −49.0604 62.9205i −0.227132 0.291299i
\(217\) 106.455 + 184.385i 0.490575 + 0.849701i
\(218\) 2.19684i 0.0100773i
\(219\) 191.121 42.8890i 0.872698 0.195840i
\(220\) −33.3987 + 57.8482i −0.151812 + 0.262946i
\(221\) −337.494 + 143.492i −1.52712 + 0.649285i
\(222\) −57.1688 17.8629i −0.257517 0.0804637i
\(223\) −322.919 −1.44807 −0.724033 0.689765i \(-0.757714\pi\)
−0.724033 + 0.689765i \(0.757714\pi\)
\(224\) −76.6542 44.2563i −0.342206 0.197573i
\(225\) −175.214 121.341i −0.778729 0.539294i
\(226\) 50.1696 0.221989
\(227\) 219.554 + 126.760i 0.967200 + 0.558413i 0.898382 0.439216i \(-0.144744\pi\)
0.0688188 + 0.997629i \(0.478077\pi\)
\(228\) −167.675 182.039i −0.735418 0.798415i
\(229\) 119.446 206.887i 0.521600 0.903437i −0.478085 0.878314i \(-0.658669\pi\)
0.999684 0.0251232i \(-0.00799781\pi\)
\(230\) 6.27983i 0.0273036i
\(231\) 222.028 + 69.3747i 0.961159 + 0.300323i
\(232\) 159.495 0.687477
\(233\) 42.9145i 0.184182i −0.995751 0.0920912i \(-0.970645\pi\)
0.995751 0.0920912i \(-0.0293551\pi\)
\(234\) 13.8360 + 41.7631i 0.0591282 + 0.178475i
\(235\) 4.61964 0.0196580
\(236\) 84.9045i 0.359765i
\(237\) 39.7563 + 43.1619i 0.167748 + 0.182118i
\(238\) 54.5691 0.229282
\(239\) 67.0524 + 38.7127i 0.280554 + 0.161978i 0.633674 0.773600i \(-0.281546\pi\)
−0.353120 + 0.935578i \(0.614879\pi\)
\(240\) −47.1053 14.7185i −0.196272 0.0613270i
\(241\) 47.8848 82.9389i 0.198692 0.344145i −0.749412 0.662103i \(-0.769664\pi\)
0.948105 + 0.317959i \(0.102997\pi\)
\(242\) 39.9302i 0.165001i
\(243\) −109.410 + 216.976i −0.450247 + 0.892904i
\(244\) −19.9654 + 34.5811i −0.0818254 + 0.141726i
\(245\) 25.8839i 0.105649i
\(246\) 22.0574 + 23.9469i 0.0896642 + 0.0973450i
\(247\) 108.752 + 255.784i 0.440290 + 1.03556i
\(248\) 105.919 + 61.1521i 0.427091 + 0.246581i
\(249\) −182.716 + 168.300i −0.733801 + 0.675902i
\(250\) 21.0240 0.0840961
\(251\) −365.360 + 210.940i −1.45562 + 0.840400i −0.998791 0.0491566i \(-0.984347\pi\)
−0.456825 + 0.889557i \(0.651013\pi\)
\(252\) −14.6498 + 178.044i −0.0581341 + 0.706524i
\(253\) 109.586 + 189.808i 0.433146 + 0.750231i
\(254\) 3.40435 + 1.96550i 0.0134030 + 0.00773820i
\(255\) 94.8403 21.2829i 0.371923 0.0834624i
\(256\) 170.225 0.664942
\(257\) 336.324 194.177i 1.30865 0.755552i 0.326783 0.945100i \(-0.394035\pi\)
0.981872 + 0.189548i \(0.0607022\pi\)
\(258\) 45.2863 + 14.1501i 0.175528 + 0.0548454i
\(259\) 136.564 + 236.535i 0.527273 + 0.913264i
\(260\) 46.0309 + 34.6444i 0.177042 + 0.133248i
\(261\) −207.564 439.181i −0.795266 1.68269i
\(262\) 16.1202 27.9210i 0.0615275 0.106569i
\(263\) 159.385i 0.606027i −0.952986 0.303014i \(-0.902007\pi\)
0.952986 0.303014i \(-0.0979928\pi\)
\(264\) 130.381 29.2584i 0.493866 0.110827i
\(265\) −7.26665 + 12.5862i −0.0274213 + 0.0474951i
\(266\) 41.3575i 0.155479i
\(267\) −445.809 139.297i −1.66970 0.521712i
\(268\) −142.813 247.359i −0.532883 0.922980i
\(269\) −138.125 + 79.7468i −0.513478 + 0.296456i −0.734262 0.678866i \(-0.762472\pi\)
0.220784 + 0.975323i \(0.429138\pi\)
\(270\) −1.61161 11.5487i −0.00596894 0.0427729i
\(271\) −96.7532 + 167.581i −0.357023 + 0.618382i −0.987462 0.157857i \(-0.949542\pi\)
0.630439 + 0.776239i \(0.282875\pi\)
\(272\) −349.926 + 202.030i −1.28649 + 0.742757i
\(273\) 82.6182 182.824i 0.302631 0.669685i
\(274\) −20.8784 + 36.1624i −0.0761984 + 0.131979i
\(275\) 309.117 178.469i 1.12406 0.648977i
\(276\) −123.806 + 114.037i −0.448573 + 0.413179i
\(277\) 160.981 278.828i 0.581159 1.00660i −0.414183 0.910194i \(-0.635933\pi\)
0.995342 0.0964039i \(-0.0307340\pi\)
\(278\) 76.2750i 0.274370i
\(279\) 30.5461 371.238i 0.109484 1.33060i
\(280\) −8.72957 15.1201i −0.0311770 0.0540002i
\(281\) −357.552 + 206.433i −1.27243 + 0.734637i −0.975444 0.220246i \(-0.929314\pi\)
−0.296984 + 0.954883i \(0.595981\pi\)
\(282\) −3.07411 3.33745i −0.0109011 0.0118349i
\(283\) −243.879 422.411i −0.861764 1.49262i −0.870225 0.492654i \(-0.836027\pi\)
0.00846154 0.999964i \(-0.497307\pi\)
\(284\) 131.929 76.1692i 0.464538 0.268201i
\(285\) −16.1302 71.8788i −0.0565971 0.252206i
\(286\) −73.1376 8.93651i −0.255726 0.0312465i
\(287\) 148.466i 0.517303i
\(288\) 66.1695 + 140.007i 0.229755 + 0.486135i
\(289\) 253.405 438.911i 0.876835 1.51872i
\(290\) 20.1868 + 11.6548i 0.0696096 + 0.0401891i
\(291\) 17.3931 55.6650i 0.0597700 0.191289i
\(292\) −251.933 −0.862785
\(293\) 548.637i 1.87248i 0.351360 + 0.936240i \(0.385719\pi\)
−0.351360 + 0.936240i \(0.614281\pi\)
\(294\) 18.6998 17.2243i 0.0636046 0.0585861i
\(295\) 12.6359 21.8860i 0.0428336 0.0741899i
\(296\) 135.876 + 78.4479i 0.459040 + 0.265027i
\(297\) −250.241 320.937i −0.842562 1.08059i
\(298\) 88.4508 0.296815
\(299\) 173.961 73.9629i 0.581810 0.247367i
\(300\) 185.718 + 201.627i 0.619062 + 0.672091i
\(301\) −108.179 187.371i −0.359398 0.622496i
\(302\) −86.7968 + 50.1122i −0.287407 + 0.165934i
\(303\) 54.4523 + 242.649i 0.179711 + 0.800821i
\(304\) 153.117 + 265.206i 0.503674 + 0.872390i
\(305\) −10.2931 + 5.94270i −0.0337477 + 0.0194843i
\(306\) −78.4868 54.3545i −0.256493 0.177629i
\(307\) 78.3446 0.255194 0.127597 0.991826i \(-0.459274\pi\)
0.127597 + 0.991826i \(0.459274\pi\)
\(308\) −259.104 149.594i −0.841248 0.485695i
\(309\) 68.4850 219.180i 0.221634 0.709322i
\(310\) 8.93720 + 15.4797i 0.0288297 + 0.0499345i
\(311\) −390.829 225.645i −1.25668 0.725547i −0.284255 0.958749i \(-0.591746\pi\)
−0.972428 + 0.233202i \(0.925080\pi\)
\(312\) −11.4099 114.681i −0.0365702 0.367568i
\(313\) 117.824 + 204.077i 0.376435 + 0.652004i 0.990541 0.137220i \(-0.0438166\pi\)
−0.614106 + 0.789224i \(0.710483\pi\)
\(314\) 18.9155 + 10.9209i 0.0602404 + 0.0347798i
\(315\) −30.2737 + 43.7146i −0.0961070 + 0.138777i
\(316\) −37.7381 65.3643i −0.119424 0.206849i
\(317\) 107.908 62.3008i 0.340404 0.196532i −0.320047 0.947402i \(-0.603699\pi\)
0.660451 + 0.750869i \(0.270365\pi\)
\(318\) 13.9284 3.12565i 0.0438001 0.00982909i
\(319\) 813.530 2.55025
\(320\) 50.5505 + 29.1853i 0.157970 + 0.0912042i
\(321\) −68.3730 21.3638i −0.213000 0.0665538i
\(322\) −28.1276 −0.0873528
\(323\) −522.334 301.570i −1.61713 0.933652i
\(324\) 198.415 241.489i 0.612392 0.745337i
\(325\) −120.454 283.308i −0.370628 0.871718i
\(326\) 5.27611 3.04616i 0.0161844 0.00934406i
\(327\) −17.1013 + 3.83768i −0.0522977 + 0.0117360i
\(328\) −42.6425 73.8590i −0.130008 0.225180i
\(329\) 20.6915i 0.0628922i
\(330\) 18.6399 + 5.82421i 0.0564846 + 0.0176491i
\(331\) −167.292 + 289.758i −0.505413 + 0.875401i 0.494567 + 0.869139i \(0.335327\pi\)
−0.999980 + 0.00626172i \(0.998007\pi\)
\(332\) 276.705 159.756i 0.833449 0.481192i
\(333\) 39.1856 476.236i 0.117674 1.43014i
\(334\) −5.88212 10.1881i −0.0176111 0.0305034i
\(335\) 85.0163i 0.253780i
\(336\) 65.9246 210.986i 0.196204 0.627935i
\(337\) −185.957 + 322.088i −0.551802 + 0.955750i 0.446342 + 0.894862i \(0.352726\pi\)
−0.998145 + 0.0608873i \(0.980607\pi\)
\(338\) −15.3013 + 61.6793i −0.0452702 + 0.182483i
\(339\) 87.6415 + 390.545i 0.258530 + 1.15205i
\(340\) −125.017 −0.367698
\(341\) 540.255 + 311.916i 1.58433 + 0.914711i
\(342\) −41.1949 + 59.4846i −0.120453 + 0.173932i
\(343\) −368.002 −1.07289
\(344\) −107.634 62.1425i −0.312889 0.180647i
\(345\) −48.8854 + 10.9703i −0.141697 + 0.0317979i
\(346\) −0.812660 + 1.40757i −0.00234873 + 0.00406812i
\(347\) 170.800i 0.492219i −0.969242 0.246110i \(-0.920848\pi\)
0.969242 0.246110i \(-0.0791523\pi\)
\(348\) 136.805 + 609.624i 0.393116 + 1.75179i
\(349\) 134.718 0.386010 0.193005 0.981198i \(-0.438177\pi\)
0.193005 + 0.981198i \(0.438177\pi\)
\(350\) 45.8079i 0.130880i
\(351\) −300.935 + 180.663i −0.857365 + 0.514709i
\(352\) −259.345 −0.736777
\(353\) 126.976i 0.359705i 0.983694 + 0.179853i \(0.0575621\pi\)
−0.983694 + 0.179853i \(0.942438\pi\)
\(354\) −24.2200 + 5.43517i −0.0684181 + 0.0153536i
\(355\) 45.3435 0.127728
\(356\) 520.255 + 300.370i 1.46139 + 0.843735i
\(357\) 95.3270 + 424.793i 0.267023 + 1.18990i
\(358\) 0.347278 0.601503i 0.000970051 0.00168018i
\(359\) 443.856i 1.23637i −0.786034 0.618184i \(-0.787869\pi\)
0.786034 0.618184i \(-0.212131\pi\)
\(360\) −2.50486 + 30.4424i −0.00695795 + 0.0845624i
\(361\) −48.0575 + 83.2381i −0.133123 + 0.230576i
\(362\) 4.03625i 0.0111499i
\(363\) 310.837 69.7543i 0.856300 0.192161i
\(364\) −155.174 + 206.174i −0.426301 + 0.566413i
\(365\) −64.9414 37.4939i −0.177922 0.102723i
\(366\) 11.1428 + 3.48166i 0.0304447 + 0.00951272i
\(367\) −116.173 −0.316547 −0.158274 0.987395i \(-0.550593\pi\)
−0.158274 + 0.987395i \(0.550593\pi\)
\(368\) 180.369 104.136i 0.490134 0.282979i
\(369\) −147.882 + 213.539i −0.400765 + 0.578696i
\(370\) 11.4649 + 19.8579i 0.0309863 + 0.0536699i
\(371\) −56.3741 32.5476i −0.151952 0.0877294i
\(372\) −142.887 + 457.296i −0.384104 + 1.22929i
\(373\) 210.987 0.565649 0.282825 0.959172i \(-0.408729\pi\)
0.282825 + 0.959172i \(0.408729\pi\)
\(374\) 138.468 79.9447i 0.370236 0.213756i
\(375\) 36.7270 + 163.662i 0.0979386 + 0.436431i
\(376\) 5.94304 + 10.2936i 0.0158060 + 0.0273767i
\(377\) 85.1006 696.474i 0.225731 1.84741i
\(378\) 51.7270 7.21848i 0.136844 0.0190965i
\(379\) −190.883 + 330.619i −0.503650 + 0.872347i 0.496341 + 0.868127i \(0.334676\pi\)
−0.999991 + 0.00421947i \(0.998657\pi\)
\(380\) 94.7498i 0.249342i
\(381\) −9.35339 + 29.9348i −0.0245496 + 0.0785689i
\(382\) −12.3947 + 21.4683i −0.0324470 + 0.0561998i
\(383\) 253.952i 0.663061i −0.943445 0.331530i \(-0.892435\pi\)
0.943445 0.331530i \(-0.107565\pi\)
\(384\) −57.7638 257.405i −0.150427 0.670326i
\(385\) −44.5266 77.1224i −0.115654 0.200318i
\(386\) −36.4268 + 21.0310i −0.0943699 + 0.0544845i
\(387\) −31.0408 + 377.250i −0.0802089 + 0.974806i
\(388\) −37.5050 + 64.9606i −0.0966624 + 0.167424i
\(389\) −291.388 + 168.233i −0.749070 + 0.432476i −0.825358 0.564610i \(-0.809027\pi\)
0.0762879 + 0.997086i \(0.475693\pi\)
\(390\) 6.93605 15.3486i 0.0177847 0.0393555i
\(391\) −205.100 + 355.244i −0.524553 + 0.908552i
\(392\) −57.6755 + 33.2990i −0.147131 + 0.0849463i
\(393\) 245.512 + 76.7124i 0.624711 + 0.195197i
\(394\) −2.20814 + 3.82461i −0.00560441 + 0.00970713i
\(395\) 22.4655i 0.0568746i
\(396\) 223.664 + 473.247i 0.564809 + 1.19507i
\(397\) −124.854 216.254i −0.314494 0.544720i 0.664835 0.746990i \(-0.268502\pi\)
−0.979330 + 0.202269i \(0.935168\pi\)
\(398\) −6.01689 + 3.47385i −0.0151178 + 0.00872828i
\(399\) 321.948 72.2477i 0.806887 0.181072i
\(400\) −169.594 293.745i −0.423984 0.734361i
\(401\) −487.509 + 281.464i −1.21573 + 0.701904i −0.964003 0.265893i \(-0.914333\pi\)
−0.251731 + 0.967797i \(0.581000\pi\)
\(402\) −61.4198 + 56.5736i −0.152786 + 0.140730i
\(403\) 323.550 429.892i 0.802854 1.06673i
\(404\) 319.857i 0.791724i
\(405\) 87.0855 32.7201i 0.215026 0.0807903i
\(406\) −52.2025 + 90.4174i −0.128578 + 0.222703i
\(407\) 693.058 + 400.137i 1.70284 + 0.983138i
\(408\) 169.433 + 183.947i 0.415277 + 0.450850i
\(409\) −740.437 −1.81036 −0.905179 0.425030i \(-0.860264\pi\)
−0.905179 + 0.425030i \(0.860264\pi\)
\(410\) 12.4642i 0.0304004i
\(411\) −317.979 99.3554i −0.773671 0.241741i
\(412\) −147.676 + 255.782i −0.358436 + 0.620829i
\(413\) 98.0284 + 56.5967i 0.237357 + 0.137038i
\(414\) 40.4560 + 28.0170i 0.0977198 + 0.0676740i
\(415\) 95.1026 0.229163
\(416\) −27.1292 + 222.029i −0.0652145 + 0.533724i
\(417\) 593.763 133.245i 1.42389 0.319533i
\(418\) −60.5896 104.944i −0.144951 0.251063i
\(419\) 387.326 223.623i 0.924405 0.533705i 0.0393673 0.999225i \(-0.487466\pi\)
0.885038 + 0.465519i \(0.154132\pi\)
\(420\) 50.3045 46.3354i 0.119773 0.110322i
\(421\) −159.450 276.175i −0.378741 0.655999i 0.612138 0.790751i \(-0.290310\pi\)
−0.990879 + 0.134752i \(0.956976\pi\)
\(422\) 8.52618 4.92259i 0.0202042 0.0116649i
\(423\) 20.6102 29.7607i 0.0487238 0.0703562i
\(424\) −37.3934 −0.0881920
\(425\) 578.541 + 334.021i 1.36127 + 0.785931i
\(426\) −30.1736 32.7583i −0.0708300 0.0768974i
\(427\) −26.6176 46.1030i −0.0623362 0.107970i
\(428\) 79.7906 + 46.0671i 0.186427 + 0.107634i
\(429\) −58.1981 584.951i −0.135660 1.36352i
\(430\) −9.08195 15.7304i −0.0211208 0.0365823i
\(431\) 101.578 + 58.6459i 0.235679 + 0.136069i 0.613189 0.789936i \(-0.289886\pi\)
−0.377510 + 0.926005i \(0.623220\pi\)
\(432\) −304.976 + 237.796i −0.705964 + 0.550455i
\(433\) 211.520 + 366.363i 0.488498 + 0.846104i 0.999912 0.0132303i \(-0.00421145\pi\)
−0.511414 + 0.859334i \(0.670878\pi\)
\(434\) −69.3341 + 40.0301i −0.159756 + 0.0922352i
\(435\) −55.4628 + 177.504i −0.127501 + 0.408055i
\(436\) 22.5428 0.0517037
\(437\) 269.237 + 155.444i 0.616103 + 0.355707i
\(438\) 16.1275 + 71.8670i 0.0368208 + 0.164080i
\(439\) −268.616 −0.611882 −0.305941 0.952050i \(-0.598971\pi\)
−0.305941 + 0.952050i \(0.598971\pi\)
\(440\) −44.3023 25.5780i −0.100687 0.0581317i
\(441\) 166.749 + 115.479i 0.378117 + 0.261858i
\(442\) −53.9571 126.907i −0.122075 0.287121i
\(443\) 33.2832 19.2161i 0.0751314 0.0433771i −0.461964 0.886899i \(-0.652855\pi\)
0.537095 + 0.843522i \(0.319522\pi\)
\(444\) −183.300 + 586.635i −0.412837 + 1.32125i
\(445\) 89.4049 + 154.854i 0.200910 + 0.347986i
\(446\) 121.427i 0.272257i
\(447\) 154.515 + 688.546i 0.345672 + 1.54037i
\(448\) −130.722 + 226.418i −0.291791 + 0.505396i
\(449\) −521.983 + 301.367i −1.16254 + 0.671196i −0.951913 0.306370i \(-0.900886\pi\)
−0.210632 + 0.977565i \(0.567552\pi\)
\(450\) 45.6278 65.8856i 0.101395 0.146412i
\(451\) −217.505 376.730i −0.482274 0.835323i
\(452\) 514.812i 1.13897i
\(453\) −541.724 588.129i −1.19586 1.29830i
\(454\) −47.6654 + 82.5589i −0.104990 + 0.181848i
\(455\) −70.6833 + 30.0524i −0.155348 + 0.0660491i
\(456\) 139.412 128.412i 0.305728 0.281605i
\(457\) 259.602 0.568058 0.284029 0.958816i \(-0.408329\pi\)
0.284029 + 0.958816i \(0.408329\pi\)
\(458\) 77.7955 + 44.9153i 0.169859 + 0.0980683i
\(459\) 286.014 705.933i 0.623125 1.53798i
\(460\) 64.4402 0.140087
\(461\) −462.851 267.227i −1.00402 0.579669i −0.0945820 0.995517i \(-0.530151\pi\)
−0.909434 + 0.415848i \(0.863485\pi\)
\(462\) −26.0869 + 83.4889i −0.0564651 + 0.180712i
\(463\) −307.484 + 532.579i −0.664113 + 1.15028i 0.315412 + 0.948955i \(0.397857\pi\)
−0.979525 + 0.201323i \(0.935476\pi\)
\(464\) 773.073i 1.66610i
\(465\) −104.889 + 96.6132i −0.225568 + 0.207770i
\(466\) 16.1371 0.0346290
\(467\) 247.090i 0.529100i −0.964372 0.264550i \(-0.914777\pi\)
0.964372 0.264550i \(-0.0852234\pi\)
\(468\) 428.550 141.977i 0.915706 0.303371i
\(469\) 380.791 0.811921
\(470\) 1.73712i 0.00369599i
\(471\) −51.9700 + 166.325i −0.110340 + 0.353133i
\(472\) 65.0230 0.137761
\(473\) −549.005 316.968i −1.16069 0.670123i
\(474\) −16.2301 + 14.9495i −0.0342408 + 0.0315391i
\(475\) 253.152 438.472i 0.532952 0.923099i
\(476\) 559.958i 1.17638i
\(477\) 48.6633 + 102.966i 0.102020 + 0.215861i
\(478\) −14.5571 + 25.2136i −0.0304542 + 0.0527482i
\(479\) 820.294i 1.71251i 0.516550 + 0.856257i \(0.327216\pi\)
−0.516550 + 0.856257i \(0.672784\pi\)
\(480\) 17.6810 56.5866i 0.0368354 0.117889i
\(481\) 415.061 551.479i 0.862913 1.14653i
\(482\) 31.1874 + 18.0061i 0.0647042 + 0.0373570i
\(483\) −49.1363 218.960i −0.101731 0.453332i
\(484\) −409.742 −0.846573
\(485\) −19.3355 + 11.1634i −0.0398670 + 0.0230172i
\(486\) −81.5892 41.1413i −0.167879 0.0846529i
\(487\) −367.489 636.510i −0.754598 1.30700i −0.945574 0.325407i \(-0.894499\pi\)
0.190976 0.981595i \(-0.438835\pi\)
\(488\) −26.4835 15.2903i −0.0542695 0.0313325i
\(489\) 32.9297 + 35.7505i 0.0673410 + 0.0731095i
\(490\) −9.73309 −0.0198635
\(491\) 113.097 65.2966i 0.230340 0.132987i −0.380389 0.924827i \(-0.624210\pi\)
0.610729 + 0.791840i \(0.290876\pi\)
\(492\) 245.729 226.341i 0.499450 0.460042i
\(493\) 761.298 + 1318.61i 1.54421 + 2.67466i
\(494\) −96.1823 + 40.8937i −0.194701 + 0.0827808i
\(495\) −12.7765 + 155.277i −0.0258110 + 0.313691i
\(496\) 296.405 513.388i 0.597590 1.03506i
\(497\) 203.095i 0.408642i
\(498\) −63.2855 68.7066i −0.127079 0.137965i
\(499\) −14.4740 + 25.0696i −0.0290059 + 0.0502397i −0.880164 0.474670i \(-0.842568\pi\)
0.851158 + 0.524909i \(0.175901\pi\)
\(500\) 215.737i 0.431474i
\(501\) 69.0341 63.5871i 0.137793 0.126920i
\(502\) −79.3197 137.386i −0.158007 0.273677i
\(503\) −255.144 + 147.308i −0.507245 + 0.292858i −0.731701 0.681626i \(-0.761273\pi\)
0.224455 + 0.974484i \(0.427940\pi\)
\(504\) −136.353 11.2194i −0.270541 0.0222606i
\(505\) 47.6026 82.4502i 0.0942627 0.163268i
\(506\) −71.3735 + 41.2075i −0.141054 + 0.0814377i
\(507\) −506.873 11.3655i −0.999749 0.0224172i
\(508\) 20.1689 34.9336i 0.0397026 0.0687669i
\(509\) 538.032 310.633i 1.05704 0.610280i 0.132425 0.991193i \(-0.457724\pi\)
0.924611 + 0.380913i \(0.124390\pi\)
\(510\) 8.00300 + 35.6627i 0.0156921 + 0.0699269i
\(511\) 167.937 290.875i 0.328644 0.569227i
\(512\) 415.752i 0.812016i
\(513\) −535.022 216.768i −1.04293 0.422550i
\(514\) 73.0161 + 126.468i 0.142055 + 0.246046i
\(515\) −76.1333 + 43.9556i −0.147832 + 0.0853507i
\(516\) 145.201 464.703i 0.281397 0.900587i
\(517\) 30.3135 + 52.5045i 0.0586334 + 0.101556i
\(518\) −88.9441 + 51.3519i −0.171707 + 0.0991350i
\(519\) −12.3769 3.86727i −0.0238475 0.00745138i
\(520\) −26.5320 + 35.2522i −0.0510230 + 0.0677927i
\(521\) 166.583i 0.319738i 0.987138 + 0.159869i \(0.0511071\pi\)
−0.987138 + 0.159869i \(0.948893\pi\)
\(522\) 165.145 78.0502i 0.316370 0.149522i
\(523\) −51.1561 + 88.6049i −0.0978127 + 0.169417i −0.910779 0.412894i \(-0.864518\pi\)
0.812966 + 0.582311i \(0.197851\pi\)
\(524\) −286.510 165.417i −0.546775 0.315680i
\(525\) −356.592 + 80.0221i −0.679223 + 0.152423i
\(526\) 59.9334 0.113942
\(527\) 1167.56i 2.21548i
\(528\) −141.816 631.956i −0.268591 1.19689i
\(529\) −158.781 + 275.017i −0.300153 + 0.519881i
\(530\) −4.73278 2.73247i −0.00892977 0.00515560i
\(531\) −84.6202 179.046i −0.159360 0.337187i
\(532\) −424.388 −0.797722
\(533\) −345.277 + 146.801i −0.647799 + 0.275424i
\(534\) 52.3798 167.637i 0.0980895 0.313927i
\(535\) 13.7119 + 23.7497i 0.0256297 + 0.0443919i
\(536\) 189.436 109.371i 0.353426 0.204051i
\(537\) 5.28907 + 1.65262i 0.00984929 + 0.00307750i
\(538\) −29.9871 51.9392i −0.0557381 0.0965412i
\(539\) −294.184 + 169.847i −0.545795 + 0.315115i
\(540\) −118.506 + 16.5375i −0.219456 + 0.0306250i
\(541\) 638.732 1.18065 0.590325 0.807166i \(-0.299000\pi\)
0.590325 + 0.807166i \(0.299000\pi\)
\(542\) −63.0155 36.3820i −0.116265 0.0671255i
\(543\) 31.4202 7.05095i 0.0578641 0.0129852i
\(544\) −242.694 420.359i −0.446129 0.772719i
\(545\) 5.81091 + 3.35493i 0.0106622 + 0.00615583i
\(546\) 68.7471 + 31.0668i 0.125911 + 0.0568990i
\(547\) −250.228 433.408i −0.457456 0.792337i 0.541370 0.840785i \(-0.317906\pi\)
−0.998826 + 0.0484477i \(0.984573\pi\)
\(548\) 371.078 + 214.242i 0.677150 + 0.390953i
\(549\) −7.63764 + 92.8229i −0.0139119 + 0.169076i
\(550\) 67.1094 + 116.237i 0.122017 + 0.211340i
\(551\) 999.363 576.982i 1.81373 1.04715i
\(552\) −87.3342 94.8153i −0.158214 0.171767i
\(553\) 100.624 0.181960
\(554\) 104.847 + 60.5336i 0.189255 + 0.109266i
\(555\) −134.555 + 123.939i −0.242442 + 0.223313i
\(556\) −782.692 −1.40772
\(557\) −217.719 125.700i −0.390877 0.225673i 0.291663 0.956521i \(-0.405791\pi\)
−0.682540 + 0.730848i \(0.739125\pi\)
\(558\) 139.596 + 11.4862i 0.250172 + 0.0205846i
\(559\) −328.791 + 436.854i −0.588176 + 0.781492i
\(560\) −73.2871 + 42.3123i −0.130870 + 0.0755577i
\(561\) 864.221 + 938.252i 1.54050 + 1.67246i
\(562\) −77.6247 134.450i −0.138122 0.239235i
\(563\) 751.814i 1.33537i −0.744443 0.667685i \(-0.767285\pi\)
0.744443 0.667685i \(-0.232715\pi\)
\(564\) −34.2470 + 31.5449i −0.0607217 + 0.0559306i
\(565\) 76.6169 132.704i 0.135605 0.234875i
\(566\) 158.839 91.7056i 0.280634 0.162024i
\(567\) 146.555 + 390.059i 0.258474 + 0.687935i
\(568\) 58.3332 + 101.036i 0.102699 + 0.177880i
\(569\) 536.258i 0.942456i −0.882011 0.471228i \(-0.843811\pi\)
0.882011 0.471228i \(-0.156189\pi\)
\(570\) 27.0285 6.06541i 0.0474184 0.0106411i
\(571\) −50.9656 + 88.2750i −0.0892567 + 0.154597i −0.907197 0.420706i \(-0.861782\pi\)
0.817940 + 0.575303i \(0.195116\pi\)
\(572\) −91.7015 + 750.497i −0.160317 + 1.31206i
\(573\) −188.773 58.9838i −0.329447 0.102939i
\(574\) 55.8275 0.0972605
\(575\) −298.209 172.171i −0.518624 0.299428i
\(576\) 413.545 195.448i 0.717961 0.339320i
\(577\) −6.86778 −0.0119026 −0.00595128 0.999982i \(-0.501894\pi\)
−0.00595128 + 0.999982i \(0.501894\pi\)
\(578\) 165.043 + 95.2877i 0.285542 + 0.164858i
\(579\) −227.350 246.825i −0.392660 0.426296i
\(580\) 119.596 207.146i 0.206199 0.357148i
\(581\) 425.968i 0.733164i
\(582\) 20.9317 + 6.54029i 0.0359651 + 0.0112376i
\(583\) −190.731 −0.327155
\(584\) 192.940i 0.330377i
\(585\) 131.598 + 27.1811i 0.224954 + 0.0464634i
\(586\) −206.303 −0.352054
\(587\) 522.260i 0.889711i −0.895602 0.444855i \(-0.853255\pi\)
0.895602 0.444855i \(-0.146745\pi\)
\(588\) −176.746 191.887i −0.300589 0.326338i
\(589\) 884.886 1.50235
\(590\) 8.22978 + 4.75147i 0.0139488 + 0.00805333i
\(591\) −33.6301 10.5080i −0.0569037 0.0177801i
\(592\) 380.238 658.592i 0.642294 1.11249i
\(593\) 624.635i 1.05335i 0.850068 + 0.526674i \(0.176561\pi\)
−0.850068 + 0.526674i \(0.823439\pi\)
\(594\) 120.681 94.0979i 0.203167 0.158414i
\(595\) 83.3357 144.342i 0.140060 0.242591i
\(596\) 907.633i 1.52287i
\(597\) −37.5532 40.7700i −0.0629032 0.0682915i
\(598\) 27.8122 + 65.4144i 0.0465087 + 0.109389i
\(599\) −472.937 273.050i −0.789544 0.455843i 0.0502581 0.998736i \(-0.483996\pi\)
−0.839802 + 0.542893i \(0.817329\pi\)
\(600\) −154.414 + 142.230i −0.257356 + 0.237050i
\(601\) 563.710 0.937953 0.468977 0.883211i \(-0.344623\pi\)
0.468977 + 0.883211i \(0.344623\pi\)
\(602\) 70.4571 40.6784i 0.117038 0.0675721i
\(603\) −547.693 379.294i −0.908279 0.629012i
\(604\) 514.223 + 890.661i 0.851363 + 1.47460i
\(605\) −105.620 60.9797i −0.174579 0.100793i
\(606\) −91.2429 + 20.4756i −0.150566 + 0.0337882i
\(607\) 201.365 0.331739 0.165869 0.986148i \(-0.446957\pi\)
0.165869 + 0.986148i \(0.446957\pi\)
\(608\) −318.587 + 183.936i −0.523992 + 0.302527i
\(609\) −795.048 248.420i −1.30550 0.407915i
\(610\) −2.23463 3.87049i −0.00366332 0.00634506i
\(611\) 48.1208 20.4595i 0.0787575 0.0334852i
\(612\) −557.756 + 805.388i −0.911367 + 1.31599i
\(613\) −317.568 + 550.044i −0.518055 + 0.897298i 0.481725 + 0.876322i \(0.340010\pi\)
−0.999780 + 0.0209752i \(0.993323\pi\)
\(614\) 29.4598i 0.0479802i
\(615\) 97.0274 21.7737i 0.157768 0.0354044i
\(616\) 114.565 198.432i 0.185982 0.322130i
\(617\) 64.1839i 0.104026i 0.998646 + 0.0520129i \(0.0165637\pi\)
−0.998646 + 0.0520129i \(0.983436\pi\)
\(618\) 82.4182 + 25.7523i 0.133363 + 0.0416704i
\(619\) 3.79581 + 6.57454i 0.00613217 + 0.0106212i 0.869075 0.494680i \(-0.164715\pi\)
−0.862943 + 0.505301i \(0.831381\pi\)
\(620\) 158.844 91.7086i 0.256200 0.147917i
\(621\) −147.426 + 363.873i −0.237401 + 0.585947i
\(622\) 84.8491 146.963i 0.136413 0.236275i
\(623\) −693.597 + 400.448i −1.11332 + 0.642774i
\(624\) −555.861 + 55.3039i −0.890803 + 0.0886281i
\(625\) −263.904 + 457.096i −0.422247 + 0.731354i
\(626\) −76.7389 + 44.3052i −0.122586 + 0.0707752i
\(627\) 711.095 654.987i 1.13412 1.04464i
\(628\) 112.064 194.100i 0.178446 0.309077i
\(629\) 1497.79i 2.38122i
\(630\) −16.4380 11.3838i −0.0260920 0.0180695i
\(631\) 423.578 + 733.658i 0.671280 + 1.16269i 0.977541 + 0.210743i \(0.0675884\pi\)
−0.306262 + 0.951947i \(0.599078\pi\)
\(632\) 50.0584 28.9012i 0.0792064 0.0457298i
\(633\) 53.2144 + 57.7728i 0.0840669 + 0.0912682i
\(634\) 23.4269 + 40.5766i 0.0369509 + 0.0640009i
\(635\) 10.3980 6.00327i 0.0163748 0.00945398i
\(636\) −32.0737 142.926i −0.0504304 0.224726i
\(637\) 114.635 + 269.622i 0.179960 + 0.423268i
\(638\) 305.911i 0.479484i
\(639\) 202.297 292.112i 0.316583 0.457139i
\(640\) −50.4976 + 87.4644i −0.0789025 + 0.136663i
\(641\) 928.289 + 535.948i 1.44819 + 0.836112i 0.998374 0.0570099i \(-0.0181567\pi\)
0.449815 + 0.893122i \(0.351490\pi\)
\(642\) 8.03340 25.7102i 0.0125131 0.0400471i
\(643\) 411.550 0.640047 0.320023 0.947410i \(-0.396309\pi\)
0.320023 + 0.947410i \(0.396309\pi\)
\(644\) 288.630i 0.448183i
\(645\) 106.588 98.1780i 0.165253 0.152214i
\(646\) 113.399 196.413i 0.175540 0.304044i
\(647\) 872.018 + 503.460i 1.34779 + 0.778145i 0.987936 0.154865i \(-0.0494943\pi\)
0.359851 + 0.933010i \(0.382828\pi\)
\(648\) 184.941 + 151.954i 0.285403 + 0.234496i
\(649\) 331.661 0.511034
\(650\) 106.532 45.2942i 0.163896 0.0696834i
\(651\) −432.734 469.803i −0.664723 0.721664i
\(652\) −31.2580 54.1405i −0.0479418 0.0830376i
\(653\) −999.048 + 576.801i −1.52994 + 0.883309i −0.530573 + 0.847639i \(0.678023\pi\)
−0.999364 + 0.0356698i \(0.988644\pi\)
\(654\) −1.44308 6.43060i −0.00220654 0.00983272i
\(655\) −49.2362 85.2796i −0.0751698 0.130198i
\(656\) −357.996 + 206.689i −0.545725 + 0.315074i
\(657\) −531.275 + 251.090i −0.808638 + 0.382176i
\(658\) −7.78061 −0.0118246
\(659\) −269.095 155.362i −0.408338 0.235754i 0.281737 0.959492i \(-0.409089\pi\)
−0.690076 + 0.723737i \(0.742423\pi\)
\(660\) 59.7649 191.272i 0.0905528 0.289807i
\(661\) 257.855 + 446.618i 0.390099 + 0.675670i 0.992462 0.122551i \(-0.0391076\pi\)
−0.602364 + 0.798222i \(0.705774\pi\)
\(662\) −108.957 62.9065i −0.164588 0.0950250i
\(663\) 893.654 641.725i 1.34789 0.967911i
\(664\) 122.347 + 211.911i 0.184257 + 0.319143i
\(665\) −109.395 63.1595i −0.164505 0.0949767i
\(666\) 179.079 + 14.7349i 0.268887 + 0.0221245i
\(667\) −392.411 679.675i −0.588322 1.01900i
\(668\) −104.545 + 60.3591i −0.156505 + 0.0903580i
\(669\) 945.248 212.121i 1.41293 0.317072i
\(670\) 31.9686 0.0477143
\(671\) −135.084 77.9905i −0.201317 0.116230i
\(672\) 253.454 + 79.1939i 0.377163 + 0.117848i
\(673\) −209.818 −0.311765 −0.155883 0.987776i \(-0.549822\pi\)
−0.155883 + 0.987776i \(0.549822\pi\)
\(674\) −121.114 69.9254i −0.179695 0.103747i
\(675\) 592.594 + 240.094i 0.877917 + 0.355695i
\(676\) 632.919 + 157.014i 0.936270 + 0.232269i
\(677\) 11.9220 6.88315i 0.0176100 0.0101671i −0.491169 0.871064i \(-0.663430\pi\)
0.508779 + 0.860897i \(0.330097\pi\)
\(678\) −146.856 + 32.9557i −0.216602 + 0.0486073i
\(679\) −50.0011 86.6045i −0.0736394 0.127547i
\(680\) 95.7430i 0.140799i
\(681\) −725.947 226.829i −1.06600 0.333082i
\(682\) −117.290 + 203.152i −0.171979 + 0.297876i
\(683\) 402.924 232.628i 0.589933 0.340598i −0.175138 0.984544i \(-0.556037\pi\)
0.765071 + 0.643946i \(0.222704\pi\)
\(684\) 610.398 + 422.720i 0.892395 + 0.618011i
\(685\) 63.7691 + 110.451i 0.0930936 + 0.161243i
\(686\) 138.380i 0.201719i
\(687\) −213.742 + 684.062i −0.311123 + 0.995724i
\(688\) −301.205 + 521.703i −0.437799 + 0.758289i
\(689\) −19.9518 + 163.288i −0.0289576 + 0.236992i
\(690\) −4.12514 18.3823i −0.00597847 0.0266411i
\(691\) −518.379 −0.750187 −0.375094 0.926987i \(-0.622389\pi\)
−0.375094 + 0.926987i \(0.622389\pi\)
\(692\) 14.4437 + 8.33907i 0.0208724 + 0.0120507i
\(693\) −695.491 57.2263i −1.00359 0.0825776i
\(694\) 64.2258 0.0925443
\(695\) −201.756 116.484i −0.290297 0.167603i
\(696\) −466.873 + 104.770i −0.670794 + 0.150532i
\(697\) 407.081 705.086i 0.584048 1.01160i
\(698\) 50.6577i 0.0725755i
\(699\) 28.1900 + 125.619i 0.0403290 + 0.179713i
\(700\) 470.055 0.671508
\(701\) 775.035i 1.10561i 0.833310 + 0.552806i \(0.186443\pi\)
−0.833310 + 0.552806i \(0.813557\pi\)
\(702\) −67.9344 113.160i −0.0967727 0.161197i
\(703\) 1135.16 1.61474
\(704\) 766.042i 1.08813i
\(705\) −13.5226 + 3.03458i −0.0191810 + 0.00430437i
\(706\) −47.7466 −0.0676298
\(707\) 369.298 + 213.214i 0.522345 + 0.301576i
\(708\) 55.7727 + 248.532i 0.0787750 + 0.351034i
\(709\) −308.569 + 534.457i −0.435217 + 0.753819i −0.997313 0.0732533i \(-0.976662\pi\)
0.562096 + 0.827072i \(0.309995\pi\)
\(710\) 17.0505i 0.0240147i
\(711\) −144.727 100.228i −0.203555 0.140968i
\(712\) −230.034 + 398.431i −0.323082 + 0.559594i
\(713\) 601.819i 0.844066i
\(714\) −159.735 + 35.8457i −0.223718 + 0.0502041i
\(715\) −135.331 + 179.810i −0.189274 + 0.251482i
\(716\) −6.17230 3.56358i −0.00862052 0.00497706i
\(717\) −221.706 69.2740i −0.309213 0.0966165i
\(718\) 166.903 0.232455
\(719\) −534.714 + 308.717i −0.743692 + 0.429371i −0.823410 0.567447i \(-0.807931\pi\)
0.0797184 + 0.996817i \(0.474598\pi\)
\(720\) 147.555 + 12.1411i 0.204937 + 0.0168626i
\(721\) −196.879 341.004i −0.273064 0.472960i
\(722\) −31.2999 18.0710i −0.0433517 0.0250291i
\(723\) −85.6869 + 274.234i −0.118516 + 0.379300i
\(724\) −41.4178 −0.0572069
\(725\) −1106.90 + 639.070i −1.52676 + 0.881475i
\(726\) 26.2296 + 116.884i 0.0361290 + 0.160997i
\(727\) −527.853 914.268i −0.726070 1.25759i −0.958532 0.284984i \(-0.908012\pi\)
0.232462 0.972605i \(-0.425322\pi\)
\(728\) −157.896 118.838i −0.216890 0.163239i
\(729\) 177.736 707.001i 0.243808 0.969823i
\(730\) 14.0988 24.4199i 0.0193134 0.0334519i
\(731\) 1186.47i 1.62308i
\(732\) 35.7268 114.341i 0.0488072 0.156203i
\(733\) 435.712 754.675i 0.594422 1.02957i −0.399206 0.916861i \(-0.630714\pi\)
0.993628 0.112708i \(-0.0359526\pi\)
\(734\) 43.6844i 0.0595155i
\(735\) −17.0028 75.7673i −0.0231331 0.103085i
\(736\) 125.097 + 216.674i 0.169968 + 0.294394i
\(737\) 966.253 557.866i 1.31106 0.756942i
\(738\) −80.2968 55.6080i −0.108803 0.0753496i
\(739\) 38.1201 66.0259i 0.0515833 0.0893449i −0.839081 0.544007i \(-0.816907\pi\)
0.890664 + 0.454662i \(0.150240\pi\)
\(740\) 203.770 117.647i 0.275365 0.158982i
\(741\) −486.359 677.294i −0.656355 0.914027i
\(742\) 12.2388 21.1983i 0.0164944 0.0285691i
\(743\) 426.534 246.260i 0.574071 0.331440i −0.184703 0.982794i \(-0.559132\pi\)
0.758773 + 0.651355i \(0.225799\pi\)
\(744\) −350.215 109.428i −0.470719 0.147080i
\(745\) 135.078 233.963i 0.181313 0.314044i
\(746\) 79.3373i 0.106350i
\(747\) 424.293 612.671i 0.567997 0.820175i
\(748\) −820.349 1420.89i −1.09672 1.89958i
\(749\) −106.376 + 61.4160i −0.142024 + 0.0819974i
\(750\) −61.5415 + 13.8104i −0.0820553 + 0.0184139i
\(751\) −197.444 341.982i −0.262907 0.455369i 0.704106 0.710095i \(-0.251348\pi\)
−0.967013 + 0.254726i \(0.918015\pi\)
\(752\) 49.8934 28.8060i 0.0663477 0.0383058i
\(753\) 930.916 857.465i 1.23628 1.13873i
\(754\) 261.894 + 32.0003i 0.347340 + 0.0424407i
\(755\) 306.117i 0.405453i
\(756\) −74.0720 530.794i −0.0979789 0.702109i
\(757\) 45.1326 78.1720i 0.0596204 0.103266i −0.834675 0.550743i \(-0.814344\pi\)
0.894295 + 0.447478i \(0.147678\pi\)
\(758\) −124.323 71.7776i −0.164014 0.0946934i
\(759\) −445.463 483.622i −0.586907 0.637183i
\(760\) −72.5630 −0.0954776
\(761\) 749.692i 0.985140i −0.870273 0.492570i \(-0.836058\pi\)
0.870273 0.492570i \(-0.163942\pi\)
\(762\) −11.2563 3.51715i −0.0147721 0.00461568i
\(763\) −15.0269 + 26.0273i −0.0196944 + 0.0341118i
\(764\) 220.296 + 127.188i 0.288346 + 0.166477i
\(765\) −263.636 + 124.599i −0.344622 + 0.162874i
\(766\) 95.4934 0.124665
\(767\) 34.6939 283.940i 0.0452333 0.370195i
\(768\) −498.283 + 111.819i −0.648806 + 0.145597i
\(769\) 6.79598 + 11.7710i 0.00883743 + 0.0153069i 0.870410 0.492327i \(-0.163854\pi\)
−0.861573 + 0.507634i \(0.830520\pi\)
\(770\) 29.0003 16.7433i 0.0376627 0.0217445i
\(771\) −856.936 + 789.321i −1.11146 + 1.02376i
\(772\) 215.809 + 373.792i 0.279545 + 0.484186i
\(773\) −20.8183 + 12.0195i −0.0269318 + 0.0155491i −0.513405 0.858146i \(-0.671616\pi\)
0.486474 + 0.873695i \(0.338283\pi\)
\(774\) −141.857 11.6723i −0.183278 0.0150804i
\(775\) −980.106 −1.26465
\(776\) −49.7493 28.7227i −0.0641099 0.0370138i
\(777\) −555.126 602.679i −0.714448 0.775649i
\(778\) −63.2605 109.570i −0.0813117 0.140836i
\(779\) −534.379 308.524i −0.685981 0.396052i
\(780\) −157.499 71.1739i −0.201922 0.0912486i
\(781\) 297.538 + 515.351i 0.380971 + 0.659861i
\(782\) −133.582 77.1236i −0.170821 0.0986235i
\(783\) 896.075 + 1149.23i 1.14441 + 1.46772i
\(784\) 161.400 + 279.554i 0.205868 + 0.356574i
\(785\) 57.7739 33.3558i 0.0735974 0.0424915i
\(786\) −28.8461 + 92.3195i −0.0366999 + 0.117455i
\(787\) −564.709 −0.717546 −0.358773 0.933425i \(-0.616805\pi\)
−0.358773 + 0.933425i \(0.616805\pi\)
\(788\) 39.2460 + 22.6587i 0.0498046 + 0.0287547i
\(789\) 104.698 + 466.552i 0.132697 + 0.591321i
\(790\) 8.44767 0.0106933
\(791\) 594.388 + 343.170i 0.751439 + 0.433843i
\(792\) −362.430 + 171.291i −0.457614 + 0.216276i
\(793\) −80.8994 + 107.489i −0.102017 + 0.135547i
\(794\) 81.3178 46.9488i 0.102415 0.0591295i
\(795\) 13.0032 41.6157i 0.0163562 0.0523468i
\(796\) 35.6468 + 61.7420i 0.0447824 + 0.0775654i
\(797\) 410.342i 0.514858i −0.966297 0.257429i \(-0.917125\pi\)
0.966297 0.257429i \(-0.0828754\pi\)
\(798\) 27.1672 + 121.062i 0.0340441 + 0.151706i
\(799\) −56.7345 + 98.2670i −0.0710068 + 0.122987i
\(800\) 352.869 203.729i 0.441087 0.254662i
\(801\) 1396.47 + 114.905i 1.74341 + 0.143451i
\(802\) −105.838 183.318i −0.131968 0.228576i
\(803\) 984.123i 1.22556i
\(804\) 580.528 + 630.256i 0.722049 + 0.783901i
\(805\) −42.9553 + 74.4008i −0.0533607 + 0.0924234i
\(806\) 161.652 + 121.664i 0.200560 + 0.150948i
\(807\) 351.936 324.168i 0.436104 0.401695i
\(808\) 244.958 0.303166
\(809\) −518.289 299.234i −0.640654 0.369882i 0.144212 0.989547i \(-0.453935\pi\)
−0.784867 + 0.619665i \(0.787269\pi\)
\(810\) 12.3037 + 32.7467i 0.0151898 + 0.0404280i
\(811\) −427.373 −0.526971 −0.263485 0.964663i \(-0.584872\pi\)
−0.263485 + 0.964663i \(0.584872\pi\)
\(812\) 927.814 + 535.673i 1.14263 + 0.659696i
\(813\) 173.134 554.100i 0.212957 0.681550i
\(814\) −150.463 + 260.610i −0.184844 + 0.320159i
\(815\) 18.6079i 0.0228318i
\(816\) 891.592 821.244i 1.09264 1.00643i
\(817\) −899.218 −1.10063
\(818\) 278.426i 0.340374i
\(819\) −121.745 + 589.433i −0.148651 + 0.719699i
\(820\) −127.900 −0.155976
\(821\) 515.147i 0.627463i 0.949512 + 0.313732i \(0.101579\pi\)
−0.949512 + 0.313732i \(0.898421\pi\)
\(822\) 37.3605 119.569i 0.0454507 0.145461i
\(823\) −992.582 −1.20605 −0.603026 0.797721i \(-0.706039\pi\)
−0.603026 + 0.797721i \(0.706039\pi\)
\(824\) −195.887 113.095i −0.237727 0.137252i
\(825\) −787.613 + 725.469i −0.954683 + 0.879356i
\(826\) −21.2820 + 36.8615i −0.0257651 + 0.0446265i
\(827\) 943.762i 1.14119i −0.821233 0.570594i \(-0.806713\pi\)
0.821233 0.570594i \(-0.193287\pi\)
\(828\) 287.495 415.137i 0.347217 0.501373i
\(829\) 133.486 231.205i 0.161021 0.278896i −0.774214 0.632924i \(-0.781855\pi\)
0.935235 + 0.354027i \(0.115188\pi\)
\(830\) 35.7613i 0.0430859i
\(831\) −288.066 + 921.930i −0.346650 + 1.10942i
\(832\) 655.820 + 80.1331i 0.788245 + 0.0963138i
\(833\) −550.591 317.884i −0.660974 0.381614i
\(834\) 50.1041 + 223.272i 0.0600768 + 0.267712i
\(835\) −35.9318 −0.0430320
\(836\) −1076.88 + 621.737i −1.28813 + 0.743704i
\(837\) 154.447 + 1106.75i 0.184524 + 1.32228i
\(838\) 84.0886 + 145.646i 0.100344 + 0.173802i
\(839\) 702.552 + 405.618i 0.837368 + 0.483455i 0.856369 0.516365i \(-0.172715\pi\)
−0.0190007 + 0.999819i \(0.506048\pi\)
\(840\) 35.4854 + 38.5251i 0.0422445 + 0.0458632i
\(841\) −2072.13 −2.46388
\(842\) 103.850 59.9578i 0.123337 0.0712088i
\(843\) 911.024 839.142i 1.08069 0.995423i
\(844\) −50.5129 87.4909i −0.0598494 0.103662i
\(845\) 139.781 + 134.668i 0.165422 + 0.159370i
\(846\) 11.1909 + 7.75003i 0.0132280 + 0.00916079i
\(847\) 273.131 473.076i 0.322468 0.558531i
\(848\) 181.246i 0.213734i
\(849\) 991.359 + 1076.28i 1.16768 + 1.26770i
\(850\) −125.601 + 217.548i −0.147766 + 0.255939i
\(851\) 772.033i 0.907207i
\(852\) −336.148 + 309.625i −0.394539 + 0.363409i
\(853\) 294.569 + 510.209i 0.345333 + 0.598135i 0.985414 0.170173i \(-0.0544326\pi\)
−0.640081 + 0.768307i \(0.721099\pi\)
\(854\) 17.3361 10.0090i 0.0202998 0.0117201i
\(855\) 94.4325 + 199.808i 0.110447 + 0.233693i
\(856\) −35.2799 + 61.1067i −0.0412149 + 0.0713863i
\(857\) 1354.80 782.195i 1.58086 0.912713i 0.586131 0.810216i \(-0.300650\pi\)
0.994733 0.102496i \(-0.0326830\pi\)
\(858\) 219.959 21.8842i 0.256362 0.0255060i
\(859\) 219.269 379.785i 0.255261 0.442124i −0.709706 0.704498i \(-0.751172\pi\)
0.964966 + 0.262374i \(0.0845054\pi\)
\(860\) −161.417 + 93.1939i −0.187694 + 0.108365i
\(861\) 97.5254 + 434.589i 0.113270 + 0.504750i
\(862\) −22.0526 + 38.1962i −0.0255830 + 0.0443111i
\(863\) 1057.49i 1.22536i −0.790331 0.612680i \(-0.790091\pi\)
0.790331 0.612680i \(-0.209909\pi\)
\(864\) −285.660 366.362i −0.330625 0.424030i
\(865\) 2.48212 + 4.29916i 0.00286951 + 0.00497013i
\(866\) −137.763 + 79.5376i −0.159080 + 0.0918448i
\(867\) −453.453 + 1451.24i −0.523014 + 1.67386i
\(868\) 410.767 + 711.468i 0.473233 + 0.819664i
\(869\) 255.331 147.416i 0.293822 0.169638i
\(870\) −66.7467 20.8556i −0.0767203 0.0239720i
\(871\) −376.521 885.579i −0.432286 1.01674i
\(872\) 17.2641i 0.0197983i
\(873\) −14.3473 + 174.368i −0.0164345 + 0.199734i
\(874\) −58.4514 + 101.241i −0.0668781 + 0.115836i
\(875\) 249.084 + 143.809i 0.284667 + 0.164353i
\(876\) 737.459 165.492i 0.841848 0.188918i
\(877\) 152.759 0.174184 0.0870920 0.996200i \(-0.472243\pi\)
0.0870920 + 0.996200i \(0.472243\pi\)
\(878\) 101.008i 0.115043i
\(879\) −360.393 1605.97i −0.410003 1.82704i
\(880\) −123.977 + 214.734i −0.140883 + 0.244016i
\(881\) 1343.46 + 775.645i 1.52492 + 0.880414i 0.999564 + 0.0295323i \(0.00940179\pi\)
0.525358 + 0.850882i \(0.323932\pi\)
\(882\) −43.4235 + 62.7026i −0.0492330 + 0.0710914i
\(883\) −613.125 −0.694366 −0.347183 0.937797i \(-0.612862\pi\)
−0.347183 + 0.937797i \(0.612862\pi\)
\(884\) −1302.25 + 553.678i −1.47314 + 0.626333i
\(885\) −22.6112 + 72.3651i −0.0255493 + 0.0817685i
\(886\) 7.22579 + 12.5154i 0.00815552 + 0.0141258i
\(887\) 809.756 467.513i 0.912916 0.527072i 0.0315475 0.999502i \(-0.489956\pi\)
0.881368 + 0.472430i \(0.156623\pi\)
\(888\) −449.267 140.378i −0.505932 0.158083i
\(889\) 26.8889 + 46.5729i 0.0302462 + 0.0523880i
\(890\) −58.2295 + 33.6188i −0.0654265 + 0.0377740i
\(891\) 943.325 + 775.065i 1.05873 + 0.869883i
\(892\) −1246.02 −1.39688
\(893\) 74.4759 + 42.9987i 0.0833996 + 0.0481508i
\(894\) −258.913 + 58.1022i −0.289612 + 0.0649913i
\(895\) −1.06070 1.83718i −0.00118514 0.00205272i
\(896\) −391.756 226.181i −0.437228 0.252434i
\(897\) −460.634 + 330.777i −0.513527 + 0.368759i
\(898\) −113.323 196.281i −0.126195 0.218575i
\(899\) −1934.57 1116.93i −2.15192 1.24241i
\(900\) −676.081 468.207i −0.751202 0.520230i
\(901\) −178.486 309.146i −0.198097 0.343115i
\(902\) 141.662 81.7884i 0.157053 0.0906745i
\(903\) 439.743 + 477.412i 0.486980 + 0.528695i
\(904\) 394.263 0.436131
\(905\) −10.6764 6.16400i −0.0117971 0.00681105i
\(906\) 221.154 203.704i 0.244099 0.224839i
\(907\) 1149.05 1.26687 0.633433 0.773797i \(-0.281645\pi\)
0.633433 + 0.773797i \(0.281645\pi\)
\(908\) 847.173 + 489.116i 0.933010 + 0.538674i
\(909\) −318.786 674.512i −0.350699 0.742037i
\(910\) −11.3006 26.5790i −0.0124182 0.0292077i
\(911\) 443.854 256.259i 0.487216 0.281294i −0.236203 0.971704i \(-0.575903\pi\)
0.723419 + 0.690410i \(0.242570\pi\)
\(912\) −622.415 675.732i −0.682472 0.740934i
\(913\) 624.051 + 1080.89i 0.683517 + 1.18389i
\(914\) 97.6180i 0.106803i
\(915\) 26.2261 24.1568i 0.0286625 0.0264009i
\(916\) 460.896 798.295i 0.503161 0.871501i
\(917\) 381.971 220.531i 0.416544 0.240492i
\(918\) 265.451 + 107.550i 0.289163 + 0.117156i
\(919\) 314.275 + 544.341i 0.341975 + 0.592318i 0.984799 0.173695i \(-0.0555708\pi\)
−0.642824 + 0.766014i \(0.722237\pi\)
\(920\) 49.3507i 0.0536421i
\(921\) −229.330 + 51.4636i −0.249001 + 0.0558779i
\(922\) 100.485 174.046i 0.108986 0.188770i
\(923\) 472.324 200.818i 0.511727 0.217570i
\(924\) 856.717 + 267.689i 0.927183 + 0.289707i
\(925\) −1257.31 −1.35926
\(926\) −200.265 115.623i −0.216269 0.124863i
\(927\) −56.4924 + 686.572i −0.0609411 + 0.740638i
\(928\) 928.677 1.00073
\(929\) 203.102 + 117.261i 0.218625 + 0.126223i 0.605313 0.795987i \(-0.293048\pi\)
−0.386689 + 0.922210i \(0.626381\pi\)
\(930\) −36.3294 39.4414i −0.0390639 0.0424101i
\(931\) −240.922 + 417.289i −0.258778 + 0.448216i
\(932\) 165.590i 0.177672i
\(933\) 1292.26 + 403.778i 1.38506 + 0.432773i
\(934\) 92.9128 0.0994784
\(935\) 488.353i 0.522303i
\(936\) 108.732 + 328.200i 0.116166 + 0.350641i
\(937\) −598.868 −0.639133 −0.319567 0.947564i \(-0.603537\pi\)
−0.319567 + 0.947564i \(0.603537\pi\)
\(938\) 143.189i 0.152653i
\(939\) −478.950 519.978i −0.510064 0.553757i
\(940\) 17.8253 0.0189631
\(941\) −219.420 126.682i −0.233178 0.134625i 0.378859 0.925454i \(-0.376316\pi\)
−0.612037 + 0.790829i \(0.709650\pi\)
\(942\) −62.5432 19.5422i −0.0663941 0.0207454i
\(943\) −209.830 + 363.436i −0.222513 + 0.385404i
\(944\) 315.167i 0.333864i
\(945\) 59.9017 147.848i 0.0633880 0.156453i
\(946\) 119.189 206.442i 0.125993 0.218226i
\(947\) 1553.39i 1.64033i 0.572130 + 0.820163i \(0.306117\pi\)
−0.572130 + 0.820163i \(0.693883\pi\)
\(948\) 153.404 + 166.545i 0.161818 + 0.175680i
\(949\) −842.521 102.946i −0.887799 0.108478i
\(950\) 164.878 + 95.1925i 0.173556 + 0.100203i
\(951\) −274.944 + 253.250i −0.289110 + 0.266299i
\(952\) 428.837 0.450459
\(953\) 373.494 215.637i 0.391914 0.226272i −0.291075 0.956700i \(-0.594013\pi\)
0.682989 + 0.730429i \(0.260680\pi\)
\(954\) −38.7181 + 18.2988i −0.0405850 + 0.0191811i
\(955\) 37.8575 + 65.5711i 0.0396414 + 0.0686609i
\(956\) 258.729 + 149.377i 0.270637 + 0.156252i
\(957\) −2381.36 + 534.397i −2.48836 + 0.558409i
\(958\) −308.454 −0.321978
\(959\) −494.716 + 285.624i −0.515867 + 0.297836i
\(960\) −167.143 52.2253i −0.174107 0.0544014i
\(961\) −375.984 651.223i −0.391242 0.677651i
\(962\) 207.372 + 156.075i 0.215564 + 0.162240i
\(963\) 214.175 + 17.6227i 0.222404 + 0.0182998i
\(964\) 184.768 320.028i 0.191668 0.331980i
\(965\) 128.471i 0.133130i
\(966\) 82.3352 18.4767i 0.0852331 0.0191270i
\(967\) 548.133 949.394i 0.566839 0.981794i −0.430037 0.902811i \(-0.641500\pi\)
0.996876 0.0789825i \(-0.0251671\pi\)
\(968\) 313.795i 0.324169i
\(969\) 1727.07 + 539.640i 1.78233 + 0.556904i
\(970\) −4.19775 7.27071i −0.00432757 0.00749558i
\(971\) 88.2684 50.9618i 0.0909046 0.0524838i −0.453859 0.891074i \(-0.649953\pi\)
0.544763 + 0.838590i \(0.316620\pi\)
\(972\) −422.169 + 837.223i −0.434331 + 0.861341i
\(973\) 521.736 903.674i 0.536214 0.928750i
\(974\) 239.346 138.187i 0.245735 0.141875i
\(975\) 538.695 + 750.176i 0.552507 + 0.769411i
\(976\) −74.1120 + 128.366i −0.0759345 + 0.131522i
\(977\) 874.681 504.997i 0.895272 0.516886i 0.0196090 0.999808i \(-0.493758\pi\)
0.875663 + 0.482922i \(0.160425\pi\)
\(978\) −13.4432 + 12.3825i −0.0137456 + 0.0126611i
\(979\) −1173.33 + 2032.26i −1.19850 + 2.07586i
\(980\) 99.8756i 0.101914i
\(981\) 47.5381 22.4673i 0.0484588 0.0229024i
\(982\) 24.5534 + 42.5278i 0.0250035 + 0.0433073i
\(983\) −1248.07 + 720.573i −1.26965 + 0.733035i −0.974922 0.222546i \(-0.928563\pi\)
−0.294731 + 0.955580i \(0.595230\pi\)
\(984\) 173.340 + 188.189i 0.176159 + 0.191249i
\(985\) 6.74436 + 11.6816i 0.00684706 + 0.0118595i
\(986\) −495.834 + 286.270i −0.502874 + 0.290335i
\(987\) −13.5920 60.5682i −0.0137710 0.0613660i
\(988\) 419.629 + 986.969i 0.424726 + 0.998957i
\(989\) 611.566i 0.618368i
\(990\) −58.3886 4.80432i −0.0589784 0.00485285i
\(991\) −698.522 + 1209.87i −0.704865 + 1.22086i 0.261875 + 0.965102i \(0.415659\pi\)
−0.966740 + 0.255761i \(0.917674\pi\)
\(992\) 616.723 + 356.065i 0.621696 + 0.358937i
\(993\) 299.358 958.071i 0.301468 0.964824i
\(994\) −76.3697 −0.0768307
\(995\) 21.2205i 0.0213272i
\(996\) −705.030 + 649.401i −0.707861 + 0.652009i
\(997\) 682.194 1181.60i 0.684247 1.18515i −0.289426 0.957200i \(-0.593464\pi\)
0.973673 0.227950i \(-0.0732023\pi\)
\(998\) −9.42691 5.44263i −0.00944580 0.00545354i
\(999\) 198.129 + 1419.78i 0.198328 + 1.42120i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.k.a.113.13 yes 52
3.2 odd 2 351.3.k.a.152.14 52
9.2 odd 6 117.3.u.a.74.14 yes 52
9.7 even 3 351.3.u.a.35.13 52
13.3 even 3 117.3.u.a.68.14 yes 52
39.29 odd 6 351.3.u.a.341.13 52
117.16 even 3 351.3.k.a.224.13 52
117.29 odd 6 inner 117.3.k.a.29.14 52
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.k.a.29.14 52 117.29 odd 6 inner
117.3.k.a.113.13 yes 52 1.1 even 1 trivial
117.3.u.a.68.14 yes 52 13.3 even 3
117.3.u.a.74.14 yes 52 9.2 odd 6
351.3.k.a.152.14 52 3.2 odd 2
351.3.k.a.224.13 52 117.16 even 3
351.3.u.a.35.13 52 9.7 even 3
351.3.u.a.341.13 52 39.29 odd 6