Properties

Label 351.3.u.a.341.13
Level $351$
Weight $3$
Character 351.341
Analytic conductor $9.564$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [351,3,Mod(35,351)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(351, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("351.35");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 351.u (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.56405727905\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 341.13
Character \(\chi\) \(=\) 351.341
Dual form 351.3.u.a.35.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.325651 + 0.188014i) q^{2} +(-1.92930 - 3.34165i) q^{4} +(-0.994641 - 0.574256i) q^{5} +5.14423 q^{7} -2.95506i q^{8} +(-0.215937 - 0.374014i) q^{10} +(13.0534 + 7.53640i) q^{11} +(-7.81749 - 10.3869i) q^{13} +(1.67522 + 0.967190i) q^{14} +(-7.16161 + 12.4043i) q^{16} +(-24.4307 - 14.1051i) q^{17} +(10.6901 - 18.5158i) q^{19} +4.43165i q^{20} +(2.83390 + 4.90847i) q^{22} -14.5409i q^{23} +(-11.8405 - 20.5083i) q^{25} +(-0.592890 - 4.85229i) q^{26} +(-9.92477 - 17.1902i) q^{28} +(-46.7423 - 26.9867i) q^{29} +(20.6940 - 35.8431i) q^{31} +(-14.9010 + 8.60310i) q^{32} +(-5.30391 - 9.18664i) q^{34} +(-5.11666 - 2.95411i) q^{35} +(26.5470 + 45.9807i) q^{37} +(6.96249 - 4.01980i) q^{38} +(-1.69696 + 2.93923i) q^{40} +28.8607i q^{41} +42.0583 q^{43} -58.1599i q^{44} +(2.73390 - 4.73525i) q^{46} +(-3.48340 + 2.01114i) q^{47} -22.5369 q^{49} -8.90471i q^{50} +(-19.6269 + 46.1627i) q^{52} -12.6540i q^{53} +(-8.65564 - 14.9920i) q^{55} -15.2015i q^{56} +(-10.1478 - 17.5765i) q^{58} +(19.0560 - 11.0020i) q^{59} +10.3485 q^{61} +(13.4780 - 7.78155i) q^{62} +50.8229 q^{64} +(1.81087 + 14.8204i) q^{65} +74.0229 q^{67} +108.852i q^{68} +(-1.11083 - 1.92401i) q^{70} +(34.1908 + 19.7401i) q^{71} -65.2913 q^{73} +19.9649i q^{74} -82.4979 q^{76} +(67.1498 + 38.7690i) q^{77} +(-9.78025 - 16.9399i) q^{79} +(14.2465 - 8.22520i) q^{80} +(-5.42622 + 9.39850i) q^{82} +(-71.7112 + 41.4025i) q^{83} +(16.1998 + 28.0589i) q^{85} +(13.6963 + 7.90758i) q^{86} +(22.2705 - 38.5737i) q^{88} +(134.830 - 77.8441i) q^{89} +(-40.2150 - 53.4324i) q^{91} +(-48.5905 + 28.0538i) q^{92} -1.51249 q^{94} +(-21.2657 + 12.2777i) q^{95} +19.4397 q^{97} +(-7.33915 - 4.23726i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q + 3 q^{2} + 49 q^{4} + 6 q^{5} + 2 q^{7} - 6 q^{10} - 33 q^{11} + 4 q^{13} + 6 q^{14} - 83 q^{16} + 5 q^{19} - 15 q^{22} + 88 q^{25} - 132 q^{26} - 22 q^{28} + 30 q^{29} + 14 q^{31} + 63 q^{32} - 6 q^{34}+ \cdots - 405 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.325651 + 0.188014i 0.162825 + 0.0940072i 0.579198 0.815187i \(-0.303366\pi\)
−0.416373 + 0.909194i \(0.636699\pi\)
\(3\) 0 0
\(4\) −1.92930 3.34165i −0.482325 0.835412i
\(5\) −0.994641 0.574256i −0.198928 0.114851i 0.397227 0.917720i \(-0.369972\pi\)
−0.596155 + 0.802869i \(0.703306\pi\)
\(6\) 0 0
\(7\) 5.14423 0.734890 0.367445 0.930045i \(-0.380233\pi\)
0.367445 + 0.930045i \(0.380233\pi\)
\(8\) 2.95506i 0.369383i
\(9\) 0 0
\(10\) −0.215937 0.374014i −0.0215937 0.0374014i
\(11\) 13.0534 + 7.53640i 1.18667 + 0.685127i 0.957549 0.288270i \(-0.0930800\pi\)
0.229126 + 0.973397i \(0.426413\pi\)
\(12\) 0 0
\(13\) −7.81749 10.3869i −0.601345 0.798989i
\(14\) 1.67522 + 0.967190i 0.119659 + 0.0690850i
\(15\) 0 0
\(16\) −7.16161 + 12.4043i −0.447601 + 0.775267i
\(17\) −24.4307 14.1051i −1.43710 0.829709i −0.439451 0.898266i \(-0.644827\pi\)
−0.997647 + 0.0685572i \(0.978160\pi\)
\(18\) 0 0
\(19\) 10.6901 18.5158i 0.562638 0.974518i −0.434627 0.900611i \(-0.643120\pi\)
0.997265 0.0739073i \(-0.0235469\pi\)
\(20\) 4.43165i 0.221583i
\(21\) 0 0
\(22\) 2.83390 + 4.90847i 0.128814 + 0.223112i
\(23\) 14.5409i 0.632213i −0.948724 0.316106i \(-0.897624\pi\)
0.948724 0.316106i \(-0.102376\pi\)
\(24\) 0 0
\(25\) −11.8405 20.5083i −0.473618 0.820331i
\(26\) −0.592890 4.85229i −0.0228035 0.186627i
\(27\) 0 0
\(28\) −9.92477 17.1902i −0.354456 0.613936i
\(29\) −46.7423 26.9867i −1.61180 0.930576i −0.988952 0.148236i \(-0.952640\pi\)
−0.622852 0.782339i \(-0.714026\pi\)
\(30\) 0 0
\(31\) 20.6940 35.8431i 0.667549 1.15623i −0.311039 0.950397i \(-0.600677\pi\)
0.978588 0.205831i \(-0.0659897\pi\)
\(32\) −14.9010 + 8.60310i −0.465656 + 0.268847i
\(33\) 0 0
\(34\) −5.30391 9.18664i −0.155997 0.270195i
\(35\) −5.11666 2.95411i −0.146190 0.0844030i
\(36\) 0 0
\(37\) 26.5470 + 45.9807i 0.717486 + 1.24272i 0.961993 + 0.273074i \(0.0880405\pi\)
−0.244507 + 0.969647i \(0.578626\pi\)
\(38\) 6.96249 4.01980i 0.183223 0.105784i
\(39\) 0 0
\(40\) −1.69696 + 2.93923i −0.0424241 + 0.0734806i
\(41\) 28.8607i 0.703919i 0.936015 + 0.351959i \(0.114484\pi\)
−0.936015 + 0.351959i \(0.885516\pi\)
\(42\) 0 0
\(43\) 42.0583 0.978101 0.489050 0.872256i \(-0.337343\pi\)
0.489050 + 0.872256i \(0.337343\pi\)
\(44\) 58.1599i 1.32182i
\(45\) 0 0
\(46\) 2.73390 4.73525i 0.0594326 0.102940i
\(47\) −3.48340 + 2.01114i −0.0741148 + 0.0427902i −0.536599 0.843837i \(-0.680291\pi\)
0.462485 + 0.886627i \(0.346958\pi\)
\(48\) 0 0
\(49\) −22.5369 −0.459937
\(50\) 8.90471i 0.178094i
\(51\) 0 0
\(52\) −19.6269 + 46.1627i −0.377441 + 0.887744i
\(53\) 12.6540i 0.238755i −0.992849 0.119378i \(-0.961910\pi\)
0.992849 0.119378i \(-0.0380899\pi\)
\(54\) 0 0
\(55\) −8.65564 14.9920i −0.157375 0.272582i
\(56\) 15.2015i 0.271456i
\(57\) 0 0
\(58\) −10.1478 17.5765i −0.174962 0.303043i
\(59\) 19.0560 11.0020i 0.322983 0.186474i −0.329739 0.944072i \(-0.606961\pi\)
0.652721 + 0.757598i \(0.273627\pi\)
\(60\) 0 0
\(61\) 10.3485 0.169648 0.0848239 0.996396i \(-0.472967\pi\)
0.0848239 + 0.996396i \(0.472967\pi\)
\(62\) 13.4780 7.78155i 0.217388 0.125509i
\(63\) 0 0
\(64\) 50.8229 0.794107
\(65\) 1.81087 + 14.8204i 0.0278596 + 0.228007i
\(66\) 0 0
\(67\) 74.0229 1.10482 0.552410 0.833573i \(-0.313708\pi\)
0.552410 + 0.833573i \(0.313708\pi\)
\(68\) 108.852i 1.60076i
\(69\) 0 0
\(70\) −1.11083 1.92401i −0.0158690 0.0274859i
\(71\) 34.1908 + 19.7401i 0.481561 + 0.278029i 0.721067 0.692865i \(-0.243652\pi\)
−0.239506 + 0.970895i \(0.576985\pi\)
\(72\) 0 0
\(73\) −65.2913 −0.894402 −0.447201 0.894434i \(-0.647579\pi\)
−0.447201 + 0.894434i \(0.647579\pi\)
\(74\) 19.9649i 0.269795i
\(75\) 0 0
\(76\) −82.4979 −1.08550
\(77\) 67.1498 + 38.7690i 0.872076 + 0.503493i
\(78\) 0 0
\(79\) −9.78025 16.9399i −0.123801 0.214429i 0.797463 0.603368i \(-0.206175\pi\)
−0.921263 + 0.388939i \(0.872842\pi\)
\(80\) 14.2465 8.22520i 0.178081 0.102815i
\(81\) 0 0
\(82\) −5.42622 + 9.39850i −0.0661735 + 0.114616i
\(83\) −71.7112 + 41.4025i −0.863991 + 0.498825i −0.865347 0.501174i \(-0.832902\pi\)
0.00135589 + 0.999999i \(0.499568\pi\)
\(84\) 0 0
\(85\) 16.1998 + 28.0589i 0.190586 + 0.330105i
\(86\) 13.6963 + 7.90758i 0.159260 + 0.0919486i
\(87\) 0 0
\(88\) 22.2705 38.5737i 0.253074 0.438337i
\(89\) 134.830 77.8441i 1.51494 0.874653i 0.515097 0.857132i \(-0.327756\pi\)
0.999846 0.0175212i \(-0.00557746\pi\)
\(90\) 0 0
\(91\) −40.2150 53.4324i −0.441923 0.587169i
\(92\) −48.5905 + 28.0538i −0.528158 + 0.304932i
\(93\) 0 0
\(94\) −1.51249 −0.0160904
\(95\) −21.2657 + 12.2777i −0.223849 + 0.129239i
\(96\) 0 0
\(97\) 19.4397 0.200409 0.100205 0.994967i \(-0.468050\pi\)
0.100205 + 0.994967i \(0.468050\pi\)
\(98\) −7.33915 4.23726i −0.0748893 0.0432374i
\(99\) 0 0
\(100\) −45.6876 + 79.1333i −0.456876 + 0.791333i
\(101\) −71.7887 41.4472i −0.710779 0.410369i 0.100570 0.994930i \(-0.467933\pi\)
−0.811349 + 0.584561i \(0.801267\pi\)
\(102\) 0 0
\(103\) −38.2718 + 66.2886i −0.371571 + 0.643579i −0.989807 0.142413i \(-0.954514\pi\)
0.618237 + 0.785992i \(0.287847\pi\)
\(104\) −30.6938 + 23.1012i −0.295133 + 0.222127i
\(105\) 0 0
\(106\) 2.37914 4.12079i 0.0224447 0.0388754i
\(107\) 20.6786 11.9388i 0.193258 0.111578i −0.400249 0.916407i \(-0.631076\pi\)
0.593507 + 0.804829i \(0.297743\pi\)
\(108\) 0 0
\(109\) 5.84222 0.0535983 0.0267992 0.999641i \(-0.491469\pi\)
0.0267992 + 0.999641i \(0.491469\pi\)
\(110\) 6.50955i 0.0591777i
\(111\) 0 0
\(112\) −36.8410 + 63.8104i −0.328937 + 0.569736i
\(113\) 115.545 66.7097i 1.02252 0.590351i 0.107686 0.994185i \(-0.465656\pi\)
0.914832 + 0.403834i \(0.132322\pi\)
\(114\) 0 0
\(115\) −8.35020 + 14.4630i −0.0726104 + 0.125765i
\(116\) 208.262i 1.79536i
\(117\) 0 0
\(118\) 8.27412 0.0701197
\(119\) −125.677 72.5597i −1.05611 0.609745i
\(120\) 0 0
\(121\) 53.0946 + 91.9625i 0.438798 + 0.760020i
\(122\) 3.37000 + 1.94567i 0.0276230 + 0.0159481i
\(123\) 0 0
\(124\) −159.700 −1.28790
\(125\) 55.9106i 0.447285i
\(126\) 0 0
\(127\) 5.22700 + 9.05343i 0.0411575 + 0.0712869i 0.885870 0.463933i \(-0.153562\pi\)
−0.844713 + 0.535220i \(0.820229\pi\)
\(128\) 76.1545 + 43.9678i 0.594957 + 0.343499i
\(129\) 0 0
\(130\) −2.19674 + 5.16676i −0.0168980 + 0.0397443i
\(131\) 74.2522 + 42.8695i 0.566811 + 0.327248i 0.755875 0.654716i \(-0.227212\pi\)
−0.189064 + 0.981965i \(0.560545\pi\)
\(132\) 0 0
\(133\) 54.9925 95.2497i 0.413477 0.716164i
\(134\) 24.1056 + 13.9174i 0.179893 + 0.103861i
\(135\) 0 0
\(136\) −41.6813 + 72.1942i −0.306480 + 0.530839i
\(137\) 111.047i 0.810558i 0.914193 + 0.405279i \(0.132826\pi\)
−0.914193 + 0.405279i \(0.867174\pi\)
\(138\) 0 0
\(139\) 101.422 + 175.667i 0.729652 + 1.26379i 0.957030 + 0.289988i \(0.0936514\pi\)
−0.227378 + 0.973807i \(0.573015\pi\)
\(140\) 22.7974i 0.162839i
\(141\) 0 0
\(142\) 7.42285 + 12.8567i 0.0522736 + 0.0905405i
\(143\) −23.7655 194.500i −0.166192 1.36014i
\(144\) 0 0
\(145\) 30.9945 + 53.6841i 0.213755 + 0.370235i
\(146\) −21.2622 12.2757i −0.145631 0.0840803i
\(147\) 0 0
\(148\) 102.434 177.421i 0.692123 1.19879i
\(149\) 203.709 117.612i 1.36718 0.789340i 0.376610 0.926372i \(-0.377090\pi\)
0.990567 + 0.137032i \(0.0437563\pi\)
\(150\) 0 0
\(151\) 133.267 + 230.825i 0.882561 + 1.52864i 0.848483 + 0.529222i \(0.177516\pi\)
0.0340779 + 0.999419i \(0.489151\pi\)
\(152\) −54.7155 31.5900i −0.359970 0.207829i
\(153\) 0 0
\(154\) 14.5783 + 25.2503i 0.0946640 + 0.163963i
\(155\) −41.1662 + 23.7673i −0.265588 + 0.153338i
\(156\) 0 0
\(157\) 29.0426 50.3033i 0.184985 0.320403i −0.758587 0.651572i \(-0.774110\pi\)
0.943571 + 0.331169i \(0.107443\pi\)
\(158\) 7.35531i 0.0465526i
\(159\) 0 0
\(160\) 19.7615 0.123510
\(161\) 74.8017i 0.464607i
\(162\) 0 0
\(163\) −8.10087 + 14.0311i −0.0496986 + 0.0860805i −0.889805 0.456342i \(-0.849159\pi\)
0.840106 + 0.542422i \(0.182493\pi\)
\(164\) 96.4422 55.6809i 0.588062 0.339518i
\(165\) 0 0
\(166\) −31.1371 −0.187573
\(167\) 31.2855i 0.187338i 0.995603 + 0.0936691i \(0.0298596\pi\)
−0.995603 + 0.0936691i \(0.970140\pi\)
\(168\) 0 0
\(169\) −46.7737 + 162.398i −0.276768 + 0.960937i
\(170\) 12.1832i 0.0716659i
\(171\) 0 0
\(172\) −81.1432 140.544i −0.471763 0.817117i
\(173\) 4.32233i 0.0249846i 0.999922 + 0.0124923i \(0.00397652\pi\)
−0.999922 + 0.0124923i \(0.996023\pi\)
\(174\) 0 0
\(175\) −60.9101 105.499i −0.348057 0.602853i
\(176\) −186.967 + 107.945i −1.06231 + 0.613327i
\(177\) 0 0
\(178\) 58.5433 0.328895
\(179\) −1.59962 + 0.923541i −0.00893642 + 0.00515945i −0.504462 0.863434i \(-0.668309\pi\)
0.495525 + 0.868594i \(0.334976\pi\)
\(180\) 0 0
\(181\) −10.7339 −0.0593032 −0.0296516 0.999560i \(-0.509440\pi\)
−0.0296516 + 0.999560i \(0.509440\pi\)
\(182\) −3.04996 24.9613i −0.0167580 0.137150i
\(183\) 0 0
\(184\) −42.9692 −0.233529
\(185\) 60.9790i 0.329616i
\(186\) 0 0
\(187\) −212.603 368.239i −1.13691 1.96919i
\(188\) 13.4410 + 7.76019i 0.0714949 + 0.0412776i
\(189\) 0 0
\(190\) −9.23357 −0.0485977
\(191\) 65.9244i 0.345154i 0.984996 + 0.172577i \(0.0552094\pi\)
−0.984996 + 0.172577i \(0.944791\pi\)
\(192\) 0 0
\(193\) −111.858 −0.579578 −0.289789 0.957091i \(-0.593585\pi\)
−0.289789 + 0.957091i \(0.593585\pi\)
\(194\) 6.33055 + 3.65494i 0.0326317 + 0.0188399i
\(195\) 0 0
\(196\) 43.4804 + 75.3103i 0.221839 + 0.384236i
\(197\) 10.1710 5.87226i 0.0516297 0.0298084i −0.473963 0.880545i \(-0.657177\pi\)
0.525593 + 0.850736i \(0.323844\pi\)
\(198\) 0 0
\(199\) 9.23826 16.0011i 0.0464234 0.0804077i −0.841880 0.539665i \(-0.818551\pi\)
0.888303 + 0.459257i \(0.151884\pi\)
\(200\) −60.6032 + 34.9893i −0.303016 + 0.174946i
\(201\) 0 0
\(202\) −15.5854 26.9946i −0.0771552 0.133637i
\(203\) −240.453 138.826i −1.18450 0.683871i
\(204\) 0 0
\(205\) 16.5734 28.7060i 0.0808459 0.140029i
\(206\) −24.9265 + 14.3913i −0.121002 + 0.0698607i
\(207\) 0 0
\(208\) 184.827 22.5836i 0.888593 0.108575i
\(209\) 279.085 161.130i 1.33534 0.770957i
\(210\) 0 0
\(211\) 26.1820 0.124085 0.0620426 0.998074i \(-0.480239\pi\)
0.0620426 + 0.998074i \(0.480239\pi\)
\(212\) −42.2853 + 24.4134i −0.199459 + 0.115158i
\(213\) 0 0
\(214\) 8.97868 0.0419565
\(215\) −41.8329 24.1523i −0.194572 0.112336i
\(216\) 0 0
\(217\) 106.455 184.385i 0.490575 0.849701i
\(218\) 1.90252 + 1.09842i 0.00872717 + 0.00503863i
\(219\) 0 0
\(220\) −33.3987 + 57.8482i −0.151812 + 0.262946i
\(221\) 44.4793 + 364.024i 0.201264 + 1.64717i
\(222\) 0 0
\(223\) 161.459 279.656i 0.724033 1.25406i −0.235338 0.971914i \(-0.575620\pi\)
0.959371 0.282149i \(-0.0910471\pi\)
\(224\) −76.6542 + 44.2563i −0.342206 + 0.197573i
\(225\) 0 0
\(226\) 50.1696 0.221989
\(227\) 253.520i 1.11683i 0.829563 + 0.558413i \(0.188590\pi\)
−0.829563 + 0.558413i \(0.811410\pi\)
\(228\) 0 0
\(229\) 119.446 206.887i 0.521600 0.903437i −0.478085 0.878314i \(-0.658669\pi\)
0.999684 0.0251232i \(-0.00799781\pi\)
\(230\) −5.43849 + 3.13992i −0.0236456 + 0.0136518i
\(231\) 0 0
\(232\) −79.7474 + 138.126i −0.343739 + 0.595373i
\(233\) 42.9145i 0.184182i 0.995751 + 0.0920912i \(0.0293551\pi\)
−0.995751 + 0.0920912i \(0.970645\pi\)
\(234\) 0 0
\(235\) 4.61964 0.0196580
\(236\) −73.5294 42.4522i −0.311565 0.179882i
\(237\) 0 0
\(238\) −27.2845 47.2582i −0.114641 0.198564i
\(239\) −67.0524 38.7127i −0.280554 0.161978i 0.353120 0.935578i \(-0.385121\pi\)
−0.633674 + 0.773600i \(0.718454\pi\)
\(240\) 0 0
\(241\) −95.7696 −0.397384 −0.198692 0.980062i \(-0.563669\pi\)
−0.198692 + 0.980062i \(0.563669\pi\)
\(242\) 39.9302i 0.165001i
\(243\) 0 0
\(244\) −19.9654 34.5811i −0.0818254 0.141726i
\(245\) 22.4161 + 12.9419i 0.0914943 + 0.0528243i
\(246\) 0 0
\(247\) −275.891 + 33.7105i −1.11697 + 0.136480i
\(248\) −105.919 61.1521i −0.427091 0.246581i
\(249\) 0 0
\(250\) −10.5120 + 18.2073i −0.0420480 + 0.0728293i
\(251\) −365.360 210.940i −1.45562 0.840400i −0.456825 0.889557i \(-0.651013\pi\)
−0.998791 + 0.0491566i \(0.984347\pi\)
\(252\) 0 0
\(253\) 109.586 189.808i 0.433146 0.750231i
\(254\) 3.93101i 0.0154764i
\(255\) 0 0
\(256\) −85.1125 147.419i −0.332471 0.575856i
\(257\) 388.354i 1.51110i −0.655089 0.755552i \(-0.727369\pi\)
0.655089 0.755552i \(-0.272631\pi\)
\(258\) 0 0
\(259\) 136.564 + 236.535i 0.527273 + 0.913264i
\(260\) 46.0309 34.6444i 0.177042 0.133248i
\(261\) 0 0
\(262\) 16.1202 + 27.9210i 0.0615275 + 0.106569i
\(263\) −138.032 79.6926i −0.524835 0.303014i 0.214076 0.976817i \(-0.431326\pi\)
−0.738911 + 0.673803i \(0.764659\pi\)
\(264\) 0 0
\(265\) −7.26665 + 12.5862i −0.0274213 + 0.0474951i
\(266\) 35.8167 20.6788i 0.134649 0.0777397i
\(267\) 0 0
\(268\) −142.813 247.359i −0.532883 0.922980i
\(269\) −138.125 79.7468i −0.513478 0.296456i 0.220784 0.975323i \(-0.429138\pi\)
−0.734262 + 0.678866i \(0.762472\pi\)
\(270\) 0 0
\(271\) −96.7532 167.581i −0.357023 0.618382i 0.630439 0.776239i \(-0.282875\pi\)
−0.987462 + 0.157857i \(0.949542\pi\)
\(272\) 349.926 202.030i 1.28649 0.742757i
\(273\) 0 0
\(274\) −20.8784 + 36.1624i −0.0761984 + 0.131979i
\(275\) 356.938i 1.29795i
\(276\) 0 0
\(277\) −321.962 −1.16232 −0.581159 0.813790i \(-0.697401\pi\)
−0.581159 + 0.813790i \(0.697401\pi\)
\(278\) 76.2750i 0.274370i
\(279\) 0 0
\(280\) −8.72957 + 15.1201i −0.0311770 + 0.0540002i
\(281\) 357.552 206.433i 1.27243 0.734637i 0.296984 0.954883i \(-0.404019\pi\)
0.975444 + 0.220246i \(0.0706860\pi\)
\(282\) 0 0
\(283\) 487.758 1.72353 0.861764 0.507310i \(-0.169360\pi\)
0.861764 + 0.507310i \(0.169360\pi\)
\(284\) 152.338i 0.536403i
\(285\) 0 0
\(286\) 28.8295 67.8072i 0.100803 0.237088i
\(287\) 148.466i 0.517303i
\(288\) 0 0
\(289\) 253.405 + 438.911i 0.876835 + 1.51872i
\(290\) 23.3097i 0.0803783i
\(291\) 0 0
\(292\) 125.967 + 218.181i 0.431393 + 0.747194i
\(293\) −475.133 + 274.318i −1.62162 + 0.936240i −0.635128 + 0.772407i \(0.719053\pi\)
−0.986488 + 0.163833i \(0.947614\pi\)
\(294\) 0 0
\(295\) −25.2718 −0.0856671
\(296\) 135.876 78.4479i 0.459040 0.265027i
\(297\) 0 0
\(298\) 88.4508 0.296815
\(299\) −151.034 + 113.673i −0.505131 + 0.380178i
\(300\) 0 0
\(301\) 216.358 0.718797
\(302\) 100.224i 0.331869i
\(303\) 0 0
\(304\) 153.117 + 265.206i 0.503674 + 0.872390i
\(305\) −10.2931 5.94270i −0.0337477 0.0194843i
\(306\) 0 0
\(307\) 78.3446 0.255194 0.127597 0.991826i \(-0.459274\pi\)
0.127597 + 0.991826i \(0.459274\pi\)
\(308\) 299.188i 0.971390i
\(309\) 0 0
\(310\) −17.8744 −0.0576594
\(311\) 390.829 + 225.645i 1.25668 + 0.725547i 0.972428 0.233202i \(-0.0749204\pi\)
0.284255 + 0.958749i \(0.408254\pi\)
\(312\) 0 0
\(313\) 117.824 + 204.077i 0.376435 + 0.652004i 0.990541 0.137220i \(-0.0438166\pi\)
−0.614106 + 0.789224i \(0.710483\pi\)
\(314\) 18.9155 10.9209i 0.0602404 0.0347798i
\(315\) 0 0
\(316\) −37.7381 + 65.3643i −0.119424 + 0.206849i
\(317\) −107.908 + 62.3008i −0.340404 + 0.196532i −0.660451 0.750869i \(-0.729635\pi\)
0.320047 + 0.947402i \(0.396301\pi\)
\(318\) 0 0
\(319\) −406.765 704.537i −1.27512 2.20858i
\(320\) −50.5505 29.1853i −0.157970 0.0912042i
\(321\) 0 0
\(322\) 14.0638 24.3592i 0.0436764 0.0756498i
\(323\) −522.334 + 301.570i −1.61713 + 0.933652i
\(324\) 0 0
\(325\) −120.454 + 283.308i −0.370628 + 0.871718i
\(326\) −5.27611 + 3.04616i −0.0161844 + 0.00934406i
\(327\) 0 0
\(328\) 85.2851 0.260015
\(329\) −17.9194 + 10.3458i −0.0544662 + 0.0314461i
\(330\) 0 0
\(331\) 334.583 1.01083 0.505413 0.862878i \(-0.331340\pi\)
0.505413 + 0.862878i \(0.331340\pi\)
\(332\) 276.705 + 159.756i 0.833449 + 0.481192i
\(333\) 0 0
\(334\) −5.88212 + 10.1881i −0.0176111 + 0.0305034i
\(335\) −73.6262 42.5081i −0.219780 0.126890i
\(336\) 0 0
\(337\) −185.957 + 322.088i −0.551802 + 0.955750i 0.446342 + 0.894862i \(0.352726\pi\)
−0.998145 + 0.0608873i \(0.980607\pi\)
\(338\) −45.7651 + 44.0910i −0.135400 + 0.130447i
\(339\) 0 0
\(340\) 62.5087 108.268i 0.183849 0.318436i
\(341\) 540.255 311.916i 1.58433 0.914711i
\(342\) 0 0
\(343\) −368.002 −1.07289
\(344\) 124.285i 0.361294i
\(345\) 0 0
\(346\) −0.812660 + 1.40757i −0.00234873 + 0.00406812i
\(347\) 147.917 85.4000i 0.426274 0.246110i −0.271484 0.962443i \(-0.587514\pi\)
0.697758 + 0.716333i \(0.254181\pi\)
\(348\) 0 0
\(349\) −67.3588 + 116.669i −0.193005 + 0.334295i −0.946245 0.323452i \(-0.895157\pi\)
0.753240 + 0.657746i \(0.228490\pi\)
\(350\) 45.8079i 0.130880i
\(351\) 0 0
\(352\) −259.345 −0.736777
\(353\) 109.964 + 63.4880i 0.311514 + 0.179853i 0.647604 0.761977i \(-0.275771\pi\)
−0.336090 + 0.941830i \(0.609105\pi\)
\(354\) 0 0
\(355\) −22.6717 39.2686i −0.0638640 0.110616i
\(356\) −520.255 300.370i −1.46139 0.843735i
\(357\) 0 0
\(358\) −0.694556 −0.00194010
\(359\) 443.856i 1.23637i 0.786034 + 0.618184i \(0.212131\pi\)
−0.786034 + 0.618184i \(0.787869\pi\)
\(360\) 0 0
\(361\) −48.0575 83.2381i −0.133123 0.230576i
\(362\) −3.49550 2.01813i −0.00965606 0.00557493i
\(363\) 0 0
\(364\) −100.965 + 237.471i −0.277378 + 0.652394i
\(365\) 64.9414 + 37.4939i 0.177922 + 0.102723i
\(366\) 0 0
\(367\) 58.0864 100.609i 0.158274 0.274138i −0.775973 0.630767i \(-0.782741\pi\)
0.934246 + 0.356629i \(0.116074\pi\)
\(368\) 180.369 + 104.136i 0.490134 + 0.282979i
\(369\) 0 0
\(370\) 11.4649 19.8579i 0.0309863 0.0536699i
\(371\) 65.0952i 0.175459i
\(372\) 0 0
\(373\) −105.494 182.720i −0.282825 0.489866i 0.689255 0.724519i \(-0.257938\pi\)
−0.972079 + 0.234653i \(0.924605\pi\)
\(374\) 159.889i 0.427512i
\(375\) 0 0
\(376\) 5.94304 + 10.2936i 0.0158060 + 0.0273767i
\(377\) 85.1006 + 696.474i 0.225731 + 1.84741i
\(378\) 0 0
\(379\) −190.883 330.619i −0.503650 0.872347i −0.999991 0.00421947i \(-0.998657\pi\)
0.496341 0.868127i \(-0.334676\pi\)
\(380\) 82.0557 + 47.3749i 0.215936 + 0.124671i
\(381\) 0 0
\(382\) −12.3947 + 21.4683i −0.0324470 + 0.0561998i
\(383\) 219.929 126.976i 0.574227 0.331530i −0.184609 0.982812i \(-0.559102\pi\)
0.758836 + 0.651282i \(0.225768\pi\)
\(384\) 0 0
\(385\) −44.5266 77.1224i −0.115654 0.200318i
\(386\) −36.4268 21.0310i −0.0943699 0.0544845i
\(387\) 0 0
\(388\) −37.5050 64.9606i −0.0966624 0.167424i
\(389\) 291.388 168.233i 0.749070 0.432476i −0.0762879 0.997086i \(-0.524307\pi\)
0.825358 + 0.564610i \(0.190973\pi\)
\(390\) 0 0
\(391\) −205.100 + 355.244i −0.524553 + 0.908552i
\(392\) 66.5979i 0.169893i
\(393\) 0 0
\(394\) 4.41628 0.0112088
\(395\) 22.4655i 0.0568746i
\(396\) 0 0
\(397\) −124.854 + 216.254i −0.314494 + 0.544720i −0.979330 0.202269i \(-0.935168\pi\)
0.664835 + 0.746990i \(0.268502\pi\)
\(398\) 6.01689 3.47385i 0.0151178 0.00872828i
\(399\) 0 0
\(400\) 339.187 0.847968
\(401\) 562.927i 1.40381i 0.712271 + 0.701904i \(0.247667\pi\)
−0.712271 + 0.701904i \(0.752333\pi\)
\(402\) 0 0
\(403\) −534.072 + 65.2570i −1.32524 + 0.161928i
\(404\) 319.857i 0.791724i
\(405\) 0 0
\(406\) −52.2025 90.4174i −0.128578 0.222703i
\(407\) 800.274i 1.96628i
\(408\) 0 0
\(409\) 370.218 + 641.237i 0.905179 + 1.56782i 0.820676 + 0.571393i \(0.193597\pi\)
0.0845027 + 0.996423i \(0.473070\pi\)
\(410\) 10.7943 6.23208i 0.0263275 0.0152002i
\(411\) 0 0
\(412\) 295.351 0.716872
\(413\) 98.0284 56.5967i 0.237357 0.137038i
\(414\) 0 0
\(415\) 95.1026 0.229163
\(416\) 205.848 + 87.5200i 0.494826 + 0.210385i
\(417\) 0 0
\(418\) 121.179 0.289902
\(419\) 447.245i 1.06741i −0.845670 0.533705i \(-0.820799\pi\)
0.845670 0.533705i \(-0.179201\pi\)
\(420\) 0 0
\(421\) −159.450 276.175i −0.378741 0.655999i 0.612138 0.790751i \(-0.290310\pi\)
−0.990879 + 0.134752i \(0.956976\pi\)
\(422\) 8.52618 + 4.92259i 0.0202042 + 0.0116649i
\(423\) 0 0
\(424\) −37.3934 −0.0881920
\(425\) 668.041i 1.57186i
\(426\) 0 0
\(427\) 53.2351 0.124672
\(428\) −79.7906 46.0671i −0.186427 0.107634i
\(429\) 0 0
\(430\) −9.08195 15.7304i −0.0211208 0.0365823i
\(431\) 101.578 58.6459i 0.235679 0.136069i −0.377510 0.926005i \(-0.623220\pi\)
0.613189 + 0.789936i \(0.289886\pi\)
\(432\) 0 0
\(433\) 211.520 366.363i 0.488498 0.846104i −0.511414 0.859334i \(-0.670878\pi\)
0.999912 + 0.0132303i \(0.00421145\pi\)
\(434\) 69.3341 40.0301i 0.159756 0.0922352i
\(435\) 0 0
\(436\) −11.2714 19.5226i −0.0258518 0.0447767i
\(437\) −269.237 155.444i −0.616103 0.355707i
\(438\) 0 0
\(439\) 134.308 232.629i 0.305941 0.529906i −0.671529 0.740978i \(-0.734362\pi\)
0.977470 + 0.211072i \(0.0676956\pi\)
\(440\) −44.3023 + 25.5780i −0.100687 + 0.0581317i
\(441\) 0 0
\(442\) −53.9571 + 126.907i −0.122075 + 0.287121i
\(443\) −33.2832 + 19.2161i −0.0751314 + 0.0433771i −0.537095 0.843522i \(-0.680478\pi\)
0.461964 + 0.886899i \(0.347145\pi\)
\(444\) 0 0
\(445\) −178.810 −0.401820
\(446\) 105.159 60.7134i 0.235782 0.136129i
\(447\) 0 0
\(448\) 261.444 0.583581
\(449\) −521.983 301.367i −1.16254 0.671196i −0.210632 0.977565i \(-0.567552\pi\)
−0.951913 + 0.306370i \(0.900886\pi\)
\(450\) 0 0
\(451\) −217.505 + 376.730i −0.482274 + 0.835323i
\(452\) −445.841 257.406i −0.986373 0.569483i
\(453\) 0 0
\(454\) −47.6654 + 82.5589i −0.104990 + 0.181848i
\(455\) 9.31556 + 76.2397i 0.0204738 + 0.167560i
\(456\) 0 0
\(457\) −129.801 + 224.822i −0.284029 + 0.491952i −0.972373 0.233432i \(-0.925004\pi\)
0.688344 + 0.725384i \(0.258338\pi\)
\(458\) 77.7955 44.9153i 0.169859 0.0980683i
\(459\) 0 0
\(460\) 64.4402 0.140087
\(461\) 534.455i 1.15934i −0.814852 0.579669i \(-0.803182\pi\)
0.814852 0.579669i \(-0.196818\pi\)
\(462\) 0 0
\(463\) −307.484 + 532.579i −0.664113 + 1.15028i 0.315412 + 0.948955i \(0.397857\pi\)
−0.979525 + 0.201323i \(0.935476\pi\)
\(464\) 669.501 386.536i 1.44289 0.833052i
\(465\) 0 0
\(466\) −8.06855 + 13.9751i −0.0173145 + 0.0299896i
\(467\) 247.090i 0.529100i 0.964372 + 0.264550i \(0.0852234\pi\)
−0.964372 + 0.264550i \(0.914777\pi\)
\(468\) 0 0
\(469\) 380.791 0.811921
\(470\) 1.50439 + 0.868558i 0.00320082 + 0.00184800i
\(471\) 0 0
\(472\) −32.5115 56.3116i −0.0688803 0.119304i
\(473\) 549.005 + 316.968i 1.16069 + 0.670123i
\(474\) 0 0
\(475\) −506.304 −1.06590
\(476\) 559.958i 1.17638i
\(477\) 0 0
\(478\) −14.5571 25.2136i −0.0304542 0.0527482i
\(479\) 710.396 + 410.147i 1.48308 + 0.856257i 0.999815 0.0192166i \(-0.00611721\pi\)
0.483266 + 0.875474i \(0.339451\pi\)
\(480\) 0 0
\(481\) 270.065 635.193i 0.561465 1.32057i
\(482\) −31.1874 18.0061i −0.0647042 0.0373570i
\(483\) 0 0
\(484\) 204.871 354.847i 0.423287 0.733154i
\(485\) −19.3355 11.1634i −0.0398670 0.0230172i
\(486\) 0 0
\(487\) −367.489 + 636.510i −0.754598 + 1.30700i 0.190976 + 0.981595i \(0.438835\pi\)
−0.945574 + 0.325407i \(0.894499\pi\)
\(488\) 30.5805i 0.0626650i
\(489\) 0 0
\(490\) 4.86655 + 8.42911i 0.00993173 + 0.0172023i
\(491\) 130.593i 0.265974i −0.991118 0.132987i \(-0.957543\pi\)
0.991118 0.132987i \(-0.0424569\pi\)
\(492\) 0 0
\(493\) 761.298 + 1318.61i 1.54421 + 2.67466i
\(494\) −96.1823 40.8937i −0.194701 0.0827808i
\(495\) 0 0
\(496\) 296.405 + 513.388i 0.597590 + 1.03506i
\(497\) 175.886 + 101.548i 0.353895 + 0.204321i
\(498\) 0 0
\(499\) −14.4740 + 25.0696i −0.0290059 + 0.0502397i −0.880164 0.474670i \(-0.842568\pi\)
0.851158 + 0.524909i \(0.175901\pi\)
\(500\) 186.834 107.868i 0.373667 0.215737i
\(501\) 0 0
\(502\) −79.3197 137.386i −0.158007 0.273677i
\(503\) −255.144 147.308i −0.507245 0.292858i 0.224455 0.974484i \(-0.427940\pi\)
−0.731701 + 0.681626i \(0.761273\pi\)
\(504\) 0 0
\(505\) 47.6026 + 82.4502i 0.0942627 + 0.163268i
\(506\) 71.3735 41.2075i 0.141054 0.0814377i
\(507\) 0 0
\(508\) 20.1689 34.9336i 0.0397026 0.0687669i
\(509\) 621.265i 1.22056i −0.792186 0.610280i \(-0.791057\pi\)
0.792186 0.610280i \(-0.208943\pi\)
\(510\) 0 0
\(511\) −335.874 −0.657287
\(512\) 415.752i 0.812016i
\(513\) 0 0
\(514\) 73.0161 126.468i 0.142055 0.246046i
\(515\) 76.1333 43.9556i 0.147832 0.0853507i
\(516\) 0 0
\(517\) −60.6270 −0.117267
\(518\) 102.704i 0.198270i
\(519\) 0 0
\(520\) 43.7953 5.35125i 0.0842217 0.0102909i
\(521\) 166.583i 0.319738i −0.987138 0.159869i \(-0.948893\pi\)
0.987138 0.159869i \(-0.0511071\pi\)
\(522\) 0 0
\(523\) −51.1561 88.6049i −0.0978127 0.169417i 0.812966 0.582311i \(-0.197851\pi\)
−0.910779 + 0.412894i \(0.864518\pi\)
\(524\) 330.833i 0.631361i
\(525\) 0 0
\(526\) −29.9667 51.9039i −0.0569709 0.0986766i
\(527\) −1011.14 + 583.780i −1.91867 + 1.10774i
\(528\) 0 0
\(529\) 317.562 0.600307
\(530\) −4.73278 + 2.73247i −0.00892977 + 0.00515560i
\(531\) 0 0
\(532\) −424.388 −0.797722
\(533\) 299.772 225.618i 0.562424 0.423298i
\(534\) 0 0
\(535\) −27.4238 −0.0512594
\(536\) 218.742i 0.408102i
\(537\) 0 0
\(538\) −29.9871 51.9392i −0.0557381 0.0965412i
\(539\) −294.184 169.847i −0.545795 0.315115i
\(540\) 0 0
\(541\) 638.732 1.18065 0.590325 0.807166i \(-0.299000\pi\)
0.590325 + 0.807166i \(0.299000\pi\)
\(542\) 72.7640i 0.134251i
\(543\) 0 0
\(544\) 485.389 0.892259
\(545\) −5.81091 3.35493i −0.0106622 0.00615583i
\(546\) 0 0
\(547\) −250.228 433.408i −0.457456 0.792337i 0.541370 0.840785i \(-0.317906\pi\)
−0.998826 + 0.0484477i \(0.984573\pi\)
\(548\) 371.078 214.242i 0.677150 0.390953i
\(549\) 0 0
\(550\) 67.1094 116.237i 0.122017 0.211340i
\(551\) −999.363 + 576.982i −1.81373 + 1.04715i
\(552\) 0 0
\(553\) −50.3119 87.1427i −0.0909798 0.157582i
\(554\) −104.847 60.5336i −0.189255 0.109266i
\(555\) 0 0
\(556\) 391.346 677.831i 0.703859 1.21912i
\(557\) −217.719 + 125.700i −0.390877 + 0.225673i −0.682540 0.730848i \(-0.739125\pi\)
0.291663 + 0.956521i \(0.405791\pi\)
\(558\) 0 0
\(559\) −328.791 436.854i −0.588176 0.781492i
\(560\) 73.2871 42.3123i 0.130870 0.0755577i
\(561\) 0 0
\(562\) 155.249 0.276245
\(563\) 651.090 375.907i 1.15647 0.667685i 0.206011 0.978550i \(-0.433952\pi\)
0.950454 + 0.310864i \(0.100618\pi\)
\(564\) 0 0
\(565\) −153.234 −0.271210
\(566\) 158.839 + 91.7056i 0.280634 + 0.162024i
\(567\) 0 0
\(568\) 58.3332 101.036i 0.102699 0.177880i
\(569\) −464.413 268.129i −0.816191 0.471228i 0.0329102 0.999458i \(-0.489522\pi\)
−0.849101 + 0.528230i \(0.822856\pi\)
\(570\) 0 0
\(571\) −50.9656 + 88.2750i −0.0892567 + 0.154597i −0.907197 0.420706i \(-0.861782\pi\)
0.817940 + 0.575303i \(0.195116\pi\)
\(572\) −604.099 + 454.664i −1.05612 + 0.794868i
\(573\) 0 0
\(574\) −27.9137 + 48.3480i −0.0486302 + 0.0842300i
\(575\) −298.209 + 172.171i −0.518624 + 0.299428i
\(576\) 0 0
\(577\) −6.86778 −0.0119026 −0.00595128 0.999982i \(-0.501894\pi\)
−0.00595128 + 0.999982i \(0.501894\pi\)
\(578\) 190.575i 0.329715i
\(579\) 0 0
\(580\) 119.596 207.146i 0.206199 0.357148i
\(581\) −368.899 + 212.984i −0.634938 + 0.366582i
\(582\) 0 0
\(583\) 95.3657 165.178i 0.163578 0.283325i
\(584\) 192.940i 0.330377i
\(585\) 0 0
\(586\) −206.303 −0.352054
\(587\) −452.291 261.130i −0.770512 0.444855i 0.0625452 0.998042i \(-0.480078\pi\)
−0.833057 + 0.553187i \(0.813412\pi\)
\(588\) 0 0
\(589\) −442.443 766.334i −0.751177 1.30108i
\(590\) −8.22978 4.75147i −0.0139488 0.00805333i
\(591\) 0 0
\(592\) −760.476 −1.28459
\(593\) 624.635i 1.05335i −0.850068 0.526674i \(-0.823439\pi\)
0.850068 0.526674i \(-0.176561\pi\)
\(594\) 0 0
\(595\) 83.3357 + 144.342i 0.140060 + 0.242591i
\(596\) −786.033 453.817i −1.31885 0.761437i
\(597\) 0 0
\(598\) −70.5566 + 8.62115i −0.117988 + 0.0144166i
\(599\) 472.937 + 273.050i 0.789544 + 0.455843i 0.839802 0.542893i \(-0.182671\pi\)
−0.0502581 + 0.998736i \(0.516004\pi\)
\(600\) 0 0
\(601\) −281.855 + 488.187i −0.468977 + 0.812291i −0.999371 0.0354598i \(-0.988710\pi\)
0.530395 + 0.847751i \(0.322044\pi\)
\(602\) 70.4571 + 40.6784i 0.117038 + 0.0675721i
\(603\) 0 0
\(604\) 514.223 890.661i 0.851363 1.47460i
\(605\) 121.959i 0.201586i
\(606\) 0 0
\(607\) −100.683 174.388i −0.165869 0.287294i 0.771094 0.636721i \(-0.219710\pi\)
−0.936964 + 0.349427i \(0.886376\pi\)
\(608\) 367.873i 0.605054i
\(609\) 0 0
\(610\) −2.23463 3.87049i −0.00366332 0.00634506i
\(611\) 48.1208 + 20.4595i 0.0787575 + 0.0334852i
\(612\) 0 0
\(613\) −317.568 550.044i −0.518055 0.897298i −0.999780 0.0209752i \(-0.993323\pi\)
0.481725 0.876322i \(-0.340010\pi\)
\(614\) 25.5130 + 14.7299i 0.0415521 + 0.0239901i
\(615\) 0 0
\(616\) 114.565 198.432i 0.185982 0.322130i
\(617\) −55.5849 + 32.0919i −0.0900889 + 0.0520129i −0.544368 0.838847i \(-0.683230\pi\)
0.454279 + 0.890860i \(0.349897\pi\)
\(618\) 0 0
\(619\) 3.79581 + 6.57454i 0.00613217 + 0.0106212i 0.869075 0.494680i \(-0.164715\pi\)
−0.862943 + 0.505301i \(0.831381\pi\)
\(620\) 158.844 + 91.7086i 0.256200 + 0.147917i
\(621\) 0 0
\(622\) 84.8491 + 146.963i 0.136413 + 0.236275i
\(623\) 693.597 400.448i 1.11332 0.642774i
\(624\) 0 0
\(625\) −263.904 + 457.096i −0.422247 + 0.731354i
\(626\) 88.6105i 0.141550i
\(627\) 0 0
\(628\) −224.128 −0.356891
\(629\) 1497.79i 2.38122i
\(630\) 0 0
\(631\) 423.578 733.658i 0.671280 1.16269i −0.306262 0.951947i \(-0.599078\pi\)
0.977541 0.210743i \(-0.0675884\pi\)
\(632\) −50.0584 + 28.9012i −0.0792064 + 0.0457298i
\(633\) 0 0
\(634\) −46.8538 −0.0739019
\(635\) 12.0065i 0.0189080i
\(636\) 0 0
\(637\) 176.182 + 234.088i 0.276581 + 0.367484i
\(638\) 305.911i 0.479484i
\(639\) 0 0
\(640\) −50.4976 87.4644i −0.0789025 0.136663i
\(641\) 1071.90i 1.67222i 0.548559 + 0.836112i \(0.315177\pi\)
−0.548559 + 0.836112i \(0.684823\pi\)
\(642\) 0 0
\(643\) −205.775 356.413i −0.320023 0.554297i 0.660469 0.750853i \(-0.270357\pi\)
−0.980492 + 0.196557i \(0.937024\pi\)
\(644\) −249.961 + 144.315i −0.388138 + 0.224092i
\(645\) 0 0
\(646\) −226.798 −0.351080
\(647\) 872.018 503.460i 1.34779 0.778145i 0.359851 0.933010i \(-0.382828\pi\)
0.987936 + 0.154865i \(0.0494943\pi\)
\(648\) 0 0
\(649\) 331.661 0.511034
\(650\) −92.4920 + 69.6125i −0.142295 + 0.107096i
\(651\) 0 0
\(652\) 62.5161 0.0958836
\(653\) 1153.60i 1.76662i 0.468791 + 0.883309i \(0.344690\pi\)
−0.468791 + 0.883309i \(0.655310\pi\)
\(654\) 0 0
\(655\) −49.2362 85.2796i −0.0751698 0.130198i
\(656\) −357.996 206.689i −0.545725 0.315074i
\(657\) 0 0
\(658\) −7.78061 −0.0118246
\(659\) 310.724i 0.471509i −0.971813 0.235754i \(-0.924244\pi\)
0.971813 0.235754i \(-0.0757561\pi\)
\(660\) 0 0
\(661\) −515.710 −0.780197 −0.390099 0.920773i \(-0.627559\pi\)
−0.390099 + 0.920773i \(0.627559\pi\)
\(662\) 108.957 + 62.9065i 0.164588 + 0.0950250i
\(663\) 0 0
\(664\) 122.347 + 211.911i 0.184257 + 0.319143i
\(665\) −109.395 + 63.1595i −0.164505 + 0.0949767i
\(666\) 0 0
\(667\) −392.411 + 679.675i −0.588322 + 1.01900i
\(668\) 104.545 60.3591i 0.156505 0.0903580i
\(669\) 0 0
\(670\) −15.9843 27.6856i −0.0238571 0.0413218i
\(671\) 135.084 + 77.9905i 0.201317 + 0.116230i
\(672\) 0 0
\(673\) 104.909 181.708i 0.155883 0.269997i −0.777497 0.628886i \(-0.783511\pi\)
0.933380 + 0.358889i \(0.116844\pi\)
\(674\) −121.114 + 69.9254i −0.179695 + 0.103747i
\(675\) 0 0
\(676\) 632.919 157.014i 0.936270 0.232269i
\(677\) −11.9220 + 6.88315i −0.0176100 + 0.0101671i −0.508779 0.860897i \(-0.669903\pi\)
0.491169 + 0.871064i \(0.336570\pi\)
\(678\) 0 0
\(679\) 100.002 0.147279
\(680\) 82.9159 47.8715i 0.121935 0.0703993i
\(681\) 0 0
\(682\) 234.579 0.343958
\(683\) 402.924 + 232.628i 0.589933 + 0.340598i 0.765071 0.643946i \(-0.222704\pi\)
−0.175138 + 0.984544i \(0.556037\pi\)
\(684\) 0 0
\(685\) 63.7691 110.451i 0.0930936 0.161243i
\(686\) −119.840 69.1898i −0.174694 0.100860i
\(687\) 0 0
\(688\) −301.205 + 521.703i −0.437799 + 0.758289i
\(689\) −131.436 + 98.9226i −0.190763 + 0.143574i
\(690\) 0 0
\(691\) 259.190 448.930i 0.375094 0.649681i −0.615247 0.788334i \(-0.710944\pi\)
0.990341 + 0.138653i \(0.0442772\pi\)
\(692\) 14.4437 8.33907i 0.0208724 0.0120507i
\(693\) 0 0
\(694\) 64.2258 0.0925443
\(695\) 232.968i 0.335206i
\(696\) 0 0
\(697\) 407.081 705.086i 0.584048 1.01160i
\(698\) −43.8709 + 25.3289i −0.0628522 + 0.0362878i
\(699\) 0 0
\(700\) −235.028 + 407.080i −0.335754 + 0.581543i
\(701\) 775.035i 1.10561i −0.833310 0.552806i \(-0.813557\pi\)
0.833310 0.552806i \(-0.186443\pi\)
\(702\) 0 0
\(703\) 1135.16 1.61474
\(704\) 663.412 + 383.021i 0.942347 + 0.544064i
\(705\) 0 0
\(706\) 23.8733 + 41.3498i 0.0338149 + 0.0585691i
\(707\) −369.298 213.214i −0.522345 0.301576i
\(708\) 0 0
\(709\) 617.138 0.870435 0.435217 0.900325i \(-0.356671\pi\)
0.435217 + 0.900325i \(0.356671\pi\)
\(710\) 17.0505i 0.0240147i
\(711\) 0 0
\(712\) −230.034 398.431i −0.323082 0.559594i
\(713\) −521.190 300.909i −0.730982 0.422033i
\(714\) 0 0
\(715\) −88.0546 + 207.105i −0.123153 + 0.289657i
\(716\) 6.17230 + 3.56358i 0.00862052 + 0.00497706i
\(717\) 0 0
\(718\) −83.4513 + 144.542i −0.116227 + 0.201312i
\(719\) −534.714 308.717i −0.743692 0.429371i 0.0797184 0.996817i \(-0.474598\pi\)
−0.823410 + 0.567447i \(0.807931\pi\)
\(720\) 0 0
\(721\) −196.879 + 341.004i −0.273064 + 0.472960i
\(722\) 36.1420i 0.0500582i
\(723\) 0 0
\(724\) 20.7089 + 35.8688i 0.0286034 + 0.0495426i
\(725\) 1278.14i 1.76295i
\(726\) 0 0
\(727\) −527.853 914.268i −0.726070 1.25759i −0.958532 0.284984i \(-0.908012\pi\)
0.232462 0.972605i \(-0.425322\pi\)
\(728\) −157.896 + 118.838i −0.216890 + 0.163239i
\(729\) 0 0
\(730\) 14.0988 + 24.4199i 0.0193134 + 0.0334519i
\(731\) −1027.51 593.235i −1.40563 0.811539i
\(732\) 0 0
\(733\) 435.712 754.675i 0.594422 1.02957i −0.399206 0.916861i \(-0.630714\pi\)
0.993628 0.112708i \(-0.0359526\pi\)
\(734\) 37.8318 21.8422i 0.0515419 0.0297577i
\(735\) 0 0
\(736\) 125.097 + 216.674i 0.169968 + 0.294394i
\(737\) 966.253 + 557.866i 1.31106 + 0.756942i
\(738\) 0 0
\(739\) 38.1201 + 66.0259i 0.0515833 + 0.0893449i 0.890664 0.454662i \(-0.150240\pi\)
−0.839081 + 0.544007i \(0.816907\pi\)
\(740\) −203.770 + 117.647i −0.275365 + 0.158982i
\(741\) 0 0
\(742\) 12.2388 21.1983i 0.0164944 0.0285691i
\(743\) 492.520i 0.662880i −0.943476 0.331440i \(-0.892466\pi\)
0.943476 0.331440i \(-0.107534\pi\)
\(744\) 0 0
\(745\) −270.157 −0.362627
\(746\) 79.3373i 0.106350i
\(747\) 0 0
\(748\) −820.349 + 1420.89i −1.09672 + 1.89958i
\(749\) 106.376 61.4160i 0.142024 0.0819974i
\(750\) 0 0
\(751\) 394.887 0.525815 0.262907 0.964821i \(-0.415319\pi\)
0.262907 + 0.964821i \(0.415319\pi\)
\(752\) 57.6120i 0.0766117i
\(753\) 0 0
\(754\) −103.234 + 242.807i −0.136915 + 0.322026i
\(755\) 306.117i 0.405453i
\(756\) 0 0
\(757\) 45.1326 + 78.1720i 0.0596204 + 0.103266i 0.894295 0.447478i \(-0.147678\pi\)
−0.834675 + 0.550743i \(0.814344\pi\)
\(758\) 143.555i 0.189387i
\(759\) 0 0
\(760\) 36.2815 + 62.8414i 0.0477388 + 0.0826860i
\(761\) 649.252 374.846i 0.853156 0.492570i −0.00855819 0.999963i \(-0.502724\pi\)
0.861715 + 0.507393i \(0.169391\pi\)
\(762\) 0 0
\(763\) 30.0537 0.0393889
\(764\) 220.296 127.188i 0.288346 0.166477i
\(765\) 0 0
\(766\) 95.4934 0.124665
\(767\) −263.246 111.924i −0.343215 0.145924i
\(768\) 0 0
\(769\) −13.5920 −0.0176749 −0.00883743 0.999961i \(-0.502813\pi\)
−0.00883743 + 0.999961i \(0.502813\pi\)
\(770\) 33.4866i 0.0434891i
\(771\) 0 0
\(772\) 215.809 + 373.792i 0.279545 + 0.484186i
\(773\) −20.8183 12.0195i −0.0269318 0.0155491i 0.486474 0.873695i \(-0.338283\pi\)
−0.513405 + 0.858146i \(0.671616\pi\)
\(774\) 0 0
\(775\) −980.106 −1.26465
\(776\) 57.4455i 0.0740277i
\(777\) 0 0
\(778\) 126.521 0.162623
\(779\) 534.379 + 308.524i 0.685981 + 0.396052i
\(780\) 0 0
\(781\) 297.538 + 515.351i 0.380971 + 0.659861i
\(782\) −133.582 + 77.1236i −0.170821 + 0.0986235i
\(783\) 0 0
\(784\) 161.400 279.554i 0.205868 0.356574i
\(785\) −57.7739 + 33.3558i −0.0735974 + 0.0424915i
\(786\) 0 0
\(787\) 282.354 + 489.052i 0.358773 + 0.621413i 0.987756 0.156006i \(-0.0498619\pi\)
−0.628983 + 0.777419i \(0.716529\pi\)
\(788\) −39.2460 22.6587i −0.0498046 0.0287547i
\(789\) 0 0
\(790\) −4.22383 + 7.31589i −0.00534663 + 0.00926063i
\(791\) 594.388 343.170i 0.751439 0.433843i
\(792\) 0 0
\(793\) −80.8994 107.489i −0.102017 0.135547i
\(794\) −81.3178 + 46.9488i −0.102415 + 0.0591295i
\(795\) 0 0
\(796\) −71.2936 −0.0895648
\(797\) 355.367 205.171i 0.445880 0.257429i −0.260208 0.965552i \(-0.583791\pi\)
0.706089 + 0.708123i \(0.250458\pi\)
\(798\) 0 0
\(799\) 113.469 0.142014
\(800\) 352.869 + 203.729i 0.441087 + 0.254662i
\(801\) 0 0
\(802\) −105.838 + 183.318i −0.131968 + 0.228576i
\(803\) −852.275 492.061i −1.06136 0.612779i
\(804\) 0 0
\(805\) −42.9553 + 74.4008i −0.0533607 + 0.0924234i
\(806\) −186.190 79.1623i −0.231005 0.0982163i
\(807\) 0 0
\(808\) −122.479 + 212.140i −0.151583 + 0.262550i
\(809\) −518.289 + 299.234i −0.640654 + 0.369882i −0.784867 0.619665i \(-0.787269\pi\)
0.144212 + 0.989547i \(0.453935\pi\)
\(810\) 0 0
\(811\) −427.373 −0.526971 −0.263485 0.964663i \(-0.584872\pi\)
−0.263485 + 0.964663i \(0.584872\pi\)
\(812\) 1071.35i 1.31939i
\(813\) 0 0
\(814\) −150.463 + 260.610i −0.184844 + 0.320159i
\(815\) 16.1149 9.30395i 0.0197729 0.0114159i
\(816\) 0 0
\(817\) 449.609 778.745i 0.550317 0.953177i
\(818\) 278.426i 0.340374i
\(819\) 0 0
\(820\) −127.900 −0.155976
\(821\) 446.131 + 257.574i 0.543399 + 0.313732i 0.746455 0.665435i \(-0.231754\pi\)
−0.203056 + 0.979167i \(0.565087\pi\)
\(822\) 0 0
\(823\) 496.291 + 859.601i 0.603026 + 1.04447i 0.992360 + 0.123376i \(0.0393720\pi\)
−0.389334 + 0.921097i \(0.627295\pi\)
\(824\) 195.887 + 113.095i 0.237727 + 0.137252i
\(825\) 0 0
\(826\) 42.5640 0.0515303
\(827\) 943.762i 1.14119i 0.821233 + 0.570594i \(0.193287\pi\)
−0.821233 + 0.570594i \(0.806713\pi\)
\(828\) 0 0
\(829\) 133.486 + 231.205i 0.161021 + 0.278896i 0.935235 0.354027i \(-0.115188\pi\)
−0.774214 + 0.632924i \(0.781855\pi\)
\(830\) 30.9702 + 17.8807i 0.0373135 + 0.0215430i
\(831\) 0 0
\(832\) −397.307 527.890i −0.477533 0.634483i
\(833\) 550.591 + 317.884i 0.660974 + 0.381614i
\(834\) 0 0
\(835\) 17.9659 31.1178i 0.0215160 0.0372668i
\(836\) −1076.88 621.737i −1.28813 0.743704i
\(837\) 0 0
\(838\) 84.0886 145.646i 0.100344 0.173802i
\(839\) 811.237i 0.966909i 0.875369 + 0.483455i \(0.160618\pi\)
−0.875369 + 0.483455i \(0.839382\pi\)
\(840\) 0 0
\(841\) 1036.06 + 1794.51i 1.23194 + 2.13379i
\(842\) 119.916i 0.142418i
\(843\) 0 0
\(844\) −50.5129 87.4909i −0.0598494 0.103662i
\(845\) 139.781 134.668i 0.165422 0.159370i
\(846\) 0 0
\(847\) 273.131 + 473.076i 0.322468 + 0.558531i
\(848\) 156.964 + 90.6231i 0.185099 + 0.106867i
\(849\) 0 0
\(850\) −125.601 + 217.548i −0.147766 + 0.255939i
\(851\) 668.601 386.017i 0.785665 0.453604i
\(852\) 0 0
\(853\) 294.569 + 510.209i 0.345333 + 0.598135i 0.985414 0.170173i \(-0.0544326\pi\)
−0.640081 + 0.768307i \(0.721099\pi\)
\(854\) 17.3361 + 10.0090i 0.0202998 + 0.0117201i
\(855\) 0 0
\(856\) −35.2799 61.1067i −0.0412149 0.0713863i
\(857\) −1354.80 + 782.195i −1.58086 + 0.912713i −0.586131 + 0.810216i \(0.699350\pi\)
−0.994733 + 0.102496i \(0.967317\pi\)
\(858\) 0 0
\(859\) 219.269 379.785i 0.255261 0.442124i −0.709706 0.704498i \(-0.751172\pi\)
0.964966 + 0.262374i \(0.0845054\pi\)
\(860\) 186.388i 0.216730i
\(861\) 0 0
\(862\) 44.1051 0.0511660
\(863\) 1057.49i 1.22536i 0.790331 + 0.612680i \(0.209909\pi\)
−0.790331 + 0.612680i \(0.790091\pi\)
\(864\) 0 0
\(865\) 2.48212 4.29916i 0.00286951 0.00497013i
\(866\) 137.763 79.5376i 0.159080 0.0918448i
\(867\) 0 0
\(868\) −821.533 −0.946467
\(869\) 294.831i 0.339277i
\(870\) 0 0
\(871\) −578.674 768.866i −0.664378 0.882739i
\(872\) 17.2641i 0.0197983i
\(873\) 0 0
\(874\) −58.4514 101.241i −0.0668781 0.115836i
\(875\) 287.617i 0.328705i
\(876\) 0 0
\(877\) −76.3797 132.293i −0.0870920 0.150848i 0.819189 0.573524i \(-0.194424\pi\)
−0.906281 + 0.422676i \(0.861091\pi\)
\(878\) 87.4751 50.5038i 0.0996299 0.0575214i
\(879\) 0 0
\(880\) 247.953 0.281765
\(881\) 1343.46 775.645i 1.52492 0.880414i 0.525358 0.850882i \(-0.323932\pi\)
0.999564 0.0295323i \(-0.00940179\pi\)
\(882\) 0 0
\(883\) −613.125 −0.694366 −0.347183 0.937797i \(-0.612862\pi\)
−0.347183 + 0.937797i \(0.612862\pi\)
\(884\) 1130.63 850.946i 1.27899 0.962609i
\(885\) 0 0
\(886\) −14.4516 −0.0163110
\(887\) 935.026i 1.05414i −0.849821 0.527072i \(-0.823290\pi\)
0.849821 0.527072i \(-0.176710\pi\)
\(888\) 0 0
\(889\) 26.8889 + 46.5729i 0.0302462 + 0.0523880i
\(890\) −58.2295 33.6188i −0.0654265 0.0377740i
\(891\) 0 0
\(892\) −1246.02 −1.39688
\(893\) 85.9973i 0.0963016i
\(894\) 0 0
\(895\) 2.12140 0.00237027
\(896\) 391.756 + 226.181i 0.437228 + 0.252434i
\(897\) 0 0
\(898\) −113.323 196.281i −0.126195 0.218575i
\(899\) −1934.57 + 1116.93i −2.15192 + 1.24241i
\(900\) 0 0
\(901\) −178.486 + 309.146i −0.198097 + 0.343115i
\(902\) −141.662 + 81.7884i −0.157053 + 0.0906745i
\(903\) 0 0
\(904\) −197.131 341.442i −0.218066 0.377701i
\(905\) 10.6764 + 6.16400i 0.0117971 + 0.00681105i
\(906\) 0 0
\(907\) −574.524 + 995.104i −0.633433 + 1.09714i 0.353412 + 0.935468i \(0.385021\pi\)
−0.986845 + 0.161670i \(0.948312\pi\)
\(908\) 847.173 489.116i 0.933010 0.538674i
\(909\) 0 0
\(910\) −11.3006 + 26.5790i −0.0124182 + 0.0292077i
\(911\) −443.854 + 256.259i −0.487216 + 0.281294i −0.723419 0.690410i \(-0.757430\pi\)
0.236203 + 0.971704i \(0.424097\pi\)
\(912\) 0 0
\(913\) −1248.10 −1.36703
\(914\) −84.5397 + 48.8090i −0.0924942 + 0.0534015i
\(915\) 0 0
\(916\) −921.791 −1.00632
\(917\) 381.971 + 220.531i 0.416544 + 0.240492i
\(918\) 0 0
\(919\) 314.275 544.341i 0.341975 0.592318i −0.642824 0.766014i \(-0.722237\pi\)
0.984799 + 0.173695i \(0.0555708\pi\)
\(920\) 42.7390 + 24.6754i 0.0464554 + 0.0268210i
\(921\) 0 0
\(922\) 100.485 174.046i 0.108986 0.188770i
\(923\) −62.2489 509.453i −0.0674420 0.551954i
\(924\) 0 0
\(925\) 628.657 1088.87i 0.679629 1.17715i
\(926\) −200.265 + 115.623i −0.216269 + 0.124863i
\(927\) 0 0
\(928\) 928.677 1.00073
\(929\) 234.522i 0.252446i 0.992002 + 0.126223i \(0.0402855\pi\)
−0.992002 + 0.126223i \(0.959714\pi\)
\(930\) 0 0
\(931\) −240.922 + 417.289i −0.258778 + 0.448216i
\(932\) 143.405 82.7950i 0.153868 0.0888358i
\(933\) 0 0
\(934\) −46.4564 + 80.4649i −0.0497392 + 0.0861508i
\(935\) 488.353i 0.522303i
\(936\) 0 0
\(937\) −598.868 −0.639133 −0.319567 0.947564i \(-0.603537\pi\)
−0.319567 + 0.947564i \(0.603537\pi\)
\(938\) 124.005 + 71.5943i 0.132201 + 0.0763265i
\(939\) 0 0
\(940\) −8.91267 15.4372i −0.00948156 0.0164225i
\(941\) 219.420 + 126.682i 0.233178 + 0.134625i 0.612037 0.790829i \(-0.290350\pi\)
−0.378859 + 0.925454i \(0.623684\pi\)
\(942\) 0 0
\(943\) 419.660 0.445026
\(944\) 315.167i 0.333864i
\(945\) 0 0
\(946\) 119.189 + 206.442i 0.125993 + 0.218226i
\(947\) 1345.27 + 776.694i 1.42056 + 0.820163i 0.996347 0.0853978i \(-0.0272161\pi\)
0.424217 + 0.905561i \(0.360549\pi\)
\(948\) 0 0
\(949\) 510.414 + 678.172i 0.537844 + 0.714617i
\(950\) −164.878 95.1925i −0.173556 0.100203i
\(951\) 0 0
\(952\) −214.418 + 371.383i −0.225229 + 0.390109i
\(953\) 373.494 + 215.637i 0.391914 + 0.226272i 0.682989 0.730429i \(-0.260680\pi\)
−0.291075 + 0.956700i \(0.594013\pi\)
\(954\) 0 0
\(955\) 37.8575 65.5711i 0.0396414 0.0686609i
\(956\) 298.754i 0.312504i
\(957\) 0 0
\(958\) 154.227 + 267.129i 0.160989 + 0.278841i
\(959\) 571.249i 0.595671i
\(960\) 0 0
\(961\) −375.984 651.223i −0.391242 0.677651i
\(962\) 207.372 156.075i 0.215564 0.162240i
\(963\) 0 0
\(964\) 184.768 + 320.028i 0.191668 + 0.331980i
\(965\) 111.259 + 64.2354i 0.115294 + 0.0665652i
\(966\) 0 0
\(967\) 548.133 949.394i 0.566839 0.981794i −0.430037 0.902811i \(-0.641500\pi\)
0.996876 0.0789825i \(-0.0251671\pi\)
\(968\) 271.755 156.898i 0.280738 0.162084i
\(969\) 0 0
\(970\) −4.19775 7.27071i −0.00432757 0.00749558i
\(971\) 88.2684 + 50.9618i 0.0909046 + 0.0524838i 0.544763 0.838590i \(-0.316620\pi\)
−0.453859 + 0.891074i \(0.649953\pi\)
\(972\) 0 0
\(973\) 521.736 + 903.674i 0.536214 + 0.928750i
\(974\) −239.346 + 138.187i −0.245735 + 0.141875i
\(975\) 0 0
\(976\) −74.1120 + 128.366i −0.0759345 + 0.131522i
\(977\) 1009.99i 1.03377i −0.856054 0.516886i \(-0.827091\pi\)
0.856054 0.516886i \(-0.172909\pi\)
\(978\) 0 0
\(979\) 2346.66 2.39699
\(980\) 99.8756i 0.101914i
\(981\) 0 0
\(982\) 24.5534 42.5278i 0.0250035 0.0433073i
\(983\) 1248.07 720.573i 1.26965 0.733035i 0.294731 0.955580i \(-0.404770\pi\)
0.974922 + 0.222546i \(0.0714367\pi\)
\(984\) 0 0
\(985\) −13.4887 −0.0136941
\(986\) 572.540i 0.580669i
\(987\) 0 0
\(988\) 644.926 + 856.894i 0.652759 + 0.867302i
\(989\) 611.566i 0.618368i
\(990\) 0 0
\(991\) −698.522 1209.87i −0.704865 1.22086i −0.966740 0.255761i \(-0.917674\pi\)
0.261875 0.965102i \(-0.415659\pi\)
\(992\) 712.130i 0.717873i
\(993\) 0 0
\(994\) 38.1848 + 66.1381i 0.0384153 + 0.0665373i
\(995\) −18.3775 + 10.6103i −0.0184699 + 0.0106636i
\(996\) 0 0
\(997\) −1364.39 −1.36849 −0.684247 0.729250i \(-0.739869\pi\)
−0.684247 + 0.729250i \(0.739869\pi\)
\(998\) −9.42691 + 5.44263i −0.00944580 + 0.00545354i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.3.u.a.341.13 52
3.2 odd 2 117.3.u.a.68.14 yes 52
9.2 odd 6 351.3.k.a.224.13 52
9.7 even 3 117.3.k.a.29.14 52
13.9 even 3 351.3.k.a.152.14 52
39.35 odd 6 117.3.k.a.113.13 yes 52
117.61 even 3 117.3.u.a.74.14 yes 52
117.74 odd 6 inner 351.3.u.a.35.13 52
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.k.a.29.14 52 9.7 even 3
117.3.k.a.113.13 yes 52 39.35 odd 6
117.3.u.a.68.14 yes 52 3.2 odd 2
117.3.u.a.74.14 yes 52 117.61 even 3
351.3.k.a.152.14 52 13.9 even 3
351.3.k.a.224.13 52 9.2 odd 6
351.3.u.a.35.13 52 117.74 odd 6 inner
351.3.u.a.341.13 52 1.1 even 1 trivial