Properties

Label 117.3.u.a.68.14
Level $117$
Weight $3$
Character 117.68
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(68,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.68");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.u (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 68.14
Character \(\chi\) \(=\) 117.68
Dual form 117.3.u.a.74.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.325651 - 0.188014i) q^{2} +(0.894719 - 2.86347i) q^{3} +(-1.92930 - 3.34165i) q^{4} +(0.994641 + 0.574256i) q^{5} +(-0.829740 + 0.764272i) q^{6} +5.14423 q^{7} +2.95506i q^{8} +(-7.39896 - 5.12401i) q^{9} +(-0.215937 - 0.374014i) q^{10} +(-13.0534 - 7.53640i) q^{11} +(-11.2949 + 2.53467i) q^{12} +(-7.81749 - 10.3869i) q^{13} +(-1.67522 - 0.967190i) q^{14} +(2.53429 - 2.33433i) q^{15} +(-7.16161 + 12.4043i) q^{16} +(24.4307 + 14.1051i) q^{17} +(1.44609 + 3.05975i) q^{18} +(10.6901 - 18.5158i) q^{19} -4.43165i q^{20} +(4.60264 - 14.7304i) q^{21} +(2.83390 + 4.90847i) q^{22} +14.5409i q^{23} +(8.46174 + 2.64395i) q^{24} +(-11.8405 - 20.5083i) q^{25} +(0.592890 + 4.85229i) q^{26} +(-21.2924 + 16.6022i) q^{27} +(-9.92477 - 17.1902i) q^{28} +(46.7423 + 26.9867i) q^{29} +(-1.26418 + 0.283692i) q^{30} +(20.6940 - 35.8431i) q^{31} +(14.9010 - 8.60310i) q^{32} +(-33.2594 + 30.6352i) q^{33} +(-5.30391 - 9.18664i) q^{34} +(5.11666 + 2.95411i) q^{35} +(-2.84781 + 34.6105i) q^{36} +(26.5470 + 45.9807i) q^{37} +(-6.96249 + 4.01980i) q^{38} +(-36.7370 + 13.0918i) q^{39} +(-1.69696 + 2.93923i) q^{40} -28.8607i q^{41} +(-4.26838 + 3.93159i) q^{42} +42.0583 q^{43} +58.1599i q^{44} +(-4.41681 - 9.34544i) q^{45} +(2.73390 - 4.73525i) q^{46} +(3.48340 - 2.01114i) q^{47} +(29.1117 + 31.6054i) q^{48} -22.5369 q^{49} +8.90471i q^{50} +(62.2480 - 57.3365i) q^{51} +(-19.6269 + 46.1627i) q^{52} +12.6540i q^{53} +(10.0553 - 1.40322i) q^{54} +(-8.65564 - 14.9920i) q^{55} +15.2015i q^{56} +(-43.4549 - 47.1774i) q^{57} +(-10.1478 - 17.5765i) q^{58} +(-19.0560 + 11.0020i) q^{59} +(-12.6899 - 3.96508i) q^{60} +10.3485 q^{61} +(-13.4780 + 7.78155i) q^{62} +(-38.0619 - 26.3591i) q^{63} +50.8229 q^{64} +(-1.81087 - 14.8204i) q^{65} +(16.5908 - 3.72311i) q^{66} +74.0229 q^{67} -108.852i q^{68} +(41.6375 + 13.0100i) q^{69} +(-1.11083 - 1.92401i) q^{70} +(-34.1908 - 19.7401i) q^{71} +(15.1418 - 21.8644i) q^{72} -65.2913 q^{73} -19.9649i q^{74} +(-69.3188 + 15.5557i) q^{75} -82.4979 q^{76} +(-67.1498 - 38.7690i) q^{77} +(14.4249 + 2.64371i) q^{78} +(-9.78025 - 16.9399i) q^{79} +(-14.2465 + 8.22520i) q^{80} +(28.4891 + 75.8246i) q^{81} +(-5.42622 + 9.39850i) q^{82} +(71.7112 - 41.4025i) q^{83} +(-58.1036 + 13.0389i) q^{84} +(16.1998 + 28.0589i) q^{85} +(-13.6963 - 7.90758i) q^{86} +(119.097 - 109.700i) q^{87} +(22.2705 - 38.5737i) q^{88} +(-134.830 + 77.8441i) q^{89} +(-0.318741 + 3.87377i) q^{90} +(-40.2150 - 53.4324i) q^{91} +(48.5905 - 28.0538i) q^{92} +(-84.1203 - 91.3262i) q^{93} -1.51249 q^{94} +(21.2657 - 12.2777i) q^{95} +(-11.3025 - 50.3660i) q^{96} +19.4397 q^{97} +(7.33915 + 4.23726i) q^{98} +(57.9651 + 122.647i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 3 q^{2} - q^{3} + 49 q^{4} - 6 q^{5} - 3 q^{6} + 2 q^{7} - 3 q^{9} - 6 q^{10} + 33 q^{11} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 28 q^{15} - 83 q^{16} + 34 q^{18} + 5 q^{19} - 91 q^{21} - 15 q^{22}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.325651 0.188014i −0.162825 0.0940072i 0.416373 0.909194i \(-0.363301\pi\)
−0.579198 + 0.815187i \(0.696634\pi\)
\(3\) 0.894719 2.86347i 0.298240 0.954491i
\(4\) −1.92930 3.34165i −0.482325 0.835412i
\(5\) 0.994641 + 0.574256i 0.198928 + 0.114851i 0.596155 0.802869i \(-0.296694\pi\)
−0.397227 + 0.917720i \(0.630028\pi\)
\(6\) −0.829740 + 0.764272i −0.138290 + 0.127379i
\(7\) 5.14423 0.734890 0.367445 0.930045i \(-0.380233\pi\)
0.367445 + 0.930045i \(0.380233\pi\)
\(8\) 2.95506i 0.369383i
\(9\) −7.39896 5.12401i −0.822106 0.569334i
\(10\) −0.215937 0.374014i −0.0215937 0.0374014i
\(11\) −13.0534 7.53640i −1.18667 0.685127i −0.229126 0.973397i \(-0.573587\pi\)
−0.957549 + 0.288270i \(0.906920\pi\)
\(12\) −11.2949 + 2.53467i −0.941242 + 0.211222i
\(13\) −7.81749 10.3869i −0.601345 0.798989i
\(14\) −1.67522 0.967190i −0.119659 0.0690850i
\(15\) 2.53429 2.33433i 0.168953 0.155622i
\(16\) −7.16161 + 12.4043i −0.447601 + 0.775267i
\(17\) 24.4307 + 14.1051i 1.43710 + 0.829709i 0.997647 0.0685572i \(-0.0218396\pi\)
0.439451 + 0.898266i \(0.355173\pi\)
\(18\) 1.44609 + 3.05975i 0.0803382 + 0.169986i
\(19\) 10.6901 18.5158i 0.562638 0.974518i −0.434627 0.900611i \(-0.643120\pi\)
0.997265 0.0739073i \(-0.0235469\pi\)
\(20\) 4.43165i 0.221583i
\(21\) 4.60264 14.7304i 0.219173 0.701446i
\(22\) 2.83390 + 4.90847i 0.128814 + 0.223112i
\(23\) 14.5409i 0.632213i 0.948724 + 0.316106i \(0.102376\pi\)
−0.948724 + 0.316106i \(0.897624\pi\)
\(24\) 8.46174 + 2.64395i 0.352573 + 0.110165i
\(25\) −11.8405 20.5083i −0.473618 0.820331i
\(26\) 0.592890 + 4.85229i 0.0228035 + 0.186627i
\(27\) −21.2924 + 16.6022i −0.788609 + 0.614895i
\(28\) −9.92477 17.1902i −0.354456 0.613936i
\(29\) 46.7423 + 26.9867i 1.61180 + 0.930576i 0.988952 + 0.148236i \(0.0473596\pi\)
0.622852 + 0.782339i \(0.285974\pi\)
\(30\) −1.26418 + 0.283692i −0.0421394 + 0.00945641i
\(31\) 20.6940 35.8431i 0.667549 1.15623i −0.311039 0.950397i \(-0.600677\pi\)
0.978588 0.205831i \(-0.0659897\pi\)
\(32\) 14.9010 8.60310i 0.465656 0.268847i
\(33\) −33.2594 + 30.6352i −1.00786 + 0.928338i
\(34\) −5.30391 9.18664i −0.155997 0.270195i
\(35\) 5.11666 + 2.95411i 0.146190 + 0.0844030i
\(36\) −2.84781 + 34.6105i −0.0791059 + 0.961402i
\(37\) 26.5470 + 45.9807i 0.717486 + 1.24272i 0.961993 + 0.273074i \(0.0880405\pi\)
−0.244507 + 0.969647i \(0.578626\pi\)
\(38\) −6.96249 + 4.01980i −0.183223 + 0.105784i
\(39\) −36.7370 + 13.0918i −0.941973 + 0.335688i
\(40\) −1.69696 + 2.93923i −0.0424241 + 0.0734806i
\(41\) 28.8607i 0.703919i −0.936015 0.351959i \(-0.885516\pi\)
0.936015 0.351959i \(-0.114484\pi\)
\(42\) −4.26838 + 3.93159i −0.101628 + 0.0936093i
\(43\) 42.0583 0.978101 0.489050 0.872256i \(-0.337343\pi\)
0.489050 + 0.872256i \(0.337343\pi\)
\(44\) 58.1599i 1.32182i
\(45\) −4.41681 9.34544i −0.0981513 0.207676i
\(46\) 2.73390 4.73525i 0.0594326 0.102940i
\(47\) 3.48340 2.01114i 0.0741148 0.0427902i −0.462485 0.886627i \(-0.653042\pi\)
0.536599 + 0.843837i \(0.319709\pi\)
\(48\) 29.1117 + 31.6054i 0.606493 + 0.658446i
\(49\) −22.5369 −0.459937
\(50\) 8.90471i 0.178094i
\(51\) 62.2480 57.3365i 1.22055 1.12425i
\(52\) −19.6269 + 46.1627i −0.377441 + 0.887744i
\(53\) 12.6540i 0.238755i 0.992849 + 0.119378i \(0.0380899\pi\)
−0.992849 + 0.119378i \(0.961910\pi\)
\(54\) 10.0553 1.40322i 0.186210 0.0259855i
\(55\) −8.65564 14.9920i −0.157375 0.272582i
\(56\) 15.2015i 0.271456i
\(57\) −43.4549 47.1774i −0.762368 0.827673i
\(58\) −10.1478 17.5765i −0.174962 0.303043i
\(59\) −19.0560 + 11.0020i −0.322983 + 0.186474i −0.652721 0.757598i \(-0.726373\pi\)
0.329739 + 0.944072i \(0.393039\pi\)
\(60\) −12.6899 3.96508i −0.211499 0.0660847i
\(61\) 10.3485 0.169648 0.0848239 0.996396i \(-0.472967\pi\)
0.0848239 + 0.996396i \(0.472967\pi\)
\(62\) −13.4780 + 7.78155i −0.217388 + 0.125509i
\(63\) −38.0619 26.3591i −0.604158 0.418398i
\(64\) 50.8229 0.794107
\(65\) −1.81087 14.8204i −0.0278596 0.228007i
\(66\) 16.5908 3.72311i 0.251376 0.0564108i
\(67\) 74.0229 1.10482 0.552410 0.833573i \(-0.313708\pi\)
0.552410 + 0.833573i \(0.313708\pi\)
\(68\) 108.852i 1.60076i
\(69\) 41.6375 + 13.0100i 0.603441 + 0.188551i
\(70\) −1.11083 1.92401i −0.0158690 0.0274859i
\(71\) −34.1908 19.7401i −0.481561 0.278029i 0.239506 0.970895i \(-0.423015\pi\)
−0.721067 + 0.692865i \(0.756348\pi\)
\(72\) 15.1418 21.8644i 0.210302 0.303672i
\(73\) −65.2913 −0.894402 −0.447201 0.894434i \(-0.647579\pi\)
−0.447201 + 0.894434i \(0.647579\pi\)
\(74\) 19.9649i 0.269795i
\(75\) −69.3188 + 15.5557i −0.924250 + 0.207409i
\(76\) −82.4979 −1.08550
\(77\) −67.1498 38.7690i −0.872076 0.503493i
\(78\) 14.4249 + 2.64371i 0.184934 + 0.0338937i
\(79\) −9.78025 16.9399i −0.123801 0.214429i 0.797463 0.603368i \(-0.206175\pi\)
−0.921263 + 0.388939i \(0.872842\pi\)
\(80\) −14.2465 + 8.22520i −0.178081 + 0.102815i
\(81\) 28.4891 + 75.8246i 0.351717 + 0.936106i
\(82\) −5.42622 + 9.39850i −0.0661735 + 0.114616i
\(83\) 71.7112 41.4025i 0.863991 0.498825i −0.00135589 0.999999i \(-0.500432\pi\)
0.865347 + 0.501174i \(0.167098\pi\)
\(84\) −58.1036 + 13.0389i −0.691709 + 0.155225i
\(85\) 16.1998 + 28.0589i 0.190586 + 0.330105i
\(86\) −13.6963 7.90758i −0.159260 0.0919486i
\(87\) 119.097 109.700i 1.36893 1.26092i
\(88\) 22.2705 38.5737i 0.253074 0.438337i
\(89\) −134.830 + 77.8441i −1.51494 + 0.874653i −0.515097 + 0.857132i \(0.672244\pi\)
−0.999846 + 0.0175212i \(0.994423\pi\)
\(90\) −0.318741 + 3.87377i −0.00354157 + 0.0430419i
\(91\) −40.2150 53.4324i −0.441923 0.587169i
\(92\) 48.5905 28.0538i 0.528158 0.304932i
\(93\) −84.1203 91.3262i −0.904520 0.982002i
\(94\) −1.51249 −0.0160904
\(95\) 21.2657 12.2777i 0.223849 0.129239i
\(96\) −11.3025 50.3660i −0.117735 0.524646i
\(97\) 19.4397 0.200409 0.100205 0.994967i \(-0.468050\pi\)
0.100205 + 0.994967i \(0.468050\pi\)
\(98\) 7.33915 + 4.23726i 0.0748893 + 0.0432374i
\(99\) 57.9651 + 122.647i 0.585507 + 1.23886i
\(100\) −45.6876 + 79.1333i −0.456876 + 0.791333i
\(101\) 71.7887 + 41.4472i 0.710779 + 0.410369i 0.811349 0.584561i \(-0.198733\pi\)
−0.100570 + 0.994930i \(0.532067\pi\)
\(102\) −31.0512 + 6.96814i −0.304424 + 0.0683151i
\(103\) −38.2718 + 66.2886i −0.371571 + 0.643579i −0.989807 0.142413i \(-0.954514\pi\)
0.618237 + 0.785992i \(0.287847\pi\)
\(104\) 30.6938 23.1012i 0.295133 0.222127i
\(105\) 13.0370 12.0083i 0.124162 0.114365i
\(106\) 2.37914 4.12079i 0.0224447 0.0388754i
\(107\) −20.6786 + 11.9388i −0.193258 + 0.111578i −0.593507 0.804829i \(-0.702257\pi\)
0.400249 + 0.916407i \(0.368924\pi\)
\(108\) 96.5581 + 39.1213i 0.894057 + 0.362234i
\(109\) 5.84222 0.0535983 0.0267992 0.999641i \(-0.491469\pi\)
0.0267992 + 0.999641i \(0.491469\pi\)
\(110\) 6.50955i 0.0591777i
\(111\) 155.417 34.8767i 1.40015 0.314205i
\(112\) −36.8410 + 63.8104i −0.328937 + 0.569736i
\(113\) −115.545 + 66.7097i −1.02252 + 0.590351i −0.914832 0.403834i \(-0.867678\pi\)
−0.107686 + 0.994185i \(0.534344\pi\)
\(114\) 5.28111 + 23.5335i 0.0463255 + 0.206434i
\(115\) −8.35020 + 14.4630i −0.0726104 + 0.125765i
\(116\) 208.262i 1.79536i
\(117\) 4.61891 + 116.909i 0.0394778 + 0.999220i
\(118\) 8.27412 0.0701197
\(119\) 125.677 + 72.5597i 1.05611 + 0.609745i
\(120\) 6.89809 + 7.48899i 0.0574841 + 0.0624082i
\(121\) 53.0946 + 91.9625i 0.438798 + 0.760020i
\(122\) −3.37000 1.94567i −0.0276230 0.0159481i
\(123\) −82.6417 25.8222i −0.671884 0.209936i
\(124\) −159.700 −1.28790
\(125\) 55.9106i 0.447285i
\(126\) 7.43901 + 15.7400i 0.0590397 + 0.124921i
\(127\) 5.22700 + 9.05343i 0.0411575 + 0.0712869i 0.885870 0.463933i \(-0.153562\pi\)
−0.844713 + 0.535220i \(0.820229\pi\)
\(128\) −76.1545 43.9678i −0.594957 0.343499i
\(129\) 37.6304 120.433i 0.291708 0.933588i
\(130\) −2.19674 + 5.16676i −0.0168980 + 0.0397443i
\(131\) −74.2522 42.8695i −0.566811 0.327248i 0.189064 0.981965i \(-0.439455\pi\)
−0.755875 + 0.654716i \(0.772788\pi\)
\(132\) 166.539 + 52.0368i 1.26166 + 0.394218i
\(133\) 54.9925 95.2497i 0.413477 0.716164i
\(134\) −24.1056 13.9174i −0.179893 0.103861i
\(135\) −30.7122 + 4.28587i −0.227498 + 0.0317472i
\(136\) −41.6813 + 72.1942i −0.306480 + 0.530839i
\(137\) 111.047i 0.810558i −0.914193 0.405279i \(-0.867174\pi\)
0.914193 0.405279i \(-0.132826\pi\)
\(138\) −11.1132 12.0652i −0.0805304 0.0874287i
\(139\) 101.422 + 175.667i 0.729652 + 1.26379i 0.957030 + 0.289988i \(0.0936514\pi\)
−0.227378 + 0.973807i \(0.573015\pi\)
\(140\) 22.7974i 0.162839i
\(141\) −2.64218 11.7740i −0.0187389 0.0835036i
\(142\) 7.42285 + 12.8567i 0.0522736 + 0.0905405i
\(143\) 23.7655 + 194.500i 0.166192 + 1.36014i
\(144\) 116.548 55.0825i 0.809361 0.382518i
\(145\) 30.9945 + 53.6841i 0.213755 + 0.370235i
\(146\) 21.2622 + 12.2757i 0.145631 + 0.0840803i
\(147\) −20.1642 + 64.5338i −0.137171 + 0.439005i
\(148\) 102.434 177.421i 0.692123 1.19879i
\(149\) −203.709 + 117.612i −1.36718 + 0.789340i −0.990567 0.137032i \(-0.956244\pi\)
−0.376610 + 0.926372i \(0.622910\pi\)
\(150\) 25.4984 + 7.96721i 0.169989 + 0.0531148i
\(151\) 133.267 + 230.825i 0.882561 + 1.52864i 0.848483 + 0.529222i \(0.177516\pi\)
0.0340779 + 0.999419i \(0.489151\pi\)
\(152\) 54.7155 + 31.5900i 0.359970 + 0.207829i
\(153\) −108.487 229.546i −0.709066 1.50030i
\(154\) 14.5783 + 25.2503i 0.0946640 + 0.163963i
\(155\) 41.1662 23.7673i 0.265588 0.153338i
\(156\) 114.625 + 97.5038i 0.734775 + 0.625025i
\(157\) 29.0426 50.3033i 0.184985 0.320403i −0.758587 0.651572i \(-0.774110\pi\)
0.943571 + 0.331169i \(0.107443\pi\)
\(158\) 7.35531i 0.0465526i
\(159\) 36.2344 + 11.3218i 0.227890 + 0.0712062i
\(160\) 19.7615 0.123510
\(161\) 74.8017i 0.464607i
\(162\) 4.97863 30.0487i 0.0307323 0.185486i
\(163\) −8.10087 + 14.0311i −0.0496986 + 0.0860805i −0.889805 0.456342i \(-0.849159\pi\)
0.840106 + 0.542422i \(0.182493\pi\)
\(164\) −96.4422 + 55.6809i −0.588062 + 0.339518i
\(165\) −50.6736 + 11.3716i −0.307113 + 0.0689186i
\(166\) −31.1371 −0.187573
\(167\) 31.2855i 0.187338i −0.995603 0.0936691i \(-0.970140\pi\)
0.995603 0.0936691i \(-0.0298596\pi\)
\(168\) 43.5291 + 13.6011i 0.259102 + 0.0809589i
\(169\) −46.7737 + 162.398i −0.276768 + 0.960937i
\(170\) 12.1832i 0.0716659i
\(171\) −173.971 + 82.2216i −1.01737 + 0.480828i
\(172\) −81.1432 140.544i −0.471763 0.817117i
\(173\) 4.32233i 0.0249846i −0.999922 0.0124923i \(-0.996023\pi\)
0.999922 0.0124923i \(-0.00397652\pi\)
\(174\) −59.4092 + 13.3319i −0.341432 + 0.0766201i
\(175\) −60.9101 105.499i −0.348057 0.602853i
\(176\) 186.967 107.945i 1.06231 0.613327i
\(177\) 14.4541 + 64.4100i 0.0816617 + 0.363898i
\(178\) 58.5433 0.328895
\(179\) 1.59962 0.923541i 0.00893642 0.00515945i −0.495525 0.868594i \(-0.665024\pi\)
0.504462 + 0.863434i \(0.331691\pi\)
\(180\) −22.7078 + 32.7896i −0.126155 + 0.182164i
\(181\) −10.7339 −0.0593032 −0.0296516 0.999560i \(-0.509440\pi\)
−0.0296516 + 0.999560i \(0.509440\pi\)
\(182\) 3.04996 + 24.9613i 0.0167580 + 0.137150i
\(183\) 9.25901 29.6327i 0.0505957 0.161927i
\(184\) −42.9692 −0.233529
\(185\) 60.9790i 0.329616i
\(186\) 10.2232 + 45.5563i 0.0549634 + 0.244926i
\(187\) −212.603 368.239i −1.13691 1.96919i
\(188\) −13.4410 7.76019i −0.0714949 0.0412776i
\(189\) −109.533 + 85.4054i −0.579541 + 0.451880i
\(190\) −9.23357 −0.0485977
\(191\) 65.9244i 0.345154i −0.984996 0.172577i \(-0.944791\pi\)
0.984996 0.172577i \(-0.0552094\pi\)
\(192\) 45.4722 145.530i 0.236834 0.757968i
\(193\) −111.858 −0.579578 −0.289789 0.957091i \(-0.593585\pi\)
−0.289789 + 0.957091i \(0.593585\pi\)
\(194\) −6.33055 3.65494i −0.0326317 0.0188399i
\(195\) −44.0581 8.07473i −0.225939 0.0414089i
\(196\) 43.4804 + 75.3103i 0.221839 + 0.384236i
\(197\) −10.1710 + 5.87226i −0.0516297 + 0.0298084i −0.525593 0.850736i \(-0.676156\pi\)
0.473963 + 0.880545i \(0.342823\pi\)
\(198\) 4.18308 50.8385i 0.0211267 0.256760i
\(199\) 9.23826 16.0011i 0.0464234 0.0804077i −0.841880 0.539665i \(-0.818551\pi\)
0.888303 + 0.459257i \(0.151884\pi\)
\(200\) 60.6032 34.9893i 0.303016 0.174946i
\(201\) 66.2297 211.963i 0.329501 1.05454i
\(202\) −15.5854 26.9946i −0.0771552 0.133637i
\(203\) 240.453 + 138.826i 1.18450 + 0.683871i
\(204\) −311.694 97.3916i −1.52791 0.477410i
\(205\) 16.5734 28.7060i 0.0808459 0.140029i
\(206\) 24.9265 14.3913i 0.121002 0.0698607i
\(207\) 74.5076 107.587i 0.359940 0.519746i
\(208\) 184.827 22.5836i 0.888593 0.108575i
\(209\) −279.085 + 161.130i −1.33534 + 0.770957i
\(210\) −6.50324 + 1.45938i −0.0309678 + 0.00694943i
\(211\) 26.1820 0.124085 0.0620426 0.998074i \(-0.480239\pi\)
0.0620426 + 0.998074i \(0.480239\pi\)
\(212\) 42.2853 24.4134i 0.199459 0.115158i
\(213\) −87.1164 + 80.2427i −0.408997 + 0.376726i
\(214\) 8.97868 0.0419565
\(215\) 41.8329 + 24.1523i 0.194572 + 0.112336i
\(216\) −49.0604 62.9205i −0.227132 0.291299i
\(217\) 106.455 184.385i 0.490575 0.849701i
\(218\) −1.90252 1.09842i −0.00872717 0.00503863i
\(219\) −58.4174 + 186.960i −0.266746 + 0.853698i
\(220\) −33.3987 + 57.8482i −0.151812 + 0.262946i
\(221\) −44.4793 364.024i −0.201264 1.64717i
\(222\) −57.1688 17.8629i −0.257517 0.0804637i
\(223\) 161.459 279.656i 0.724033 1.25406i −0.235338 0.971914i \(-0.575620\pi\)
0.959371 0.282149i \(-0.0910471\pi\)
\(224\) 76.6542 44.2563i 0.342206 0.197573i
\(225\) −17.4775 + 212.410i −0.0776779 + 0.944046i
\(226\) 50.1696 0.221989
\(227\) 253.520i 1.11683i −0.829563 0.558413i \(-0.811410\pi\)
0.829563 0.558413i \(-0.188590\pi\)
\(228\) −73.8124 + 236.230i −0.323739 + 1.03610i
\(229\) 119.446 206.887i 0.521600 0.903437i −0.478085 0.878314i \(-0.658669\pi\)
0.999684 0.0251232i \(-0.00799781\pi\)
\(230\) 5.43849 3.13992i 0.0236456 0.0136518i
\(231\) −171.094 + 157.594i −0.740667 + 0.682227i
\(232\) −79.7474 + 138.126i −0.343739 + 0.595373i
\(233\) 42.9145i 0.184182i −0.995751 0.0920912i \(-0.970645\pi\)
0.995751 0.0920912i \(-0.0293551\pi\)
\(234\) 20.4764 38.9398i 0.0875060 0.166410i
\(235\) 4.61964 0.0196580
\(236\) 73.5294 + 42.4522i 0.311565 + 0.179882i
\(237\) −57.2575 + 12.8490i −0.241593 + 0.0542154i
\(238\) −27.2845 47.2582i −0.114641 0.198564i
\(239\) 67.0524 + 38.7127i 0.280554 + 0.161978i 0.633674 0.773600i \(-0.281546\pi\)
−0.353120 + 0.935578i \(0.614879\pi\)
\(240\) 10.8061 + 48.1536i 0.0450252 + 0.200640i
\(241\) −95.7696 −0.397384 −0.198692 0.980062i \(-0.563669\pi\)
−0.198692 + 0.980062i \(0.563669\pi\)
\(242\) 39.9302i 0.165001i
\(243\) 242.611 13.7361i 0.998401 0.0565270i
\(244\) −19.9654 34.5811i −0.0818254 0.141726i
\(245\) −22.4161 12.9419i −0.0914943 0.0528243i
\(246\) 22.0574 + 23.9469i 0.0896642 + 0.0973450i
\(247\) −275.891 + 33.7105i −1.11697 + 0.136480i
\(248\) 105.919 + 61.1521i 0.427091 + 0.246581i
\(249\) −54.3935 242.387i −0.218448 0.973441i
\(250\) −10.5120 + 18.2073i −0.0420480 + 0.0728293i
\(251\) 365.360 + 210.940i 1.45562 + 0.840400i 0.998791 0.0491566i \(-0.0156533\pi\)
0.456825 + 0.889557i \(0.348987\pi\)
\(252\) −14.6498 + 178.044i −0.0581341 + 0.706524i
\(253\) 109.586 189.808i 0.433146 0.750231i
\(254\) 3.93101i 0.0154764i
\(255\) 94.8403 21.2829i 0.371923 0.0834624i
\(256\) −85.1125 147.419i −0.332471 0.575856i
\(257\) 388.354i 1.51110i 0.655089 + 0.755552i \(0.272631\pi\)
−0.655089 + 0.755552i \(0.727369\pi\)
\(258\) −34.8975 + 32.1440i −0.135262 + 0.124589i
\(259\) 136.564 + 236.535i 0.527273 + 0.913264i
\(260\) −46.0309 + 34.6444i −0.177042 + 0.133248i
\(261\) −207.564 439.181i −0.795266 1.68269i
\(262\) 16.1202 + 27.9210i 0.0615275 + 0.106569i
\(263\) 138.032 + 79.6926i 0.524835 + 0.303014i 0.738911 0.673803i \(-0.235341\pi\)
−0.214076 + 0.976817i \(0.568674\pi\)
\(264\) −90.5288 98.2836i −0.342912 0.372286i
\(265\) −7.26665 + 12.5862i −0.0274213 + 0.0474951i
\(266\) −35.8167 + 20.6788i −0.134649 + 0.0777397i
\(267\) 102.270 + 455.731i 0.383032 + 1.70686i
\(268\) −142.813 247.359i −0.532883 0.922980i
\(269\) 138.125 + 79.7468i 0.513478 + 0.296456i 0.734262 0.678866i \(-0.237528\pi\)
−0.220784 + 0.975323i \(0.570862\pi\)
\(270\) 10.8073 + 4.37865i 0.0400269 + 0.0162172i
\(271\) −96.7532 167.581i −0.357023 0.618382i 0.630439 0.776239i \(-0.282875\pi\)
−0.987462 + 0.157857i \(0.949542\pi\)
\(272\) −349.926 + 202.030i −1.28649 + 0.742757i
\(273\) −188.983 + 67.3475i −0.692247 + 0.246694i
\(274\) −20.8784 + 36.1624i −0.0761984 + 0.131979i
\(275\) 356.938i 1.29795i
\(276\) −36.8563 164.238i −0.133537 0.595065i
\(277\) −321.962 −1.16232 −0.581159 0.813790i \(-0.697401\pi\)
−0.581159 + 0.813790i \(0.697401\pi\)
\(278\) 76.2750i 0.274370i
\(279\) −336.774 + 159.165i −1.20708 + 0.570484i
\(280\) −8.72957 + 15.1201i −0.0311770 + 0.0540002i
\(281\) −357.552 + 206.433i −1.27243 + 0.734637i −0.975444 0.220246i \(-0.929314\pi\)
−0.296984 + 0.954883i \(0.595981\pi\)
\(282\) −1.35326 + 4.33098i −0.00479878 + 0.0153581i
\(283\) 487.758 1.72353 0.861764 0.507310i \(-0.169360\pi\)
0.861764 + 0.507310i \(0.169360\pi\)
\(284\) 152.338i 0.536403i
\(285\) −16.1302 71.8788i −0.0565971 0.252206i
\(286\) 28.8295 67.8072i 0.100803 0.237088i
\(287\) 148.466i 0.517303i
\(288\) −154.334 12.6989i −0.535883 0.0440934i
\(289\) 253.405 + 438.911i 0.876835 + 1.51872i
\(290\) 23.3097i 0.0803783i
\(291\) 17.3931 55.6650i 0.0597700 0.191289i
\(292\) 125.967 + 218.181i 0.431393 + 0.747194i
\(293\) 475.133 274.318i 1.62162 0.936240i 0.635128 0.772407i \(-0.280947\pi\)
0.986488 0.163833i \(-0.0523859\pi\)
\(294\) 18.6998 17.2243i 0.0636046 0.0585861i
\(295\) −25.2718 −0.0856671
\(296\) −135.876 + 78.4479i −0.459040 + 0.265027i
\(297\) 403.060 56.2468i 1.35710 0.189383i
\(298\) 88.4508 0.296815
\(299\) 151.034 113.673i 0.505131 0.380178i
\(300\) 185.718 + 201.627i 0.619062 + 0.672091i
\(301\) 216.358 0.718797
\(302\) 100.224i 0.331869i
\(303\) 182.914 168.481i 0.603676 0.556044i
\(304\) 153.117 + 265.206i 0.503674 + 0.872390i
\(305\) 10.2931 + 5.94270i 0.0337477 + 0.0194843i
\(306\) −7.82902 + 95.1488i −0.0255850 + 0.310944i
\(307\) 78.3446 0.255194 0.127597 0.991826i \(-0.459274\pi\)
0.127597 + 0.991826i \(0.459274\pi\)
\(308\) 299.188i 0.971390i
\(309\) 155.573 + 168.900i 0.503473 + 0.546602i
\(310\) −17.8744 −0.0576594
\(311\) −390.829 225.645i −1.25668 0.725547i −0.284255 0.958749i \(-0.591746\pi\)
−0.972428 + 0.233202i \(0.925080\pi\)
\(312\) −38.6872 108.560i −0.123998 0.347949i
\(313\) 117.824 + 204.077i 0.376435 + 0.652004i 0.990541 0.137220i \(-0.0438166\pi\)
−0.614106 + 0.789224i \(0.710483\pi\)
\(314\) −18.9155 + 10.9209i −0.0602404 + 0.0347798i
\(315\) −22.7211 48.0751i −0.0721305 0.152619i
\(316\) −37.7381 + 65.3643i −0.119424 + 0.206849i
\(317\) 107.908 62.3008i 0.340404 0.196532i −0.320047 0.947402i \(-0.603699\pi\)
0.660451 + 0.750869i \(0.270365\pi\)
\(318\) −9.67111 10.4995i −0.0304123 0.0330174i
\(319\) −406.765 704.537i −1.27512 2.20858i
\(320\) 50.5505 + 29.1853i 0.157970 + 0.0912042i
\(321\) 15.6849 + 69.8946i 0.0488627 + 0.217740i
\(322\) 14.0638 24.3592i 0.0436764 0.0756498i
\(323\) 522.334 301.570i 1.61713 0.933652i
\(324\) 198.415 241.489i 0.612392 0.745337i
\(325\) −120.454 + 283.308i −0.370628 + 0.871718i
\(326\) 5.27611 3.04616i 0.0161844 0.00934406i
\(327\) 5.22714 16.7290i 0.0159851 0.0511591i
\(328\) 85.2851 0.260015
\(329\) 17.9194 10.3458i 0.0544662 0.0314461i
\(330\) 18.6399 + 5.82421i 0.0564846 + 0.0176491i
\(331\) 334.583 1.01083 0.505413 0.862878i \(-0.331340\pi\)
0.505413 + 0.862878i \(0.331340\pi\)
\(332\) −276.705 159.756i −0.833449 0.481192i
\(333\) 39.1856 476.236i 0.117674 1.43014i
\(334\) −5.88212 + 10.1881i −0.0176111 + 0.0305034i
\(335\) 73.6262 + 42.5081i 0.219780 + 0.126890i
\(336\) 149.757 + 162.586i 0.445706 + 0.483886i
\(337\) −185.957 + 322.088i −0.551802 + 0.955750i 0.446342 + 0.894862i \(0.352726\pi\)
−0.998145 + 0.0608873i \(0.980607\pi\)
\(338\) 45.7651 44.0910i 0.135400 0.130447i
\(339\) 87.6415 + 390.545i 0.258530 + 1.15205i
\(340\) 62.5087 108.268i 0.183849 0.318436i
\(341\) −540.255 + 311.916i −1.58433 + 0.914711i
\(342\) 72.1126 + 5.93356i 0.210856 + 0.0173496i
\(343\) −368.002 −1.07289
\(344\) 124.285i 0.361294i
\(345\) 33.9432 + 36.8509i 0.0983862 + 0.106814i
\(346\) −0.812660 + 1.40757i −0.00234873 + 0.00406812i
\(347\) −147.917 + 85.4000i −0.426274 + 0.246110i −0.697758 0.716333i \(-0.745819\pi\)
0.271484 + 0.962443i \(0.412486\pi\)
\(348\) −596.352 186.336i −1.71366 0.535448i
\(349\) −67.3588 + 116.669i −0.193005 + 0.334295i −0.946245 0.323452i \(-0.895157\pi\)
0.753240 + 0.657746i \(0.228490\pi\)
\(350\) 45.8079i 0.130880i
\(351\) 338.898 + 91.3744i 0.965521 + 0.260326i
\(352\) −259.345 −0.736777
\(353\) −109.964 63.4880i −0.311514 0.179853i 0.336090 0.941830i \(-0.390895\pi\)
−0.647604 + 0.761977i \(0.724229\pi\)
\(354\) 7.40301 23.6927i 0.0209125 0.0669286i
\(355\) −22.6717 39.2686i −0.0638640 0.110616i
\(356\) 520.255 + 300.370i 1.46139 + 0.843735i
\(357\) 320.218 294.952i 0.896970 0.826197i
\(358\) −0.694556 −0.00194010
\(359\) 443.856i 1.23637i −0.786034 0.618184i \(-0.787869\pi\)
0.786034 0.618184i \(-0.212131\pi\)
\(360\) 27.6164 13.0520i 0.0767121 0.0362554i
\(361\) −48.0575 83.2381i −0.133123 0.230576i
\(362\) 3.49550 + 2.01813i 0.00965606 + 0.00557493i
\(363\) 310.837 69.7543i 0.856300 0.192161i
\(364\) −100.965 + 237.471i −0.277378 + 0.652394i
\(365\) −64.9414 37.4939i −0.177922 0.102723i
\(366\) −8.58658 + 7.90908i −0.0234606 + 0.0216095i
\(367\) 58.0864 100.609i 0.158274 0.274138i −0.775973 0.630767i \(-0.782741\pi\)
0.934246 + 0.356629i \(0.116074\pi\)
\(368\) −180.369 104.136i −0.490134 0.282979i
\(369\) −147.882 + 213.539i −0.400765 + 0.578696i
\(370\) 11.4649 19.8579i 0.0309863 0.0536699i
\(371\) 65.0952i 0.175459i
\(372\) −142.887 + 457.296i −0.384104 + 1.22929i
\(373\) −105.494 182.720i −0.282825 0.489866i 0.689255 0.724519i \(-0.257938\pi\)
−0.972079 + 0.234653i \(0.924605\pi\)
\(374\) 159.889i 0.427512i
\(375\) −160.099 50.0243i −0.426930 0.133398i
\(376\) 5.94304 + 10.2936i 0.0158060 + 0.0273767i
\(377\) −85.1006 696.474i −0.225731 1.84741i
\(378\) 51.7270 7.21848i 0.136844 0.0190965i
\(379\) −190.883 330.619i −0.503650 0.872347i −0.999991 0.00421947i \(-0.998657\pi\)
0.496341 0.868127i \(-0.334676\pi\)
\(380\) −82.0557 47.3749i −0.215936 0.124671i
\(381\) 30.6010 6.86710i 0.0803175 0.0180239i
\(382\) −12.3947 + 21.4683i −0.0324470 + 0.0561998i
\(383\) −219.929 + 126.976i −0.574227 + 0.331530i −0.758836 0.651282i \(-0.774232\pi\)
0.184609 + 0.982812i \(0.440898\pi\)
\(384\) −194.038 + 178.728i −0.505306 + 0.465436i
\(385\) −44.5266 77.1224i −0.115654 0.200318i
\(386\) 36.4268 + 21.0310i 0.0943699 + 0.0544845i
\(387\) −311.188 215.507i −0.804103 0.556866i
\(388\) −37.5050 64.9606i −0.0966624 0.167424i
\(389\) −291.388 + 168.233i −0.749070 + 0.432476i −0.825358 0.564610i \(-0.809027\pi\)
0.0762879 + 0.997086i \(0.475693\pi\)
\(390\) 12.8294 + 10.9131i 0.0328959 + 0.0279823i
\(391\) −205.100 + 355.244i −0.524553 + 0.908552i
\(392\) 66.5979i 0.169893i
\(393\) −189.191 + 174.263i −0.481401 + 0.443418i
\(394\) 4.41628 0.0112088
\(395\) 22.4655i 0.0568746i
\(396\) 298.012 430.323i 0.752555 1.08667i
\(397\) −124.854 + 216.254i −0.314494 + 0.544720i −0.979330 0.202269i \(-0.935168\pi\)
0.664835 + 0.746990i \(0.268502\pi\)
\(398\) −6.01689 + 3.47385i −0.0151178 + 0.00872828i
\(399\) −223.542 242.691i −0.560256 0.608249i
\(400\) 339.187 0.847968
\(401\) 562.927i 1.40381i −0.712271 0.701904i \(-0.752333\pi\)
0.712271 0.701904i \(-0.247667\pi\)
\(402\) −61.4198 + 56.5736i −0.152786 + 0.140730i
\(403\) −534.072 + 65.2570i −1.32524 + 0.161928i
\(404\) 319.857i 0.791724i
\(405\) −15.2063 + 91.7783i −0.0375465 + 0.226613i
\(406\) −52.2025 90.4174i −0.128578 0.222703i
\(407\) 800.274i 1.96628i
\(408\) 169.433 + 183.947i 0.415277 + 0.450850i
\(409\) 370.218 + 641.237i 0.905179 + 1.56782i 0.820676 + 0.571393i \(0.193597\pi\)
0.0845027 + 0.996423i \(0.473070\pi\)
\(410\) −10.7943 + 6.23208i −0.0263275 + 0.0152002i
\(411\) −317.979 99.3554i −0.773671 0.241741i
\(412\) 295.351 0.716872
\(413\) −98.0284 + 56.5967i −0.237357 + 0.137038i
\(414\) −44.4915 + 21.0274i −0.107467 + 0.0507908i
\(415\) 95.1026 0.229163
\(416\) −205.848 87.5200i −0.494826 0.210385i
\(417\) 593.763 133.245i 1.42389 0.319533i
\(418\) 121.179 0.289902
\(419\) 447.245i 1.06741i 0.845670 + 0.533705i \(0.179201\pi\)
−0.845670 + 0.533705i \(0.820799\pi\)
\(420\) −65.2799 20.3973i −0.155428 0.0485650i
\(421\) −159.450 276.175i −0.378741 0.655999i 0.612138 0.790751i \(-0.290310\pi\)
−0.990879 + 0.134752i \(0.956976\pi\)
\(422\) −8.52618 4.92259i −0.0202042 0.0116649i
\(423\) −36.0786 2.96861i −0.0852922 0.00701799i
\(424\) −37.3934 −0.0881920
\(425\) 668.041i 1.57186i
\(426\) 43.4563 9.75195i 0.102010 0.0228919i
\(427\) 53.2351 0.124672
\(428\) 79.7906 + 46.0671i 0.186427 + 0.107634i
\(429\) 578.208 + 105.971i 1.34780 + 0.247018i
\(430\) −9.08195 15.7304i −0.0211208 0.0365823i
\(431\) −101.578 + 58.6459i −0.235679 + 0.136069i −0.613189 0.789936i \(-0.710114\pi\)
0.377510 + 0.926005i \(0.376780\pi\)
\(432\) −53.4496 383.015i −0.123726 0.886610i
\(433\) 211.520 366.363i 0.488498 0.846104i −0.511414 0.859334i \(-0.670878\pi\)
0.999912 + 0.0132303i \(0.00421145\pi\)
\(434\) −69.3341 + 40.0301i −0.159756 + 0.0922352i
\(435\) 181.454 40.7198i 0.417137 0.0936088i
\(436\) −11.2714 19.5226i −0.0258518 0.0447767i
\(437\) 269.237 + 155.444i 0.616103 + 0.355707i
\(438\) 54.1748 49.9003i 0.123687 0.113928i
\(439\) 134.308 232.629i 0.305941 0.529906i −0.671529 0.740978i \(-0.734362\pi\)
0.977470 + 0.211072i \(0.0676956\pi\)
\(440\) 44.3023 25.5780i 0.100687 0.0581317i
\(441\) 166.749 + 115.479i 0.378117 + 0.261858i
\(442\) −53.9571 + 126.907i −0.122075 + 0.287121i
\(443\) 33.2832 19.2161i 0.0751314 0.0433771i −0.461964 0.886899i \(-0.652855\pi\)
0.537095 + 0.843522i \(0.319522\pi\)
\(444\) −416.391 452.060i −0.937818 1.01815i
\(445\) −178.810 −0.401820
\(446\) −105.159 + 60.7134i −0.235782 + 0.136129i
\(447\) 154.515 + 688.546i 0.345672 + 1.54037i
\(448\) 261.444 0.583581
\(449\) 521.983 + 301.367i 1.16254 + 0.671196i 0.951913 0.306370i \(-0.0991144\pi\)
0.210632 + 0.977565i \(0.432448\pi\)
\(450\) 45.6278 65.8856i 0.101395 0.146412i
\(451\) −217.505 + 376.730i −0.482274 + 0.835323i
\(452\) 445.841 + 257.406i 0.986373 + 0.569483i
\(453\) 780.197 175.082i 1.72229 0.386496i
\(454\) −47.6654 + 82.5589i −0.104990 + 0.181848i
\(455\) −9.31556 76.2397i −0.0204738 0.167560i
\(456\) 139.412 128.412i 0.305728 0.281605i
\(457\) −129.801 + 224.822i −0.284029 + 0.491952i −0.972373 0.233432i \(-0.925004\pi\)
0.688344 + 0.725384i \(0.258338\pi\)
\(458\) −77.7955 + 44.9153i −0.169859 + 0.0980683i
\(459\) −754.363 + 105.271i −1.64349 + 0.229349i
\(460\) 64.4402 0.140087
\(461\) 534.455i 1.15934i 0.814852 + 0.579669i \(0.196818\pi\)
−0.814852 + 0.579669i \(0.803182\pi\)
\(462\) 85.3469 19.1525i 0.184734 0.0414557i
\(463\) −307.484 + 532.579i −0.664113 + 1.15028i 0.315412 + 0.948955i \(0.397857\pi\)
−0.979525 + 0.201323i \(0.935476\pi\)
\(464\) −669.501 + 386.536i −1.44289 + 0.833052i
\(465\) −31.2249 139.143i −0.0671503 0.299233i
\(466\) −8.06855 + 13.9751i −0.0173145 + 0.0299896i
\(467\) 247.090i 0.529100i −0.964372 0.264550i \(-0.914777\pi\)
0.964372 0.264550i \(-0.0852234\pi\)
\(468\) 381.757 240.987i 0.815719 0.514930i
\(469\) 380.791 0.811921
\(470\) −1.50439 0.868558i −0.00320082 0.00184800i
\(471\) −118.057 128.170i −0.250652 0.272123i
\(472\) −32.5115 56.3116i −0.0688803 0.119304i
\(473\) −549.005 316.968i −1.16069 0.670123i
\(474\) 21.0617 + 6.58094i 0.0444341 + 0.0138838i
\(475\) −506.304 −1.06590
\(476\) 559.958i 1.17638i
\(477\) 64.8393 93.6265i 0.135931 0.196282i
\(478\) −14.5571 25.2136i −0.0304542 0.0527482i
\(479\) −710.396 410.147i −1.48308 0.856257i −0.483266 0.875474i \(-0.660549\pi\)
−0.999815 + 0.0192166i \(0.993883\pi\)
\(480\) 17.6810 56.5866i 0.0368354 0.117889i
\(481\) 270.065 635.193i 0.561465 1.32057i
\(482\) 31.1874 + 18.0061i 0.0647042 + 0.0373570i
\(483\) 214.193 + 66.9265i 0.443463 + 0.138564i
\(484\) 204.871 354.847i 0.423287 0.733154i
\(485\) 19.3355 + 11.1634i 0.0398670 + 0.0230172i
\(486\) −81.5892 41.1413i −0.167879 0.0846529i
\(487\) −367.489 + 636.510i −0.754598 + 1.30700i 0.190976 + 0.981595i \(0.438835\pi\)
−0.945574 + 0.325407i \(0.894499\pi\)
\(488\) 30.5805i 0.0626650i
\(489\) 32.9297 + 35.7505i 0.0673410 + 0.0731095i
\(490\) 4.86655 + 8.42911i 0.00993173 + 0.0172023i
\(491\) 130.593i 0.265974i 0.991118 + 0.132987i \(0.0424569\pi\)
−0.991118 + 0.132987i \(0.957543\pi\)
\(492\) 73.1522 + 325.978i 0.148683 + 0.662558i
\(493\) 761.298 + 1318.61i 1.54421 + 2.67466i
\(494\) 96.1823 + 40.8937i 0.194701 + 0.0827808i
\(495\) −12.7765 + 155.277i −0.0258110 + 0.313691i
\(496\) 296.405 + 513.388i 0.597590 + 1.03506i
\(497\) −175.886 101.548i −0.353895 0.204321i
\(498\) −27.8589 + 89.1602i −0.0559416 + 0.179037i
\(499\) −14.4740 + 25.0696i −0.0290059 + 0.0502397i −0.880164 0.474670i \(-0.842568\pi\)
0.851158 + 0.524909i \(0.175901\pi\)
\(500\) −186.834 + 107.868i −0.373667 + 0.215737i
\(501\) −89.5851 27.9917i −0.178813 0.0558717i
\(502\) −79.3197 137.386i −0.158007 0.273677i
\(503\) 255.144 + 147.308i 0.507245 + 0.292858i 0.731701 0.681626i \(-0.238727\pi\)
−0.224455 + 0.974484i \(0.572060\pi\)
\(504\) 77.8927 112.475i 0.154549 0.223165i
\(505\) 47.6026 + 82.4502i 0.0942627 + 0.163268i
\(506\) −71.3735 + 41.2075i −0.141054 + 0.0814377i
\(507\) 423.174 + 279.236i 0.834662 + 0.550762i
\(508\) 20.1689 34.9336i 0.0397026 0.0687669i
\(509\) 621.265i 1.22056i 0.792186 + 0.610280i \(0.208943\pi\)
−0.792186 + 0.610280i \(0.791057\pi\)
\(510\) −34.8863 10.9005i −0.0684045 0.0213736i
\(511\) −335.874 −0.657287
\(512\) 415.752i 0.812016i
\(513\) 79.7841 + 571.727i 0.155525 + 1.11448i
\(514\) 73.0161 126.468i 0.142055 0.246046i
\(515\) −76.1333 + 43.9556i −0.147832 + 0.0853507i
\(516\) −475.045 + 106.604i −0.920629 + 0.206597i
\(517\) −60.6270 −0.117267
\(518\) 102.704i 0.198270i
\(519\) −12.3769 3.86727i −0.0238475 0.00745138i
\(520\) 43.7953 5.35125i 0.0842217 0.0102909i
\(521\) 166.583i 0.319738i 0.987138 + 0.159869i \(0.0511071\pi\)
−0.987138 + 0.159869i \(0.948893\pi\)
\(522\) −14.9790 + 182.045i −0.0286954 + 0.348745i
\(523\) −51.1561 88.6049i −0.0978127 0.169417i 0.812966 0.582311i \(-0.197851\pi\)
−0.910779 + 0.412894i \(0.864518\pi\)
\(524\) 330.833i 0.631361i
\(525\) −356.592 + 80.0221i −0.679223 + 0.152423i
\(526\) −29.9667 51.9039i −0.0569709 0.0986766i
\(527\) 1011.14 583.780i 1.91867 1.10774i
\(528\) −141.816 631.956i −0.268591 1.19689i
\(529\) 317.562 0.600307
\(530\) 4.73278 2.73247i 0.00892977 0.00515560i
\(531\) 197.369 + 16.2398i 0.371692 + 0.0305835i
\(532\) −424.388 −0.797722
\(533\) −299.772 + 225.618i −0.562424 + 0.423298i
\(534\) 52.3798 167.637i 0.0980895 0.313927i
\(535\) −27.4238 −0.0512594
\(536\) 218.742i 0.408102i
\(537\) −1.21332 5.40678i −0.00225945 0.0100685i
\(538\) −29.9871 51.9392i −0.0557381 0.0965412i
\(539\) 294.184 + 169.847i 0.545795 + 0.315115i
\(540\) 73.5750 + 94.3607i 0.136250 + 0.174742i
\(541\) 638.732 1.18065 0.590325 0.807166i \(-0.299000\pi\)
0.590325 + 0.807166i \(0.299000\pi\)
\(542\) 72.7640i 0.134251i
\(543\) −9.60381 + 30.7362i −0.0176866 + 0.0566044i
\(544\) 485.389 0.892259
\(545\) 5.81091 + 3.35493i 0.0106622 + 0.00615583i
\(546\) 74.2049 + 13.5999i 0.135906 + 0.0249082i
\(547\) −250.228 433.408i −0.457456 0.792337i 0.541370 0.840785i \(-0.317906\pi\)
−0.998826 + 0.0484477i \(0.984573\pi\)
\(548\) −371.078 + 214.242i −0.677150 + 0.390953i
\(549\) −76.5682 53.0259i −0.139468 0.0965863i
\(550\) 67.1094 116.237i 0.122017 0.211340i
\(551\) 999.363 576.982i 1.81373 1.04715i
\(552\) −38.4454 + 123.041i −0.0696475 + 0.222901i
\(553\) −50.3119 87.1427i −0.0909798 0.157582i
\(554\) 104.847 + 60.5336i 0.189255 + 0.109266i
\(555\) 174.612 + 54.5591i 0.314616 + 0.0983047i
\(556\) 391.346 677.831i 0.703859 1.21912i
\(557\) 217.719 125.700i 0.390877 0.225673i −0.291663 0.956521i \(-0.594209\pi\)
0.682540 + 0.730848i \(0.260875\pi\)
\(558\) 139.596 + 11.4862i 0.250172 + 0.0205846i
\(559\) −328.791 436.854i −0.588176 0.781492i
\(560\) −73.2871 + 42.3123i −0.130870 + 0.0755577i
\(561\) −1244.66 + 279.312i −2.21865 + 0.497882i
\(562\) 155.249 0.276245
\(563\) −651.090 + 375.907i −1.15647 + 0.667685i −0.950454 0.310864i \(-0.899382\pi\)
−0.206011 + 0.978550i \(0.566048\pi\)
\(564\) −34.2470 + 31.5449i −0.0607217 + 0.0559306i
\(565\) −153.234 −0.271210
\(566\) −158.839 91.7056i −0.280634 0.162024i
\(567\) 146.555 + 390.059i 0.258474 + 0.687935i
\(568\) 58.3332 101.036i 0.102699 0.177880i
\(569\) 464.413 + 268.129i 0.816191 + 0.471228i 0.849101 0.528230i \(-0.177144\pi\)
−0.0329102 + 0.999458i \(0.510478\pi\)
\(570\) −8.26145 + 26.4401i −0.0144938 + 0.0463861i
\(571\) −50.9656 + 88.2750i −0.0892567 + 0.154597i −0.907197 0.420706i \(-0.861782\pi\)
0.817940 + 0.575303i \(0.195116\pi\)
\(572\) 604.099 454.664i 1.05612 0.794868i
\(573\) −188.773 58.9838i −0.329447 0.102939i
\(574\) −27.9137 + 48.3480i −0.0486302 + 0.0842300i
\(575\) 298.209 172.171i 0.518624 0.299428i
\(576\) −376.036 260.417i −0.652840 0.452112i
\(577\) −6.86778 −0.0119026 −0.00595128 0.999982i \(-0.501894\pi\)
−0.00595128 + 0.999982i \(0.501894\pi\)
\(578\) 190.575i 0.329715i
\(579\) −100.082 + 320.304i −0.172853 + 0.553202i
\(580\) 119.596 207.146i 0.206199 0.357148i
\(581\) 368.899 212.984i 0.634938 0.366582i
\(582\) −16.1299 + 14.8572i −0.0277146 + 0.0255278i
\(583\) 95.3657 165.178i 0.163578 0.283325i
\(584\) 192.940i 0.330377i
\(585\) −62.5414 + 118.935i −0.106908 + 0.203307i
\(586\) −206.303 −0.352054
\(587\) 452.291 + 261.130i 0.770512 + 0.444855i 0.833057 0.553187i \(-0.186588\pi\)
−0.0625452 + 0.998042i \(0.519922\pi\)
\(588\) 254.552 57.1235i 0.432911 0.0971488i
\(589\) −442.443 766.334i −0.751177 1.30108i
\(590\) 8.22978 + 4.75147i 0.0139488 + 0.00805333i
\(591\) 7.71482 + 34.3785i 0.0130538 + 0.0581701i
\(592\) −760.476 −1.28459
\(593\) 624.635i 1.05335i 0.850068 + 0.526674i \(0.176561\pi\)
−0.850068 + 0.526674i \(0.823439\pi\)
\(594\) −141.832 57.4643i −0.238774 0.0967412i
\(595\) 83.3357 + 144.342i 0.140060 + 0.242591i
\(596\) 786.033 + 453.817i 1.31885 + 0.761437i
\(597\) −37.5532 40.7700i −0.0629032 0.0682915i
\(598\) −70.5566 + 8.62115i −0.117988 + 0.0144166i
\(599\) −472.937 273.050i −0.789544 0.455843i 0.0502581 0.998736i \(-0.483996\pi\)
−0.839802 + 0.542893i \(0.817329\pi\)
\(600\) −45.9680 204.841i −0.0766134 0.341402i
\(601\) −281.855 + 488.187i −0.468977 + 0.812291i −0.999371 0.0354598i \(-0.988710\pi\)
0.530395 + 0.847751i \(0.322044\pi\)
\(602\) −70.4571 40.6784i −0.117038 0.0675721i
\(603\) −547.693 379.294i −0.908279 0.629012i
\(604\) 514.223 890.661i 0.851363 1.47460i
\(605\) 121.959i 0.201586i
\(606\) −91.2429 + 20.4756i −0.150566 + 0.0337882i
\(607\) −100.683 174.388i −0.165869 0.287294i 0.771094 0.636721i \(-0.219710\pi\)
−0.936964 + 0.349427i \(0.886376\pi\)
\(608\) 367.873i 0.605054i
\(609\) 612.662 564.322i 1.00601 0.926636i
\(610\) −2.23463 3.87049i −0.00366332 0.00634506i
\(611\) −48.1208 20.4595i −0.0787575 0.0334852i
\(612\) −557.756 + 805.388i −0.911367 + 1.31599i
\(613\) −317.568 550.044i −0.518055 0.897298i −0.999780 0.0209752i \(-0.993323\pi\)
0.481725 0.876322i \(-0.340010\pi\)
\(614\) −25.5130 14.7299i −0.0415521 0.0239901i
\(615\) −67.3703 73.1413i −0.109545 0.118929i
\(616\) 114.565 198.432i 0.185982 0.322130i
\(617\) 55.5849 32.0919i 0.0900889 0.0520129i −0.454279 0.890860i \(-0.650103\pi\)
0.544368 + 0.838847i \(0.316770\pi\)
\(618\) −18.9069 84.2524i −0.0305937 0.136331i
\(619\) 3.79581 + 6.57454i 0.00613217 + 0.0106212i 0.869075 0.494680i \(-0.164715\pi\)
−0.862943 + 0.505301i \(0.831381\pi\)
\(620\) −158.844 91.7086i −0.256200 0.147917i
\(621\) −241.410 309.611i −0.388745 0.498569i
\(622\) 84.8491 + 146.963i 0.136413 + 0.236275i
\(623\) −693.597 + 400.448i −1.11332 + 0.642774i
\(624\) 100.701 549.454i 0.161380 0.880535i
\(625\) −263.904 + 457.096i −0.422247 + 0.731354i
\(626\) 88.6105i 0.141550i
\(627\) 211.689 + 943.320i 0.337621 + 1.50450i
\(628\) −224.128 −0.356891
\(629\) 1497.79i 2.38122i
\(630\) −1.63968 + 19.9276i −0.00260266 + 0.0316311i
\(631\) 423.578 733.658i 0.671280 1.16269i −0.306262 0.951947i \(-0.599078\pi\)
0.977541 0.210743i \(-0.0675884\pi\)
\(632\) 50.0584 28.9012i 0.0792064 0.0457298i
\(633\) 23.4255 74.9714i 0.0370071 0.118438i
\(634\) −46.8538 −0.0739019
\(635\) 12.0065i 0.0189080i
\(636\) −32.0737 142.926i −0.0504304 0.224726i
\(637\) 176.182 + 234.088i 0.276581 + 0.367484i
\(638\) 305.911i 0.479484i
\(639\) 151.828 + 321.250i 0.237603 + 0.502739i
\(640\) −50.4976 87.4644i −0.0789025 0.136663i
\(641\) 1071.90i 1.67222i −0.548559 0.836112i \(-0.684823\pi\)
0.548559 0.836112i \(-0.315177\pi\)
\(642\) 8.03340 25.7102i 0.0125131 0.0400471i
\(643\) −205.775 356.413i −0.320023 0.554297i 0.660469 0.750853i \(-0.270357\pi\)
−0.980492 + 0.196557i \(0.937024\pi\)
\(644\) 249.961 144.315i 0.388138 0.224092i
\(645\) 106.588 98.1780i 0.165253 0.152214i
\(646\) −226.798 −0.351080
\(647\) −872.018 + 503.460i −1.34779 + 0.778145i −0.987936 0.154865i \(-0.950506\pi\)
−0.359851 + 0.933010i \(0.617172\pi\)
\(648\) −224.066 + 84.1871i −0.345782 + 0.129918i
\(649\) 331.661 0.511034
\(650\) 92.4920 69.6125i 0.142295 0.107096i
\(651\) −432.734 469.803i −0.664723 0.721664i
\(652\) 62.5161 0.0958836
\(653\) 1153.60i 1.76662i −0.468791 0.883309i \(-0.655310\pi\)
0.468791 0.883309i \(-0.344690\pi\)
\(654\) −4.84752 + 4.46504i −0.00741212 + 0.00682728i
\(655\) −49.2362 85.2796i −0.0751698 0.130198i
\(656\) 357.996 + 206.689i 0.545725 + 0.315074i
\(657\) 483.088 + 334.553i 0.735293 + 0.509213i
\(658\) −7.78061 −0.0118246
\(659\) 310.724i 0.471509i 0.971813 + 0.235754i \(0.0757561\pi\)
−0.971813 + 0.235754i \(0.924244\pi\)
\(660\) 135.764 + 147.394i 0.205704 + 0.223324i
\(661\) −515.710 −0.780197 −0.390099 0.920773i \(-0.627559\pi\)
−0.390099 + 0.920773i \(0.627559\pi\)
\(662\) −108.957 62.9065i −0.164588 0.0950250i
\(663\) −1082.17 198.334i −1.63223 0.299146i
\(664\) 122.347 + 211.911i 0.184257 + 0.319143i
\(665\) 109.395 63.1595i 0.164505 0.0949767i
\(666\) −102.300 + 147.719i −0.153604 + 0.221800i
\(667\) −392.411 + 679.675i −0.588322 + 1.01900i
\(668\) −104.545 + 60.3591i −0.156505 + 0.0903580i
\(669\) −656.326 712.548i −0.981056 1.06509i
\(670\) −15.9843 27.6856i −0.0238571 0.0413218i
\(671\) −135.084 77.9905i −0.201317 0.116230i
\(672\) −58.1428 259.094i −0.0865221 0.385557i
\(673\) 104.909 181.708i 0.155883 0.269997i −0.777497 0.628886i \(-0.783511\pi\)
0.933380 + 0.358889i \(0.116844\pi\)
\(674\) 121.114 69.9254i 0.179695 0.103747i
\(675\) 592.594 + 240.094i 0.877917 + 0.355695i
\(676\) 632.919 157.014i 0.936270 0.232269i
\(677\) 11.9220 6.88315i 0.0176100 0.0101671i −0.491169 0.871064i \(-0.663430\pi\)
0.508779 + 0.860897i \(0.330097\pi\)
\(678\) 44.8877 143.659i 0.0662060 0.211887i
\(679\) 100.002 0.147279
\(680\) −82.9159 + 47.8715i −0.121935 + 0.0703993i
\(681\) −725.947 226.829i −1.06600 0.333082i
\(682\) 234.579 0.343958
\(683\) −402.924 232.628i −0.589933 0.340598i 0.175138 0.984544i \(-0.443963\pi\)
−0.765071 + 0.643946i \(0.777296\pi\)
\(684\) 610.398 + 422.720i 0.892395 + 0.618011i
\(685\) 63.7691 110.451i 0.0930936 0.161243i
\(686\) 119.840 + 69.1898i 0.174694 + 0.100860i
\(687\) −485.545 527.137i −0.706761 0.767303i
\(688\) −301.205 + 521.703i −0.437799 + 0.758289i
\(689\) 131.436 98.9226i 0.190763 0.143574i
\(690\) −4.12514 18.3823i −0.00597847 0.0266411i
\(691\) 259.190 448.930i 0.375094 0.649681i −0.615247 0.788334i \(-0.710944\pi\)
0.990341 + 0.138653i \(0.0442772\pi\)
\(692\) −14.4437 + 8.33907i −0.0208724 + 0.0120507i
\(693\) 298.186 + 630.926i 0.430283 + 0.910427i
\(694\) 64.2258 0.0925443
\(695\) 232.968i 0.335206i
\(696\) 324.170 + 351.939i 0.465761 + 0.505659i
\(697\) 407.081 705.086i 0.584048 1.01160i
\(698\) 43.8709 25.3289i 0.0628522 0.0362878i
\(699\) −122.885 38.3964i −0.175800 0.0549305i
\(700\) −235.028 + 407.080i −0.335754 + 0.581543i
\(701\) 775.035i 1.10561i 0.833310 + 0.552806i \(0.186443\pi\)
−0.833310 + 0.552806i \(0.813557\pi\)
\(702\) −93.1826 93.4738i −0.132739 0.133154i
\(703\) 1135.16 1.61474
\(704\) −663.412 383.021i −0.942347 0.544064i
\(705\) 4.13328 13.2282i 0.00586280 0.0187634i
\(706\) 23.8733 + 41.3498i 0.0338149 + 0.0585691i
\(707\) 369.298 + 213.214i 0.522345 + 0.301576i
\(708\) 187.349 172.567i 0.264617 0.243738i
\(709\) 617.138 0.870435 0.435217 0.900325i \(-0.356671\pi\)
0.435217 + 0.900325i \(0.356671\pi\)
\(710\) 17.0505i 0.0240147i
\(711\) −14.4365 + 175.452i −0.0203045 + 0.246767i
\(712\) −230.034 398.431i −0.323082 0.559594i
\(713\) 521.190 + 300.909i 0.730982 + 0.422033i
\(714\) −159.735 + 35.8457i −0.223718 + 0.0502041i
\(715\) −88.0546 + 207.105i −0.123153 + 0.289657i
\(716\) −6.17230 3.56358i −0.00862052 0.00497706i
\(717\) 170.846 157.366i 0.238279 0.219478i
\(718\) −83.4513 + 144.542i −0.116227 + 0.201312i
\(719\) 534.714 + 308.717i 0.743692 + 0.429371i 0.823410 0.567447i \(-0.192069\pi\)
−0.0797184 + 0.996817i \(0.525402\pi\)
\(720\) 147.555 + 12.1411i 0.204937 + 0.0168626i
\(721\) −196.879 + 341.004i −0.273064 + 0.472960i
\(722\) 36.1420i 0.0500582i
\(723\) −85.6869 + 274.234i −0.118516 + 0.379300i
\(724\) 20.7089 + 35.8688i 0.0286034 + 0.0495426i
\(725\) 1278.14i 1.76295i
\(726\) −114.339 35.7263i −0.157492 0.0492098i
\(727\) −527.853 914.268i −0.726070 1.25759i −0.958532 0.284984i \(-0.908012\pi\)
0.232462 0.972605i \(-0.425322\pi\)
\(728\) 157.896 118.838i 0.216890 0.163239i
\(729\) 177.736 707.001i 0.243808 0.969823i
\(730\) 14.0988 + 24.4199i 0.0193134 + 0.0334519i
\(731\) 1027.51 + 593.235i 1.40563 + 0.811539i
\(732\) −116.885 + 26.2300i −0.159680 + 0.0358334i
\(733\) 435.712 754.675i 0.594422 1.02957i −0.399206 0.916861i \(-0.630714\pi\)
0.993628 0.112708i \(-0.0359526\pi\)
\(734\) −37.8318 + 21.8422i −0.0515419 + 0.0297577i
\(735\) −57.1150 + 52.6085i −0.0777075 + 0.0715762i
\(736\) 125.097 + 216.674i 0.169968 + 0.294394i
\(737\) −966.253 557.866i −1.31106 0.756942i
\(738\) 88.3064 41.7350i 0.119656 0.0565516i
\(739\) 38.1201 + 66.0259i 0.0515833 + 0.0893449i 0.890664 0.454662i \(-0.150240\pi\)
−0.839081 + 0.544007i \(0.816907\pi\)
\(740\) 203.770 117.647i 0.275365 0.158982i
\(741\) −150.316 + 820.169i −0.202856 + 1.10684i
\(742\) 12.2388 21.1983i 0.0164944 0.0285691i
\(743\) 492.520i 0.662880i 0.943476 + 0.331440i \(0.107534\pi\)
−0.943476 + 0.331440i \(0.892466\pi\)
\(744\) 269.875 248.581i 0.362735 0.334114i
\(745\) −270.157 −0.362627
\(746\) 79.3373i 0.106350i
\(747\) −742.735 61.1136i −0.994290 0.0818120i
\(748\) −820.349 + 1420.89i −1.09672 + 1.89958i
\(749\) −106.376 + 61.4160i −0.142024 + 0.0819974i
\(750\) 42.7309 + 46.3913i 0.0569746 + 0.0618551i
\(751\) 394.887 0.525815 0.262907 0.964821i \(-0.415319\pi\)
0.262907 + 0.964821i \(0.415319\pi\)
\(752\) 57.6120i 0.0766117i
\(753\) 930.916 857.465i 1.23628 1.13873i
\(754\) −103.234 + 242.807i −0.136915 + 0.322026i
\(755\) 306.117i 0.405453i
\(756\) 496.717 + 201.249i 0.657033 + 0.266202i
\(757\) 45.1326 + 78.1720i 0.0596204 + 0.103266i 0.894295 0.447478i \(-0.147678\pi\)
−0.834675 + 0.550743i \(0.814344\pi\)
\(758\) 143.555i 0.189387i
\(759\) −445.463 483.622i −0.586907 0.637183i
\(760\) 36.2815 + 62.8414i 0.0477388 + 0.0826860i
\(761\) −649.252 + 374.846i −0.853156 + 0.492570i −0.861715 0.507393i \(-0.830609\pi\)
0.00855819 + 0.999963i \(0.497276\pi\)
\(762\) −11.2563 3.51715i −0.0147721 0.00461568i
\(763\) 30.0537 0.0393889
\(764\) −220.296 + 127.188i −0.288346 + 0.166477i
\(765\) 23.9123 290.615i 0.0312579 0.379889i
\(766\) 95.4934 0.124665
\(767\) 263.246 + 111.924i 0.343215 + 0.145924i
\(768\) −498.283 + 111.819i −0.648806 + 0.145597i
\(769\) −13.5920 −0.0176749 −0.00883743 0.999961i \(-0.502813\pi\)
−0.00883743 + 0.999961i \(0.502813\pi\)
\(770\) 33.4866i 0.0434891i
\(771\) 1112.04 + 347.467i 1.44233 + 0.450671i
\(772\) 215.809 + 373.792i 0.279545 + 0.484186i
\(773\) 20.8183 + 12.0195i 0.0269318 + 0.0155491i 0.513405 0.858146i \(-0.328384\pi\)
−0.486474 + 0.873695i \(0.661717\pi\)
\(774\) 60.8200 + 128.688i 0.0785788 + 0.166263i
\(775\) −980.106 −1.26465
\(776\) 57.4455i 0.0740277i
\(777\) 799.499 179.414i 1.02896 0.230906i
\(778\) 126.521 0.162623
\(779\) −534.379 308.524i −0.685981 0.396052i
\(780\) 58.0185 + 162.805i 0.0743827 + 0.208725i
\(781\) 297.538 + 515.351i 0.380971 + 0.659861i
\(782\) 133.582 77.1236i 0.170821 0.0986235i
\(783\) −1443.30 + 201.411i −1.84329 + 0.257230i
\(784\) 161.400 279.554i 0.205868 0.356574i
\(785\) 57.7739 33.3558i 0.0735974 0.0424915i
\(786\) 94.3741 21.1783i 0.120069 0.0269444i
\(787\) 282.354 + 489.052i 0.358773 + 0.621413i 0.987756 0.156006i \(-0.0498619\pi\)
−0.628983 + 0.777419i \(0.716529\pi\)
\(788\) 39.2460 + 22.6587i 0.0498046 + 0.0287547i
\(789\) 351.697 323.947i 0.445750 0.410580i
\(790\) −4.22383 + 7.31589i −0.00534663 + 0.00926063i
\(791\) −594.388 + 343.170i −0.751439 + 0.433843i
\(792\) −362.430 + 171.291i −0.457614 + 0.216276i
\(793\) −80.8994 107.489i −0.102017 0.135547i
\(794\) 81.3178 46.9488i 0.102415 0.0591295i
\(795\) 29.5386 + 32.0690i 0.0371555 + 0.0403383i
\(796\) −71.2936 −0.0895648
\(797\) −355.367 + 205.171i −0.445880 + 0.257429i −0.706089 0.708123i \(-0.749542\pi\)
0.260208 + 0.965552i \(0.416209\pi\)
\(798\) 27.1672 + 121.062i 0.0340441 + 0.151706i
\(799\) 113.469 0.142014
\(800\) −352.869 203.729i −0.441087 0.254662i
\(801\) 1396.47 + 114.905i 1.74341 + 0.143451i
\(802\) −105.838 + 183.318i −0.131968 + 0.228576i
\(803\) 852.275 + 492.061i 1.06136 + 0.612779i
\(804\) −836.082 + 187.623i −1.03990 + 0.233363i
\(805\) −42.9553 + 74.4008i −0.0533607 + 0.0924234i
\(806\) 186.190 + 79.1623i 0.231005 + 0.0982163i
\(807\) 351.936 324.168i 0.436104 0.401695i
\(808\) −122.479 + 212.140i −0.151583 + 0.262550i
\(809\) 518.289 299.234i 0.640654 0.369882i −0.144212 0.989547i \(-0.546065\pi\)
0.784867 + 0.619665i \(0.212731\pi\)
\(810\) 22.2076 27.0286i 0.0274168 0.0333687i
\(811\) −427.373 −0.526971 −0.263485 0.964663i \(-0.584872\pi\)
−0.263485 + 0.964663i \(0.584872\pi\)
\(812\) 1071.35i 1.31939i
\(813\) −566.432 + 127.112i −0.696718 + 0.156349i
\(814\) −150.463 + 260.610i −0.184844 + 0.320159i
\(815\) −16.1149 + 9.30395i −0.0197729 + 0.0114159i
\(816\) 265.422 + 1182.76i 0.325272 + 1.44946i
\(817\) 449.609 778.745i 0.550317 0.953177i
\(818\) 278.426i 0.340374i
\(819\) 23.7607 + 601.406i 0.0290119 + 0.734317i
\(820\) −127.900 −0.155976
\(821\) −446.131 257.574i −0.543399 0.313732i 0.203056 0.979167i \(-0.434913\pi\)
−0.746455 + 0.665435i \(0.768246\pi\)
\(822\) 84.8697 + 92.1398i 0.103248 + 0.112092i
\(823\) 496.291 + 859.601i 0.603026 + 1.04447i 0.992360 + 0.123376i \(0.0393720\pi\)
−0.389334 + 0.921097i \(0.627295\pi\)
\(824\) −195.887 113.095i −0.237727 0.137252i
\(825\) 1022.08 + 319.359i 1.23889 + 0.387102i
\(826\) 42.5640 0.0515303
\(827\) 943.762i 1.14119i −0.821233 0.570594i \(-0.806713\pi\)
0.821233 0.570594i \(-0.193287\pi\)
\(828\) −503.267 41.4097i −0.607810 0.0500118i
\(829\) 133.486 + 231.205i 0.161021 + 0.278896i 0.935235 0.354027i \(-0.115188\pi\)
−0.774214 + 0.632924i \(0.781855\pi\)
\(830\) −30.9702 17.8807i −0.0373135 0.0215430i
\(831\) −288.066 + 921.930i −0.346650 + 1.10942i
\(832\) −397.307 527.890i −0.477533 0.634483i
\(833\) −550.591 317.884i −0.660974 0.381614i
\(834\) −218.411 68.2447i −0.261884 0.0818281i
\(835\) 17.9659 31.1178i 0.0215160 0.0372668i
\(836\) 1076.88 + 621.737i 1.28813 + 0.743704i
\(837\) 154.447 + 1106.75i 0.184524 + 1.32228i
\(838\) 84.0886 145.646i 0.100344 0.173802i
\(839\) 811.237i 0.966909i −0.875369 0.483455i \(-0.839382\pi\)
0.875369 0.483455i \(-0.160618\pi\)
\(840\) 35.4854 + 38.5251i 0.0422445 + 0.0458632i
\(841\) 1036.06 + 1794.51i 1.23194 + 2.13379i
\(842\) 119.916i 0.142418i
\(843\) 271.206 + 1208.54i 0.321716 + 1.43362i
\(844\) −50.5129 87.4909i −0.0598494 0.103662i
\(845\) −139.781 + 134.668i −0.165422 + 0.159370i
\(846\) 11.1909 + 7.75003i 0.0132280 + 0.00916079i
\(847\) 273.131 + 473.076i 0.322468 + 0.558531i
\(848\) −156.964 90.6231i −0.185099 0.106867i
\(849\) 436.407 1396.68i 0.514024 1.64509i
\(850\) −125.601 + 217.548i −0.147766 + 0.255939i
\(851\) −668.601 + 386.017i −0.785665 + 0.453604i
\(852\) 436.217 + 136.300i 0.511991 + 0.159977i
\(853\) 294.569 + 510.209i 0.345333 + 0.598135i 0.985414 0.170173i \(-0.0544326\pi\)
−0.640081 + 0.768307i \(0.721099\pi\)
\(854\) −17.3361 10.0090i −0.0202998 0.0117201i
\(855\) −220.255 18.1230i −0.257608 0.0211965i
\(856\) −35.2799 61.1067i −0.0412149 0.0713863i
\(857\) 1354.80 782.195i 1.58086 0.912713i 0.586131 0.810216i \(-0.300650\pi\)
0.994733 0.102496i \(-0.0326830\pi\)
\(858\) −168.370 143.221i −0.196235 0.166924i
\(859\) 219.269 379.785i 0.255261 0.442124i −0.709706 0.704498i \(-0.751172\pi\)
0.964966 + 0.262374i \(0.0845054\pi\)
\(860\) 186.388i 0.216730i
\(861\) −425.128 132.835i −0.493761 0.154280i
\(862\) 44.1051 0.0511660
\(863\) 1057.49i 1.22536i −0.790331 0.612680i \(-0.790091\pi\)
0.790331 0.612680i \(-0.209909\pi\)
\(864\) −174.449 + 430.570i −0.201908 + 0.498345i
\(865\) 2.48212 4.29916i 0.00286951 0.00497013i
\(866\) −137.763 + 79.5376i −0.159080 + 0.0918448i
\(867\) 1483.54 332.917i 1.71111 0.383988i
\(868\) −821.533 −0.946467
\(869\) 294.831i 0.339277i
\(870\) −66.7467 20.8556i −0.0767203 0.0239720i
\(871\) −578.674 768.866i −0.664378 0.882739i
\(872\) 17.2641i 0.0197983i
\(873\) −143.833 99.6091i −0.164758 0.114100i
\(874\) −58.4514 101.241i −0.0668781 0.115836i
\(875\) 287.617i 0.328705i
\(876\) 737.459 165.492i 0.841848 0.188918i
\(877\) −76.3797 132.293i −0.0870920 0.150848i 0.819189 0.573524i \(-0.194424\pi\)
−0.906281 + 0.422676i \(0.861091\pi\)
\(878\) −87.4751 + 50.5038i −0.0996299 + 0.0575214i
\(879\) −360.393 1605.97i −0.410003 1.82704i
\(880\) 247.953 0.281765
\(881\) −1343.46 + 775.645i −1.52492 + 0.880414i −0.525358 + 0.850882i \(0.676068\pi\)
−0.999564 + 0.0295323i \(0.990598\pi\)
\(882\) −32.5903 68.9572i −0.0369505 0.0781828i
\(883\) −613.125 −0.694366 −0.347183 0.937797i \(-0.612862\pi\)
−0.347183 + 0.937797i \(0.612862\pi\)
\(884\) −1130.63 + 850.946i −1.27899 + 0.962609i
\(885\) −22.6112 + 72.3651i −0.0255493 + 0.0817685i
\(886\) −14.4516 −0.0163110
\(887\) 935.026i 1.05414i 0.849821 + 0.527072i \(0.176710\pi\)
−0.849821 + 0.527072i \(0.823290\pi\)
\(888\) 103.063 + 459.266i 0.116062 + 0.517191i
\(889\) 26.8889 + 46.5729i 0.0302462 + 0.0523880i
\(890\) 58.2295 + 33.6188i 0.0654265 + 0.0377740i
\(891\) 199.564 1204.48i 0.223978 1.35182i
\(892\) −1246.02 −1.39688
\(893\) 85.9973i 0.0963016i
\(894\) 79.1386 253.276i 0.0885219 0.283307i
\(895\) 2.12140 0.00237027
\(896\) −391.756 226.181i −0.437228 0.252434i
\(897\) −190.367 534.188i −0.212226 0.595527i
\(898\) −113.323 196.281i −0.126195 0.218575i
\(899\) 1934.57 1116.93i 2.15192 1.24241i
\(900\) 743.520 351.400i 0.826134 0.390444i
\(901\) −178.486 + 309.146i −0.198097 + 0.343115i
\(902\) 141.662 81.7884i 0.157053 0.0906745i
\(903\) 193.579 619.535i 0.214374 0.686085i
\(904\) −197.131 341.442i −0.218066 0.377701i
\(905\) −10.6764 6.16400i −0.0117971 0.00681105i
\(906\) −286.990 89.6726i −0.316766 0.0989764i
\(907\) −574.524 + 995.104i −0.633433 + 1.09714i 0.353412 + 0.935468i \(0.385021\pi\)
−0.986845 + 0.161670i \(0.948312\pi\)
\(908\) −847.173 + 489.116i −0.933010 + 0.538674i
\(909\) −318.786 674.512i −0.350699 0.742037i
\(910\) −11.3006 + 26.5790i −0.0124182 + 0.0292077i
\(911\) 443.854 256.259i 0.487216 0.281294i −0.236203 0.971704i \(-0.575903\pi\)
0.723419 + 0.690410i \(0.242570\pi\)
\(912\) 896.408 201.161i 0.982904 0.220571i
\(913\) −1248.10 −1.36703
\(914\) 84.5397 48.8090i 0.0924942 0.0534015i
\(915\) 26.2261 24.1568i 0.0286625 0.0264009i
\(916\) −921.791 −1.00632
\(917\) −381.971 220.531i −0.416544 0.240492i
\(918\) 265.451 + 107.550i 0.289163 + 0.117156i
\(919\) 314.275 544.341i 0.341975 0.592318i −0.642824 0.766014i \(-0.722237\pi\)
0.984799 + 0.173695i \(0.0555708\pi\)
\(920\) −42.7390 24.6754i −0.0464554 0.0268210i
\(921\) 70.0964 224.338i 0.0761090 0.243580i
\(922\) 100.485 174.046i 0.108986 0.188770i
\(923\) 62.2489 + 509.453i 0.0674420 + 0.551954i
\(924\) 856.717 + 267.689i 0.927183 + 0.289707i
\(925\) 628.657 1088.87i 0.679629 1.17715i
\(926\) 200.265 115.623i 0.216269 0.124863i
\(927\) 622.835 294.362i 0.671882 0.317543i
\(928\) 928.677 1.00073
\(929\) 234.522i 0.252446i −0.992002 0.126223i \(-0.959714\pi\)
0.992002 0.126223i \(-0.0402855\pi\)
\(930\) −15.9926 + 51.1829i −0.0171963 + 0.0550353i
\(931\) −240.922 + 417.289i −0.258778 + 0.448216i
\(932\) −143.405 + 82.7950i −0.153868 + 0.0888358i
\(933\) −995.810 + 917.238i −1.06732 + 0.983106i
\(934\) −46.4564 + 80.4649i −0.0497392 + 0.0861508i
\(935\) 488.353i 0.522303i
\(936\) −345.473 + 13.6492i −0.369095 + 0.0145824i
\(937\) −598.868 −0.639133 −0.319567 0.947564i \(-0.603537\pi\)
−0.319567 + 0.947564i \(0.603537\pi\)
\(938\) −124.005 71.5943i −0.132201 0.0763265i
\(939\) 689.789 154.794i 0.734599 0.164850i
\(940\) −8.91267 15.4372i −0.00948156 0.0164225i
\(941\) −219.420 126.682i −0.233178 0.134625i 0.378859 0.925454i \(-0.376316\pi\)
−0.612037 + 0.790829i \(0.709650\pi\)
\(942\) 14.3476 + 63.9351i 0.0152309 + 0.0678717i
\(943\) 419.660 0.445026
\(944\) 315.167i 0.333864i
\(945\) −157.991 + 22.0475i −0.167186 + 0.0233307i
\(946\) 119.189 + 206.442i 0.125993 + 0.218226i
\(947\) −1345.27 776.694i −1.42056 0.820163i −0.424217 0.905561i \(-0.639451\pi\)
−0.996347 + 0.0853978i \(0.972784\pi\)
\(948\) 153.404 + 166.545i 0.161818 + 0.175680i
\(949\) 510.414 + 678.172i 0.537844 + 0.714617i
\(950\) 164.878 + 95.1925i 0.173556 + 0.100203i
\(951\) −81.8492 364.734i −0.0860664 0.383526i
\(952\) −214.418 + 371.383i −0.225229 + 0.390109i
\(953\) −373.494 215.637i −0.391914 0.226272i 0.291075 0.956700i \(-0.405987\pi\)
−0.682989 + 0.730429i \(0.739320\pi\)
\(954\) −38.7181 + 18.2988i −0.0405850 + 0.0191811i
\(955\) 37.8575 65.5711i 0.0396414 0.0686609i
\(956\) 298.754i 0.312504i
\(957\) −2381.36 + 534.397i −2.48836 + 0.558409i
\(958\) 154.227 + 267.129i 0.160989 + 0.278841i
\(959\) 571.249i 0.595671i
\(960\) 128.800 118.637i 0.134167 0.123580i
\(961\) −375.984 651.223i −0.391242 0.677651i
\(962\) −207.372 + 156.075i −0.215564 + 0.162240i
\(963\) 214.175 + 17.6227i 0.222404 + 0.0182998i
\(964\) 184.768 + 320.028i 0.191668 + 0.331980i
\(965\) −111.259 64.2354i −0.115294 0.0665652i
\(966\) −57.1688 62.0660i −0.0591810 0.0642505i
\(967\) 548.133 949.394i 0.566839 0.981794i −0.430037 0.902811i \(-0.641500\pi\)
0.996876 0.0789825i \(-0.0251671\pi\)
\(968\) −271.755 + 156.898i −0.280738 + 0.162084i
\(969\) −396.194 1765.51i −0.408869 1.82199i
\(970\) −4.19775 7.27071i −0.00432757 0.00749558i
\(971\) −88.2684 50.9618i −0.0909046 0.0524838i 0.453859 0.891074i \(-0.350047\pi\)
−0.544763 + 0.838590i \(0.683380\pi\)
\(972\) −513.972 784.221i −0.528777 0.806812i
\(973\) 521.736 + 903.674i 0.536214 + 0.928750i
\(974\) 239.346 138.187i 0.245735 0.141875i
\(975\) 703.474 + 598.398i 0.721511 + 0.613742i
\(976\) −74.1120 + 128.366i −0.0759345 + 0.131522i
\(977\) 1009.99i 1.03377i 0.856054 + 0.516886i \(0.172909\pi\)
−0.856054 + 0.516886i \(0.827091\pi\)
\(978\) −4.00197 17.8335i −0.00409199 0.0182346i
\(979\) 2346.66 2.39699
\(980\) 99.8756i 0.101914i
\(981\) −43.2263 29.9356i −0.0440635 0.0305154i
\(982\) 24.5534 42.5278i 0.0250035 0.0433073i
\(983\) −1248.07 + 720.573i −1.26965 + 0.733035i −0.974922 0.222546i \(-0.928563\pi\)
−0.294731 + 0.955580i \(0.595230\pi\)
\(984\) 76.3062 244.212i 0.0775469 0.248182i
\(985\) −13.4887 −0.0136941
\(986\) 572.540i 0.580669i
\(987\) −13.5920 60.5682i −0.0137710 0.0613660i
\(988\) 644.926 + 856.894i 0.652759 + 0.867302i
\(989\) 611.566i 0.618368i
\(990\) 33.3550 48.1638i 0.0336919 0.0486503i
\(991\) −698.522 1209.87i −0.704865 1.22086i −0.966740 0.255761i \(-0.917674\pi\)
0.261875 0.965102i \(-0.415659\pi\)
\(992\) 712.130i 0.717873i
\(993\) 299.358 958.071i 0.301468 0.964824i
\(994\) 38.1848 + 66.1381i 0.0384153 + 0.0665373i
\(995\) 18.3775 10.6103i 0.0184699 0.0106636i
\(996\) −705.030 + 649.401i −0.707861 + 0.652009i
\(997\) −1364.39 −1.36849 −0.684247 0.729250i \(-0.739869\pi\)
−0.684247 + 0.729250i \(0.739869\pi\)
\(998\) 9.42691 5.44263i 0.00944580 0.00545354i
\(999\) −1328.63 538.304i −1.32996 0.538843i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.u.a.68.14 yes 52
3.2 odd 2 351.3.u.a.341.13 52
9.2 odd 6 117.3.k.a.29.14 52
9.7 even 3 351.3.k.a.224.13 52
13.9 even 3 117.3.k.a.113.13 yes 52
39.35 odd 6 351.3.k.a.152.14 52
117.61 even 3 351.3.u.a.35.13 52
117.74 odd 6 inner 117.3.u.a.74.14 yes 52
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.k.a.29.14 52 9.2 odd 6
117.3.k.a.113.13 yes 52 13.9 even 3
117.3.u.a.68.14 yes 52 1.1 even 1 trivial
117.3.u.a.74.14 yes 52 117.74 odd 6 inner
351.3.k.a.152.14 52 39.35 odd 6
351.3.k.a.224.13 52 9.7 even 3
351.3.u.a.35.13 52 117.61 even 3
351.3.u.a.341.13 52 3.2 odd 2