Properties

Label 1176.2.u.c.1097.21
Level $1176$
Weight $2$
Character 1176.1097
Analytic conductor $9.390$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1176,2,Mod(521,1176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1176, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1176.521");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1176.u (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.39040727770\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1097.21
Character \(\chi\) \(=\) 1176.1097
Dual form 1176.2.u.c.521.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.51046 + 0.847647i) q^{3} +(0.496051 - 0.859186i) q^{5} +(1.56299 + 2.56068i) q^{9} +(-2.17245 + 1.25426i) q^{11} +6.74633i q^{13} +(1.47755 - 0.877291i) q^{15} +(-1.87831 - 3.25333i) q^{17} +(2.31260 + 1.33518i) q^{19} +(1.51332 + 0.873715i) q^{23} +(2.00787 + 3.47773i) q^{25} +(0.190283 + 5.19267i) q^{27} +6.69055i q^{29} +(2.44846 - 1.41362i) q^{31} +(-4.34458 + 0.0530474i) q^{33} +(1.64234 - 2.84461i) q^{37} +(-5.71851 + 10.1901i) q^{39} -9.02583 q^{41} +10.6558 q^{43} +(2.97542 - 0.0726708i) q^{45} +(5.26837 - 9.12508i) q^{47} +(-0.0794406 - 6.50618i) q^{51} +(8.91002 - 5.14420i) q^{53} +2.48872i q^{55} +(2.36133 + 3.97701i) q^{57} +(2.32160 + 4.02113i) q^{59} +(-6.97413 - 4.02651i) q^{61} +(5.79636 + 3.34653i) q^{65} +(3.34885 + 5.80038i) q^{67} +(1.54521 + 2.60247i) q^{69} -4.56245i q^{71} +(-2.80171 + 1.61757i) q^{73} +(0.0849199 + 6.95493i) q^{75} +(7.23346 - 12.5287i) q^{79} +(-4.11413 + 8.00462i) q^{81} -16.8613 q^{83} -3.72696 q^{85} +(-5.67122 + 10.1058i) q^{87} +(-1.58550 + 2.74617i) q^{89} +(4.89655 - 0.0597870i) q^{93} +(2.29434 - 1.32464i) q^{95} +0.989407i q^{97} +(-6.60728 - 3.60254i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 32 q^{15} - 8 q^{25} - 16 q^{37} + 64 q^{39} + 32 q^{43} - 48 q^{51} + 96 q^{57} - 16 q^{67} - 80 q^{81} - 128 q^{85} + 32 q^{93} - 112 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1176\mathbb{Z}\right)^\times\).

\(n\) \(295\) \(589\) \(785\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.51046 + 0.847647i 0.872065 + 0.489389i
\(4\) 0 0
\(5\) 0.496051 0.859186i 0.221841 0.384240i −0.733526 0.679661i \(-0.762127\pi\)
0.955367 + 0.295422i \(0.0954601\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.56299 + 2.56068i 0.520996 + 0.853559i
\(10\) 0 0
\(11\) −2.17245 + 1.25426i −0.655018 + 0.378175i −0.790376 0.612622i \(-0.790115\pi\)
0.135358 + 0.990797i \(0.456782\pi\)
\(12\) 0 0
\(13\) 6.74633i 1.87110i 0.353199 + 0.935548i \(0.385094\pi\)
−0.353199 + 0.935548i \(0.614906\pi\)
\(14\) 0 0
\(15\) 1.47755 0.877291i 0.381503 0.226516i
\(16\) 0 0
\(17\) −1.87831 3.25333i −0.455558 0.789049i 0.543162 0.839628i \(-0.317227\pi\)
−0.998720 + 0.0505785i \(0.983893\pi\)
\(18\) 0 0
\(19\) 2.31260 + 1.33518i 0.530547 + 0.306312i 0.741239 0.671241i \(-0.234238\pi\)
−0.210692 + 0.977552i \(0.567572\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.51332 + 0.873715i 0.315549 + 0.182182i 0.649407 0.760441i \(-0.275017\pi\)
−0.333858 + 0.942623i \(0.608351\pi\)
\(24\) 0 0
\(25\) 2.00787 + 3.47773i 0.401573 + 0.695545i
\(26\) 0 0
\(27\) 0.190283 + 5.19267i 0.0366201 + 0.999329i
\(28\) 0 0
\(29\) 6.69055i 1.24240i 0.783651 + 0.621202i \(0.213355\pi\)
−0.783651 + 0.621202i \(0.786645\pi\)
\(30\) 0 0
\(31\) 2.44846 1.41362i 0.439756 0.253893i −0.263738 0.964594i \(-0.584956\pi\)
0.703494 + 0.710701i \(0.251622\pi\)
\(32\) 0 0
\(33\) −4.34458 + 0.0530474i −0.756294 + 0.00923437i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.64234 2.84461i 0.269998 0.467651i −0.698863 0.715256i \(-0.746310\pi\)
0.968861 + 0.247605i \(0.0796435\pi\)
\(38\) 0 0
\(39\) −5.71851 + 10.1901i −0.915695 + 1.63172i
\(40\) 0 0
\(41\) −9.02583 −1.40960 −0.704799 0.709407i \(-0.748963\pi\)
−0.704799 + 0.709407i \(0.748963\pi\)
\(42\) 0 0
\(43\) 10.6558 1.62499 0.812495 0.582969i \(-0.198109\pi\)
0.812495 + 0.582969i \(0.198109\pi\)
\(44\) 0 0
\(45\) 2.97542 0.0726708i 0.443550 0.0108331i
\(46\) 0 0
\(47\) 5.26837 9.12508i 0.768470 1.33103i −0.169922 0.985457i \(-0.554352\pi\)
0.938392 0.345572i \(-0.112315\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −0.0794406 6.50618i −0.0111239 0.911048i
\(52\) 0 0
\(53\) 8.91002 5.14420i 1.22389 0.706611i 0.258142 0.966107i \(-0.416890\pi\)
0.965744 + 0.259496i \(0.0835565\pi\)
\(54\) 0 0
\(55\) 2.48872i 0.335579i
\(56\) 0 0
\(57\) 2.36133 + 3.97701i 0.312766 + 0.526768i
\(58\) 0 0
\(59\) 2.32160 + 4.02113i 0.302246 + 0.523506i 0.976644 0.214862i \(-0.0689301\pi\)
−0.674398 + 0.738368i \(0.735597\pi\)
\(60\) 0 0
\(61\) −6.97413 4.02651i −0.892945 0.515542i −0.0180407 0.999837i \(-0.505743\pi\)
−0.874905 + 0.484295i \(0.839076\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.79636 + 3.34653i 0.718950 + 0.415086i
\(66\) 0 0
\(67\) 3.34885 + 5.80038i 0.409127 + 0.708629i 0.994792 0.101924i \(-0.0325000\pi\)
−0.585665 + 0.810553i \(0.699167\pi\)
\(68\) 0 0
\(69\) 1.54521 + 2.60247i 0.186021 + 0.313301i
\(70\) 0 0
\(71\) 4.56245i 0.541463i −0.962655 0.270732i \(-0.912734\pi\)
0.962655 0.270732i \(-0.0872656\pi\)
\(72\) 0 0
\(73\) −2.80171 + 1.61757i −0.327915 + 0.189322i −0.654915 0.755702i \(-0.727296\pi\)
0.327000 + 0.945024i \(0.393962\pi\)
\(74\) 0 0
\(75\) 0.0849199 + 6.95493i 0.00980571 + 0.803087i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 7.23346 12.5287i 0.813828 1.40959i −0.0963379 0.995349i \(-0.530713\pi\)
0.910166 0.414243i \(-0.135954\pi\)
\(80\) 0 0
\(81\) −4.11413 + 8.00462i −0.457126 + 0.889402i
\(82\) 0 0
\(83\) −16.8613 −1.85077 −0.925386 0.379025i \(-0.876259\pi\)
−0.925386 + 0.379025i \(0.876259\pi\)
\(84\) 0 0
\(85\) −3.72696 −0.404245
\(86\) 0 0
\(87\) −5.67122 + 10.1058i −0.608019 + 1.08346i
\(88\) 0 0
\(89\) −1.58550 + 2.74617i −0.168063 + 0.291094i −0.937739 0.347341i \(-0.887085\pi\)
0.769676 + 0.638435i \(0.220418\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.89655 0.0597870i 0.507748 0.00619962i
\(94\) 0 0
\(95\) 2.29434 1.32464i 0.235394 0.135905i
\(96\) 0 0
\(97\) 0.989407i 0.100459i 0.998738 + 0.0502295i \(0.0159953\pi\)
−0.998738 + 0.0502295i \(0.984005\pi\)
\(98\) 0 0
\(99\) −6.60728 3.60254i −0.664057 0.362069i
\(100\) 0 0
\(101\) −5.02078 8.69625i −0.499586 0.865309i 0.500414 0.865787i \(-0.333181\pi\)
−1.00000 0.000477583i \(0.999848\pi\)
\(102\) 0 0
\(103\) −6.89056 3.97826i −0.678947 0.391990i 0.120511 0.992712i \(-0.461547\pi\)
−0.799458 + 0.600722i \(0.794880\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −14.1473 8.16794i −1.36767 0.789624i −0.377039 0.926197i \(-0.623058\pi\)
−0.990630 + 0.136573i \(0.956391\pi\)
\(108\) 0 0
\(109\) 4.71712 + 8.17029i 0.451818 + 0.782572i 0.998499 0.0547692i \(-0.0174423\pi\)
−0.546681 + 0.837341i \(0.684109\pi\)
\(110\) 0 0
\(111\) 4.89191 2.90455i 0.464319 0.275688i
\(112\) 0 0
\(113\) 18.5486i 1.74490i 0.488702 + 0.872451i \(0.337471\pi\)
−0.488702 + 0.872451i \(0.662529\pi\)
\(114\) 0 0
\(115\) 1.50137 0.866816i 0.140003 0.0808310i
\(116\) 0 0
\(117\) −17.2752 + 10.5444i −1.59709 + 0.974834i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.35364 + 4.07662i −0.213967 + 0.370602i
\(122\) 0 0
\(123\) −13.6332 7.65072i −1.22926 0.689843i
\(124\) 0 0
\(125\) 8.94453 0.800023
\(126\) 0 0
\(127\) 10.2002 0.905118 0.452559 0.891734i \(-0.350511\pi\)
0.452559 + 0.891734i \(0.350511\pi\)
\(128\) 0 0
\(129\) 16.0951 + 9.03233i 1.41710 + 0.795252i
\(130\) 0 0
\(131\) 8.88035 15.3812i 0.775880 1.34386i −0.158419 0.987372i \(-0.550640\pi\)
0.934299 0.356491i \(-0.116027\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 4.55586 + 2.41234i 0.392106 + 0.207621i
\(136\) 0 0
\(137\) 0.509947 0.294418i 0.0435677 0.0251538i −0.478058 0.878328i \(-0.658659\pi\)
0.521626 + 0.853174i \(0.325326\pi\)
\(138\) 0 0
\(139\) 2.88202i 0.244449i −0.992502 0.122225i \(-0.960997\pi\)
0.992502 0.122225i \(-0.0390029\pi\)
\(140\) 0 0
\(141\) 15.6925 9.31736i 1.32155 0.784663i
\(142\) 0 0
\(143\) −8.46169 14.6561i −0.707602 1.22560i
\(144\) 0 0
\(145\) 5.74843 + 3.31886i 0.477381 + 0.275616i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.37760 0.795356i −0.112857 0.0651581i 0.442509 0.896764i \(-0.354089\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(150\) 0 0
\(151\) −7.60822 13.1778i −0.619148 1.07240i −0.989641 0.143561i \(-0.954145\pi\)
0.370493 0.928835i \(-0.379189\pi\)
\(152\) 0 0
\(153\) 5.39495 9.89467i 0.436156 0.799937i
\(154\) 0 0
\(155\) 2.80491i 0.225295i
\(156\) 0 0
\(157\) −1.77180 + 1.02295i −0.141405 + 0.0816403i −0.569033 0.822314i \(-0.692683\pi\)
0.427628 + 0.903955i \(0.359349\pi\)
\(158\) 0 0
\(159\) 17.8187 0.217567i 1.41312 0.0172542i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −9.08108 + 15.7289i −0.711285 + 1.23198i 0.253090 + 0.967443i \(0.418553\pi\)
−0.964375 + 0.264539i \(0.914780\pi\)
\(164\) 0 0
\(165\) −2.10956 + 3.75912i −0.164229 + 0.292647i
\(166\) 0 0
\(167\) 5.59063 0.432616 0.216308 0.976325i \(-0.430598\pi\)
0.216308 + 0.976325i \(0.430598\pi\)
\(168\) 0 0
\(169\) −32.5130 −2.50100
\(170\) 0 0
\(171\) 0.195602 + 8.00870i 0.0149581 + 0.612441i
\(172\) 0 0
\(173\) −2.24674 + 3.89147i −0.170817 + 0.295863i −0.938706 0.344720i \(-0.887974\pi\)
0.767889 + 0.640583i \(0.221307\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.0981888 + 8.04166i 0.00738032 + 0.604448i
\(178\) 0 0
\(179\) 17.2972 9.98657i 1.29286 0.746431i 0.313697 0.949523i \(-0.398432\pi\)
0.979160 + 0.203092i \(0.0650991\pi\)
\(180\) 0 0
\(181\) 4.43963i 0.329995i 0.986294 + 0.164998i \(0.0527616\pi\)
−0.986294 + 0.164998i \(0.947238\pi\)
\(182\) 0 0
\(183\) −7.12109 11.9935i −0.526406 0.886585i
\(184\) 0 0
\(185\) −1.62937 2.82214i −0.119793 0.207488i
\(186\) 0 0
\(187\) 8.16108 + 4.71180i 0.596797 + 0.344561i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.80773 + 1.62105i 0.203161 + 0.117295i 0.598129 0.801400i \(-0.295911\pi\)
−0.394968 + 0.918695i \(0.629244\pi\)
\(192\) 0 0
\(193\) −6.63386 11.4902i −0.477516 0.827082i 0.522152 0.852853i \(-0.325129\pi\)
−0.999668 + 0.0257705i \(0.991796\pi\)
\(194\) 0 0
\(195\) 5.91850 + 9.96807i 0.423833 + 0.713828i
\(196\) 0 0
\(197\) 18.7165i 1.33350i −0.745282 0.666749i \(-0.767685\pi\)
0.745282 0.666749i \(-0.232315\pi\)
\(198\) 0 0
\(199\) 1.08304 0.625292i 0.0767745 0.0443258i −0.461121 0.887337i \(-0.652553\pi\)
0.537896 + 0.843011i \(0.319219\pi\)
\(200\) 0 0
\(201\) 0.141635 + 11.5999i 0.00999016 + 0.818193i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −4.47728 + 7.75487i −0.312707 + 0.541624i
\(206\) 0 0
\(207\) 0.127998 + 5.24073i 0.00889647 + 0.364256i
\(208\) 0 0
\(209\) −6.69868 −0.463358
\(210\) 0 0
\(211\) −1.04084 −0.0716546 −0.0358273 0.999358i \(-0.511407\pi\)
−0.0358273 + 0.999358i \(0.511407\pi\)
\(212\) 0 0
\(213\) 3.86735 6.89141i 0.264986 0.472191i
\(214\) 0 0
\(215\) 5.28581 9.15529i 0.360489 0.624386i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −5.60300 + 0.0684128i −0.378616 + 0.00462291i
\(220\) 0 0
\(221\) 21.9481 12.6717i 1.47639 0.852392i
\(222\) 0 0
\(223\) 21.2360i 1.42207i −0.703156 0.711035i \(-0.748227\pi\)
0.703156 0.711035i \(-0.251773\pi\)
\(224\) 0 0
\(225\) −5.76706 + 10.5771i −0.384471 + 0.705143i
\(226\) 0 0
\(227\) −3.27686 5.67568i −0.217493 0.376708i 0.736548 0.676385i \(-0.236454\pi\)
−0.954041 + 0.299677i \(0.903121\pi\)
\(228\) 0 0
\(229\) 14.8892 + 8.59630i 0.983908 + 0.568059i 0.903448 0.428698i \(-0.141028\pi\)
0.0804602 + 0.996758i \(0.474361\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.7831 + 6.22564i 0.706426 + 0.407855i 0.809736 0.586794i \(-0.199610\pi\)
−0.103310 + 0.994649i \(0.532943\pi\)
\(234\) 0 0
\(235\) −5.22676 9.05302i −0.340956 0.590554i
\(236\) 0 0
\(237\) 21.5458 12.7927i 1.39955 0.830978i
\(238\) 0 0
\(239\) 8.44730i 0.546410i 0.961956 + 0.273205i \(0.0880838\pi\)
−0.961956 + 0.273205i \(0.911916\pi\)
\(240\) 0 0
\(241\) −2.51127 + 1.44988i −0.161765 + 0.0933951i −0.578697 0.815543i \(-0.696439\pi\)
0.416932 + 0.908938i \(0.363105\pi\)
\(242\) 0 0
\(243\) −12.9993 + 8.60333i −0.833908 + 0.551904i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −9.00758 + 15.6016i −0.573139 + 0.992705i
\(248\) 0 0
\(249\) −25.4684 14.2925i −1.61399 0.905748i
\(250\) 0 0
\(251\) 1.28400 0.0810455 0.0405227 0.999179i \(-0.487098\pi\)
0.0405227 + 0.999179i \(0.487098\pi\)
\(252\) 0 0
\(253\) −4.38348 −0.275587
\(254\) 0 0
\(255\) −5.62943 3.15915i −0.352528 0.197833i
\(256\) 0 0
\(257\) 8.89593 15.4082i 0.554913 0.961137i −0.442997 0.896523i \(-0.646085\pi\)
0.997910 0.0646145i \(-0.0205818\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −17.1323 + 10.4572i −1.06046 + 0.647287i
\(262\) 0 0
\(263\) 12.0755 6.97177i 0.744605 0.429898i −0.0791363 0.996864i \(-0.525216\pi\)
0.823741 + 0.566966i \(0.191883\pi\)
\(264\) 0 0
\(265\) 10.2072i 0.627021i
\(266\) 0 0
\(267\) −4.72263 + 2.80404i −0.289020 + 0.171604i
\(268\) 0 0
\(269\) 0.698320 + 1.20953i 0.0425773 + 0.0737461i 0.886529 0.462674i \(-0.153110\pi\)
−0.843951 + 0.536420i \(0.819776\pi\)
\(270\) 0 0
\(271\) −9.26119 5.34695i −0.562577 0.324804i 0.191602 0.981473i \(-0.438632\pi\)
−0.754179 + 0.656669i \(0.771965\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.72398 5.03679i −0.526076 0.303730i
\(276\) 0 0
\(277\) 1.76204 + 3.05194i 0.105871 + 0.183373i 0.914094 0.405503i \(-0.132904\pi\)
−0.808223 + 0.588877i \(0.799570\pi\)
\(278\) 0 0
\(279\) 7.44672 + 4.06024i 0.445824 + 0.243080i
\(280\) 0 0
\(281\) 7.84120i 0.467767i −0.972265 0.233883i \(-0.924857\pi\)
0.972265 0.233883i \(-0.0751434\pi\)
\(282\) 0 0
\(283\) 19.1594 11.0617i 1.13891 0.657550i 0.192749 0.981248i \(-0.438260\pi\)
0.946160 + 0.323699i \(0.104926\pi\)
\(284\) 0 0
\(285\) 4.58834 0.0560237i 0.271790 0.00331856i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.44388 2.50088i 0.0849343 0.147110i
\(290\) 0 0
\(291\) −0.838668 + 1.49446i −0.0491636 + 0.0876068i
\(292\) 0 0
\(293\) 20.5775 1.20215 0.601074 0.799193i \(-0.294740\pi\)
0.601074 + 0.799193i \(0.294740\pi\)
\(294\) 0 0
\(295\) 4.60653 0.268203
\(296\) 0 0
\(297\) −6.92636 11.0421i −0.401908 0.640730i
\(298\) 0 0
\(299\) −5.89438 + 10.2094i −0.340881 + 0.590422i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −0.212347 17.3912i −0.0121990 0.999098i
\(304\) 0 0
\(305\) −6.91905 + 3.99472i −0.396184 + 0.228737i
\(306\) 0 0
\(307\) 29.4122i 1.67864i −0.543636 0.839321i \(-0.682953\pi\)
0.543636 0.839321i \(-0.317047\pi\)
\(308\) 0 0
\(309\) −7.03576 11.8498i −0.400250 0.674110i
\(310\) 0 0
\(311\) 4.03845 + 6.99480i 0.228999 + 0.396638i 0.957512 0.288394i \(-0.0931213\pi\)
−0.728512 + 0.685033i \(0.759788\pi\)
\(312\) 0 0
\(313\) 1.04838 + 0.605284i 0.0592581 + 0.0342127i 0.529336 0.848412i \(-0.322441\pi\)
−0.470078 + 0.882625i \(0.655774\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −25.7940 14.8922i −1.44874 0.836429i −0.450331 0.892862i \(-0.648694\pi\)
−0.998406 + 0.0564326i \(0.982027\pi\)
\(318\) 0 0
\(319\) −8.39172 14.5349i −0.469846 0.813797i
\(320\) 0 0
\(321\) −14.4454 24.3293i −0.806263 1.35793i
\(322\) 0 0
\(323\) 10.0316i 0.558171i
\(324\) 0 0
\(325\) −23.4619 + 13.5457i −1.30143 + 0.751382i
\(326\) 0 0
\(327\) 0.199504 + 16.3394i 0.0110326 + 0.903569i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 6.20018 10.7390i 0.340793 0.590270i −0.643787 0.765204i \(-0.722638\pi\)
0.984580 + 0.174934i \(0.0559712\pi\)
\(332\) 0 0
\(333\) 9.85107 0.240600i 0.539835 0.0131848i
\(334\) 0 0
\(335\) 6.64481 0.363044
\(336\) 0 0
\(337\) 1.60403 0.0873772 0.0436886 0.999045i \(-0.486089\pi\)
0.0436886 + 0.999045i \(0.486089\pi\)
\(338\) 0 0
\(339\) −15.7226 + 28.0169i −0.853936 + 1.52167i
\(340\) 0 0
\(341\) −3.54610 + 6.14202i −0.192032 + 0.332609i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 3.00251 0.0366608i 0.161650 0.00197375i
\(346\) 0 0
\(347\) −8.03173 + 4.63712i −0.431166 + 0.248934i −0.699843 0.714296i \(-0.746747\pi\)
0.268677 + 0.963230i \(0.413414\pi\)
\(348\) 0 0
\(349\) 17.2999i 0.926043i 0.886347 + 0.463021i \(0.153235\pi\)
−0.886347 + 0.463021i \(0.846765\pi\)
\(350\) 0 0
\(351\) −35.0315 + 1.28372i −1.86984 + 0.0685197i
\(352\) 0 0
\(353\) 1.76697 + 3.06049i 0.0940465 + 0.162893i 0.909210 0.416337i \(-0.136686\pi\)
−0.815164 + 0.579231i \(0.803353\pi\)
\(354\) 0 0
\(355\) −3.92000 2.26321i −0.208052 0.120119i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11.6190 + 6.70821i 0.613225 + 0.354046i 0.774227 0.632908i \(-0.218139\pi\)
−0.161001 + 0.986954i \(0.551472\pi\)
\(360\) 0 0
\(361\) −5.93458 10.2790i −0.312346 0.541000i
\(362\) 0 0
\(363\) −7.01062 + 4.16253i −0.367962 + 0.218476i
\(364\) 0 0
\(365\) 3.20959i 0.167998i
\(366\) 0 0
\(367\) −7.88688 + 4.55350i −0.411692 + 0.237691i −0.691516 0.722361i \(-0.743057\pi\)
0.279824 + 0.960051i \(0.409724\pi\)
\(368\) 0 0
\(369\) −14.1073 23.1122i −0.734395 1.20318i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 16.6630 28.8611i 0.862775 1.49437i −0.00646378 0.999979i \(-0.502058\pi\)
0.869239 0.494392i \(-0.164609\pi\)
\(374\) 0 0
\(375\) 13.5104 + 7.58181i 0.697673 + 0.391523i
\(376\) 0 0
\(377\) −45.1367 −2.32466
\(378\) 0 0
\(379\) −11.8875 −0.610620 −0.305310 0.952253i \(-0.598760\pi\)
−0.305310 + 0.952253i \(0.598760\pi\)
\(380\) 0 0
\(381\) 15.4070 + 8.64614i 0.789322 + 0.442955i
\(382\) 0 0
\(383\) −13.9080 + 24.0893i −0.710663 + 1.23091i 0.253945 + 0.967219i \(0.418272\pi\)
−0.964608 + 0.263687i \(0.915062\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 16.6548 + 27.2860i 0.846613 + 1.38702i
\(388\) 0 0
\(389\) 15.7439 9.08974i 0.798247 0.460868i −0.0446107 0.999004i \(-0.514205\pi\)
0.842858 + 0.538136i \(0.180871\pi\)
\(390\) 0 0
\(391\) 6.56444i 0.331978i
\(392\) 0 0
\(393\) 26.4513 15.7053i 1.33429 0.792229i
\(394\) 0 0
\(395\) −7.17634 12.4298i −0.361081 0.625410i
\(396\) 0 0
\(397\) −1.85933 1.07349i −0.0933172 0.0538767i 0.452615 0.891706i \(-0.350491\pi\)
−0.545932 + 0.837829i \(0.683824\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −10.1853 5.88049i −0.508630 0.293658i 0.223640 0.974672i \(-0.428206\pi\)
−0.732270 + 0.681014i \(0.761539\pi\)
\(402\) 0 0
\(403\) 9.53673 + 16.5181i 0.475058 + 0.822825i
\(404\) 0 0
\(405\) 4.83664 + 7.50551i 0.240334 + 0.372952i
\(406\) 0 0
\(407\) 8.23969i 0.408426i
\(408\) 0 0
\(409\) −16.4896 + 9.52030i −0.815360 + 0.470748i −0.848814 0.528692i \(-0.822683\pi\)
0.0334538 + 0.999440i \(0.489349\pi\)
\(410\) 0 0
\(411\) 1.01982 0.0124520i 0.0503039 0.000614212i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −8.36409 + 14.4870i −0.410577 + 0.711141i
\(416\) 0 0
\(417\) 2.44293 4.35317i 0.119631 0.213176i
\(418\) 0 0
\(419\) 29.5570 1.44395 0.721976 0.691918i \(-0.243234\pi\)
0.721976 + 0.691918i \(0.243234\pi\)
\(420\) 0 0
\(421\) 8.76696 0.427275 0.213638 0.976913i \(-0.431469\pi\)
0.213638 + 0.976913i \(0.431469\pi\)
\(422\) 0 0
\(423\) 31.6008 0.771807i 1.53648 0.0375266i
\(424\) 0 0
\(425\) 7.54280 13.0645i 0.365880 0.633722i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −0.357875 29.3100i −0.0172784 1.41510i
\(430\) 0 0
\(431\) −21.5180 + 12.4234i −1.03648 + 0.598414i −0.918835 0.394641i \(-0.870869\pi\)
−0.117649 + 0.993055i \(0.537536\pi\)
\(432\) 0 0
\(433\) 14.9303i 0.717502i −0.933433 0.358751i \(-0.883203\pi\)
0.933433 0.358751i \(-0.116797\pi\)
\(434\) 0 0
\(435\) 5.86956 + 9.88564i 0.281424 + 0.473980i
\(436\) 0 0
\(437\) 2.33314 + 4.04111i 0.111609 + 0.193313i
\(438\) 0 0
\(439\) −13.6586 7.88578i −0.651888 0.376368i 0.137291 0.990531i \(-0.456160\pi\)
−0.789179 + 0.614163i \(0.789494\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.4712 + 6.62292i 0.545015 + 0.314665i 0.747109 0.664702i \(-0.231441\pi\)
−0.202094 + 0.979366i \(0.564775\pi\)
\(444\) 0 0
\(445\) 1.57298 + 2.72449i 0.0745665 + 0.129153i
\(446\) 0 0
\(447\) −1.40663 2.36907i −0.0665311 0.112053i
\(448\) 0 0
\(449\) 14.0532i 0.663212i 0.943418 + 0.331606i \(0.107591\pi\)
−0.943418 + 0.331606i \(0.892409\pi\)
\(450\) 0 0
\(451\) 19.6082 11.3208i 0.923313 0.533075i
\(452\) 0 0
\(453\) −0.321779 26.3537i −0.0151185 1.23820i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5.92092 + 10.2553i −0.276969 + 0.479725i −0.970630 0.240577i \(-0.922663\pi\)
0.693661 + 0.720302i \(0.255997\pi\)
\(458\) 0 0
\(459\) 16.5361 10.3725i 0.771837 0.484147i
\(460\) 0 0
\(461\) 18.8583 0.878318 0.439159 0.898409i \(-0.355276\pi\)
0.439159 + 0.898409i \(0.355276\pi\)
\(462\) 0 0
\(463\) 12.0554 0.560263 0.280131 0.959962i \(-0.409622\pi\)
0.280131 + 0.959962i \(0.409622\pi\)
\(464\) 0 0
\(465\) 2.37757 4.23670i 0.110257 0.196472i
\(466\) 0 0
\(467\) −10.5439 + 18.2625i −0.487912 + 0.845088i −0.999903 0.0139024i \(-0.995575\pi\)
0.511991 + 0.858991i \(0.328908\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −3.54334 + 0.0432642i −0.163268 + 0.00199351i
\(472\) 0 0
\(473\) −23.1491 + 13.3652i −1.06440 + 0.614531i
\(474\) 0 0
\(475\) 10.7235i 0.492026i
\(476\) 0 0
\(477\) 27.0989 + 14.7754i 1.24077 + 0.676517i
\(478\) 0 0
\(479\) 0.743810 + 1.28832i 0.0339855 + 0.0588647i 0.882518 0.470279i \(-0.155847\pi\)
−0.848532 + 0.529143i \(0.822513\pi\)
\(480\) 0 0
\(481\) 19.1907 + 11.0797i 0.875019 + 0.505193i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.850085 + 0.490797i 0.0386004 + 0.0222859i
\(486\) 0 0
\(487\) 15.6242 + 27.0619i 0.708000 + 1.22629i 0.965598 + 0.260040i \(0.0837356\pi\)
−0.257598 + 0.966252i \(0.582931\pi\)
\(488\) 0 0
\(489\) −27.0492 + 16.0603i −1.22321 + 0.726273i
\(490\) 0 0
\(491\) 28.3082i 1.27753i 0.769401 + 0.638766i \(0.220555\pi\)
−0.769401 + 0.638766i \(0.779445\pi\)
\(492\) 0 0
\(493\) 21.7666 12.5669i 0.980317 0.565986i
\(494\) 0 0
\(495\) −6.37281 + 3.88984i −0.286436 + 0.174835i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 14.6111 25.3072i 0.654084 1.13291i −0.328039 0.944664i \(-0.606388\pi\)
0.982123 0.188242i \(-0.0602789\pi\)
\(500\) 0 0
\(501\) 8.44443 + 4.73888i 0.377269 + 0.211718i
\(502\) 0 0
\(503\) −37.0646 −1.65263 −0.826314 0.563210i \(-0.809566\pi\)
−0.826314 + 0.563210i \(0.809566\pi\)
\(504\) 0 0
\(505\) −9.96226 −0.443315
\(506\) 0 0
\(507\) −49.1097 27.5596i −2.18104 1.22396i
\(508\) 0 0
\(509\) 15.3441 26.5768i 0.680117 1.17800i −0.294828 0.955550i \(-0.595262\pi\)
0.974945 0.222446i \(-0.0714042\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −6.49310 + 12.2626i −0.286677 + 0.541409i
\(514\) 0 0
\(515\) −6.83614 + 3.94685i −0.301236 + 0.173919i
\(516\) 0 0
\(517\) 26.4317i 1.16247i
\(518\) 0 0
\(519\) −6.69221 + 3.97347i −0.293755 + 0.174416i
\(520\) 0 0
\(521\) 0.779005 + 1.34928i 0.0341288 + 0.0591129i 0.882585 0.470152i \(-0.155801\pi\)
−0.848456 + 0.529265i \(0.822468\pi\)
\(522\) 0 0
\(523\) 2.12958 + 1.22951i 0.0931200 + 0.0537628i 0.545837 0.837891i \(-0.316212\pi\)
−0.452717 + 0.891654i \(0.649545\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.19793 5.31043i −0.400668 0.231326i
\(528\) 0 0
\(529\) −9.97324 17.2742i −0.433619 0.751051i
\(530\) 0 0
\(531\) −6.66818 + 12.2298i −0.289374 + 0.530730i
\(532\) 0 0
\(533\) 60.8913i 2.63749i
\(534\) 0 0
\(535\) −14.0356 + 8.10343i −0.606810 + 0.350342i
\(536\) 0 0
\(537\) 34.5919 0.422368i 1.49275 0.0182265i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 6.65399 11.5251i 0.286077 0.495501i −0.686792 0.726854i \(-0.740982\pi\)
0.972870 + 0.231353i \(0.0743152\pi\)
\(542\) 0 0
\(543\) −3.76324 + 6.70589i −0.161496 + 0.287777i
\(544\) 0 0
\(545\) 9.35973 0.400927
\(546\) 0 0
\(547\) 15.1745 0.648815 0.324408 0.945917i \(-0.394835\pi\)
0.324408 + 0.945917i \(0.394835\pi\)
\(548\) 0 0
\(549\) −0.589878 24.1519i −0.0251754 1.03078i
\(550\) 0 0
\(551\) −8.93309 + 15.4726i −0.380563 + 0.659154i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −0.0689118 5.64387i −0.00292514 0.239569i
\(556\) 0 0
\(557\) −32.9104 + 19.0008i −1.39446 + 0.805091i −0.993805 0.111139i \(-0.964550\pi\)
−0.400653 + 0.916230i \(0.631217\pi\)
\(558\) 0 0
\(559\) 71.8874i 3.04051i
\(560\) 0 0
\(561\) 8.33306 + 14.0347i 0.351822 + 0.592546i
\(562\) 0 0
\(563\) 19.3049 + 33.4370i 0.813603 + 1.40920i 0.910327 + 0.413890i \(0.135830\pi\)
−0.0967240 + 0.995311i \(0.530836\pi\)
\(564\) 0 0
\(565\) 15.9367 + 9.20104i 0.670461 + 0.387091i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 21.0393 + 12.1471i 0.882014 + 0.509231i 0.871322 0.490712i \(-0.163263\pi\)
0.0106920 + 0.999943i \(0.496597\pi\)
\(570\) 0 0
\(571\) 15.1612 + 26.2600i 0.634478 + 1.09895i 0.986625 + 0.163004i \(0.0521182\pi\)
−0.352147 + 0.935945i \(0.614548\pi\)
\(572\) 0 0
\(573\) 2.86690 + 4.82850i 0.119766 + 0.201713i
\(574\) 0 0
\(575\) 7.01721i 0.292638i
\(576\) 0 0
\(577\) −14.7967 + 8.54288i −0.615995 + 0.355645i −0.775308 0.631583i \(-0.782405\pi\)
0.159313 + 0.987228i \(0.449072\pi\)
\(578\) 0 0
\(579\) −0.280570 22.9787i −0.0116601 0.954961i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −12.9044 + 22.3511i −0.534445 + 0.925686i
\(584\) 0 0
\(585\) 0.490261 + 20.0732i 0.0202698 + 0.829924i
\(586\) 0 0
\(587\) 3.21402 0.132657 0.0663284 0.997798i \(-0.478871\pi\)
0.0663284 + 0.997798i \(0.478871\pi\)
\(588\) 0 0
\(589\) 7.54974 0.311082
\(590\) 0 0
\(591\) 15.8650 28.2706i 0.652600 1.16290i
\(592\) 0 0
\(593\) 5.56488 9.63866i 0.228522 0.395812i −0.728848 0.684675i \(-0.759944\pi\)
0.957370 + 0.288863i \(0.0932773\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.16591 0.0264459i 0.0886450 0.00108236i
\(598\) 0 0
\(599\) 28.2920 16.3344i 1.15598 0.667405i 0.205642 0.978627i \(-0.434072\pi\)
0.950337 + 0.311222i \(0.100738\pi\)
\(600\) 0 0
\(601\) 27.2379i 1.11106i 0.831497 + 0.555529i \(0.187484\pi\)
−0.831497 + 0.555529i \(0.812516\pi\)
\(602\) 0 0
\(603\) −9.61868 + 17.6412i −0.391703 + 0.718407i
\(604\) 0 0
\(605\) 2.33505 + 4.04443i 0.0949334 + 0.164429i
\(606\) 0 0
\(607\) −25.8534 14.9264i −1.04936 0.605846i −0.126887 0.991917i \(-0.540498\pi\)
−0.922469 + 0.386071i \(0.873832\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 61.5608 + 35.5422i 2.49048 + 1.43788i
\(612\) 0 0
\(613\) 12.4954 + 21.6426i 0.504683 + 0.874137i 0.999985 + 0.00541593i \(0.00172395\pi\)
−0.495302 + 0.868721i \(0.664943\pi\)
\(614\) 0 0
\(615\) −13.3362 + 7.91829i −0.537766 + 0.319296i
\(616\) 0 0
\(617\) 28.4800i 1.14656i 0.819359 + 0.573281i \(0.194330\pi\)
−0.819359 + 0.573281i \(0.805670\pi\)
\(618\) 0 0
\(619\) 39.5948 22.8601i 1.59145 0.918824i 0.598391 0.801204i \(-0.295807\pi\)
0.993059 0.117620i \(-0.0375265\pi\)
\(620\) 0 0
\(621\) −4.24895 + 8.02442i −0.170505 + 0.322009i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −5.60238 + 9.70361i −0.224095 + 0.388144i
\(626\) 0 0
\(627\) −10.1181 5.67812i −0.404078 0.226762i
\(628\) 0 0
\(629\) −12.3393 −0.491999
\(630\) 0 0
\(631\) 37.3192 1.48565 0.742827 0.669483i \(-0.233484\pi\)
0.742827 + 0.669483i \(0.233484\pi\)
\(632\) 0 0
\(633\) −1.57215 0.882268i −0.0624875 0.0350670i
\(634\) 0 0
\(635\) 5.05980 8.76384i 0.200792 0.347782i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 11.6830 7.13106i 0.462171 0.282100i
\(640\) 0 0
\(641\) −32.8738 + 18.9797i −1.29844 + 0.749652i −0.980134 0.198338i \(-0.936446\pi\)
−0.318301 + 0.947990i \(0.603112\pi\)
\(642\) 0 0
\(643\) 3.90637i 0.154052i −0.997029 0.0770262i \(-0.975458\pi\)
0.997029 0.0770262i \(-0.0245425\pi\)
\(644\) 0 0
\(645\) 15.7445 9.34821i 0.619938 0.368086i
\(646\) 0 0
\(647\) 5.72867 + 9.92235i 0.225217 + 0.390088i 0.956385 0.292110i \(-0.0943575\pi\)
−0.731167 + 0.682198i \(0.761024\pi\)
\(648\) 0 0
\(649\) −10.0871 5.82380i −0.395954 0.228604i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.118160 + 0.0682197i 0.00462396 + 0.00266964i 0.502310 0.864687i \(-0.332484\pi\)
−0.497686 + 0.867357i \(0.665817\pi\)
\(654\) 0 0
\(655\) −8.81022 15.2598i −0.344244 0.596248i
\(656\) 0 0
\(657\) −8.52111 4.64603i −0.332440 0.181259i
\(658\) 0 0
\(659\) 10.0047i 0.389726i −0.980830 0.194863i \(-0.937574\pi\)
0.980830 0.194863i \(-0.0624263\pi\)
\(660\) 0 0
\(661\) 10.4004 6.00466i 0.404528 0.233554i −0.283908 0.958852i \(-0.591631\pi\)
0.688436 + 0.725297i \(0.258298\pi\)
\(662\) 0 0
\(663\) 43.8929 0.535933i 1.70466 0.0208139i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −5.84563 + 10.1249i −0.226344 + 0.392039i
\(668\) 0 0
\(669\) 18.0007 32.0762i 0.695946 1.24014i
\(670\) 0 0
\(671\) 20.2013 0.779861
\(672\) 0 0
\(673\) 25.4740 0.981950 0.490975 0.871174i \(-0.336641\pi\)
0.490975 + 0.871174i \(0.336641\pi\)
\(674\) 0 0
\(675\) −17.6766 + 11.0879i −0.680373 + 0.426775i
\(676\) 0 0
\(677\) −22.4573 + 38.8972i −0.863105 + 1.49494i 0.00581197 + 0.999983i \(0.498150\pi\)
−0.868917 + 0.494958i \(0.835183\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −0.138590 11.3505i −0.00531079 0.434953i
\(682\) 0 0
\(683\) −20.3551 + 11.7520i −0.778866 + 0.449678i −0.836028 0.548687i \(-0.815128\pi\)
0.0571624 + 0.998365i \(0.481795\pi\)
\(684\) 0 0
\(685\) 0.584186i 0.0223206i
\(686\) 0 0
\(687\) 15.2030 + 25.6052i 0.580030 + 0.976899i
\(688\) 0 0
\(689\) 34.7045 + 60.1100i 1.32214 + 2.29001i
\(690\) 0 0
\(691\) −17.7591 10.2532i −0.675587 0.390051i 0.122603 0.992456i \(-0.460876\pi\)
−0.798190 + 0.602405i \(0.794209\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.47619 1.42963i −0.0939272 0.0542289i
\(696\) 0 0
\(697\) 16.9533 + 29.3640i 0.642154 + 1.11224i
\(698\) 0 0
\(699\) 11.0104 + 18.5439i 0.416450 + 0.701394i
\(700\) 0 0
\(701\) 20.4363i 0.771868i −0.922526 0.385934i \(-0.873879\pi\)
0.922526 0.385934i \(-0.126121\pi\)
\(702\) 0 0
\(703\) 7.59613 4.38563i 0.286494 0.165407i
\(704\) 0 0
\(705\) −0.221059 18.1047i −0.00832555 0.681862i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 8.93820 15.4814i 0.335681 0.581417i −0.647934 0.761696i \(-0.724367\pi\)
0.983615 + 0.180279i \(0.0577002\pi\)
\(710\) 0 0
\(711\) 43.3878 1.05969i 1.62717 0.0397415i
\(712\) 0 0
\(713\) 4.94039 0.185019
\(714\) 0 0
\(715\) −16.7897 −0.627901
\(716\) 0 0
\(717\) −7.16033 + 12.7593i −0.267407 + 0.476506i
\(718\) 0 0
\(719\) −16.8707 + 29.2209i −0.629170 + 1.08976i 0.358548 + 0.933511i \(0.383272\pi\)
−0.987719 + 0.156244i \(0.950061\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −5.02216 + 0.0613207i −0.186776 + 0.00228054i
\(724\) 0 0
\(725\) −23.2679 + 13.4337i −0.864148 + 0.498916i
\(726\) 0 0
\(727\) 11.5388i 0.427950i −0.976839 0.213975i \(-0.931359\pi\)
0.976839 0.213975i \(-0.0686411\pi\)
\(728\) 0 0
\(729\) −26.9276 + 1.97616i −0.997318 + 0.0731910i
\(730\) 0 0
\(731\) −20.0149 34.6668i −0.740277 1.28220i
\(732\) 0 0
\(733\) −19.1264 11.0426i −0.706449 0.407869i 0.103296 0.994651i \(-0.467061\pi\)
−0.809745 + 0.586782i \(0.800395\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −14.5504 8.40069i −0.535972 0.309443i
\(738\) 0 0
\(739\) −0.524365 0.908228i −0.0192891 0.0334097i 0.856220 0.516612i \(-0.172807\pi\)
−0.875509 + 0.483202i \(0.839474\pi\)
\(740\) 0 0
\(741\) −26.8302 + 15.9303i −0.985634 + 0.585216i
\(742\) 0 0
\(743\) 22.3254i 0.819040i 0.912301 + 0.409520i \(0.134304\pi\)
−0.912301 + 0.409520i \(0.865696\pi\)
\(744\) 0 0
\(745\) −1.36672 + 0.789075i −0.0500727 + 0.0289095i
\(746\) 0 0
\(747\) −26.3541 43.1765i −0.964246 1.57974i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 4.54325 7.86913i 0.165785 0.287149i −0.771149 0.636655i \(-0.780317\pi\)
0.936934 + 0.349507i \(0.113651\pi\)
\(752\) 0 0
\(753\) 1.93944 + 1.08838i 0.0706770 + 0.0396628i
\(754\) 0 0
\(755\) −15.0963 −0.549410
\(756\) 0 0
\(757\) 10.7231 0.389736 0.194868 0.980829i \(-0.437572\pi\)
0.194868 + 0.980829i \(0.437572\pi\)
\(758\) 0 0
\(759\) −6.62108 3.71565i −0.240330 0.134869i
\(760\) 0 0
\(761\) −6.15464 + 10.6601i −0.223105 + 0.386430i −0.955749 0.294182i \(-0.904953\pi\)
0.732644 + 0.680612i \(0.238286\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −5.82519 9.54354i −0.210610 0.345047i
\(766\) 0 0
\(767\) −27.1279 + 15.6623i −0.979531 + 0.565532i
\(768\) 0 0
\(769\) 3.10213i 0.111866i 0.998435 + 0.0559328i \(0.0178133\pi\)
−0.998435 + 0.0559328i \(0.982187\pi\)
\(770\) 0 0
\(771\) 26.4977 15.7329i 0.954291 0.566606i
\(772\) 0 0
\(773\) −14.9229 25.8472i −0.536738 0.929658i −0.999077 0.0429546i \(-0.986323\pi\)
0.462339 0.886703i \(-0.347010\pi\)
\(774\) 0 0
\(775\) 9.83234 + 5.67670i 0.353188 + 0.203913i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −20.8732 12.0511i −0.747859 0.431776i
\(780\) 0 0
\(781\) 5.72252 + 9.91170i 0.204768 + 0.354668i
\(782\) 0 0
\(783\) −34.7418 + 1.27310i −1.24157 + 0.0454969i
\(784\) 0 0
\(785\) 2.02974i 0.0724446i
\(786\) 0 0
\(787\) −35.2831 + 20.3707i −1.25771 + 0.726137i −0.972628 0.232367i \(-0.925353\pi\)
−0.285078 + 0.958504i \(0.592020\pi\)
\(788\) 0 0
\(789\) 24.1491 0.294861i 0.859732 0.0104973i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 27.1642 47.0498i 0.964629 1.67079i
\(794\) 0 0
\(795\) 8.65207 15.4175i 0.306857 0.546803i
\(796\) 0 0
\(797\) 34.2662 1.21377 0.606885 0.794789i \(-0.292419\pi\)
0.606885 + 0.794789i \(0.292419\pi\)
\(798\) 0 0
\(799\) −39.5826 −1.40033
\(800\) 0 0
\(801\) −9.51018 + 0.232274i −0.336026 + 0.00820699i
\(802\) 0 0
\(803\) 4.05772 7.02817i 0.143194 0.248019i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0.0295345 + 2.41887i 0.00103966 + 0.0851483i
\(808\) 0 0
\(809\) −32.6805 + 18.8681i −1.14898 + 0.663367i −0.948640 0.316359i \(-0.897540\pi\)
−0.200345 + 0.979725i \(0.564206\pi\)
\(810\) 0 0
\(811\) 33.3795i 1.17211i −0.810270 0.586057i \(-0.800680\pi\)
0.810270 0.586057i \(-0.199320\pi\)
\(812\) 0 0
\(813\) −9.45634 15.9266i −0.331648 0.558570i
\(814\) 0 0
\(815\) 9.00937 + 15.6047i 0.315584 + 0.546608i
\(816\) 0 0
\(817\) 24.6426 + 14.2274i 0.862134 + 0.497753i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.03122 4.05948i −0.245391 0.141677i 0.372261 0.928128i \(-0.378583\pi\)
−0.617652 + 0.786451i \(0.711916\pi\)
\(822\) 0 0
\(823\) −23.8466 41.3035i −0.831241 1.43975i −0.897055 0.441919i \(-0.854298\pi\)
0.0658143 0.997832i \(-0.479036\pi\)
\(824\) 0 0
\(825\) −8.90781 15.0027i −0.310130 0.522328i
\(826\) 0 0
\(827\) 11.7724i 0.409367i −0.978828 0.204684i \(-0.934383\pi\)
0.978828 0.204684i \(-0.0656166\pi\)
\(828\) 0 0
\(829\) 2.23286 1.28914i 0.0775504 0.0447738i −0.460723 0.887544i \(-0.652410\pi\)
0.538274 + 0.842770i \(0.319077\pi\)
\(830\) 0 0
\(831\) 0.0745230 + 6.10342i 0.00258517 + 0.211725i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.77324 4.80339i 0.0959719 0.166228i
\(836\) 0 0
\(837\) 7.80634 + 12.4450i 0.269827 + 0.430163i
\(838\) 0 0
\(839\) −15.1790 −0.524036 −0.262018 0.965063i \(-0.584388\pi\)
−0.262018 + 0.965063i \(0.584388\pi\)
\(840\) 0 0
\(841\) −15.7634 −0.543566
\(842\) 0 0
\(843\) 6.64657 11.8438i 0.228920 0.407923i
\(844\) 0 0
\(845\) −16.1281 + 27.9347i −0.554825 + 0.960985i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 38.3160 0.467839i 1.31500 0.0160562i
\(850\) 0 0
\(851\) 4.97076 2.86987i 0.170395 0.0983778i
\(852\) 0 0
\(853\) 5.00496i 0.171367i 0.996322 + 0.0856833i \(0.0273073\pi\)
−0.996322 + 0.0856833i \(0.972693\pi\)
\(854\) 0 0
\(855\) 6.97799 + 3.80467i 0.238642 + 0.130117i
\(856\) 0 0
\(857\) −10.8110 18.7251i −0.369296 0.639639i 0.620160 0.784475i \(-0.287068\pi\)
−0.989456 + 0.144837i \(0.953734\pi\)
\(858\) 0 0
\(859\) 8.35591 + 4.82429i 0.285100 + 0.164603i 0.635730 0.771912i \(-0.280699\pi\)
−0.350630 + 0.936514i \(0.614033\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −39.4774 22.7923i −1.34383 0.775858i −0.356459 0.934311i \(-0.616016\pi\)
−0.987367 + 0.158453i \(0.949349\pi\)
\(864\) 0 0
\(865\) 2.22900 + 3.86074i 0.0757882 + 0.131269i
\(866\) 0 0
\(867\) 4.30079 2.55358i 0.146063 0.0867240i
\(868\) 0 0
\(869\) 36.2907i 1.23108i
\(870\) 0 0
\(871\) −39.1313 + 22.5925i −1.32591 + 0.765516i
\(872\) 0 0
\(873\) −2.53355 + 1.54643i −0.0857477 + 0.0523388i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −25.7585 + 44.6150i −0.869802 + 1.50654i −0.00760306 + 0.999971i \(0.502420\pi\)
−0.862199 + 0.506570i \(0.830913\pi\)
\(878\) 0 0
\(879\) 31.0815 + 17.4424i 1.04835 + 0.588318i
\(880\) 0 0
\(881\) 10.4316 0.351448 0.175724 0.984439i \(-0.443773\pi\)
0.175724 + 0.984439i \(0.443773\pi\)
\(882\) 0 0
\(883\) −10.6345 −0.357880 −0.178940 0.983860i \(-0.557267\pi\)
−0.178940 + 0.983860i \(0.557267\pi\)
\(884\) 0 0
\(885\) 6.95799 + 3.90471i 0.233890 + 0.131255i
\(886\) 0 0
\(887\) 9.85887 17.0761i 0.331028 0.573358i −0.651685 0.758489i \(-0.725938\pi\)
0.982714 + 0.185131i \(0.0592711\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.10216 22.5498i −0.0369237 0.755448i
\(892\) 0 0
\(893\) 24.3673 14.0684i 0.815419 0.470783i
\(894\) 0 0
\(895\) 19.8154i 0.662356i
\(896\) 0 0
\(897\) −17.5572 + 10.4245i −0.586217 + 0.348064i
\(898\) 0 0
\(899\) 9.45787 + 16.3815i 0.315437 + 0.546354i
\(900\) 0 0
\(901\) −33.4716 19.3249i −1.11510 0.643804i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.81447 + 2.20229i 0.126797 + 0.0732064i
\(906\) 0 0
\(907\) 20.4758 + 35.4651i 0.679888 + 1.17760i 0.975014 + 0.222142i \(0.0713049\pi\)
−0.295126 + 0.955458i \(0.595362\pi\)
\(908\) 0 0
\(909\) 14.4209 26.4487i 0.478310 0.877249i
\(910\) 0 0
\(911\) 27.0641i 0.896672i −0.893865 0.448336i \(-0.852017\pi\)
0.893865 0.448336i \(-0.147983\pi\)
\(912\) 0 0
\(913\) 36.6304 21.1486i 1.21229 0.699916i
\(914\) 0 0
\(915\) −13.8371 + 0.168951i −0.457439 + 0.00558535i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 9.40788 16.2949i 0.310337 0.537520i −0.668098 0.744073i \(-0.732891\pi\)
0.978435 + 0.206553i \(0.0662247\pi\)
\(920\) 0 0
\(921\) 24.9312 44.4260i 0.821509 1.46389i
\(922\) 0 0
\(923\) 30.7798 1.01313
\(924\) 0 0
\(925\) 13.1904 0.433696
\(926\) 0 0
\(927\) −0.582810 23.8625i −0.0191420 0.783746i
\(928\) 0 0
\(929\) −13.6737 + 23.6836i −0.448620 + 0.777033i −0.998296 0.0583449i \(-0.981418\pi\)
0.549676 + 0.835378i \(0.314751\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0.170801 + 13.9885i 0.00559176 + 0.457965i
\(934\) 0 0
\(935\) 8.09663 4.67459i 0.264788 0.152876i
\(936\) 0 0
\(937\) 49.4739i 1.61624i −0.589018 0.808120i \(-0.700485\pi\)
0.589018 0.808120i \(-0.299515\pi\)
\(938\) 0 0
\(939\) 1.07047 + 1.80292i 0.0349336 + 0.0588360i
\(940\) 0 0
\(941\) 24.2430 + 41.9900i 0.790298 + 1.36884i 0.925782 + 0.378057i \(0.123408\pi\)
−0.135485 + 0.990779i \(0.543259\pi\)
\(942\) 0 0
\(943\) −13.6590 7.88601i −0.444797 0.256804i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.42426 + 4.28640i 0.241256 + 0.139289i 0.615754 0.787939i \(-0.288852\pi\)
−0.374498 + 0.927228i \(0.622185\pi\)
\(948\) 0 0
\(949\) −10.9127 18.9013i −0.354240 0.613561i
\(950\) 0 0
\(951\) −26.3376 44.3583i −0.854054 1.43842i
\(952\) 0 0
\(953\) 44.7977i 1.45114i −0.688149 0.725570i \(-0.741576\pi\)
0.688149 0.725570i \(-0.258424\pi\)
\(954\) 0 0
\(955\) 2.78556 1.60824i 0.0901386 0.0520416i
\(956\) 0 0
\(957\) −0.354916 29.0676i −0.0114728 0.939622i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −11.5034 + 19.9244i −0.371077 + 0.642724i
\(962\) 0 0
\(963\) −1.19659 48.9930i −0.0385596 1.57878i
\(964\) 0 0
\(965\) −13.1630 −0.423730
\(966\) 0 0
\(967\) 14.4085 0.463346 0.231673 0.972794i \(-0.425580\pi\)
0.231673 + 0.972794i \(0.425580\pi\)
\(968\) 0 0
\(969\) 8.50322 15.1523i 0.273163 0.486761i
\(970\) 0 0
\(971\) −1.91524 + 3.31730i −0.0614630 + 0.106457i −0.895120 0.445826i \(-0.852910\pi\)
0.833657 + 0.552283i \(0.186243\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −46.9203 + 0.572898i −1.50265 + 0.0183474i
\(976\) 0 0
\(977\) 31.0908 17.9503i 0.994683 0.574281i 0.0880123 0.996119i \(-0.471949\pi\)
0.906671 + 0.421839i \(0.138615\pi\)
\(978\) 0 0
\(979\) 7.95456i 0.254229i
\(980\) 0 0
\(981\) −13.5487 + 24.8491i −0.432576 + 0.793370i
\(982\) 0 0
\(983\) 23.7286 + 41.0991i 0.756824 + 1.31086i 0.944462 + 0.328620i \(0.106583\pi\)
−0.187638 + 0.982238i \(0.560083\pi\)
\(984\) 0 0
\(985\) −16.0810 9.28436i −0.512383 0.295824i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16.1256 + 9.31011i 0.512764 + 0.296044i
\(990\) 0 0
\(991\) −28.0314 48.5518i −0.890446 1.54230i −0.839342 0.543604i \(-0.817059\pi\)
−0.0511039 0.998693i \(-0.516274\pi\)
\(992\) 0 0
\(993\) 18.4680 10.9653i 0.586066 0.347974i
\(994\) 0 0
\(995\) 1.24071i 0.0393331i
\(996\) 0 0
\(997\) −45.6872 + 26.3775i −1.44693 + 0.835385i −0.998297 0.0583312i \(-0.981422\pi\)
−0.448632 + 0.893716i \(0.648089\pi\)
\(998\) 0 0
\(999\) 15.0836 + 7.98682i 0.477224 + 0.252692i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1176.2.u.c.1097.21 48
3.2 odd 2 inner 1176.2.u.c.1097.13 48
7.2 even 3 1176.2.k.b.881.6 yes 24
7.3 odd 6 inner 1176.2.u.c.521.13 48
7.4 even 3 inner 1176.2.u.c.521.12 48
7.5 odd 6 1176.2.k.b.881.19 yes 24
7.6 odd 2 inner 1176.2.u.c.1097.4 48
21.2 odd 6 1176.2.k.b.881.20 yes 24
21.5 even 6 1176.2.k.b.881.5 24
21.11 odd 6 inner 1176.2.u.c.521.4 48
21.17 even 6 inner 1176.2.u.c.521.21 48
21.20 even 2 inner 1176.2.u.c.1097.12 48
28.19 even 6 2352.2.k.j.881.6 24
28.23 odd 6 2352.2.k.j.881.19 24
84.23 even 6 2352.2.k.j.881.5 24
84.47 odd 6 2352.2.k.j.881.20 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1176.2.k.b.881.5 24 21.5 even 6
1176.2.k.b.881.6 yes 24 7.2 even 3
1176.2.k.b.881.19 yes 24 7.5 odd 6
1176.2.k.b.881.20 yes 24 21.2 odd 6
1176.2.u.c.521.4 48 21.11 odd 6 inner
1176.2.u.c.521.12 48 7.4 even 3 inner
1176.2.u.c.521.13 48 7.3 odd 6 inner
1176.2.u.c.521.21 48 21.17 even 6 inner
1176.2.u.c.1097.4 48 7.6 odd 2 inner
1176.2.u.c.1097.12 48 21.20 even 2 inner
1176.2.u.c.1097.13 48 3.2 odd 2 inner
1176.2.u.c.1097.21 48 1.1 even 1 trivial
2352.2.k.j.881.5 24 84.23 even 6
2352.2.k.j.881.6 24 28.19 even 6
2352.2.k.j.881.19 24 28.23 odd 6
2352.2.k.j.881.20 24 84.47 odd 6