Properties

Label 1176.2.k.b.881.5
Level $1176$
Weight $2$
Character 1176.881
Analytic conductor $9.390$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1176,2,Mod(881,1176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1176.881");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1176.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.39040727770\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.5
Character \(\chi\) \(=\) 1176.881
Dual form 1176.2.k.b.881.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.48931 - 0.884275i) q^{3} -0.992103 q^{5} +(1.43612 + 2.63393i) q^{9} +2.50853i q^{11} -6.74633i q^{13} +(1.47755 + 0.877291i) q^{15} +3.75663 q^{17} +2.67036i q^{19} +1.74743i q^{23} -4.01573 q^{25} +(0.190283 - 5.19267i) q^{27} -6.69055i q^{29} -2.82723i q^{31} +(2.21823 - 3.73599i) q^{33} -3.28467 q^{37} +(-5.96561 + 10.0474i) q^{39} -9.02583 q^{41} +10.6558 q^{43} +(-1.42478 - 2.61313i) q^{45} -10.5367 q^{47} +(-5.59480 - 3.32189i) q^{51} -10.2884i q^{53} -2.48872i q^{55} +(2.36133 - 3.97701i) q^{57} -4.64320 q^{59} -8.05303i q^{61} +6.69306i q^{65} -6.69770 q^{67} +(1.54521 - 2.60247i) q^{69} +4.56245i q^{71} +3.23514i q^{73} +(5.98069 + 3.55101i) q^{75} -14.4669 q^{79} +(-4.87514 + 7.56525i) q^{81} -16.8613 q^{83} -3.72696 q^{85} +(-5.91628 + 9.96433i) q^{87} +3.17101 q^{89} +(-2.50005 + 4.21064i) q^{93} -2.64927i q^{95} -0.989407i q^{97} +(-6.60728 + 3.60254i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 16 q^{15} + 8 q^{25} + 16 q^{37} - 64 q^{39} + 16 q^{43} + 48 q^{51} + 48 q^{57} + 16 q^{67} + 80 q^{81} - 64 q^{85} - 32 q^{93} - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1176\mathbb{Z}\right)^\times\).

\(n\) \(295\) \(589\) \(785\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.48931 0.884275i −0.859856 0.510536i
\(4\) 0 0
\(5\) −0.992103 −0.443682 −0.221841 0.975083i \(-0.571207\pi\)
−0.221841 + 0.975083i \(0.571207\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.43612 + 2.63393i 0.478706 + 0.877975i
\(10\) 0 0
\(11\) 2.50853i 0.756350i 0.925734 + 0.378175i \(0.123448\pi\)
−0.925734 + 0.378175i \(0.876552\pi\)
\(12\) 0 0
\(13\) 6.74633i 1.87110i −0.353199 0.935548i \(-0.614906\pi\)
0.353199 0.935548i \(-0.385094\pi\)
\(14\) 0 0
\(15\) 1.47755 + 0.877291i 0.381503 + 0.226516i
\(16\) 0 0
\(17\) 3.75663 0.911115 0.455558 0.890206i \(-0.349440\pi\)
0.455558 + 0.890206i \(0.349440\pi\)
\(18\) 0 0
\(19\) 2.67036i 0.612623i 0.951931 + 0.306312i \(0.0990949\pi\)
−0.951931 + 0.306312i \(0.900905\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.74743i 0.364365i 0.983265 + 0.182182i \(0.0583161\pi\)
−0.983265 + 0.182182i \(0.941684\pi\)
\(24\) 0 0
\(25\) −4.01573 −0.803146
\(26\) 0 0
\(27\) 0.190283 5.19267i 0.0366201 0.999329i
\(28\) 0 0
\(29\) 6.69055i 1.24240i −0.783651 0.621202i \(-0.786645\pi\)
0.783651 0.621202i \(-0.213355\pi\)
\(30\) 0 0
\(31\) 2.82723i 0.507786i −0.967232 0.253893i \(-0.918289\pi\)
0.967232 0.253893i \(-0.0817111\pi\)
\(32\) 0 0
\(33\) 2.21823 3.73599i 0.386144 0.650352i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.28467 −0.539996 −0.269998 0.962861i \(-0.587023\pi\)
−0.269998 + 0.962861i \(0.587023\pi\)
\(38\) 0 0
\(39\) −5.96561 + 10.0474i −0.955262 + 1.60887i
\(40\) 0 0
\(41\) −9.02583 −1.40960 −0.704799 0.709407i \(-0.748963\pi\)
−0.704799 + 0.709407i \(0.748963\pi\)
\(42\) 0 0
\(43\) 10.6558 1.62499 0.812495 0.582969i \(-0.198109\pi\)
0.812495 + 0.582969i \(0.198109\pi\)
\(44\) 0 0
\(45\) −1.42478 2.61313i −0.212393 0.389542i
\(46\) 0 0
\(47\) −10.5367 −1.53694 −0.768470 0.639886i \(-0.778982\pi\)
−0.768470 + 0.639886i \(0.778982\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −5.59480 3.32189i −0.783428 0.465157i
\(52\) 0 0
\(53\) 10.2884i 1.41322i −0.707602 0.706611i \(-0.750223\pi\)
0.707602 0.706611i \(-0.249777\pi\)
\(54\) 0 0
\(55\) 2.48872i 0.335579i
\(56\) 0 0
\(57\) 2.36133 3.97701i 0.312766 0.526768i
\(58\) 0 0
\(59\) −4.64320 −0.604493 −0.302246 0.953230i \(-0.597737\pi\)
−0.302246 + 0.953230i \(0.597737\pi\)
\(60\) 0 0
\(61\) 8.05303i 1.03108i −0.856864 0.515542i \(-0.827590\pi\)
0.856864 0.515542i \(-0.172410\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.69306i 0.830172i
\(66\) 0 0
\(67\) −6.69770 −0.818254 −0.409127 0.912477i \(-0.634167\pi\)
−0.409127 + 0.912477i \(0.634167\pi\)
\(68\) 0 0
\(69\) 1.54521 2.60247i 0.186021 0.313301i
\(70\) 0 0
\(71\) 4.56245i 0.541463i 0.962655 + 0.270732i \(0.0872656\pi\)
−0.962655 + 0.270732i \(0.912734\pi\)
\(72\) 0 0
\(73\) 3.23514i 0.378644i 0.981915 + 0.189322i \(0.0606290\pi\)
−0.981915 + 0.189322i \(0.939371\pi\)
\(74\) 0 0
\(75\) 5.98069 + 3.55101i 0.690590 + 0.410035i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −14.4669 −1.62766 −0.813828 0.581105i \(-0.802620\pi\)
−0.813828 + 0.581105i \(0.802620\pi\)
\(80\) 0 0
\(81\) −4.87514 + 7.56525i −0.541682 + 0.840584i
\(82\) 0 0
\(83\) −16.8613 −1.85077 −0.925386 0.379025i \(-0.876259\pi\)
−0.925386 + 0.379025i \(0.876259\pi\)
\(84\) 0 0
\(85\) −3.72696 −0.404245
\(86\) 0 0
\(87\) −5.91628 + 9.96433i −0.634292 + 1.06829i
\(88\) 0 0
\(89\) 3.17101 0.336126 0.168063 0.985776i \(-0.446249\pi\)
0.168063 + 0.985776i \(0.446249\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −2.50005 + 4.21064i −0.259243 + 0.436623i
\(94\) 0 0
\(95\) 2.64927i 0.271810i
\(96\) 0 0
\(97\) 0.989407i 0.100459i −0.998738 0.0502295i \(-0.984005\pi\)
0.998738 0.0502295i \(-0.0159953\pi\)
\(98\) 0 0
\(99\) −6.60728 + 3.60254i −0.664057 + 0.362069i
\(100\) 0 0
\(101\) 10.0416 0.999173 0.499586 0.866264i \(-0.333485\pi\)
0.499586 + 0.866264i \(0.333485\pi\)
\(102\) 0 0
\(103\) 7.95653i 0.783980i −0.919969 0.391990i \(-0.871787\pi\)
0.919969 0.391990i \(-0.128213\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.3359i 1.57925i −0.613591 0.789624i \(-0.710276\pi\)
0.613591 0.789624i \(-0.289724\pi\)
\(108\) 0 0
\(109\) −9.43424 −0.903636 −0.451818 0.892110i \(-0.649224\pi\)
−0.451818 + 0.892110i \(0.649224\pi\)
\(110\) 0 0
\(111\) 4.89191 + 2.90455i 0.464319 + 0.275688i
\(112\) 0 0
\(113\) 18.5486i 1.74490i −0.488702 0.872451i \(-0.662529\pi\)
0.488702 0.872451i \(-0.337471\pi\)
\(114\) 0 0
\(115\) 1.73363i 0.161662i
\(116\) 0 0
\(117\) 17.7693 9.68853i 1.64278 0.895705i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 4.70728 0.427934
\(122\) 0 0
\(123\) 13.4423 + 7.98132i 1.21205 + 0.719651i
\(124\) 0 0
\(125\) 8.94453 0.800023
\(126\) 0 0
\(127\) 10.2002 0.905118 0.452559 0.891734i \(-0.350511\pi\)
0.452559 + 0.891734i \(0.350511\pi\)
\(128\) 0 0
\(129\) −15.8698 9.42262i −1.39726 0.829616i
\(130\) 0 0
\(131\) −17.7607 −1.55176 −0.775880 0.630881i \(-0.782694\pi\)
−0.775880 + 0.630881i \(0.782694\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.188781 + 5.15166i −0.0162477 + 0.443384i
\(136\) 0 0
\(137\) 0.588836i 0.0503076i −0.999684 0.0251538i \(-0.991992\pi\)
0.999684 0.0251538i \(-0.00800755\pi\)
\(138\) 0 0
\(139\) 2.88202i 0.244449i 0.992502 + 0.122225i \(0.0390029\pi\)
−0.992502 + 0.122225i \(0.960997\pi\)
\(140\) 0 0
\(141\) 15.6925 + 9.31736i 1.32155 + 0.784663i
\(142\) 0 0
\(143\) 16.9234 1.41520
\(144\) 0 0
\(145\) 6.63771i 0.551232i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.59071i 0.130316i −0.997875 0.0651581i \(-0.979245\pi\)
0.997875 0.0651581i \(-0.0207552\pi\)
\(150\) 0 0
\(151\) 15.2164 1.23830 0.619148 0.785274i \(-0.287478\pi\)
0.619148 + 0.785274i \(0.287478\pi\)
\(152\) 0 0
\(153\) 5.39495 + 9.89467i 0.436156 + 0.799937i
\(154\) 0 0
\(155\) 2.80491i 0.225295i
\(156\) 0 0
\(157\) 2.04590i 0.163281i 0.996662 + 0.0816403i \(0.0260159\pi\)
−0.996662 + 0.0816403i \(0.973984\pi\)
\(158\) 0 0
\(159\) −9.09778 + 15.3227i −0.721501 + 1.21517i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 18.1622 1.42257 0.711285 0.702904i \(-0.248114\pi\)
0.711285 + 0.702904i \(0.248114\pi\)
\(164\) 0 0
\(165\) −2.20071 + 3.70649i −0.171325 + 0.288550i
\(166\) 0 0
\(167\) 5.59063 0.432616 0.216308 0.976325i \(-0.430598\pi\)
0.216308 + 0.976325i \(0.430598\pi\)
\(168\) 0 0
\(169\) −32.5130 −2.50100
\(170\) 0 0
\(171\) −7.03354 + 3.83495i −0.537868 + 0.293266i
\(172\) 0 0
\(173\) 4.49348 0.341633 0.170817 0.985303i \(-0.445359\pi\)
0.170817 + 0.985303i \(0.445359\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6.91518 + 4.10586i 0.519777 + 0.308616i
\(178\) 0 0
\(179\) 19.9731i 1.49286i −0.665463 0.746431i \(-0.731766\pi\)
0.665463 0.746431i \(-0.268234\pi\)
\(180\) 0 0
\(181\) 4.43963i 0.329995i −0.986294 0.164998i \(-0.947238\pi\)
0.986294 0.164998i \(-0.0527616\pi\)
\(182\) 0 0
\(183\) −7.12109 + 11.9935i −0.526406 + 0.886585i
\(184\) 0 0
\(185\) 3.25873 0.239587
\(186\) 0 0
\(187\) 9.42361i 0.689122i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.24209i 0.234590i 0.993097 + 0.117295i \(0.0374222\pi\)
−0.993097 + 0.117295i \(0.962578\pi\)
\(192\) 0 0
\(193\) 13.2677 0.955032 0.477516 0.878623i \(-0.341537\pi\)
0.477516 + 0.878623i \(0.341537\pi\)
\(194\) 0 0
\(195\) 5.91850 9.96807i 0.423833 0.713828i
\(196\) 0 0
\(197\) 18.7165i 1.33350i 0.745282 + 0.666749i \(0.232315\pi\)
−0.745282 + 0.666749i \(0.767685\pi\)
\(198\) 0 0
\(199\) 1.25058i 0.0886516i −0.999017 0.0443258i \(-0.985886\pi\)
0.999017 0.0443258i \(-0.0141140\pi\)
\(200\) 0 0
\(201\) 9.97498 + 5.92260i 0.703581 + 0.417748i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 8.95456 0.625413
\(206\) 0 0
\(207\) −4.60260 + 2.50952i −0.319903 + 0.174423i
\(208\) 0 0
\(209\) −6.69868 −0.463358
\(210\) 0 0
\(211\) −1.04084 −0.0716546 −0.0358273 0.999358i \(-0.511407\pi\)
−0.0358273 + 0.999358i \(0.511407\pi\)
\(212\) 0 0
\(213\) 4.03446 6.79493i 0.276437 0.465581i
\(214\) 0 0
\(215\) −10.5716 −0.720978
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2.86075 4.81814i 0.193311 0.325579i
\(220\) 0 0
\(221\) 25.3435i 1.70478i
\(222\) 0 0
\(223\) 21.2360i 1.42207i 0.703156 + 0.711035i \(0.251773\pi\)
−0.703156 + 0.711035i \(0.748227\pi\)
\(224\) 0 0
\(225\) −5.76706 10.5771i −0.384471 0.705143i
\(226\) 0 0
\(227\) 6.55372 0.434985 0.217493 0.976062i \(-0.430212\pi\)
0.217493 + 0.976062i \(0.430212\pi\)
\(228\) 0 0
\(229\) 17.1926i 1.13612i 0.822988 + 0.568059i \(0.192306\pi\)
−0.822988 + 0.568059i \(0.807694\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.4513i 0.815711i 0.913047 + 0.407855i \(0.133723\pi\)
−0.913047 + 0.407855i \(0.866277\pi\)
\(234\) 0 0
\(235\) 10.4535 0.681913
\(236\) 0 0
\(237\) 21.5458 + 12.7927i 1.39955 + 0.830978i
\(238\) 0 0
\(239\) 8.44730i 0.546410i −0.961956 0.273205i \(-0.911916\pi\)
0.961956 0.273205i \(-0.0880838\pi\)
\(240\) 0 0
\(241\) 2.89976i 0.186790i 0.995629 + 0.0933951i \(0.0297720\pi\)
−0.995629 + 0.0933951i \(0.970228\pi\)
\(242\) 0 0
\(243\) 13.9504 6.95609i 0.894917 0.446233i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 18.0152 1.14628
\(248\) 0 0
\(249\) 25.1118 + 14.9101i 1.59140 + 0.944886i
\(250\) 0 0
\(251\) 1.28400 0.0810455 0.0405227 0.999179i \(-0.487098\pi\)
0.0405227 + 0.999179i \(0.487098\pi\)
\(252\) 0 0
\(253\) −4.38348 −0.275587
\(254\) 0 0
\(255\) 5.55062 + 3.29565i 0.347593 + 0.206382i
\(256\) 0 0
\(257\) −17.7919 −1.10983 −0.554913 0.831908i \(-0.687248\pi\)
−0.554913 + 0.831908i \(0.687248\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 17.6224 9.60841i 1.09080 0.594745i
\(262\) 0 0
\(263\) 13.9435i 0.859796i −0.902878 0.429898i \(-0.858550\pi\)
0.902878 0.429898i \(-0.141450\pi\)
\(264\) 0 0
\(265\) 10.2072i 0.627021i
\(266\) 0 0
\(267\) −4.72263 2.80404i −0.289020 0.171604i
\(268\) 0 0
\(269\) −1.39664 −0.0851546 −0.0425773 0.999093i \(-0.513557\pi\)
−0.0425773 + 0.999093i \(0.513557\pi\)
\(270\) 0 0
\(271\) 10.6939i 0.649608i −0.945781 0.324804i \(-0.894702\pi\)
0.945781 0.324804i \(-0.105298\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10.0736i 0.607460i
\(276\) 0 0
\(277\) −3.52408 −0.211741 −0.105871 0.994380i \(-0.533763\pi\)
−0.105871 + 0.994380i \(0.533763\pi\)
\(278\) 0 0
\(279\) 7.44672 4.06024i 0.445824 0.243080i
\(280\) 0 0
\(281\) 7.84120i 0.467767i 0.972265 + 0.233883i \(0.0751434\pi\)
−0.972265 + 0.233883i \(0.924857\pi\)
\(282\) 0 0
\(283\) 22.1234i 1.31510i −0.753411 0.657550i \(-0.771593\pi\)
0.753411 0.657550i \(-0.228407\pi\)
\(284\) 0 0
\(285\) −2.34269 + 3.94560i −0.138769 + 0.233717i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −2.88777 −0.169869
\(290\) 0 0
\(291\) −0.874907 + 1.47354i −0.0512880 + 0.0863803i
\(292\) 0 0
\(293\) 20.5775 1.20215 0.601074 0.799193i \(-0.294740\pi\)
0.601074 + 0.799193i \(0.294740\pi\)
\(294\) 0 0
\(295\) 4.60653 0.268203
\(296\) 0 0
\(297\) 13.0260 + 0.477332i 0.755843 + 0.0276976i
\(298\) 0 0
\(299\) 11.7888 0.681761
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −14.9550 8.87950i −0.859145 0.510114i
\(304\) 0 0
\(305\) 7.98943i 0.457474i
\(306\) 0 0
\(307\) 29.4122i 1.67864i 0.543636 + 0.839321i \(0.317047\pi\)
−0.543636 + 0.839321i \(0.682953\pi\)
\(308\) 0 0
\(309\) −7.03576 + 11.8498i −0.400250 + 0.674110i
\(310\) 0 0
\(311\) −8.07689 −0.457999 −0.228999 0.973427i \(-0.573545\pi\)
−0.228999 + 0.973427i \(0.573545\pi\)
\(312\) 0 0
\(313\) 1.21057i 0.0684254i 0.999415 + 0.0342127i \(0.0108924\pi\)
−0.999415 + 0.0342127i \(0.989108\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 29.7844i 1.67286i −0.548075 0.836429i \(-0.684639\pi\)
0.548075 0.836429i \(-0.315361\pi\)
\(318\) 0 0
\(319\) 16.7834 0.939692
\(320\) 0 0
\(321\) −14.4454 + 24.3293i −0.806263 + 1.35793i
\(322\) 0 0
\(323\) 10.0316i 0.558171i
\(324\) 0 0
\(325\) 27.0915i 1.50276i
\(326\) 0 0
\(327\) 14.0505 + 8.34246i 0.776997 + 0.461339i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −12.4004 −0.681585 −0.340793 0.940138i \(-0.610695\pi\)
−0.340793 + 0.940138i \(0.610695\pi\)
\(332\) 0 0
\(333\) −4.71717 8.65158i −0.258499 0.474104i
\(334\) 0 0
\(335\) 6.64481 0.363044
\(336\) 0 0
\(337\) 1.60403 0.0873772 0.0436886 0.999045i \(-0.486089\pi\)
0.0436886 + 0.999045i \(0.486089\pi\)
\(338\) 0 0
\(339\) −16.4020 + 27.6246i −0.890835 + 1.50036i
\(340\) 0 0
\(341\) 7.09220 0.384064
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −1.53301 + 2.58192i −0.0825343 + 0.139006i
\(346\) 0 0
\(347\) 9.27425i 0.497868i 0.968520 + 0.248934i \(0.0800802\pi\)
−0.968520 + 0.248934i \(0.919920\pi\)
\(348\) 0 0
\(349\) 17.2999i 0.926043i −0.886347 0.463021i \(-0.846765\pi\)
0.886347 0.463021i \(-0.153235\pi\)
\(350\) 0 0
\(351\) −35.0315 1.28372i −1.86984 0.0685197i
\(352\) 0 0
\(353\) −3.53395 −0.188093 −0.0940465 0.995568i \(-0.529980\pi\)
−0.0940465 + 0.995568i \(0.529980\pi\)
\(354\) 0 0
\(355\) 4.52642i 0.240237i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 13.4164i 0.708091i 0.935228 + 0.354046i \(0.115194\pi\)
−0.935228 + 0.354046i \(0.884806\pi\)
\(360\) 0 0
\(361\) 11.8692 0.624693
\(362\) 0 0
\(363\) −7.01062 4.16253i −0.367962 0.218476i
\(364\) 0 0
\(365\) 3.20959i 0.167998i
\(366\) 0 0
\(367\) 9.10699i 0.475381i 0.971341 + 0.237691i \(0.0763904\pi\)
−0.971341 + 0.237691i \(0.923610\pi\)
\(368\) 0 0
\(369\) −12.9622 23.7734i −0.674783 1.23759i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −33.3259 −1.72555 −0.862775 0.505587i \(-0.831276\pi\)
−0.862775 + 0.505587i \(0.831276\pi\)
\(374\) 0 0
\(375\) −13.3212 7.90942i −0.687905 0.408441i
\(376\) 0 0
\(377\) −45.1367 −2.32466
\(378\) 0 0
\(379\) −11.8875 −0.610620 −0.305310 0.952253i \(-0.598760\pi\)
−0.305310 + 0.952253i \(0.598760\pi\)
\(380\) 0 0
\(381\) −15.1913 9.01974i −0.778271 0.462095i
\(382\) 0 0
\(383\) 27.8159 1.42133 0.710663 0.703532i \(-0.248395\pi\)
0.710663 + 0.703532i \(0.248395\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 15.3029 + 28.0665i 0.777892 + 1.42670i
\(388\) 0 0
\(389\) 18.1795i 0.921736i −0.887469 0.460868i \(-0.847538\pi\)
0.887469 0.460868i \(-0.152462\pi\)
\(390\) 0 0
\(391\) 6.56444i 0.331978i
\(392\) 0 0
\(393\) 26.4513 + 15.7053i 1.33429 + 0.792229i
\(394\) 0 0
\(395\) 14.3527 0.722162
\(396\) 0 0
\(397\) 2.14697i 0.107753i −0.998548 0.0538767i \(-0.982842\pi\)
0.998548 0.0538767i \(-0.0171578\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11.7610i 0.587315i −0.955911 0.293658i \(-0.905127\pi\)
0.955911 0.293658i \(-0.0948725\pi\)
\(402\) 0 0
\(403\) −19.0735 −0.950117
\(404\) 0 0
\(405\) 4.83664 7.50551i 0.240334 0.372952i
\(406\) 0 0
\(407\) 8.23969i 0.408426i
\(408\) 0 0
\(409\) 19.0406i 0.941497i 0.882268 + 0.470748i \(0.156016\pi\)
−0.882268 + 0.470748i \(0.843984\pi\)
\(410\) 0 0
\(411\) −0.520692 + 0.876962i −0.0256839 + 0.0432573i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 16.7282 0.821154
\(416\) 0 0
\(417\) 2.54849 4.29223i 0.124800 0.210191i
\(418\) 0 0
\(419\) 29.5570 1.44395 0.721976 0.691918i \(-0.243234\pi\)
0.721976 + 0.691918i \(0.243234\pi\)
\(420\) 0 0
\(421\) 8.76696 0.427275 0.213638 0.976913i \(-0.431469\pi\)
0.213638 + 0.976913i \(0.431469\pi\)
\(422\) 0 0
\(423\) −15.1320 27.7530i −0.735742 1.34940i
\(424\) 0 0
\(425\) −15.0856 −0.731759
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −25.2042 14.9649i −1.21687 0.722513i
\(430\) 0 0
\(431\) 24.8468i 1.19683i 0.801187 + 0.598414i \(0.204202\pi\)
−0.801187 + 0.598414i \(0.795798\pi\)
\(432\) 0 0
\(433\) 14.9303i 0.717502i 0.933433 + 0.358751i \(0.116797\pi\)
−0.933433 + 0.358751i \(0.883203\pi\)
\(434\) 0 0
\(435\) 5.86956 9.88564i 0.281424 0.473980i
\(436\) 0 0
\(437\) −4.66627 −0.223218
\(438\) 0 0
\(439\) 15.7716i 0.752735i −0.926470 0.376368i \(-0.877173\pi\)
0.926470 0.376368i \(-0.122827\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13.2458i 0.629329i 0.949203 + 0.314665i \(0.101892\pi\)
−0.949203 + 0.314665i \(0.898108\pi\)
\(444\) 0 0
\(445\) −3.14596 −0.149133
\(446\) 0 0
\(447\) −1.40663 + 2.36907i −0.0665311 + 0.112053i
\(448\) 0 0
\(449\) 14.0532i 0.663212i −0.943418 0.331606i \(-0.892409\pi\)
0.943418 0.331606i \(-0.107591\pi\)
\(450\) 0 0
\(451\) 22.6416i 1.06615i
\(452\) 0 0
\(453\) −22.6621 13.4555i −1.06476 0.632195i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.8418 0.553938 0.276969 0.960879i \(-0.410670\pi\)
0.276969 + 0.960879i \(0.410670\pi\)
\(458\) 0 0
\(459\) 0.714824 19.5069i 0.0333651 0.910504i
\(460\) 0 0
\(461\) 18.8583 0.878318 0.439159 0.898409i \(-0.355276\pi\)
0.439159 + 0.898409i \(0.355276\pi\)
\(462\) 0 0
\(463\) 12.0554 0.560263 0.280131 0.959962i \(-0.409622\pi\)
0.280131 + 0.959962i \(0.409622\pi\)
\(464\) 0 0
\(465\) 2.48031 4.17739i 0.115021 0.193722i
\(466\) 0 0
\(467\) 21.0877 0.975824 0.487912 0.872893i \(-0.337759\pi\)
0.487912 + 0.872893i \(0.337759\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.80914 3.04699i 0.0833606 0.140398i
\(472\) 0 0
\(473\) 26.7303i 1.22906i
\(474\) 0 0
\(475\) 10.7235i 0.492026i
\(476\) 0 0
\(477\) 27.0989 14.7754i 1.24077 0.676517i
\(478\) 0 0
\(479\) −1.48762 −0.0679711 −0.0339855 0.999422i \(-0.510820\pi\)
−0.0339855 + 0.999422i \(0.510820\pi\)
\(480\) 0 0
\(481\) 22.1595i 1.01039i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.981593i 0.0445718i
\(486\) 0 0
\(487\) −31.2484 −1.41600 −0.708000 0.706213i \(-0.750402\pi\)
−0.708000 + 0.706213i \(0.750402\pi\)
\(488\) 0 0
\(489\) −27.0492 16.0603i −1.22321 0.726273i
\(490\) 0 0
\(491\) 28.3082i 1.27753i −0.769401 0.638766i \(-0.779445\pi\)
0.769401 0.638766i \(-0.220555\pi\)
\(492\) 0 0
\(493\) 25.1339i 1.13197i
\(494\) 0 0
\(495\) 6.55510 3.57409i 0.294630 0.160644i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −29.2222 −1.30817 −0.654084 0.756422i \(-0.726946\pi\)
−0.654084 + 0.756422i \(0.726946\pi\)
\(500\) 0 0
\(501\) −8.32621 4.94365i −0.371987 0.220866i
\(502\) 0 0
\(503\) −37.0646 −1.65263 −0.826314 0.563210i \(-0.809566\pi\)
−0.826314 + 0.563210i \(0.809566\pi\)
\(504\) 0 0
\(505\) −9.96226 −0.443315
\(506\) 0 0
\(507\) 48.4221 + 28.7504i 2.15050 + 1.27685i
\(508\) 0 0
\(509\) −30.6883 −1.36023 −0.680117 0.733104i \(-0.738071\pi\)
−0.680117 + 0.733104i \(0.738071\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 13.8663 + 0.508126i 0.612212 + 0.0224343i
\(514\) 0 0
\(515\) 7.89369i 0.347838i
\(516\) 0 0
\(517\) 26.4317i 1.16247i
\(518\) 0 0
\(519\) −6.69221 3.97347i −0.293755 0.174416i
\(520\) 0 0
\(521\) −1.55801 −0.0682577 −0.0341288 0.999417i \(-0.510866\pi\)
−0.0341288 + 0.999417i \(0.510866\pi\)
\(522\) 0 0
\(523\) 2.45903i 0.107526i 0.998554 + 0.0537628i \(0.0171215\pi\)
−0.998554 + 0.0537628i \(0.982879\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10.6209i 0.462652i
\(528\) 0 0
\(529\) 19.9465 0.867238
\(530\) 0 0
\(531\) −6.66818 12.2298i −0.289374 0.530730i
\(532\) 0 0
\(533\) 60.8913i 2.63749i
\(534\) 0 0
\(535\) 16.2069i 0.700684i
\(536\) 0 0
\(537\) −17.6617 + 29.7463i −0.762160 + 1.28365i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −13.3080 −0.572155 −0.286077 0.958207i \(-0.592351\pi\)
−0.286077 + 0.958207i \(0.592351\pi\)
\(542\) 0 0
\(543\) −3.92585 + 6.61201i −0.168474 + 0.283748i
\(544\) 0 0
\(545\) 9.35973 0.400927
\(546\) 0 0
\(547\) 15.1745 0.648815 0.324408 0.945917i \(-0.394835\pi\)
0.324408 + 0.945917i \(0.394835\pi\)
\(548\) 0 0
\(549\) 21.2111 11.5651i 0.905267 0.493586i
\(550\) 0 0
\(551\) 17.8662 0.761125
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.85328 2.88161i −0.206010 0.122318i
\(556\) 0 0
\(557\) 38.0016i 1.61018i 0.593152 + 0.805091i \(0.297883\pi\)
−0.593152 + 0.805091i \(0.702117\pi\)
\(558\) 0 0
\(559\) 71.8874i 3.04051i
\(560\) 0 0
\(561\) 8.33306 14.0347i 0.351822 0.592546i
\(562\) 0 0
\(563\) −38.6097 −1.62721 −0.813603 0.581421i \(-0.802497\pi\)
−0.813603 + 0.581421i \(0.802497\pi\)
\(564\) 0 0
\(565\) 18.4021i 0.774181i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 24.2941i 1.01846i 0.860630 + 0.509231i \(0.170070\pi\)
−0.860630 + 0.509231i \(0.829930\pi\)
\(570\) 0 0
\(571\) −30.3225 −1.26896 −0.634478 0.772941i \(-0.718785\pi\)
−0.634478 + 0.772941i \(0.718785\pi\)
\(572\) 0 0
\(573\) 2.86690 4.82850i 0.119766 0.201713i
\(574\) 0 0
\(575\) 7.01721i 0.292638i
\(576\) 0 0
\(577\) 17.0858i 0.711289i 0.934621 + 0.355645i \(0.115739\pi\)
−0.934621 + 0.355645i \(0.884261\pi\)
\(578\) 0 0
\(579\) −19.7598 11.7323i −0.821190 0.487578i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 25.8088 1.06889
\(584\) 0 0
\(585\) −17.6290 + 9.61202i −0.728870 + 0.397408i
\(586\) 0 0
\(587\) 3.21402 0.132657 0.0663284 0.997798i \(-0.478871\pi\)
0.0663284 + 0.997798i \(0.478871\pi\)
\(588\) 0 0
\(589\) 7.54974 0.311082
\(590\) 0 0
\(591\) 16.5506 27.8748i 0.680799 1.14662i
\(592\) 0 0
\(593\) −11.1298 −0.457045 −0.228522 0.973539i \(-0.573389\pi\)
−0.228522 + 0.973539i \(0.573389\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.10586 + 1.86251i −0.0452598 + 0.0762276i
\(598\) 0 0
\(599\) 32.6688i 1.33481i −0.744695 0.667405i \(-0.767405\pi\)
0.744695 0.667405i \(-0.232595\pi\)
\(600\) 0 0
\(601\) 27.2379i 1.11106i −0.831497 0.555529i \(-0.812516\pi\)
0.831497 0.555529i \(-0.187484\pi\)
\(602\) 0 0
\(603\) −9.61868 17.6412i −0.391703 0.718407i
\(604\) 0 0
\(605\) −4.67010 −0.189867
\(606\) 0 0
\(607\) 29.8529i 1.21169i −0.795582 0.605846i \(-0.792835\pi\)
0.795582 0.605846i \(-0.207165\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 71.0843i 2.87576i
\(612\) 0 0
\(613\) −24.9907 −1.00937 −0.504683 0.863305i \(-0.668391\pi\)
−0.504683 + 0.863305i \(0.668391\pi\)
\(614\) 0 0
\(615\) −13.3362 7.91829i −0.537766 0.319296i
\(616\) 0 0
\(617\) 28.4800i 1.14656i −0.819359 0.573281i \(-0.805670\pi\)
0.819359 0.573281i \(-0.194330\pi\)
\(618\) 0 0
\(619\) 45.7202i 1.83765i −0.394667 0.918824i \(-0.629140\pi\)
0.394667 0.918824i \(-0.370860\pi\)
\(620\) 0 0
\(621\) 9.07383 + 0.332507i 0.364120 + 0.0133431i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 11.2048 0.448190
\(626\) 0 0
\(627\) 9.97645 + 5.92348i 0.398421 + 0.236561i
\(628\) 0 0
\(629\) −12.3393 −0.491999
\(630\) 0 0
\(631\) 37.3192 1.48565 0.742827 0.669483i \(-0.233484\pi\)
0.742827 + 0.669483i \(0.233484\pi\)
\(632\) 0 0
\(633\) 1.55014 + 0.920391i 0.0616127 + 0.0365823i
\(634\) 0 0
\(635\) −10.1196 −0.401584
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −12.0172 + 6.55221i −0.475392 + 0.259202i
\(640\) 0 0
\(641\) 37.9593i 1.49930i 0.661832 + 0.749652i \(0.269779\pi\)
−0.661832 + 0.749652i \(0.730221\pi\)
\(642\) 0 0
\(643\) 3.90637i 0.154052i 0.997029 + 0.0770262i \(0.0245425\pi\)
−0.997029 + 0.0770262i \(0.975458\pi\)
\(644\) 0 0
\(645\) 15.7445 + 9.34821i 0.619938 + 0.368086i
\(646\) 0 0
\(647\) −11.4573 −0.450435 −0.225217 0.974309i \(-0.572309\pi\)
−0.225217 + 0.974309i \(0.572309\pi\)
\(648\) 0 0
\(649\) 11.6476i 0.457208i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.136439i 0.00533929i 0.999996 + 0.00266964i \(0.000849775\pi\)
−0.999996 + 0.00266964i \(0.999150\pi\)
\(654\) 0 0
\(655\) 17.6204 0.688488
\(656\) 0 0
\(657\) −8.52111 + 4.64603i −0.332440 + 0.181259i
\(658\) 0 0
\(659\) 10.0047i 0.389726i 0.980830 + 0.194863i \(0.0624263\pi\)
−0.980830 + 0.194863i \(0.937574\pi\)
\(660\) 0 0
\(661\) 12.0093i 0.467109i −0.972344 0.233554i \(-0.924964\pi\)
0.972344 0.233554i \(-0.0750356\pi\)
\(662\) 0 0
\(663\) −22.4106 + 37.7444i −0.870354 + 1.46587i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 11.6913 0.452688
\(668\) 0 0
\(669\) 18.7785 31.6271i 0.726018 1.22278i
\(670\) 0 0
\(671\) 20.2013 0.779861
\(672\) 0 0
\(673\) 25.4740 0.981950 0.490975 0.871174i \(-0.336641\pi\)
0.490975 + 0.871174i \(0.336641\pi\)
\(674\) 0 0
\(675\) −0.764127 + 20.8524i −0.0294113 + 0.802608i
\(676\) 0 0
\(677\) 44.9146 1.72621 0.863105 0.505025i \(-0.168517\pi\)
0.863105 + 0.505025i \(0.168517\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −9.76054 5.79528i −0.374025 0.222076i
\(682\) 0 0
\(683\) 23.5040i 0.899357i 0.893191 + 0.449678i \(0.148461\pi\)
−0.893191 + 0.449678i \(0.851539\pi\)
\(684\) 0 0
\(685\) 0.584186i 0.0223206i
\(686\) 0 0
\(687\) 15.2030 25.6052i 0.580030 0.976899i
\(688\) 0 0
\(689\) −69.4091 −2.64427
\(690\) 0 0
\(691\) 20.5064i 0.780101i −0.920793 0.390051i \(-0.872458\pi\)
0.920793 0.390051i \(-0.127542\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.85926i 0.108458i
\(696\) 0 0
\(697\) −33.9067 −1.28431
\(698\) 0 0
\(699\) 11.0104 18.5439i 0.416450 0.701394i
\(700\) 0 0
\(701\) 20.4363i 0.771868i 0.922526 + 0.385934i \(0.126121\pi\)
−0.922526 + 0.385934i \(0.873879\pi\)
\(702\) 0 0
\(703\) 8.77126i 0.330814i
\(704\) 0 0
\(705\) −15.5686 9.24378i −0.586347 0.348141i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −17.8764 −0.671362 −0.335681 0.941976i \(-0.608966\pi\)
−0.335681 + 0.941976i \(0.608966\pi\)
\(710\) 0 0
\(711\) −20.7762 38.1048i −0.779168 1.42904i
\(712\) 0 0
\(713\) 4.94039 0.185019
\(714\) 0 0
\(715\) −16.7897 −0.627901
\(716\) 0 0
\(717\) −7.46973 + 12.5807i −0.278962 + 0.469834i
\(718\) 0 0
\(719\) 33.7414 1.25834 0.629170 0.777267i \(-0.283395\pi\)
0.629170 + 0.777267i \(0.283395\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 2.56419 4.31866i 0.0953631 0.160613i
\(724\) 0 0
\(725\) 26.8674i 0.997832i
\(726\) 0 0
\(727\) 11.5388i 0.427950i 0.976839 + 0.213975i \(0.0686411\pi\)
−0.976839 + 0.213975i \(0.931359\pi\)
\(728\) 0 0
\(729\) −26.9276 1.97616i −0.997318 0.0731910i
\(730\) 0 0
\(731\) 40.0297 1.48055
\(732\) 0 0
\(733\) 22.0852i 0.815737i −0.913041 0.407869i \(-0.866272\pi\)
0.913041 0.407869i \(-0.133728\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 16.8014i 0.618887i
\(738\) 0 0
\(739\) 1.04873 0.0385782 0.0192891 0.999814i \(-0.493860\pi\)
0.0192891 + 0.999814i \(0.493860\pi\)
\(740\) 0 0
\(741\) −26.8302 15.9303i −0.985634 0.585216i
\(742\) 0 0
\(743\) 22.3254i 0.819040i −0.912301 0.409520i \(-0.865696\pi\)
0.912301 0.409520i \(-0.134304\pi\)
\(744\) 0 0
\(745\) 1.57815i 0.0578189i
\(746\) 0 0
\(747\) −24.2149 44.4115i −0.885975 1.62493i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −9.08649 −0.331571 −0.165785 0.986162i \(-0.553016\pi\)
−0.165785 + 0.986162i \(0.553016\pi\)
\(752\) 0 0
\(753\) −1.91228 1.13541i −0.0696875 0.0413767i
\(754\) 0 0
\(755\) −15.0963 −0.549410
\(756\) 0 0
\(757\) 10.7231 0.389736 0.194868 0.980829i \(-0.437572\pi\)
0.194868 + 0.980829i \(0.437572\pi\)
\(758\) 0 0
\(759\) 6.52839 + 3.87620i 0.236965 + 0.140697i
\(760\) 0 0
\(761\) 12.3093 0.446211 0.223105 0.974794i \(-0.428381\pi\)
0.223105 + 0.974794i \(0.428381\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −5.35235 9.81654i −0.193515 0.354918i
\(766\) 0 0
\(767\) 31.3246i 1.13106i
\(768\) 0 0
\(769\) 3.10213i 0.111866i −0.998435 0.0559328i \(-0.982187\pi\)
0.998435 0.0559328i \(-0.0178133\pi\)
\(770\) 0 0
\(771\) 26.4977 + 15.7329i 0.954291 + 0.566606i
\(772\) 0 0
\(773\) 29.8457 1.07348 0.536738 0.843749i \(-0.319656\pi\)
0.536738 + 0.843749i \(0.319656\pi\)
\(774\) 0 0
\(775\) 11.3534i 0.407827i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 24.1023i 0.863553i
\(780\) 0 0
\(781\) −11.4450 −0.409536
\(782\) 0 0
\(783\) −34.7418 1.27310i −1.24157 0.0454969i
\(784\) 0 0
\(785\) 2.02974i 0.0724446i
\(786\) 0 0
\(787\) 40.7414i 1.45227i 0.687550 + 0.726137i \(0.258686\pi\)
−0.687550 + 0.726137i \(0.741314\pi\)
\(788\) 0 0
\(789\) −12.3299 + 20.7663i −0.438957 + 0.739301i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −54.3284 −1.92926
\(794\) 0 0
\(795\) 9.02593 15.2017i 0.320117 0.539148i
\(796\) 0 0
\(797\) 34.2662 1.21377 0.606885 0.794789i \(-0.292419\pi\)
0.606885 + 0.794789i \(0.292419\pi\)
\(798\) 0 0
\(799\) −39.5826 −1.40033
\(800\) 0 0
\(801\) 4.55394 + 8.35220i 0.160905 + 0.295110i
\(802\) 0 0
\(803\) −8.11544 −0.286387
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.08004 + 1.23501i 0.0732208 + 0.0434745i
\(808\) 0 0
\(809\) 37.7362i 1.32673i 0.748295 + 0.663367i \(0.230873\pi\)
−0.748295 + 0.663367i \(0.769127\pi\)
\(810\) 0 0
\(811\) 33.3795i 1.17211i 0.810270 + 0.586057i \(0.199320\pi\)
−0.810270 + 0.586057i \(0.800680\pi\)
\(812\) 0 0
\(813\) −9.45634 + 15.9266i −0.331648 + 0.558570i
\(814\) 0 0
\(815\) −18.0187 −0.631169
\(816\) 0 0
\(817\) 28.4548i 0.995506i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8.11896i 0.283354i −0.989913 0.141677i \(-0.954751\pi\)
0.989913 0.141677i \(-0.0452494\pi\)
\(822\) 0 0
\(823\) 47.6932 1.66248 0.831241 0.555913i \(-0.187631\pi\)
0.831241 + 0.555913i \(0.187631\pi\)
\(824\) 0 0
\(825\) −8.90781 + 15.0027i −0.310130 + 0.522328i
\(826\) 0 0
\(827\) 11.7724i 0.409367i 0.978828 + 0.204684i \(0.0656166\pi\)
−0.978828 + 0.204684i \(0.934383\pi\)
\(828\) 0 0
\(829\) 2.57828i 0.0895475i −0.998997 0.0447738i \(-0.985743\pi\)
0.998997 0.0447738i \(-0.0142567\pi\)
\(830\) 0 0
\(831\) 5.24846 + 3.11625i 0.182067 + 0.108102i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −5.54648 −0.191944
\(836\) 0 0
\(837\) −14.6809 0.537976i −0.507445 0.0185952i
\(838\) 0 0
\(839\) −15.1790 −0.524036 −0.262018 0.965063i \(-0.584388\pi\)
−0.262018 + 0.965063i \(0.584388\pi\)
\(840\) 0 0
\(841\) −15.7634 −0.543566
\(842\) 0 0
\(843\) 6.93377 11.6780i 0.238812 0.402212i
\(844\) 0 0
\(845\) 32.2563 1.10965
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −19.5632 + 32.9487i −0.671406 + 1.13080i
\(850\) 0 0
\(851\) 5.73973i 0.196756i
\(852\) 0 0
\(853\) 5.00496i 0.171367i −0.996322 0.0856833i \(-0.972693\pi\)
0.996322 0.0856833i \(-0.0273073\pi\)
\(854\) 0 0
\(855\) 6.97799 3.80467i 0.238642 0.130117i
\(856\) 0 0
\(857\) 21.6219 0.738591 0.369296 0.929312i \(-0.379599\pi\)
0.369296 + 0.929312i \(0.379599\pi\)
\(858\) 0 0
\(859\) 9.64857i 0.329205i 0.986360 + 0.164603i \(0.0526341\pi\)
−0.986360 + 0.164603i \(0.947366\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 45.5846i 1.55172i −0.630907 0.775858i \(-0.717317\pi\)
0.630907 0.775858i \(-0.282683\pi\)
\(864\) 0 0
\(865\) −4.45800 −0.151576
\(866\) 0 0
\(867\) 4.30079 + 2.55358i 0.146063 + 0.0867240i
\(868\) 0 0
\(869\) 36.2907i 1.23108i
\(870\) 0 0
\(871\) 45.1849i 1.53103i
\(872\) 0 0
\(873\) 2.60602 1.42090i 0.0882006 0.0480903i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 51.5170 1.73960 0.869802 0.493401i \(-0.164247\pi\)
0.869802 + 0.493401i \(0.164247\pi\)
\(878\) 0 0
\(879\) −30.6463 18.1961i −1.03367 0.613740i
\(880\) 0 0
\(881\) 10.4316 0.351448 0.175724 0.984439i \(-0.443773\pi\)
0.175724 + 0.984439i \(0.443773\pi\)
\(882\) 0 0
\(883\) −10.6345 −0.357880 −0.178940 0.983860i \(-0.557267\pi\)
−0.178940 + 0.983860i \(0.557267\pi\)
\(884\) 0 0
\(885\) −6.86057 4.07344i −0.230616 0.136927i
\(886\) 0 0
\(887\) −19.7177 −0.662057 −0.331028 0.943621i \(-0.607396\pi\)
−0.331028 + 0.943621i \(0.607396\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −18.9777 12.2294i −0.635776 0.409701i
\(892\) 0 0
\(893\) 28.1369i 0.941565i
\(894\) 0 0
\(895\) 19.8154i 0.662356i
\(896\) 0 0
\(897\) −17.5572 10.4245i −0.586217 0.348064i
\(898\) 0 0
\(899\) −18.9157 −0.630875
\(900\) 0 0
\(901\) 38.6497i 1.28761i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.40457i 0.146413i
\(906\) 0 0
\(907\) −40.9516 −1.35978 −0.679888 0.733316i \(-0.737972\pi\)
−0.679888 + 0.733316i \(0.737972\pi\)
\(908\) 0 0
\(909\) 14.4209 + 26.4487i 0.478310 + 0.877249i
\(910\) 0 0
\(911\) 27.0641i 0.896672i 0.893865 + 0.448336i \(0.147983\pi\)
−0.893865 + 0.448336i \(0.852017\pi\)
\(912\) 0 0
\(913\) 42.2972i 1.39983i
\(914\) 0 0
\(915\) 7.06485 11.8988i 0.233557 0.393362i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −18.8158 −0.620675 −0.310337 0.950627i \(-0.600442\pi\)
−0.310337 + 0.950627i \(0.600442\pi\)
\(920\) 0 0
\(921\) 26.0084 43.8040i 0.857007 1.44339i
\(922\) 0 0
\(923\) 30.7798 1.01313
\(924\) 0 0
\(925\) 13.1904 0.433696
\(926\) 0 0
\(927\) 20.9569 11.4265i 0.688315 0.375296i
\(928\) 0 0
\(929\) 27.3474 0.897240 0.448620 0.893723i \(-0.351916\pi\)
0.448620 + 0.893723i \(0.351916\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 12.0290 + 7.14219i 0.393813 + 0.233825i
\(934\) 0 0
\(935\) 9.34919i 0.305751i
\(936\) 0 0
\(937\) 49.4739i 1.61624i 0.589018 + 0.808120i \(0.299515\pi\)
−0.589018 + 0.808120i \(0.700485\pi\)
\(938\) 0 0
\(939\) 1.07047 1.80292i 0.0349336 0.0588360i
\(940\) 0 0
\(941\) −48.4859 −1.58060 −0.790298 0.612723i \(-0.790074\pi\)
−0.790298 + 0.612723i \(0.790074\pi\)
\(942\) 0 0
\(943\) 15.7720i 0.513608i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.57279i 0.278578i 0.990252 + 0.139289i \(0.0444818\pi\)
−0.990252 + 0.139289i \(0.955518\pi\)
\(948\) 0 0
\(949\) 21.8253 0.708480
\(950\) 0 0
\(951\) −26.3376 + 44.3583i −0.854054 + 1.43842i
\(952\) 0 0
\(953\) 44.7977i 1.45114i 0.688149 + 0.725570i \(0.258424\pi\)
−0.688149 + 0.725570i \(0.741576\pi\)
\(954\) 0 0
\(955\) 3.21649i 0.104083i
\(956\) 0 0
\(957\) −24.9958 14.8412i −0.808000 0.479747i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 23.0068 0.742153
\(962\) 0 0
\(963\) 43.0275 23.4602i 1.38654 0.755995i
\(964\) 0 0
\(965\) −13.1630 −0.423730
\(966\) 0 0
\(967\) 14.4085 0.463346 0.231673 0.972794i \(-0.425580\pi\)
0.231673 + 0.972794i \(0.425580\pi\)
\(968\) 0 0
\(969\) 8.87065 14.9401i 0.284966 0.479946i
\(970\) 0 0
\(971\) 3.83048 0.122926 0.0614630 0.998109i \(-0.480423\pi\)
0.0614630 + 0.998109i \(0.480423\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 23.9563 40.3477i 0.767215 1.29216i
\(976\) 0 0
\(977\) 35.9006i 1.14856i −0.818659 0.574281i \(-0.805282\pi\)
0.818659 0.574281i \(-0.194718\pi\)
\(978\) 0 0
\(979\) 7.95456i 0.254229i
\(980\) 0 0
\(981\) −13.5487 24.8491i −0.432576 0.793370i
\(982\) 0 0
\(983\) −47.4572 −1.51365 −0.756824 0.653618i \(-0.773250\pi\)
−0.756824 + 0.653618i \(0.773250\pi\)
\(984\) 0 0
\(985\) 18.5687i 0.591649i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 18.6202i 0.592089i
\(990\) 0 0
\(991\) 56.0627 1.78089 0.890446 0.455089i \(-0.150393\pi\)
0.890446 + 0.455089i \(0.150393\pi\)
\(992\) 0 0
\(993\) 18.4680 + 10.9653i 0.586066 + 0.347974i
\(994\) 0 0
\(995\) 1.24071i 0.0393331i
\(996\) 0 0
\(997\) 52.7551i 1.67077i 0.549665 + 0.835385i \(0.314755\pi\)
−0.549665 + 0.835385i \(0.685245\pi\)
\(998\) 0 0
\(999\) −0.625018 + 17.0562i −0.0197747 + 0.539634i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1176.2.k.b.881.5 24
3.2 odd 2 inner 1176.2.k.b.881.19 yes 24
4.3 odd 2 2352.2.k.j.881.20 24
7.2 even 3 1176.2.u.c.521.21 48
7.3 odd 6 1176.2.u.c.1097.13 48
7.4 even 3 1176.2.u.c.1097.12 48
7.5 odd 6 1176.2.u.c.521.4 48
7.6 odd 2 inner 1176.2.k.b.881.20 yes 24
12.11 even 2 2352.2.k.j.881.6 24
21.2 odd 6 1176.2.u.c.521.13 48
21.5 even 6 1176.2.u.c.521.12 48
21.11 odd 6 1176.2.u.c.1097.4 48
21.17 even 6 1176.2.u.c.1097.21 48
21.20 even 2 inner 1176.2.k.b.881.6 yes 24
28.27 even 2 2352.2.k.j.881.5 24
84.83 odd 2 2352.2.k.j.881.19 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1176.2.k.b.881.5 24 1.1 even 1 trivial
1176.2.k.b.881.6 yes 24 21.20 even 2 inner
1176.2.k.b.881.19 yes 24 3.2 odd 2 inner
1176.2.k.b.881.20 yes 24 7.6 odd 2 inner
1176.2.u.c.521.4 48 7.5 odd 6
1176.2.u.c.521.12 48 21.5 even 6
1176.2.u.c.521.13 48 21.2 odd 6
1176.2.u.c.521.21 48 7.2 even 3
1176.2.u.c.1097.4 48 21.11 odd 6
1176.2.u.c.1097.12 48 7.4 even 3
1176.2.u.c.1097.13 48 7.3 odd 6
1176.2.u.c.1097.21 48 21.17 even 6
2352.2.k.j.881.5 24 28.27 even 2
2352.2.k.j.881.6 24 12.11 even 2
2352.2.k.j.881.19 24 84.83 odd 2
2352.2.k.j.881.20 24 4.3 odd 2