Properties

Label 1176.2.u.c.521.12
Level $1176$
Weight $2$
Character 1176.521
Analytic conductor $9.390$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1176,2,Mod(521,1176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1176, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1176.521");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1176.u (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.39040727770\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.12
Character \(\chi\) \(=\) 1176.521
Dual form 1176.2.u.c.1097.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0211468 - 1.73192i) q^{3} +(0.496051 + 0.859186i) q^{5} +(-2.99911 + 0.0732492i) q^{9} +(2.17245 + 1.25426i) q^{11} +6.74633i q^{13} +(1.47755 - 0.877291i) q^{15} +(-1.87831 + 3.25333i) q^{17} +(-2.31260 + 1.33518i) q^{19} +(-1.51332 + 0.873715i) q^{23} +(2.00787 - 3.47773i) q^{25} +(0.190283 + 5.19267i) q^{27} +6.69055i q^{29} +(-2.44846 - 1.41362i) q^{31} +(2.12635 - 3.78904i) q^{33} +(1.64234 + 2.84461i) q^{37} +(11.6841 - 0.142663i) q^{39} -9.02583 q^{41} +10.6558 q^{43} +(-1.55065 - 2.54046i) q^{45} +(5.26837 + 9.12508i) q^{47} +(5.67424 + 3.18429i) q^{51} +(-8.91002 - 5.14420i) q^{53} +2.48872i q^{55} +(2.36133 + 3.97701i) q^{57} +(2.32160 - 4.02113i) q^{59} +(6.97413 - 4.02651i) q^{61} +(-5.79636 + 3.34653i) q^{65} +(3.34885 - 5.80038i) q^{67} +(1.54521 + 2.60247i) q^{69} -4.56245i q^{71} +(2.80171 + 1.61757i) q^{73} +(-6.06561 - 3.40392i) q^{75} +(7.23346 + 12.5287i) q^{79} +(8.98927 - 0.439364i) q^{81} -16.8613 q^{83} -3.72696 q^{85} +(11.5875 - 0.141484i) q^{87} +(-1.58550 - 2.74617i) q^{89} +(-2.39650 + 4.27043i) q^{93} +(-2.29434 - 1.32464i) q^{95} +0.989407i q^{97} +(-6.60728 - 3.60254i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 32 q^{15} - 8 q^{25} - 16 q^{37} + 64 q^{39} + 32 q^{43} - 48 q^{51} + 96 q^{57} - 16 q^{67} - 80 q^{81} - 128 q^{85} + 32 q^{93} - 112 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1176\mathbb{Z}\right)^\times\).

\(n\) \(295\) \(589\) \(785\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0211468 1.73192i −0.0122091 0.999925i
\(4\) 0 0
\(5\) 0.496051 + 0.859186i 0.221841 + 0.384240i 0.955367 0.295422i \(-0.0954601\pi\)
−0.733526 + 0.679661i \(0.762127\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.99911 + 0.0732492i −0.999702 + 0.0244164i
\(10\) 0 0
\(11\) 2.17245 + 1.25426i 0.655018 + 0.378175i 0.790376 0.612622i \(-0.209885\pi\)
−0.135358 + 0.990797i \(0.543218\pi\)
\(12\) 0 0
\(13\) 6.74633i 1.87110i 0.353199 + 0.935548i \(0.385094\pi\)
−0.353199 + 0.935548i \(0.614906\pi\)
\(14\) 0 0
\(15\) 1.47755 0.877291i 0.381503 0.226516i
\(16\) 0 0
\(17\) −1.87831 + 3.25333i −0.455558 + 0.789049i −0.998720 0.0505785i \(-0.983893\pi\)
0.543162 + 0.839628i \(0.317227\pi\)
\(18\) 0 0
\(19\) −2.31260 + 1.33518i −0.530547 + 0.306312i −0.741239 0.671241i \(-0.765762\pi\)
0.210692 + 0.977552i \(0.432428\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.51332 + 0.873715i −0.315549 + 0.182182i −0.649407 0.760441i \(-0.724983\pi\)
0.333858 + 0.942623i \(0.391649\pi\)
\(24\) 0 0
\(25\) 2.00787 3.47773i 0.401573 0.695545i
\(26\) 0 0
\(27\) 0.190283 + 5.19267i 0.0366201 + 0.999329i
\(28\) 0 0
\(29\) 6.69055i 1.24240i 0.783651 + 0.621202i \(0.213355\pi\)
−0.783651 + 0.621202i \(0.786645\pi\)
\(30\) 0 0
\(31\) −2.44846 1.41362i −0.439756 0.253893i 0.263738 0.964594i \(-0.415044\pi\)
−0.703494 + 0.710701i \(0.748378\pi\)
\(32\) 0 0
\(33\) 2.12635 3.78904i 0.370150 0.659587i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.64234 + 2.84461i 0.269998 + 0.467651i 0.968861 0.247605i \(-0.0796435\pi\)
−0.698863 + 0.715256i \(0.746310\pi\)
\(38\) 0 0
\(39\) 11.6841 0.142663i 1.87096 0.0228444i
\(40\) 0 0
\(41\) −9.02583 −1.40960 −0.704799 0.709407i \(-0.748963\pi\)
−0.704799 + 0.709407i \(0.748963\pi\)
\(42\) 0 0
\(43\) 10.6558 1.62499 0.812495 0.582969i \(-0.198109\pi\)
0.812495 + 0.582969i \(0.198109\pi\)
\(44\) 0 0
\(45\) −1.55065 2.54046i −0.231157 0.378709i
\(46\) 0 0
\(47\) 5.26837 + 9.12508i 0.768470 + 1.33103i 0.938392 + 0.345572i \(0.112315\pi\)
−0.169922 + 0.985457i \(0.554352\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 5.67424 + 3.18429i 0.794552 + 0.445890i
\(52\) 0 0
\(53\) −8.91002 5.14420i −1.22389 0.706611i −0.258142 0.966107i \(-0.583110\pi\)
−0.965744 + 0.259496i \(0.916444\pi\)
\(54\) 0 0
\(55\) 2.48872i 0.335579i
\(56\) 0 0
\(57\) 2.36133 + 3.97701i 0.312766 + 0.526768i
\(58\) 0 0
\(59\) 2.32160 4.02113i 0.302246 0.523506i −0.674398 0.738368i \(-0.735597\pi\)
0.976644 + 0.214862i \(0.0689301\pi\)
\(60\) 0 0
\(61\) 6.97413 4.02651i 0.892945 0.515542i 0.0180407 0.999837i \(-0.494257\pi\)
0.874905 + 0.484295i \(0.160924\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.79636 + 3.34653i −0.718950 + 0.415086i
\(66\) 0 0
\(67\) 3.34885 5.80038i 0.409127 0.708629i −0.585665 0.810553i \(-0.699167\pi\)
0.994792 + 0.101924i \(0.0325000\pi\)
\(68\) 0 0
\(69\) 1.54521 + 2.60247i 0.186021 + 0.313301i
\(70\) 0 0
\(71\) 4.56245i 0.541463i −0.962655 0.270732i \(-0.912734\pi\)
0.962655 0.270732i \(-0.0872656\pi\)
\(72\) 0 0
\(73\) 2.80171 + 1.61757i 0.327915 + 0.189322i 0.654915 0.755702i \(-0.272704\pi\)
−0.327000 + 0.945024i \(0.606038\pi\)
\(74\) 0 0
\(75\) −6.06561 3.40392i −0.700396 0.393051i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 7.23346 + 12.5287i 0.813828 + 1.40959i 0.910166 + 0.414243i \(0.135954\pi\)
−0.0963379 + 0.995349i \(0.530713\pi\)
\(80\) 0 0
\(81\) 8.98927 0.439364i 0.998808 0.0488183i
\(82\) 0 0
\(83\) −16.8613 −1.85077 −0.925386 0.379025i \(-0.876259\pi\)
−0.925386 + 0.379025i \(0.876259\pi\)
\(84\) 0 0
\(85\) −3.72696 −0.404245
\(86\) 0 0
\(87\) 11.5875 0.141484i 1.24231 0.0151686i
\(88\) 0 0
\(89\) −1.58550 2.74617i −0.168063 0.291094i 0.769676 0.638435i \(-0.220418\pi\)
−0.937739 + 0.347341i \(0.887085\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −2.39650 + 4.27043i −0.248505 + 0.442823i
\(94\) 0 0
\(95\) −2.29434 1.32464i −0.235394 0.135905i
\(96\) 0 0
\(97\) 0.989407i 0.100459i 0.998738 + 0.0502295i \(0.0159953\pi\)
−0.998738 + 0.0502295i \(0.984005\pi\)
\(98\) 0 0
\(99\) −6.60728 3.60254i −0.664057 0.362069i
\(100\) 0 0
\(101\) −5.02078 + 8.69625i −0.499586 + 0.865309i −1.00000 0.000477583i \(-0.999848\pi\)
0.500414 + 0.865787i \(0.333181\pi\)
\(102\) 0 0
\(103\) 6.89056 3.97826i 0.678947 0.391990i −0.120511 0.992712i \(-0.538453\pi\)
0.799458 + 0.600722i \(0.205120\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.1473 8.16794i 1.36767 0.789624i 0.377039 0.926197i \(-0.376942\pi\)
0.990630 + 0.136573i \(0.0436089\pi\)
\(108\) 0 0
\(109\) 4.71712 8.17029i 0.451818 0.782572i −0.546681 0.837341i \(-0.684109\pi\)
0.998499 + 0.0547692i \(0.0174423\pi\)
\(110\) 0 0
\(111\) 4.89191 2.90455i 0.464319 0.275688i
\(112\) 0 0
\(113\) 18.5486i 1.74490i 0.488702 + 0.872451i \(0.337471\pi\)
−0.488702 + 0.872451i \(0.662529\pi\)
\(114\) 0 0
\(115\) −1.50137 0.866816i −0.140003 0.0808310i
\(116\) 0 0
\(117\) −0.494164 20.2330i −0.0456855 1.87054i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.35364 4.07662i −0.213967 0.370602i
\(122\) 0 0
\(123\) 0.190868 + 15.6320i 0.0172100 + 1.40949i
\(124\) 0 0
\(125\) 8.94453 0.800023
\(126\) 0 0
\(127\) 10.2002 0.905118 0.452559 0.891734i \(-0.350511\pi\)
0.452559 + 0.891734i \(0.350511\pi\)
\(128\) 0 0
\(129\) −0.225335 18.4550i −0.0198397 1.62487i
\(130\) 0 0
\(131\) 8.88035 + 15.3812i 0.775880 + 1.34386i 0.934299 + 0.356491i \(0.116027\pi\)
−0.158419 + 0.987372i \(0.550640\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −4.36708 + 2.73932i −0.375858 + 0.235763i
\(136\) 0 0
\(137\) −0.509947 0.294418i −0.0435677 0.0251538i 0.478058 0.878328i \(-0.341341\pi\)
−0.521626 + 0.853174i \(0.674674\pi\)
\(138\) 0 0
\(139\) 2.88202i 0.244449i −0.992502 0.122225i \(-0.960997\pi\)
0.992502 0.122225i \(-0.0390029\pi\)
\(140\) 0 0
\(141\) 15.6925 9.31736i 1.32155 0.784663i
\(142\) 0 0
\(143\) −8.46169 + 14.6561i −0.707602 + 1.22560i
\(144\) 0 0
\(145\) −5.74843 + 3.31886i −0.477381 + 0.275616i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.37760 0.795356i 0.112857 0.0651581i −0.442509 0.896764i \(-0.645911\pi\)
0.555366 + 0.831606i \(0.312578\pi\)
\(150\) 0 0
\(151\) −7.60822 + 13.1778i −0.619148 + 1.07240i 0.370493 + 0.928835i \(0.379189\pi\)
−0.989641 + 0.143561i \(0.954145\pi\)
\(152\) 0 0
\(153\) 5.39495 9.89467i 0.436156 0.799937i
\(154\) 0 0
\(155\) 2.80491i 0.225295i
\(156\) 0 0
\(157\) 1.77180 + 1.02295i 0.141405 + 0.0816403i 0.569033 0.822314i \(-0.307317\pi\)
−0.427628 + 0.903955i \(0.640651\pi\)
\(158\) 0 0
\(159\) −8.72094 + 15.5402i −0.691616 + 1.23242i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −9.08108 15.7289i −0.711285 1.23198i −0.964375 0.264539i \(-0.914780\pi\)
0.253090 0.967443i \(-0.418553\pi\)
\(164\) 0 0
\(165\) 4.31027 0.0526285i 0.335554 0.00409712i
\(166\) 0 0
\(167\) 5.59063 0.432616 0.216308 0.976325i \(-0.430598\pi\)
0.216308 + 0.976325i \(0.430598\pi\)
\(168\) 0 0
\(169\) −32.5130 −2.50100
\(170\) 0 0
\(171\) 6.83794 4.17375i 0.522910 0.319174i
\(172\) 0 0
\(173\) −2.24674 3.89147i −0.170817 0.295863i 0.767889 0.640583i \(-0.221307\pi\)
−0.938706 + 0.344720i \(0.887974\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −7.01337 3.93579i −0.527157 0.295832i
\(178\) 0 0
\(179\) −17.2972 9.98657i −1.29286 0.746431i −0.313697 0.949523i \(-0.601568\pi\)
−0.979160 + 0.203092i \(0.934901\pi\)
\(180\) 0 0
\(181\) 4.43963i 0.329995i 0.986294 + 0.164998i \(0.0527616\pi\)
−0.986294 + 0.164998i \(0.947238\pi\)
\(182\) 0 0
\(183\) −7.12109 11.9935i −0.526406 0.886585i
\(184\) 0 0
\(185\) −1.62937 + 2.82214i −0.119793 + 0.207488i
\(186\) 0 0
\(187\) −8.16108 + 4.71180i −0.596797 + 0.344561i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.80773 + 1.62105i −0.203161 + 0.117295i −0.598129 0.801400i \(-0.704089\pi\)
0.394968 + 0.918695i \(0.370756\pi\)
\(192\) 0 0
\(193\) −6.63386 + 11.4902i −0.477516 + 0.827082i −0.999668 0.0257705i \(-0.991796\pi\)
0.522152 + 0.852853i \(0.325129\pi\)
\(194\) 0 0
\(195\) 5.91850 + 9.96807i 0.423833 + 0.713828i
\(196\) 0 0
\(197\) 18.7165i 1.33350i −0.745282 0.666749i \(-0.767685\pi\)
0.745282 0.666749i \(-0.232315\pi\)
\(198\) 0 0
\(199\) −1.08304 0.625292i −0.0767745 0.0443258i 0.461121 0.887337i \(-0.347447\pi\)
−0.537896 + 0.843011i \(0.680781\pi\)
\(200\) 0 0
\(201\) −10.1166 5.67728i −0.713571 0.400445i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −4.47728 7.75487i −0.312707 0.541624i
\(206\) 0 0
\(207\) 4.47461 2.73121i 0.311007 0.189833i
\(208\) 0 0
\(209\) −6.69868 −0.463358
\(210\) 0 0
\(211\) −1.04084 −0.0716546 −0.0358273 0.999358i \(-0.511407\pi\)
−0.0358273 + 0.999358i \(0.511407\pi\)
\(212\) 0 0
\(213\) −7.90181 + 0.0964813i −0.541423 + 0.00661079i
\(214\) 0 0
\(215\) 5.28581 + 9.15529i 0.360489 + 0.624386i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2.74225 4.88655i 0.185304 0.330202i
\(220\) 0 0
\(221\) −21.9481 12.6717i −1.47639 0.852392i
\(222\) 0 0
\(223\) 21.2360i 1.42207i −0.703156 0.711035i \(-0.748227\pi\)
0.703156 0.711035i \(-0.251773\pi\)
\(224\) 0 0
\(225\) −5.76706 + 10.5771i −0.384471 + 0.705143i
\(226\) 0 0
\(227\) −3.27686 + 5.67568i −0.217493 + 0.376708i −0.954041 0.299677i \(-0.903121\pi\)
0.736548 + 0.676385i \(0.236454\pi\)
\(228\) 0 0
\(229\) −14.8892 + 8.59630i −0.983908 + 0.568059i −0.903448 0.428698i \(-0.858972\pi\)
−0.0804602 + 0.996758i \(0.525639\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.7831 + 6.22564i −0.706426 + 0.407855i −0.809736 0.586794i \(-0.800390\pi\)
0.103310 + 0.994649i \(0.467057\pi\)
\(234\) 0 0
\(235\) −5.22676 + 9.05302i −0.340956 + 0.590554i
\(236\) 0 0
\(237\) 21.5458 12.7927i 1.39955 0.830978i
\(238\) 0 0
\(239\) 8.44730i 0.546410i 0.961956 + 0.273205i \(0.0880838\pi\)
−0.961956 + 0.273205i \(0.911916\pi\)
\(240\) 0 0
\(241\) 2.51127 + 1.44988i 0.161765 + 0.0933951i 0.578697 0.815543i \(-0.303561\pi\)
−0.416932 + 0.908938i \(0.636895\pi\)
\(242\) 0 0
\(243\) −0.951039 15.5594i −0.0610092 0.998137i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −9.00758 15.6016i −0.573139 0.992705i
\(248\) 0 0
\(249\) 0.356564 + 29.2025i 0.0225963 + 1.85063i
\(250\) 0 0
\(251\) 1.28400 0.0810455 0.0405227 0.999179i \(-0.487098\pi\)
0.0405227 + 0.999179i \(0.487098\pi\)
\(252\) 0 0
\(253\) −4.38348 −0.275587
\(254\) 0 0
\(255\) 0.0788133 + 6.45480i 0.00493548 + 0.404215i
\(256\) 0 0
\(257\) 8.89593 + 15.4082i 0.554913 + 0.961137i 0.997910 + 0.0646145i \(0.0205818\pi\)
−0.442997 + 0.896523i \(0.646085\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −0.490077 20.0657i −0.0303350 1.24203i
\(262\) 0 0
\(263\) −12.0755 6.97177i −0.744605 0.429898i 0.0791363 0.996864i \(-0.474784\pi\)
−0.823741 + 0.566966i \(0.808117\pi\)
\(264\) 0 0
\(265\) 10.2072i 0.627021i
\(266\) 0 0
\(267\) −4.72263 + 2.80404i −0.289020 + 0.171604i
\(268\) 0 0
\(269\) 0.698320 1.20953i 0.0425773 0.0737461i −0.843951 0.536420i \(-0.819776\pi\)
0.886529 + 0.462674i \(0.153110\pi\)
\(270\) 0 0
\(271\) 9.26119 5.34695i 0.562577 0.324804i −0.191602 0.981473i \(-0.561368\pi\)
0.754179 + 0.656669i \(0.228035\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.72398 5.03679i 0.526076 0.303730i
\(276\) 0 0
\(277\) 1.76204 3.05194i 0.105871 0.183373i −0.808223 0.588877i \(-0.799570\pi\)
0.914094 + 0.405503i \(0.132904\pi\)
\(278\) 0 0
\(279\) 7.44672 + 4.06024i 0.445824 + 0.243080i
\(280\) 0 0
\(281\) 7.84120i 0.467767i −0.972265 0.233883i \(-0.924857\pi\)
0.972265 0.233883i \(-0.0751434\pi\)
\(282\) 0 0
\(283\) −19.1594 11.0617i −1.13891 0.657550i −0.192749 0.981248i \(-0.561740\pi\)
−0.946160 + 0.323699i \(0.895074\pi\)
\(284\) 0 0
\(285\) −2.24565 + 4.00163i −0.133021 + 0.237036i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.44388 + 2.50088i 0.0849343 + 0.147110i
\(290\) 0 0
\(291\) 1.71357 0.0209228i 0.100452 0.00122652i
\(292\) 0 0
\(293\) 20.5775 1.20215 0.601074 0.799193i \(-0.294740\pi\)
0.601074 + 0.799193i \(0.294740\pi\)
\(294\) 0 0
\(295\) 4.60653 0.268203
\(296\) 0 0
\(297\) −6.09960 + 11.5195i −0.353935 + 0.668428i
\(298\) 0 0
\(299\) −5.89438 10.2094i −0.340881 0.590422i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 15.1674 + 8.51170i 0.871344 + 0.488984i
\(304\) 0 0
\(305\) 6.91905 + 3.99472i 0.396184 + 0.228737i
\(306\) 0 0
\(307\) 29.4122i 1.67864i −0.543636 0.839321i \(-0.682953\pi\)
0.543636 0.839321i \(-0.317047\pi\)
\(308\) 0 0
\(309\) −7.03576 11.8498i −0.400250 0.674110i
\(310\) 0 0
\(311\) 4.03845 6.99480i 0.228999 0.396638i −0.728512 0.685033i \(-0.759788\pi\)
0.957512 + 0.288394i \(0.0931213\pi\)
\(312\) 0 0
\(313\) −1.04838 + 0.605284i −0.0592581 + 0.0342127i −0.529336 0.848412i \(-0.677559\pi\)
0.470078 + 0.882625i \(0.344226\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 25.7940 14.8922i 1.44874 0.836429i 0.450331 0.892862i \(-0.351306\pi\)
0.998406 + 0.0564326i \(0.0179726\pi\)
\(318\) 0 0
\(319\) −8.39172 + 14.5349i −0.469846 + 0.813797i
\(320\) 0 0
\(321\) −14.4454 24.3293i −0.806263 1.35793i
\(322\) 0 0
\(323\) 10.0316i 0.558171i
\(324\) 0 0
\(325\) 23.4619 + 13.5457i 1.30143 + 0.751382i
\(326\) 0 0
\(327\) −14.2501 7.99690i −0.788030 0.442230i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 6.20018 + 10.7390i 0.340793 + 0.590270i 0.984580 0.174934i \(-0.0559712\pi\)
−0.643787 + 0.765204i \(0.722638\pi\)
\(332\) 0 0
\(333\) −5.13390 8.41098i −0.281336 0.460919i
\(334\) 0 0
\(335\) 6.64481 0.363044
\(336\) 0 0
\(337\) 1.60403 0.0873772 0.0436886 0.999045i \(-0.486089\pi\)
0.0436886 + 0.999045i \(0.486089\pi\)
\(338\) 0 0
\(339\) 32.1247 0.392243i 1.74477 0.0213037i
\(340\) 0 0
\(341\) −3.54610 6.14202i −0.192032 0.332609i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −1.46951 + 2.61858i −0.0791156 + 0.140980i
\(346\) 0 0
\(347\) 8.03173 + 4.63712i 0.431166 + 0.248934i 0.699843 0.714296i \(-0.253253\pi\)
−0.268677 + 0.963230i \(0.586586\pi\)
\(348\) 0 0
\(349\) 17.2999i 0.926043i 0.886347 + 0.463021i \(0.153235\pi\)
−0.886347 + 0.463021i \(0.846765\pi\)
\(350\) 0 0
\(351\) −35.0315 + 1.28372i −1.86984 + 0.0685197i
\(352\) 0 0
\(353\) 1.76697 3.06049i 0.0940465 0.162893i −0.815164 0.579231i \(-0.803353\pi\)
0.909210 + 0.416337i \(0.136686\pi\)
\(354\) 0 0
\(355\) 3.92000 2.26321i 0.208052 0.120119i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.6190 + 6.70821i −0.613225 + 0.354046i −0.774227 0.632908i \(-0.781861\pi\)
0.161001 + 0.986954i \(0.448528\pi\)
\(360\) 0 0
\(361\) −5.93458 + 10.2790i −0.312346 + 0.541000i
\(362\) 0 0
\(363\) −7.01062 + 4.16253i −0.367962 + 0.218476i
\(364\) 0 0
\(365\) 3.20959i 0.167998i
\(366\) 0 0
\(367\) 7.88688 + 4.55350i 0.411692 + 0.237691i 0.691516 0.722361i \(-0.256943\pi\)
−0.279824 + 0.960051i \(0.590276\pi\)
\(368\) 0 0
\(369\) 27.0694 0.661135i 1.40918 0.0344173i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 16.6630 + 28.8611i 0.862775 + 1.49437i 0.869239 + 0.494392i \(0.164609\pi\)
−0.00646378 + 0.999979i \(0.502058\pi\)
\(374\) 0 0
\(375\) −0.189148 15.4912i −0.00976758 0.799964i
\(376\) 0 0
\(377\) −45.1367 −2.32466
\(378\) 0 0
\(379\) −11.8875 −0.610620 −0.305310 0.952253i \(-0.598760\pi\)
−0.305310 + 0.952253i \(0.598760\pi\)
\(380\) 0 0
\(381\) −0.215701 17.6659i −0.0110507 0.905051i
\(382\) 0 0
\(383\) −13.9080 24.0893i −0.710663 1.23091i −0.964608 0.263687i \(-0.915062\pi\)
0.253945 0.967219i \(-0.418272\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −31.9578 + 0.780527i −1.62451 + 0.0396764i
\(388\) 0 0
\(389\) −15.7439 9.08974i −0.798247 0.460868i 0.0446107 0.999004i \(-0.485795\pi\)
−0.842858 + 0.538136i \(0.819129\pi\)
\(390\) 0 0
\(391\) 6.56444i 0.331978i
\(392\) 0 0
\(393\) 26.4513 15.7053i 1.33429 0.792229i
\(394\) 0 0
\(395\) −7.17634 + 12.4298i −0.361081 + 0.625410i
\(396\) 0 0
\(397\) 1.85933 1.07349i 0.0933172 0.0538767i −0.452615 0.891706i \(-0.649509\pi\)
0.545932 + 0.837829i \(0.316176\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.1853 5.88049i 0.508630 0.293658i −0.223640 0.974672i \(-0.571794\pi\)
0.732270 + 0.681014i \(0.238461\pi\)
\(402\) 0 0
\(403\) 9.53673 16.5181i 0.475058 0.822825i
\(404\) 0 0
\(405\) 4.83664 + 7.50551i 0.240334 + 0.372952i
\(406\) 0 0
\(407\) 8.23969i 0.408426i
\(408\) 0 0
\(409\) 16.4896 + 9.52030i 0.815360 + 0.470748i 0.848814 0.528692i \(-0.177317\pi\)
−0.0334538 + 0.999440i \(0.510651\pi\)
\(410\) 0 0
\(411\) −0.499125 + 0.889414i −0.0246200 + 0.0438715i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −8.36409 14.4870i −0.410577 0.711141i
\(416\) 0 0
\(417\) −4.99143 + 0.0609454i −0.244431 + 0.00298451i
\(418\) 0 0
\(419\) 29.5570 1.44395 0.721976 0.691918i \(-0.243234\pi\)
0.721976 + 0.691918i \(0.243234\pi\)
\(420\) 0 0
\(421\) 8.76696 0.427275 0.213638 0.976913i \(-0.431469\pi\)
0.213638 + 0.976913i \(0.431469\pi\)
\(422\) 0 0
\(423\) −16.4688 26.9812i −0.800740 1.31187i
\(424\) 0 0
\(425\) 7.54280 + 13.0645i 0.365880 + 0.633722i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 25.5621 + 14.3451i 1.23415 + 0.692586i
\(430\) 0 0
\(431\) 21.5180 + 12.4234i 1.03648 + 0.598414i 0.918835 0.394641i \(-0.129131\pi\)
0.117649 + 0.993055i \(0.462464\pi\)
\(432\) 0 0
\(433\) 14.9303i 0.717502i −0.933433 0.358751i \(-0.883203\pi\)
0.933433 0.358751i \(-0.116797\pi\)
\(434\) 0 0
\(435\) 5.86956 + 9.88564i 0.281424 + 0.473980i
\(436\) 0 0
\(437\) 2.33314 4.04111i 0.111609 0.193313i
\(438\) 0 0
\(439\) 13.6586 7.88578i 0.651888 0.376368i −0.137291 0.990531i \(-0.543840\pi\)
0.789179 + 0.614163i \(0.210506\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −11.4712 + 6.62292i −0.545015 + 0.314665i −0.747109 0.664702i \(-0.768559\pi\)
0.202094 + 0.979366i \(0.435225\pi\)
\(444\) 0 0
\(445\) 1.57298 2.72449i 0.0745665 0.129153i
\(446\) 0 0
\(447\) −1.40663 2.36907i −0.0665311 0.112053i
\(448\) 0 0
\(449\) 14.0532i 0.663212i 0.943418 + 0.331606i \(0.107591\pi\)
−0.943418 + 0.331606i \(0.892409\pi\)
\(450\) 0 0
\(451\) −19.6082 11.3208i −0.923313 0.533075i
\(452\) 0 0
\(453\) 22.9839 + 12.8982i 1.07988 + 0.606009i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5.92092 10.2553i −0.276969 0.479725i 0.693661 0.720302i \(-0.255997\pi\)
−0.970630 + 0.240577i \(0.922663\pi\)
\(458\) 0 0
\(459\) −17.2509 9.13440i −0.805202 0.426357i
\(460\) 0 0
\(461\) 18.8583 0.878318 0.439159 0.898409i \(-0.355276\pi\)
0.439159 + 0.898409i \(0.355276\pi\)
\(462\) 0 0
\(463\) 12.0554 0.560263 0.280131 0.959962i \(-0.409622\pi\)
0.280131 + 0.959962i \(0.409622\pi\)
\(464\) 0 0
\(465\) −4.85788 + 0.0593148i −0.225279 + 0.00275066i
\(466\) 0 0
\(467\) −10.5439 18.2625i −0.487912 0.845088i 0.511991 0.858991i \(-0.328908\pi\)
−0.999903 + 0.0139024i \(0.995575\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.73420 3.09025i 0.0799077 0.142391i
\(472\) 0 0
\(473\) 23.1491 + 13.3652i 1.06440 + 0.614531i
\(474\) 0 0
\(475\) 10.7235i 0.492026i
\(476\) 0 0
\(477\) 27.0989 + 14.7754i 1.24077 + 0.676517i
\(478\) 0 0
\(479\) 0.743810 1.28832i 0.0339855 0.0588647i −0.848532 0.529143i \(-0.822513\pi\)
0.882518 + 0.470279i \(0.155847\pi\)
\(480\) 0 0
\(481\) −19.1907 + 11.0797i −0.875019 + 0.505193i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.850085 + 0.490797i −0.0386004 + 0.0222859i
\(486\) 0 0
\(487\) 15.6242 27.0619i 0.708000 1.22629i −0.257598 0.966252i \(-0.582931\pi\)
0.965598 0.260040i \(-0.0837356\pi\)
\(488\) 0 0
\(489\) −27.0492 + 16.0603i −1.22321 + 0.726273i
\(490\) 0 0
\(491\) 28.3082i 1.27753i 0.769401 + 0.638766i \(0.220555\pi\)
−0.769401 + 0.638766i \(0.779445\pi\)
\(492\) 0 0
\(493\) −21.7666 12.5669i −0.980317 0.565986i
\(494\) 0 0
\(495\) −0.182297 7.46393i −0.00819363 0.335479i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 14.6111 + 25.3072i 0.654084 + 1.13291i 0.982123 + 0.188242i \(0.0602789\pi\)
−0.328039 + 0.944664i \(0.606388\pi\)
\(500\) 0 0
\(501\) −0.118224 9.68253i −0.00528186 0.432584i
\(502\) 0 0
\(503\) −37.0646 −1.65263 −0.826314 0.563210i \(-0.809566\pi\)
−0.826314 + 0.563210i \(0.809566\pi\)
\(504\) 0 0
\(505\) −9.96226 −0.443315
\(506\) 0 0
\(507\) 0.687547 + 56.3100i 0.0305350 + 2.50082i
\(508\) 0 0
\(509\) 15.3441 + 26.5768i 0.680117 + 1.17800i 0.974945 + 0.222446i \(0.0714042\pi\)
−0.294828 + 0.955550i \(0.595262\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −7.37320 11.7545i −0.325535 0.518974i
\(514\) 0 0
\(515\) 6.83614 + 3.94685i 0.301236 + 0.173919i
\(516\) 0 0
\(517\) 26.4317i 1.16247i
\(518\) 0 0
\(519\) −6.69221 + 3.97347i −0.293755 + 0.174416i
\(520\) 0 0
\(521\) 0.779005 1.34928i 0.0341288 0.0591129i −0.848456 0.529265i \(-0.822468\pi\)
0.882585 + 0.470152i \(0.155801\pi\)
\(522\) 0 0
\(523\) −2.12958 + 1.22951i −0.0931200 + 0.0537628i −0.545837 0.837891i \(-0.683788\pi\)
0.452717 + 0.891654i \(0.350455\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.19793 5.31043i 0.400668 0.231326i
\(528\) 0 0
\(529\) −9.97324 + 17.2742i −0.433619 + 0.751051i
\(530\) 0 0
\(531\) −6.66818 + 12.2298i −0.289374 + 0.530730i
\(532\) 0 0
\(533\) 60.8913i 2.63749i
\(534\) 0 0
\(535\) 14.0356 + 8.10343i 0.606810 + 0.350342i
\(536\) 0 0
\(537\) −16.9302 + 30.1686i −0.730591 + 1.30187i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 6.65399 + 11.5251i 0.286077 + 0.495501i 0.972870 0.231353i \(-0.0743152\pi\)
−0.686792 + 0.726854i \(0.740982\pi\)
\(542\) 0 0
\(543\) 7.68909 0.0938840i 0.329971 0.00402895i
\(544\) 0 0
\(545\) 9.35973 0.400927
\(546\) 0 0
\(547\) 15.1745 0.648815 0.324408 0.945917i \(-0.394835\pi\)
0.324408 + 0.945917i \(0.394835\pi\)
\(548\) 0 0
\(549\) −20.6212 + 12.5868i −0.880092 + 0.537191i
\(550\) 0 0
\(551\) −8.93309 15.4726i −0.380563 0.659154i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 4.92219 + 2.76225i 0.208935 + 0.117251i
\(556\) 0 0
\(557\) 32.9104 + 19.0008i 1.39446 + 0.805091i 0.993805 0.111139i \(-0.0354500\pi\)
0.400653 + 0.916230i \(0.368783\pi\)
\(558\) 0 0
\(559\) 71.8874i 3.04051i
\(560\) 0 0
\(561\) 8.33306 + 14.0347i 0.351822 + 0.592546i
\(562\) 0 0
\(563\) 19.3049 33.4370i 0.813603 1.40920i −0.0967240 0.995311i \(-0.530836\pi\)
0.910327 0.413890i \(-0.135830\pi\)
\(564\) 0 0
\(565\) −15.9367 + 9.20104i −0.670461 + 0.387091i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −21.0393 + 12.1471i −0.882014 + 0.509231i −0.871322 0.490712i \(-0.836737\pi\)
−0.0106920 + 0.999943i \(0.503403\pi\)
\(570\) 0 0
\(571\) 15.1612 26.2600i 0.634478 1.09895i −0.352147 0.935945i \(-0.614548\pi\)
0.986625 0.163004i \(-0.0521182\pi\)
\(572\) 0 0
\(573\) 2.86690 + 4.82850i 0.119766 + 0.201713i
\(574\) 0 0
\(575\) 7.01721i 0.292638i
\(576\) 0 0
\(577\) 14.7967 + 8.54288i 0.615995 + 0.355645i 0.775308 0.631583i \(-0.217595\pi\)
−0.159313 + 0.987228i \(0.550928\pi\)
\(578\) 0 0
\(579\) 20.0404 + 11.2464i 0.832850 + 0.467383i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −12.9044 22.3511i −0.534445 0.925686i
\(584\) 0 0
\(585\) 17.1388 10.4612i 0.708601 0.432516i
\(586\) 0 0
\(587\) 3.21402 0.132657 0.0663284 0.997798i \(-0.478871\pi\)
0.0663284 + 0.997798i \(0.478871\pi\)
\(588\) 0 0
\(589\) 7.54974 0.311082
\(590\) 0 0
\(591\) −32.4156 + 0.395795i −1.33340 + 0.0162808i
\(592\) 0 0
\(593\) 5.56488 + 9.63866i 0.228522 + 0.395812i 0.957370 0.288863i \(-0.0932773\pi\)
−0.728848 + 0.684675i \(0.759944\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.06005 + 1.88896i −0.0433851 + 0.0773100i
\(598\) 0 0
\(599\) −28.2920 16.3344i −1.15598 0.667405i −0.205642 0.978627i \(-0.565928\pi\)
−0.950337 + 0.311222i \(0.899262\pi\)
\(600\) 0 0
\(601\) 27.2379i 1.11106i 0.831497 + 0.555529i \(0.187484\pi\)
−0.831497 + 0.555529i \(0.812516\pi\)
\(602\) 0 0
\(603\) −9.61868 + 17.6412i −0.391703 + 0.718407i
\(604\) 0 0
\(605\) 2.33505 4.04443i 0.0949334 0.164429i
\(606\) 0 0
\(607\) 25.8534 14.9264i 1.04936 0.605846i 0.126887 0.991917i \(-0.459502\pi\)
0.922469 + 0.386071i \(0.126168\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −61.5608 + 35.5422i −2.49048 + 1.43788i
\(612\) 0 0
\(613\) 12.4954 21.6426i 0.504683 0.874137i −0.495302 0.868721i \(-0.664943\pi\)
0.999985 0.00541593i \(-0.00172395\pi\)
\(614\) 0 0
\(615\) −13.3362 + 7.91829i −0.537766 + 0.319296i
\(616\) 0 0
\(617\) 28.4800i 1.14656i 0.819359 + 0.573281i \(0.194330\pi\)
−0.819359 + 0.573281i \(0.805670\pi\)
\(618\) 0 0
\(619\) −39.5948 22.8601i −1.59145 0.918824i −0.993059 0.117620i \(-0.962473\pi\)
−0.598391 0.801204i \(-0.704193\pi\)
\(620\) 0 0
\(621\) −4.82487 7.69191i −0.193615 0.308666i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −5.60238 9.70361i −0.224095 0.388144i
\(626\) 0 0
\(627\) 0.141656 + 11.6016i 0.00565719 + 0.463323i
\(628\) 0 0
\(629\) −12.3393 −0.491999
\(630\) 0 0
\(631\) 37.3192 1.48565 0.742827 0.669483i \(-0.233484\pi\)
0.742827 + 0.669483i \(0.233484\pi\)
\(632\) 0 0
\(633\) 0.0220105 + 1.80266i 0.000874839 + 0.0716493i
\(634\) 0 0
\(635\) 5.05980 + 8.76384i 0.200792 + 0.347782i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0.334196 + 13.6833i 0.0132206 + 0.541302i
\(640\) 0 0
\(641\) 32.8738 + 18.9797i 1.29844 + 0.749652i 0.980134 0.198338i \(-0.0635543\pi\)
0.318301 + 0.947990i \(0.396888\pi\)
\(642\) 0 0
\(643\) 3.90637i 0.154052i −0.997029 0.0770262i \(-0.975458\pi\)
0.997029 0.0770262i \(-0.0245425\pi\)
\(644\) 0 0
\(645\) 15.7445 9.34821i 0.619938 0.368086i
\(646\) 0 0
\(647\) 5.72867 9.92235i 0.225217 0.390088i −0.731167 0.682198i \(-0.761024\pi\)
0.956385 + 0.292110i \(0.0943575\pi\)
\(648\) 0 0
\(649\) 10.0871 5.82380i 0.395954 0.228604i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.118160 + 0.0682197i −0.00462396 + 0.00266964i −0.502310 0.864687i \(-0.667516\pi\)
0.497686 + 0.867357i \(0.334183\pi\)
\(654\) 0 0
\(655\) −8.81022 + 15.2598i −0.344244 + 0.596248i
\(656\) 0 0
\(657\) −8.52111 4.64603i −0.332440 0.181259i
\(658\) 0 0
\(659\) 10.0047i 0.389726i −0.980830 0.194863i \(-0.937574\pi\)
0.980830 0.194863i \(-0.0624263\pi\)
\(660\) 0 0
\(661\) −10.4004 6.00466i −0.404528 0.233554i 0.283908 0.958852i \(-0.408369\pi\)
−0.688436 + 0.725297i \(0.741702\pi\)
\(662\) 0 0
\(663\) −21.4823 + 38.2803i −0.834304 + 1.48668i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −5.84563 10.1249i −0.226344 0.392039i
\(668\) 0 0
\(669\) −36.7792 + 0.449074i −1.42196 + 0.0173622i
\(670\) 0 0
\(671\) 20.2013 0.779861
\(672\) 0 0
\(673\) 25.4740 0.981950 0.490975 0.871174i \(-0.336641\pi\)
0.490975 + 0.871174i \(0.336641\pi\)
\(674\) 0 0
\(675\) 18.4407 + 9.76443i 0.709784 + 0.375833i
\(676\) 0 0
\(677\) −22.4573 38.8972i −0.863105 1.49494i −0.868917 0.494958i \(-0.835183\pi\)
0.00581197 0.999983i \(-0.498150\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 9.89914 + 5.55524i 0.379336 + 0.212877i
\(682\) 0 0
\(683\) 20.3551 + 11.7520i 0.778866 + 0.449678i 0.836028 0.548687i \(-0.184872\pi\)
−0.0571624 + 0.998365i \(0.518205\pi\)
\(684\) 0 0
\(685\) 0.584186i 0.0223206i
\(686\) 0 0
\(687\) 15.2030 + 25.6052i 0.580030 + 0.976899i
\(688\) 0 0
\(689\) 34.7045 60.1100i 1.32214 2.29001i
\(690\) 0 0
\(691\) 17.7591 10.2532i 0.675587 0.390051i −0.122603 0.992456i \(-0.539124\pi\)
0.798190 + 0.602405i \(0.205791\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.47619 1.42963i 0.0939272 0.0542289i
\(696\) 0 0
\(697\) 16.9533 29.3640i 0.642154 1.11224i
\(698\) 0 0
\(699\) 11.0104 + 18.5439i 0.416450 + 0.701394i
\(700\) 0 0
\(701\) 20.4363i 0.771868i −0.922526 0.385934i \(-0.873879\pi\)
0.922526 0.385934i \(-0.126121\pi\)
\(702\) 0 0
\(703\) −7.59613 4.38563i −0.286494 0.165407i
\(704\) 0 0
\(705\) 15.7896 + 8.86090i 0.594672 + 0.333721i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 8.93820 + 15.4814i 0.335681 + 0.581417i 0.983615 0.180279i \(-0.0577002\pi\)
−0.647934 + 0.761696i \(0.724367\pi\)
\(710\) 0 0
\(711\) −22.6116 37.0451i −0.848003 1.38930i
\(712\) 0 0
\(713\) 4.94039 0.185019
\(714\) 0 0
\(715\) −16.7897 −0.627901
\(716\) 0 0
\(717\) 14.6301 0.178633i 0.546370 0.00667119i
\(718\) 0 0
\(719\) −16.8707 29.2209i −0.629170 1.08976i −0.987719 0.156244i \(-0.950061\pi\)
0.358548 0.933511i \(-0.383272\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 2.45798 4.37998i 0.0914131 0.162893i
\(724\) 0 0
\(725\) 23.2679 + 13.4337i 0.864148 + 0.498916i
\(726\) 0 0
\(727\) 11.5388i 0.427950i −0.976839 0.213975i \(-0.931359\pi\)
0.976839 0.213975i \(-0.0686411\pi\)
\(728\) 0 0
\(729\) −26.9276 + 1.97616i −0.997318 + 0.0731910i
\(730\) 0 0
\(731\) −20.0149 + 34.6668i −0.740277 + 1.28220i
\(732\) 0 0
\(733\) 19.1264 11.0426i 0.706449 0.407869i −0.103296 0.994651i \(-0.532939\pi\)
0.809745 + 0.586782i \(0.199605\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.5504 8.40069i 0.535972 0.309443i
\(738\) 0 0
\(739\) −0.524365 + 0.908228i −0.0192891 + 0.0334097i −0.875509 0.483202i \(-0.839474\pi\)
0.856220 + 0.516612i \(0.172807\pi\)
\(740\) 0 0
\(741\) −26.8302 + 15.9303i −0.985634 + 0.585216i
\(742\) 0 0
\(743\) 22.3254i 0.819040i 0.912301 + 0.409520i \(0.134304\pi\)
−0.912301 + 0.409520i \(0.865696\pi\)
\(744\) 0 0
\(745\) 1.36672 + 0.789075i 0.0500727 + 0.0289095i
\(746\) 0 0
\(747\) 50.5689 1.23508i 1.85022 0.0451892i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 4.54325 + 7.86913i 0.165785 + 0.287149i 0.936934 0.349507i \(-0.113651\pi\)
−0.771149 + 0.636655i \(0.780317\pi\)
\(752\) 0 0
\(753\) −0.0271525 2.22379i −0.000989494 0.0810395i
\(754\) 0 0
\(755\) −15.0963 −0.549410
\(756\) 0 0
\(757\) 10.7231 0.389736 0.194868 0.980829i \(-0.437572\pi\)
0.194868 + 0.980829i \(0.437572\pi\)
\(758\) 0 0
\(759\) 0.0926967 + 7.59185i 0.00336468 + 0.275567i
\(760\) 0 0
\(761\) −6.15464 10.6601i −0.223105 0.386430i 0.732644 0.680612i \(-0.238286\pi\)
−0.955749 + 0.294182i \(0.904953\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 11.1775 0.272997i 0.404125 0.00987022i
\(766\) 0 0
\(767\) 27.1279 + 15.6623i 0.979531 + 0.565532i
\(768\) 0 0
\(769\) 3.10213i 0.111866i 0.998435 + 0.0559328i \(0.0178133\pi\)
−0.998435 + 0.0559328i \(0.982187\pi\)
\(770\) 0 0
\(771\) 26.4977 15.7329i 0.954291 0.566606i
\(772\) 0 0
\(773\) −14.9229 + 25.8472i −0.536738 + 0.929658i 0.462339 + 0.886703i \(0.347010\pi\)
−0.999077 + 0.0429546i \(0.986323\pi\)
\(774\) 0 0
\(775\) −9.83234 + 5.67670i −0.353188 + 0.203913i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 20.8732 12.0511i 0.747859 0.431776i
\(780\) 0 0
\(781\) 5.72252 9.91170i 0.204768 0.354668i
\(782\) 0 0
\(783\) −34.7418 + 1.27310i −1.24157 + 0.0454969i
\(784\) 0 0
\(785\) 2.02974i 0.0724446i
\(786\) 0 0
\(787\) 35.2831 + 20.3707i 1.25771 + 0.726137i 0.972628 0.232367i \(-0.0746471\pi\)
0.285078 + 0.958504i \(0.407980\pi\)
\(788\) 0 0
\(789\) −11.8192 + 21.0612i −0.420775 + 0.749798i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 27.1642 + 47.0498i 0.964629 + 1.67079i
\(794\) 0 0
\(795\) −17.6780 + 0.215849i −0.626974 + 0.00765537i
\(796\) 0 0
\(797\) 34.2662 1.21377 0.606885 0.794789i \(-0.292419\pi\)
0.606885 + 0.794789i \(0.292419\pi\)
\(798\) 0 0
\(799\) −39.5826 −1.40033
\(800\) 0 0
\(801\) 4.95625 + 8.11992i 0.175120 + 0.286903i
\(802\) 0 0
\(803\) 4.05772 + 7.02817i 0.143194 + 0.248019i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −2.10957 1.18386i −0.0742604 0.0416738i
\(808\) 0 0
\(809\) 32.6805 + 18.8681i 1.14898 + 0.663367i 0.948640 0.316359i \(-0.102460\pi\)
0.200345 + 0.979725i \(0.435794\pi\)
\(810\) 0 0
\(811\) 33.3795i 1.17211i −0.810270 0.586057i \(-0.800680\pi\)
0.810270 0.586057i \(-0.199320\pi\)
\(812\) 0 0
\(813\) −9.45634 15.9266i −0.331648 0.558570i
\(814\) 0 0
\(815\) 9.00937 15.6047i 0.315584 0.546608i
\(816\) 0 0
\(817\) −24.6426 + 14.2274i −0.862134 + 0.497753i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.03122 4.05948i 0.245391 0.141677i −0.372261 0.928128i \(-0.621417\pi\)
0.617652 + 0.786451i \(0.288084\pi\)
\(822\) 0 0
\(823\) −23.8466 + 41.3035i −0.831241 + 1.43975i 0.0658143 + 0.997832i \(0.479036\pi\)
−0.897055 + 0.441919i \(0.854298\pi\)
\(824\) 0 0
\(825\) −8.90781 15.0027i −0.310130 0.522328i
\(826\) 0 0
\(827\) 11.7724i 0.409367i −0.978828 0.204684i \(-0.934383\pi\)
0.978828 0.204684i \(-0.0656166\pi\)
\(828\) 0 0
\(829\) −2.23286 1.28914i −0.0775504 0.0447738i 0.460723 0.887544i \(-0.347590\pi\)
−0.538274 + 0.842770i \(0.680923\pi\)
\(830\) 0 0
\(831\) −5.32298 2.98717i −0.184652 0.103624i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.77324 + 4.80339i 0.0959719 + 0.166228i
\(836\) 0 0
\(837\) 6.87454 12.9830i 0.237619 0.448758i
\(838\) 0 0
\(839\) −15.1790 −0.524036 −0.262018 0.965063i \(-0.584388\pi\)
−0.262018 + 0.965063i \(0.584388\pi\)
\(840\) 0 0
\(841\) −15.7634 −0.543566
\(842\) 0 0
\(843\) −13.5803 + 0.165816i −0.467732 + 0.00571102i
\(844\) 0 0
\(845\) −16.1281 27.9347i −0.554825 0.960985i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −18.7528 + 33.4165i −0.643595 + 1.14685i
\(850\) 0 0
\(851\) −4.97076 2.86987i −0.170395 0.0983778i
\(852\) 0 0
\(853\) 5.00496i 0.171367i 0.996322 + 0.0856833i \(0.0273073\pi\)
−0.996322 + 0.0856833i \(0.972693\pi\)
\(854\) 0 0
\(855\) 6.97799 + 3.80467i 0.238642 + 0.130117i
\(856\) 0 0
\(857\) −10.8110 + 18.7251i −0.369296 + 0.639639i −0.989456 0.144837i \(-0.953734\pi\)
0.620160 + 0.784475i \(0.287068\pi\)
\(858\) 0 0
\(859\) −8.35591 + 4.82429i −0.285100 + 0.164603i −0.635730 0.771912i \(-0.719301\pi\)
0.350630 + 0.936514i \(0.385967\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 39.4774 22.7923i 1.34383 0.775858i 0.356459 0.934311i \(-0.383984\pi\)
0.987367 + 0.158453i \(0.0506505\pi\)
\(864\) 0 0
\(865\) 2.22900 3.86074i 0.0757882 0.131269i
\(866\) 0 0
\(867\) 4.30079 2.55358i 0.146063 0.0867240i
\(868\) 0 0
\(869\) 36.2907i 1.23108i
\(870\) 0 0
\(871\) 39.1313 + 22.5925i 1.32591 + 0.765516i
\(872\) 0 0
\(873\) −0.0724733 2.96733i −0.00245285 0.100429i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −25.7585 44.6150i −0.869802 1.50654i −0.862199 0.506570i \(-0.830913\pi\)
−0.00760306 0.999971i \(-0.502420\pi\)
\(878\) 0 0
\(879\) −0.435148 35.6385i −0.0146772 1.20206i
\(880\) 0 0
\(881\) 10.4316 0.351448 0.175724 0.984439i \(-0.443773\pi\)
0.175724 + 0.984439i \(0.443773\pi\)
\(882\) 0 0
\(883\) −10.6345 −0.357880 −0.178940 0.983860i \(-0.557267\pi\)
−0.178940 + 0.983860i \(0.557267\pi\)
\(884\) 0 0
\(885\) −0.0974134 7.97815i −0.00327452 0.268183i
\(886\) 0 0
\(887\) 9.85887 + 17.0761i 0.331028 + 0.573358i 0.982714 0.185131i \(-0.0592711\pi\)
−0.651685 + 0.758489i \(0.725938\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 20.0798 + 10.3204i 0.672699 + 0.345747i
\(892\) 0 0
\(893\) −24.3673 14.0684i −0.815419 0.470783i
\(894\) 0 0
\(895\) 19.8154i 0.662356i
\(896\) 0 0
\(897\) −17.5572 + 10.4245i −0.586217 + 0.348064i
\(898\) 0 0
\(899\) 9.45787 16.3815i 0.315437 0.546354i
\(900\) 0 0
\(901\) 33.4716 19.3249i 1.11510 0.643804i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.81447 + 2.20229i −0.126797 + 0.0732064i
\(906\) 0 0
\(907\) 20.4758 35.4651i 0.679888 1.17760i −0.295126 0.955458i \(-0.595362\pi\)
0.975014 0.222142i \(-0.0713049\pi\)
\(908\) 0 0
\(909\) 14.4209 26.4487i 0.478310 0.877249i
\(910\) 0 0
\(911\) 27.0641i 0.896672i −0.893865 0.448336i \(-0.852017\pi\)
0.893865 0.448336i \(-0.147983\pi\)
\(912\) 0 0
\(913\) −36.6304 21.1486i −1.21229 0.699916i
\(914\) 0 0
\(915\) 6.77222 12.0677i 0.223883 0.398947i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 9.40788 + 16.2949i 0.310337 + 0.537520i 0.978435 0.206553i \(-0.0662247\pi\)
−0.668098 + 0.744073i \(0.732891\pi\)
\(920\) 0 0
\(921\) −50.9396 + 0.621974i −1.67852 + 0.0204947i
\(922\) 0 0
\(923\) 30.7798 1.01313
\(924\) 0 0
\(925\) 13.1904 0.433696
\(926\) 0 0
\(927\) −20.3741 + 12.4360i −0.669173 + 0.408451i
\(928\) 0 0
\(929\) −13.6737 23.6836i −0.448620 0.777033i 0.549676 0.835378i \(-0.314751\pi\)
−0.998296 + 0.0583449i \(0.981418\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −12.1998 6.84636i −0.399405 0.224140i
\(934\) 0 0
\(935\) −8.09663 4.67459i −0.264788 0.152876i
\(936\) 0 0
\(937\) 49.4739i 1.61624i −0.589018 0.808120i \(-0.700485\pi\)
0.589018 0.808120i \(-0.299515\pi\)
\(938\) 0 0
\(939\) 1.07047 + 1.80292i 0.0349336 + 0.0588360i
\(940\) 0 0
\(941\) 24.2430 41.9900i 0.790298 1.36884i −0.135485 0.990779i \(-0.543259\pi\)
0.925782 0.378057i \(-0.123408\pi\)
\(942\) 0 0
\(943\) 13.6590 7.88601i 0.444797 0.256804i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −7.42426 + 4.28640i −0.241256 + 0.139289i −0.615754 0.787939i \(-0.711148\pi\)
0.374498 + 0.927228i \(0.377815\pi\)
\(948\) 0 0
\(949\) −10.9127 + 18.9013i −0.354240 + 0.613561i
\(950\) 0 0
\(951\) −26.3376 44.3583i −0.854054 1.43842i
\(952\) 0 0
\(953\) 44.7977i 1.45114i −0.688149 0.725570i \(-0.741576\pi\)
0.688149 0.725570i \(-0.258424\pi\)
\(954\) 0 0
\(955\) −2.78556 1.60824i −0.0901386 0.0520416i
\(956\) 0 0
\(957\) 25.3507 + 14.2264i 0.819473 + 0.459875i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −11.5034 19.9244i −0.371077 0.642724i
\(962\) 0 0
\(963\) −41.8309 + 25.5328i −1.34798 + 0.822782i
\(964\) 0 0
\(965\) −13.1630 −0.423730
\(966\) 0 0
\(967\) 14.4085 0.463346 0.231673 0.972794i \(-0.425580\pi\)
0.231673 + 0.972794i \(0.425580\pi\)
\(968\) 0 0
\(969\) −17.3739 + 0.212135i −0.558129 + 0.00681477i
\(970\) 0 0
\(971\) −1.91524 3.31730i −0.0614630 0.106457i 0.833657 0.552283i \(-0.186243\pi\)
−0.895120 + 0.445826i \(0.852910\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 22.9640 40.9206i 0.735437 1.31051i
\(976\) 0 0
\(977\) −31.0908 17.9503i −0.994683 0.574281i −0.0880123 0.996119i \(-0.528051\pi\)
−0.906671 + 0.421839i \(0.861385\pi\)
\(978\) 0 0
\(979\) 7.95456i 0.254229i
\(980\) 0 0
\(981\) −13.5487 + 24.8491i −0.432576 + 0.793370i
\(982\) 0 0
\(983\) 23.7286 41.0991i 0.756824 1.31086i −0.187638 0.982238i \(-0.560083\pi\)
0.944462 0.328620i \(-0.106583\pi\)
\(984\) 0 0
\(985\) 16.0810 9.28436i 0.512383 0.295824i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −16.1256 + 9.31011i −0.512764 + 0.296044i
\(990\) 0 0
\(991\) −28.0314 + 48.5518i −0.890446 + 1.54230i −0.0511039 + 0.998693i \(0.516274\pi\)
−0.839342 + 0.543604i \(0.817059\pi\)
\(992\) 0 0
\(993\) 18.4680 10.9653i 0.586066 0.347974i
\(994\) 0 0
\(995\) 1.24071i 0.0393331i
\(996\) 0 0
\(997\) 45.6872 + 26.3775i 1.44693 + 0.835385i 0.998297 0.0583312i \(-0.0185779\pi\)
0.448632 + 0.893716i \(0.351911\pi\)
\(998\) 0 0
\(999\) −14.4586 + 9.06938i −0.457450 + 0.286943i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1176.2.u.c.521.12 48
3.2 odd 2 inner 1176.2.u.c.521.4 48
7.2 even 3 inner 1176.2.u.c.1097.21 48
7.3 odd 6 1176.2.k.b.881.19 yes 24
7.4 even 3 1176.2.k.b.881.6 yes 24
7.5 odd 6 inner 1176.2.u.c.1097.4 48
7.6 odd 2 inner 1176.2.u.c.521.13 48
21.2 odd 6 inner 1176.2.u.c.1097.13 48
21.5 even 6 inner 1176.2.u.c.1097.12 48
21.11 odd 6 1176.2.k.b.881.20 yes 24
21.17 even 6 1176.2.k.b.881.5 24
21.20 even 2 inner 1176.2.u.c.521.21 48
28.3 even 6 2352.2.k.j.881.6 24
28.11 odd 6 2352.2.k.j.881.19 24
84.11 even 6 2352.2.k.j.881.5 24
84.59 odd 6 2352.2.k.j.881.20 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1176.2.k.b.881.5 24 21.17 even 6
1176.2.k.b.881.6 yes 24 7.4 even 3
1176.2.k.b.881.19 yes 24 7.3 odd 6
1176.2.k.b.881.20 yes 24 21.11 odd 6
1176.2.u.c.521.4 48 3.2 odd 2 inner
1176.2.u.c.521.12 48 1.1 even 1 trivial
1176.2.u.c.521.13 48 7.6 odd 2 inner
1176.2.u.c.521.21 48 21.20 even 2 inner
1176.2.u.c.1097.4 48 7.5 odd 6 inner
1176.2.u.c.1097.12 48 21.5 even 6 inner
1176.2.u.c.1097.13 48 21.2 odd 6 inner
1176.2.u.c.1097.21 48 7.2 even 3 inner
2352.2.k.j.881.5 24 84.11 even 6
2352.2.k.j.881.6 24 28.3 even 6
2352.2.k.j.881.19 24 28.11 odd 6
2352.2.k.j.881.20 24 84.59 odd 6