Properties

Label 120.6.f.a.49.2
Level $120$
Weight $6$
Character 120.49
Analytic conductor $19.246$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,6,Mod(49,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 120.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.2460583776\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.25787221056.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 61x^{4} + 852x^{2} + 576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(6.33429i\) of defining polynomial
Character \(\chi\) \(=\) 120.49
Dual form 120.6.f.a.49.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000i q^{3} +(33.8706 + 44.4723i) q^{5} +85.8595i q^{7} -81.0000 q^{9} -488.087 q^{11} -38.5971i q^{13} +(400.250 - 304.835i) q^{15} -692.837i q^{17} -2489.26 q^{19} +772.735 q^{21} +4124.41i q^{23} +(-830.563 + 3012.61i) q^{25} +729.000i q^{27} +1886.71 q^{29} -2299.60 q^{31} +4392.78i q^{33} +(-3818.36 + 2908.11i) q^{35} +10628.6i q^{37} -347.373 q^{39} -15268.5 q^{41} +9468.20i q^{43} +(-2743.52 - 3602.25i) q^{45} -14323.3i q^{47} +9435.15 q^{49} -6235.53 q^{51} +13918.1i q^{53} +(-16531.8 - 21706.3i) q^{55} +22403.3i q^{57} -39692.5 q^{59} +38221.6 q^{61} -6954.62i q^{63} +(1716.50 - 1307.31i) q^{65} -1416.38i q^{67} +37119.6 q^{69} -11637.1 q^{71} +31082.1i q^{73} +(27113.4 + 7475.07i) q^{75} -41906.9i q^{77} +43476.3 q^{79} +6561.00 q^{81} -86699.9i q^{83} +(30812.0 - 23466.8i) q^{85} -16980.4i q^{87} +100834. q^{89} +3313.92 q^{91} +20696.4i q^{93} +(-84312.6 - 110703. i) q^{95} -39911.0i q^{97} +39535.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 50 q^{5} - 486 q^{9} - 664 q^{11} + 540 q^{15} + 288 q^{19} - 1872 q^{21} + 3750 q^{25} - 1892 q^{29} - 10248 q^{31} - 18880 q^{35} + 1584 q^{39} - 1324 q^{41} - 4050 q^{45} + 28410 q^{49} + 20088 q^{51}+ \cdots + 53784 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000i 0.577350i
\(4\) 0 0
\(5\) 33.8706 + 44.4723i 0.605896 + 0.795544i
\(6\) 0 0
\(7\) 85.8595i 0.662282i 0.943581 + 0.331141i \(0.107434\pi\)
−0.943581 + 0.331141i \(0.892566\pi\)
\(8\) 0 0
\(9\) −81.0000 −0.333333
\(10\) 0 0
\(11\) −488.087 −1.21623 −0.608114 0.793849i \(-0.708074\pi\)
−0.608114 + 0.793849i \(0.708074\pi\)
\(12\) 0 0
\(13\) 38.5971i 0.0633426i −0.999498 0.0316713i \(-0.989917\pi\)
0.999498 0.0316713i \(-0.0100830\pi\)
\(14\) 0 0
\(15\) 400.250 304.835i 0.459308 0.349814i
\(16\) 0 0
\(17\) 692.837i 0.581445i −0.956807 0.290723i \(-0.906104\pi\)
0.956807 0.290723i \(-0.0938957\pi\)
\(18\) 0 0
\(19\) −2489.26 −1.58192 −0.790962 0.611865i \(-0.790419\pi\)
−0.790962 + 0.611865i \(0.790419\pi\)
\(20\) 0 0
\(21\) 772.735 0.382369
\(22\) 0 0
\(23\) 4124.41i 1.62571i 0.582470 + 0.812853i \(0.302087\pi\)
−0.582470 + 0.812853i \(0.697913\pi\)
\(24\) 0 0
\(25\) −830.563 + 3012.61i −0.265780 + 0.964034i
\(26\) 0 0
\(27\) 729.000i 0.192450i
\(28\) 0 0
\(29\) 1886.71 0.416592 0.208296 0.978066i \(-0.433208\pi\)
0.208296 + 0.978066i \(0.433208\pi\)
\(30\) 0 0
\(31\) −2299.60 −0.429781 −0.214891 0.976638i \(-0.568940\pi\)
−0.214891 + 0.976638i \(0.568940\pi\)
\(32\) 0 0
\(33\) 4392.78i 0.702190i
\(34\) 0 0
\(35\) −3818.36 + 2908.11i −0.526875 + 0.401274i
\(36\) 0 0
\(37\) 10628.6i 1.27636i 0.769888 + 0.638178i \(0.220312\pi\)
−0.769888 + 0.638178i \(0.779688\pi\)
\(38\) 0 0
\(39\) −347.373 −0.0365709
\(40\) 0 0
\(41\) −15268.5 −1.41853 −0.709264 0.704943i \(-0.750973\pi\)
−0.709264 + 0.704943i \(0.750973\pi\)
\(42\) 0 0
\(43\) 9468.20i 0.780901i 0.920624 + 0.390451i \(0.127681\pi\)
−0.920624 + 0.390451i \(0.872319\pi\)
\(44\) 0 0
\(45\) −2743.52 3602.25i −0.201965 0.265181i
\(46\) 0 0
\(47\) 14323.3i 0.945800i −0.881116 0.472900i \(-0.843207\pi\)
0.881116 0.472900i \(-0.156793\pi\)
\(48\) 0 0
\(49\) 9435.15 0.561382
\(50\) 0 0
\(51\) −6235.53 −0.335698
\(52\) 0 0
\(53\) 13918.1i 0.680596i 0.940318 + 0.340298i \(0.110528\pi\)
−0.940318 + 0.340298i \(0.889472\pi\)
\(54\) 0 0
\(55\) −16531.8 21706.3i −0.736908 0.967564i
\(56\) 0 0
\(57\) 22403.3i 0.913324i
\(58\) 0 0
\(59\) −39692.5 −1.48449 −0.742247 0.670126i \(-0.766240\pi\)
−0.742247 + 0.670126i \(0.766240\pi\)
\(60\) 0 0
\(61\) 38221.6 1.31518 0.657588 0.753377i \(-0.271577\pi\)
0.657588 + 0.753377i \(0.271577\pi\)
\(62\) 0 0
\(63\) 6954.62i 0.220761i
\(64\) 0 0
\(65\) 1716.50 1307.31i 0.0503918 0.0383790i
\(66\) 0 0
\(67\) 1416.38i 0.0385472i −0.999814 0.0192736i \(-0.993865\pi\)
0.999814 0.0192736i \(-0.00613536\pi\)
\(68\) 0 0
\(69\) 37119.6 0.938601
\(70\) 0 0
\(71\) −11637.1 −0.273966 −0.136983 0.990573i \(-0.543741\pi\)
−0.136983 + 0.990573i \(0.543741\pi\)
\(72\) 0 0
\(73\) 31082.1i 0.682657i 0.939944 + 0.341329i \(0.110877\pi\)
−0.939944 + 0.341329i \(0.889123\pi\)
\(74\) 0 0
\(75\) 27113.4 + 7475.07i 0.556585 + 0.153448i
\(76\) 0 0
\(77\) 41906.9i 0.805487i
\(78\) 0 0
\(79\) 43476.3 0.783763 0.391881 0.920016i \(-0.371824\pi\)
0.391881 + 0.920016i \(0.371824\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 86699.9i 1.38141i −0.723135 0.690706i \(-0.757300\pi\)
0.723135 0.690706i \(-0.242700\pi\)
\(84\) 0 0
\(85\) 30812.0 23466.8i 0.462565 0.352295i
\(86\) 0 0
\(87\) 16980.4i 0.240519i
\(88\) 0 0
\(89\) 100834. 1.34937 0.674686 0.738105i \(-0.264279\pi\)
0.674686 + 0.738105i \(0.264279\pi\)
\(90\) 0 0
\(91\) 3313.92 0.0419507
\(92\) 0 0
\(93\) 20696.4i 0.248134i
\(94\) 0 0
\(95\) −84312.6 110703.i −0.958481 1.25849i
\(96\) 0 0
\(97\) 39911.0i 0.430688i −0.976538 0.215344i \(-0.930913\pi\)
0.976538 0.215344i \(-0.0690873\pi\)
\(98\) 0 0
\(99\) 39535.0 0.405410
\(100\) 0 0
\(101\) −117147. −1.14269 −0.571344 0.820711i \(-0.693578\pi\)
−0.571344 + 0.820711i \(0.693578\pi\)
\(102\) 0 0
\(103\) 266.000i 0.00247052i −0.999999 0.00123526i \(-0.999607\pi\)
0.999999 0.00123526i \(-0.000393195\pi\)
\(104\) 0 0
\(105\) 26173.0 + 34365.3i 0.231676 + 0.304191i
\(106\) 0 0
\(107\) 120151.i 1.01454i −0.861787 0.507270i \(-0.830655\pi\)
0.861787 0.507270i \(-0.169345\pi\)
\(108\) 0 0
\(109\) 135567. 1.09292 0.546458 0.837486i \(-0.315976\pi\)
0.546458 + 0.837486i \(0.315976\pi\)
\(110\) 0 0
\(111\) 95657.5 0.736905
\(112\) 0 0
\(113\) 94060.5i 0.692965i −0.938056 0.346482i \(-0.887376\pi\)
0.938056 0.346482i \(-0.112624\pi\)
\(114\) 0 0
\(115\) −183422. + 139696.i −1.29332 + 0.985008i
\(116\) 0 0
\(117\) 3126.36i 0.0211142i
\(118\) 0 0
\(119\) 59486.6 0.385081
\(120\) 0 0
\(121\) 77177.7 0.479213
\(122\) 0 0
\(123\) 137417.i 0.818988i
\(124\) 0 0
\(125\) −162109. + 65101.7i −0.927966 + 0.372664i
\(126\) 0 0
\(127\) 118472.i 0.651786i 0.945407 + 0.325893i \(0.105665\pi\)
−0.945407 + 0.325893i \(0.894335\pi\)
\(128\) 0 0
\(129\) 85213.8 0.450854
\(130\) 0 0
\(131\) −232998. −1.18624 −0.593122 0.805113i \(-0.702105\pi\)
−0.593122 + 0.805113i \(0.702105\pi\)
\(132\) 0 0
\(133\) 213726.i 1.04768i
\(134\) 0 0
\(135\) −32420.3 + 24691.7i −0.153103 + 0.116605i
\(136\) 0 0
\(137\) 139571.i 0.635321i 0.948204 + 0.317661i \(0.102897\pi\)
−0.948204 + 0.317661i \(0.897103\pi\)
\(138\) 0 0
\(139\) 263812. 1.15813 0.579066 0.815280i \(-0.303417\pi\)
0.579066 + 0.815280i \(0.303417\pi\)
\(140\) 0 0
\(141\) −128910. −0.546058
\(142\) 0 0
\(143\) 18838.7i 0.0770391i
\(144\) 0 0
\(145\) 63904.1 + 83906.3i 0.252411 + 0.331417i
\(146\) 0 0
\(147\) 84916.4i 0.324114i
\(148\) 0 0
\(149\) −344172. −1.27002 −0.635008 0.772505i \(-0.719003\pi\)
−0.635008 + 0.772505i \(0.719003\pi\)
\(150\) 0 0
\(151\) −12286.8 −0.0438527 −0.0219263 0.999760i \(-0.506980\pi\)
−0.0219263 + 0.999760i \(0.506980\pi\)
\(152\) 0 0
\(153\) 56119.8i 0.193815i
\(154\) 0 0
\(155\) −77888.8 102268.i −0.260403 0.341910i
\(156\) 0 0
\(157\) 240704.i 0.779354i 0.920952 + 0.389677i \(0.127413\pi\)
−0.920952 + 0.389677i \(0.872587\pi\)
\(158\) 0 0
\(159\) 125263. 0.392942
\(160\) 0 0
\(161\) −354119. −1.07668
\(162\) 0 0
\(163\) 565359.i 1.66669i 0.552752 + 0.833346i \(0.313578\pi\)
−0.552752 + 0.833346i \(0.686422\pi\)
\(164\) 0 0
\(165\) −195357. + 148786.i −0.558623 + 0.425454i
\(166\) 0 0
\(167\) 411038.i 1.14049i 0.821475 + 0.570244i \(0.193151\pi\)
−0.821475 + 0.570244i \(0.806849\pi\)
\(168\) 0 0
\(169\) 369803. 0.995988
\(170\) 0 0
\(171\) 201630. 0.527308
\(172\) 0 0
\(173\) 188716.i 0.479395i −0.970848 0.239698i \(-0.922952\pi\)
0.970848 0.239698i \(-0.0770483\pi\)
\(174\) 0 0
\(175\) −258661. 71311.7i −0.638462 0.176022i
\(176\) 0 0
\(177\) 357233.i 0.857073i
\(178\) 0 0
\(179\) 601974. 1.40425 0.702126 0.712053i \(-0.252234\pi\)
0.702126 + 0.712053i \(0.252234\pi\)
\(180\) 0 0
\(181\) −836032. −1.89682 −0.948410 0.317045i \(-0.897309\pi\)
−0.948410 + 0.317045i \(0.897309\pi\)
\(182\) 0 0
\(183\) 343994.i 0.759318i
\(184\) 0 0
\(185\) −472678. + 359998.i −1.01540 + 0.773339i
\(186\) 0 0
\(187\) 338165.i 0.707170i
\(188\) 0 0
\(189\) −62591.6 −0.127456
\(190\) 0 0
\(191\) 502698. 0.997066 0.498533 0.866871i \(-0.333872\pi\)
0.498533 + 0.866871i \(0.333872\pi\)
\(192\) 0 0
\(193\) 731154.i 1.41291i −0.707756 0.706457i \(-0.750293\pi\)
0.707756 0.706457i \(-0.249707\pi\)
\(194\) 0 0
\(195\) −11765.8 15448.5i −0.0221581 0.0290937i
\(196\) 0 0
\(197\) 871888.i 1.60065i −0.599569 0.800323i \(-0.704661\pi\)
0.599569 0.800323i \(-0.295339\pi\)
\(198\) 0 0
\(199\) 101311. 0.181352 0.0906760 0.995880i \(-0.471097\pi\)
0.0906760 + 0.995880i \(0.471097\pi\)
\(200\) 0 0
\(201\) −12747.4 −0.0222553
\(202\) 0 0
\(203\) 161992.i 0.275901i
\(204\) 0 0
\(205\) −517155. 679027.i −0.859481 1.12850i
\(206\) 0 0
\(207\) 334077.i 0.541902i
\(208\) 0 0
\(209\) 1.21497e6 1.92398
\(210\) 0 0
\(211\) −725153. −1.12130 −0.560652 0.828051i \(-0.689450\pi\)
−0.560652 + 0.828051i \(0.689450\pi\)
\(212\) 0 0
\(213\) 104734.i 0.158175i
\(214\) 0 0
\(215\) −421072. + 320694.i −0.621241 + 0.473145i
\(216\) 0 0
\(217\) 197442.i 0.284637i
\(218\) 0 0
\(219\) 279739. 0.394132
\(220\) 0 0
\(221\) −26741.5 −0.0368302
\(222\) 0 0
\(223\) 680623.i 0.916526i 0.888817 + 0.458263i \(0.151528\pi\)
−0.888817 + 0.458263i \(0.848472\pi\)
\(224\) 0 0
\(225\) 67275.6 244021.i 0.0885934 0.321345i
\(226\) 0 0
\(227\) 1.01003e6i 1.30098i −0.759516 0.650488i \(-0.774564\pi\)
0.759516 0.650488i \(-0.225436\pi\)
\(228\) 0 0
\(229\) 1.22740e6 1.54667 0.773337 0.633996i \(-0.218586\pi\)
0.773337 + 0.633996i \(0.218586\pi\)
\(230\) 0 0
\(231\) −377162. −0.465048
\(232\) 0 0
\(233\) 599483.i 0.723415i 0.932292 + 0.361707i \(0.117806\pi\)
−0.932292 + 0.361707i \(0.882194\pi\)
\(234\) 0 0
\(235\) 636991. 485140.i 0.752425 0.573056i
\(236\) 0 0
\(237\) 391287.i 0.452506i
\(238\) 0 0
\(239\) 1.37162e6 1.55324 0.776620 0.629970i \(-0.216933\pi\)
0.776620 + 0.629970i \(0.216933\pi\)
\(240\) 0 0
\(241\) 1.36857e6 1.51784 0.758918 0.651186i \(-0.225728\pi\)
0.758918 + 0.651186i \(0.225728\pi\)
\(242\) 0 0
\(243\) 59049.0i 0.0641500i
\(244\) 0 0
\(245\) 319574. + 419602.i 0.340139 + 0.446604i
\(246\) 0 0
\(247\) 96078.0i 0.100203i
\(248\) 0 0
\(249\) −780299. −0.797559
\(250\) 0 0
\(251\) 730293. 0.731666 0.365833 0.930681i \(-0.380784\pi\)
0.365833 + 0.930681i \(0.380784\pi\)
\(252\) 0 0
\(253\) 2.01307e6i 1.97723i
\(254\) 0 0
\(255\) −211201. 277308.i −0.203398 0.267062i
\(256\) 0 0
\(257\) 1.36832e6i 1.29228i 0.763221 + 0.646138i \(0.223617\pi\)
−0.763221 + 0.646138i \(0.776383\pi\)
\(258\) 0 0
\(259\) −912567. −0.845309
\(260\) 0 0
\(261\) −152824. −0.138864
\(262\) 0 0
\(263\) 1.26265e6i 1.12562i 0.826585 + 0.562811i \(0.190280\pi\)
−0.826585 + 0.562811i \(0.809720\pi\)
\(264\) 0 0
\(265\) −618968. + 471413.i −0.541444 + 0.412370i
\(266\) 0 0
\(267\) 907505.i 0.779060i
\(268\) 0 0
\(269\) −652896. −0.550127 −0.275064 0.961426i \(-0.588699\pi\)
−0.275064 + 0.961426i \(0.588699\pi\)
\(270\) 0 0
\(271\) −649071. −0.536870 −0.268435 0.963298i \(-0.586506\pi\)
−0.268435 + 0.963298i \(0.586506\pi\)
\(272\) 0 0
\(273\) 29825.3i 0.0242202i
\(274\) 0 0
\(275\) 405387. 1.47041e6i 0.323250 1.17249i
\(276\) 0 0
\(277\) 668500.i 0.523482i −0.965138 0.261741i \(-0.915703\pi\)
0.965138 0.261741i \(-0.0842967\pi\)
\(278\) 0 0
\(279\) 186267. 0.143260
\(280\) 0 0
\(281\) 1.03323e6 0.780607 0.390304 0.920686i \(-0.372370\pi\)
0.390304 + 0.920686i \(0.372370\pi\)
\(282\) 0 0
\(283\) 384887.i 0.285672i −0.989746 0.142836i \(-0.954378\pi\)
0.989746 0.142836i \(-0.0456221\pi\)
\(284\) 0 0
\(285\) −996326. + 758814.i −0.726590 + 0.553379i
\(286\) 0 0
\(287\) 1.31095e6i 0.939466i
\(288\) 0 0
\(289\) 939834. 0.661922
\(290\) 0 0
\(291\) −359199. −0.248658
\(292\) 0 0
\(293\) 74753.1i 0.0508698i 0.999676 + 0.0254349i \(0.00809705\pi\)
−0.999676 + 0.0254349i \(0.991903\pi\)
\(294\) 0 0
\(295\) −1.34441e6 1.76522e6i −0.899449 1.18098i
\(296\) 0 0
\(297\) 355815.i 0.234063i
\(298\) 0 0
\(299\) 159190. 0.102976
\(300\) 0 0
\(301\) −812934. −0.517177
\(302\) 0 0
\(303\) 1.05432e6i 0.659731i
\(304\) 0 0
\(305\) 1.29459e6 + 1.69980e6i 0.796860 + 1.04628i
\(306\) 0 0
\(307\) 1.96989e6i 1.19288i 0.802659 + 0.596438i \(0.203418\pi\)
−0.802659 + 0.596438i \(0.796582\pi\)
\(308\) 0 0
\(309\) −2394.00 −0.00142635
\(310\) 0 0
\(311\) −1.92570e6 −1.12899 −0.564493 0.825438i \(-0.690928\pi\)
−0.564493 + 0.825438i \(0.690928\pi\)
\(312\) 0 0
\(313\) 1.05127e6i 0.606531i 0.952906 + 0.303265i \(0.0980768\pi\)
−0.952906 + 0.303265i \(0.901923\pi\)
\(314\) 0 0
\(315\) 309288. 235557.i 0.175625 0.133758i
\(316\) 0 0
\(317\) 2.68469e6i 1.50053i 0.661134 + 0.750267i \(0.270075\pi\)
−0.661134 + 0.750267i \(0.729925\pi\)
\(318\) 0 0
\(319\) −920879. −0.506671
\(320\) 0 0
\(321\) −1.08136e6 −0.585745
\(322\) 0 0
\(323\) 1.72465e6i 0.919802i
\(324\) 0 0
\(325\) 116278. + 32057.3i 0.0610644 + 0.0168352i
\(326\) 0 0
\(327\) 1.22010e6i 0.630996i
\(328\) 0 0
\(329\) 1.22979e6 0.626387
\(330\) 0 0
\(331\) −1.50456e6 −0.754813 −0.377407 0.926048i \(-0.623184\pi\)
−0.377407 + 0.926048i \(0.623184\pi\)
\(332\) 0 0
\(333\) 860917.i 0.425452i
\(334\) 0 0
\(335\) 62989.7 47973.7i 0.0306660 0.0233556i
\(336\) 0 0
\(337\) 3.84030e6i 1.84200i 0.389559 + 0.921001i \(0.372627\pi\)
−0.389559 + 0.921001i \(0.627373\pi\)
\(338\) 0 0
\(339\) −846544. −0.400083
\(340\) 0 0
\(341\) 1.12240e6 0.522713
\(342\) 0 0
\(343\) 2.25314e6i 1.03408i
\(344\) 0 0
\(345\) 1.25727e6 + 1.65079e6i 0.568695 + 0.746699i
\(346\) 0 0
\(347\) 939488.i 0.418859i 0.977824 + 0.209429i \(0.0671606\pi\)
−0.977824 + 0.209429i \(0.932839\pi\)
\(348\) 0 0
\(349\) −3.56398e6 −1.56629 −0.783144 0.621841i \(-0.786385\pi\)
−0.783144 + 0.621841i \(0.786385\pi\)
\(350\) 0 0
\(351\) 28137.2 0.0121903
\(352\) 0 0
\(353\) 2.24033e6i 0.956919i −0.878110 0.478459i \(-0.841195\pi\)
0.878110 0.478459i \(-0.158805\pi\)
\(354\) 0 0
\(355\) −394154. 517526.i −0.165995 0.217952i
\(356\) 0 0
\(357\) 535380.i 0.222327i
\(358\) 0 0
\(359\) −290038. −0.118773 −0.0593867 0.998235i \(-0.518915\pi\)
−0.0593867 + 0.998235i \(0.518915\pi\)
\(360\) 0 0
\(361\) 3.72030e6 1.50248
\(362\) 0 0
\(363\) 694599.i 0.276674i
\(364\) 0 0
\(365\) −1.38229e6 + 1.05277e6i −0.543084 + 0.413619i
\(366\) 0 0
\(367\) 961035.i 0.372455i −0.982507 0.186228i \(-0.940374\pi\)
0.982507 0.186228i \(-0.0596262\pi\)
\(368\) 0 0
\(369\) 1.23675e6 0.472843
\(370\) 0 0
\(371\) −1.19500e6 −0.450746
\(372\) 0 0
\(373\) 3.48605e6i 1.29736i −0.761060 0.648681i \(-0.775321\pi\)
0.761060 0.648681i \(-0.224679\pi\)
\(374\) 0 0
\(375\) 585916. + 1.45898e6i 0.215158 + 0.535762i
\(376\) 0 0
\(377\) 72821.5i 0.0263880i
\(378\) 0 0
\(379\) −3.08939e6 −1.10478 −0.552389 0.833587i \(-0.686284\pi\)
−0.552389 + 0.833587i \(0.686284\pi\)
\(380\) 0 0
\(381\) 1.06624e6 0.376309
\(382\) 0 0
\(383\) 513758.i 0.178962i 0.995989 + 0.0894812i \(0.0285209\pi\)
−0.995989 + 0.0894812i \(0.971479\pi\)
\(384\) 0 0
\(385\) 1.86369e6 1.41941e6i 0.640800 0.488041i
\(386\) 0 0
\(387\) 766924.i 0.260300i
\(388\) 0 0
\(389\) −5.32273e6 −1.78345 −0.891725 0.452578i \(-0.850504\pi\)
−0.891725 + 0.452578i \(0.850504\pi\)
\(390\) 0 0
\(391\) 2.85754e6 0.945258
\(392\) 0 0
\(393\) 2.09698e6i 0.684878i
\(394\) 0 0
\(395\) 1.47257e6 + 1.93349e6i 0.474879 + 0.623518i
\(396\) 0 0
\(397\) 2.10400e6i 0.669990i 0.942220 + 0.334995i \(0.108735\pi\)
−0.942220 + 0.334995i \(0.891265\pi\)
\(398\) 0 0
\(399\) −1.92354e6 −0.604878
\(400\) 0 0
\(401\) 1.41705e6 0.440072 0.220036 0.975492i \(-0.429382\pi\)
0.220036 + 0.975492i \(0.429382\pi\)
\(402\) 0 0
\(403\) 88757.7i 0.0272235i
\(404\) 0 0
\(405\) 222225. + 291782.i 0.0673218 + 0.0883938i
\(406\) 0 0
\(407\) 5.18768e6i 1.55234i
\(408\) 0 0
\(409\) −1.07044e6 −0.316414 −0.158207 0.987406i \(-0.550571\pi\)
−0.158207 + 0.987406i \(0.550571\pi\)
\(410\) 0 0
\(411\) 1.25614e6 0.366803
\(412\) 0 0
\(413\) 3.40798e6i 0.983154i
\(414\) 0 0
\(415\) 3.85574e6 2.93658e6i 1.09897 0.836992i
\(416\) 0 0
\(417\) 2.37431e6i 0.668648i
\(418\) 0 0
\(419\) −2.75665e6 −0.767090 −0.383545 0.923522i \(-0.625297\pi\)
−0.383545 + 0.923522i \(0.625297\pi\)
\(420\) 0 0
\(421\) −3.32521e6 −0.914352 −0.457176 0.889376i \(-0.651139\pi\)
−0.457176 + 0.889376i \(0.651139\pi\)
\(422\) 0 0
\(423\) 1.16019e6i 0.315267i
\(424\) 0 0
\(425\) 2.08724e6 + 575445.i 0.560533 + 0.154537i
\(426\) 0 0
\(427\) 3.28169e6i 0.871018i
\(428\) 0 0
\(429\) 169548. 0.0444785
\(430\) 0 0
\(431\) 1.26909e6 0.329078 0.164539 0.986371i \(-0.447386\pi\)
0.164539 + 0.986371i \(0.447386\pi\)
\(432\) 0 0
\(433\) 5.17143e6i 1.32553i −0.748826 0.662767i \(-0.769382\pi\)
0.748826 0.662767i \(-0.230618\pi\)
\(434\) 0 0
\(435\) 755157. 575137.i 0.191344 0.145730i
\(436\) 0 0
\(437\) 1.02667e7i 2.57174i
\(438\) 0 0
\(439\) 6.78923e6 1.68136 0.840678 0.541536i \(-0.182157\pi\)
0.840678 + 0.541536i \(0.182157\pi\)
\(440\) 0 0
\(441\) −764247. −0.187127
\(442\) 0 0
\(443\) 3.16608e6i 0.766500i 0.923645 + 0.383250i \(0.125195\pi\)
−0.923645 + 0.383250i \(0.874805\pi\)
\(444\) 0 0
\(445\) 3.41531e6 + 4.48431e6i 0.817579 + 1.07348i
\(446\) 0 0
\(447\) 3.09755e6i 0.733245i
\(448\) 0 0
\(449\) −4.91937e6 −1.15158 −0.575790 0.817598i \(-0.695305\pi\)
−0.575790 + 0.817598i \(0.695305\pi\)
\(450\) 0 0
\(451\) 7.45238e6 1.72526
\(452\) 0 0
\(453\) 110581.i 0.0253184i
\(454\) 0 0
\(455\) 112245. + 147378.i 0.0254177 + 0.0333736i
\(456\) 0 0
\(457\) 7.30601e6i 1.63640i 0.574932 + 0.818201i \(0.305028\pi\)
−0.574932 + 0.818201i \(0.694972\pi\)
\(458\) 0 0
\(459\) 505078. 0.111899
\(460\) 0 0
\(461\) −2.52155e6 −0.552606 −0.276303 0.961071i \(-0.589109\pi\)
−0.276303 + 0.961071i \(0.589109\pi\)
\(462\) 0 0
\(463\) 6.44859e6i 1.39802i −0.715114 0.699008i \(-0.753625\pi\)
0.715114 0.699008i \(-0.246375\pi\)
\(464\) 0 0
\(465\) −920415. + 700999.i −0.197402 + 0.150344i
\(466\) 0 0
\(467\) 5.39798e6i 1.14535i −0.819782 0.572676i \(-0.805905\pi\)
0.819782 0.572676i \(-0.194095\pi\)
\(468\) 0 0
\(469\) 121610. 0.0255291
\(470\) 0 0
\(471\) 2.16634e6 0.449960
\(472\) 0 0
\(473\) 4.62130e6i 0.949755i
\(474\) 0 0
\(475\) 2.06749e6 7.49915e6i 0.420444 1.52503i
\(476\) 0 0
\(477\) 1.12736e6i 0.226865i
\(478\) 0 0
\(479\) −5.25882e6 −1.04725 −0.523624 0.851950i \(-0.675420\pi\)
−0.523624 + 0.851950i \(0.675420\pi\)
\(480\) 0 0
\(481\) 410233. 0.0808477
\(482\) 0 0
\(483\) 3.18707e6i 0.621619i
\(484\) 0 0
\(485\) 1.77493e6 1.35181e6i 0.342631 0.260952i
\(486\) 0 0
\(487\) 5.61141e6i 1.07214i 0.844175 + 0.536068i \(0.180091\pi\)
−0.844175 + 0.536068i \(0.819909\pi\)
\(488\) 0 0
\(489\) 5.08823e6 0.962265
\(490\) 0 0
\(491\) 5.14176e6 0.962516 0.481258 0.876579i \(-0.340180\pi\)
0.481258 + 0.876579i \(0.340180\pi\)
\(492\) 0 0
\(493\) 1.30718e6i 0.242225i
\(494\) 0 0
\(495\) 1.33908e6 + 1.75821e6i 0.245636 + 0.322521i
\(496\) 0 0
\(497\) 999151.i 0.181443i
\(498\) 0 0
\(499\) −4.53158e6 −0.814701 −0.407350 0.913272i \(-0.633547\pi\)
−0.407350 + 0.913272i \(0.633547\pi\)
\(500\) 0 0
\(501\) 3.69934e6 0.658461
\(502\) 0 0
\(503\) 3.93518e6i 0.693497i 0.937958 + 0.346749i \(0.112714\pi\)
−0.937958 + 0.346749i \(0.887286\pi\)
\(504\) 0 0
\(505\) −3.96784e6 5.20979e6i −0.692350 0.909058i
\(506\) 0 0
\(507\) 3.32823e6i 0.575034i
\(508\) 0 0
\(509\) 1.37582e6 0.235378 0.117689 0.993050i \(-0.462451\pi\)
0.117689 + 0.993050i \(0.462451\pi\)
\(510\) 0 0
\(511\) −2.66869e6 −0.452112
\(512\) 0 0
\(513\) 1.81467e6i 0.304441i
\(514\) 0 0
\(515\) 11829.6 9009.57i 0.00196541 0.00149688i
\(516\) 0 0
\(517\) 6.99103e6i 1.15031i
\(518\) 0 0
\(519\) −1.69844e6 −0.276779
\(520\) 0 0
\(521\) −7.67174e6 −1.23822 −0.619112 0.785302i \(-0.712507\pi\)
−0.619112 + 0.785302i \(0.712507\pi\)
\(522\) 0 0
\(523\) 1.16971e7i 1.86993i 0.354743 + 0.934964i \(0.384568\pi\)
−0.354743 + 0.934964i \(0.615432\pi\)
\(524\) 0 0
\(525\) −641806. + 2.32795e6i −0.101626 + 0.368616i
\(526\) 0 0
\(527\) 1.59325e6i 0.249894i
\(528\) 0 0
\(529\) −1.05744e7 −1.64292
\(530\) 0 0
\(531\) 3.21509e6 0.494831
\(532\) 0 0
\(533\) 589321.i 0.0898533i
\(534\) 0 0
\(535\) 5.34341e6 4.06960e6i 0.807112 0.614706i
\(536\) 0 0
\(537\) 5.41777e6i 0.810745i
\(538\) 0 0
\(539\) −4.60517e6 −0.682769
\(540\) 0 0
\(541\) −3.26111e6 −0.479041 −0.239521 0.970891i \(-0.576990\pi\)
−0.239521 + 0.970891i \(0.576990\pi\)
\(542\) 0 0
\(543\) 7.52429e6i 1.09513i
\(544\) 0 0
\(545\) 4.59173e6 + 6.02896e6i 0.662194 + 0.869463i
\(546\) 0 0
\(547\) 707108.i 0.101046i 0.998723 + 0.0505228i \(0.0160888\pi\)
−0.998723 + 0.0505228i \(0.983911\pi\)
\(548\) 0 0
\(549\) −3.09595e6 −0.438392
\(550\) 0 0
\(551\) −4.69651e6 −0.659016
\(552\) 0 0
\(553\) 3.73285e6i 0.519072i
\(554\) 0 0
\(555\) 3.23998e6 + 4.25410e6i 0.446488 + 0.586240i
\(556\) 0 0
\(557\) 2.55292e6i 0.348657i 0.984688 + 0.174329i \(0.0557755\pi\)
−0.984688 + 0.174329i \(0.944224\pi\)
\(558\) 0 0
\(559\) 365445. 0.0494643
\(560\) 0 0
\(561\) 3.04348e6 0.408285
\(562\) 0 0
\(563\) 1.60880e6i 0.213910i 0.994264 + 0.106955i \(0.0341101\pi\)
−0.994264 + 0.106955i \(0.965890\pi\)
\(564\) 0 0
\(565\) 4.18308e6 3.18589e6i 0.551284 0.419865i
\(566\) 0 0
\(567\) 563324.i 0.0735869i
\(568\) 0 0
\(569\) −1.25953e7 −1.63091 −0.815453 0.578823i \(-0.803512\pi\)
−0.815453 + 0.578823i \(0.803512\pi\)
\(570\) 0 0
\(571\) 2.22289e6 0.285317 0.142659 0.989772i \(-0.454435\pi\)
0.142659 + 0.989772i \(0.454435\pi\)
\(572\) 0 0
\(573\) 4.52429e6i 0.575657i
\(574\) 0 0
\(575\) −1.24252e7 3.42558e6i −1.56723 0.432080i
\(576\) 0 0
\(577\) 8.71842e6i 1.09018i 0.838377 + 0.545090i \(0.183505\pi\)
−0.838377 + 0.545090i \(0.816495\pi\)
\(578\) 0 0
\(579\) −6.58039e6 −0.815746
\(580\) 0 0
\(581\) 7.44401e6 0.914885
\(582\) 0 0
\(583\) 6.79322e6i 0.827760i
\(584\) 0 0
\(585\) −139036. + 105892.i −0.0167973 + 0.0127930i
\(586\) 0 0
\(587\) 3.00682e6i 0.360174i −0.983651 0.180087i \(-0.942362\pi\)
0.983651 0.180087i \(-0.0576379\pi\)
\(588\) 0 0
\(589\) 5.72429e6 0.679882
\(590\) 0 0
\(591\) −7.84700e6 −0.924133
\(592\) 0 0
\(593\) 224622.i 0.0262311i −0.999914 0.0131155i \(-0.995825\pi\)
0.999914 0.0131155i \(-0.00417493\pi\)
\(594\) 0 0
\(595\) 2.01485e6 + 2.64550e6i 0.233319 + 0.306349i
\(596\) 0 0
\(597\) 911795.i 0.104704i
\(598\) 0 0
\(599\) 1.14533e7 1.30426 0.652129 0.758108i \(-0.273876\pi\)
0.652129 + 0.758108i \(0.273876\pi\)
\(600\) 0 0
\(601\) −1.17677e7 −1.32894 −0.664470 0.747315i \(-0.731343\pi\)
−0.664470 + 0.747315i \(0.731343\pi\)
\(602\) 0 0
\(603\) 114727.i 0.0128491i
\(604\) 0 0
\(605\) 2.61406e6 + 3.43227e6i 0.290353 + 0.381235i
\(606\) 0 0
\(607\) 1.24589e6i 0.137248i 0.997643 + 0.0686242i \(0.0218609\pi\)
−0.997643 + 0.0686242i \(0.978139\pi\)
\(608\) 0 0
\(609\) 1.45793e6 0.159292
\(610\) 0 0
\(611\) −552838. −0.0599094
\(612\) 0 0
\(613\) 1.45412e7i 1.56296i 0.623931 + 0.781480i \(0.285535\pi\)
−0.623931 + 0.781480i \(0.714465\pi\)
\(614\) 0 0
\(615\) −6.11124e6 + 4.65440e6i −0.651541 + 0.496221i
\(616\) 0 0
\(617\) 5.06609e6i 0.535747i −0.963454 0.267874i \(-0.913679\pi\)
0.963454 0.267874i \(-0.0863209\pi\)
\(618\) 0 0
\(619\) −1.03229e7 −1.08287 −0.541435 0.840742i \(-0.682119\pi\)
−0.541435 + 0.840742i \(0.682119\pi\)
\(620\) 0 0
\(621\) −3.00669e6 −0.312867
\(622\) 0 0
\(623\) 8.65755e6i 0.893665i
\(624\) 0 0
\(625\) −8.38595e6 5.00432e6i −0.858722 0.512442i
\(626\) 0 0
\(627\) 1.09348e7i 1.11081i
\(628\) 0 0
\(629\) 7.36389e6 0.742132
\(630\) 0 0
\(631\) 1.27332e7 1.27310 0.636552 0.771234i \(-0.280360\pi\)
0.636552 + 0.771234i \(0.280360\pi\)
\(632\) 0 0
\(633\) 6.52638e6i 0.647386i
\(634\) 0 0
\(635\) −5.26870e6 + 4.01270e6i −0.518524 + 0.394914i
\(636\) 0 0
\(637\) 364169.i 0.0355594i
\(638\) 0 0
\(639\) 942602. 0.0913221
\(640\) 0 0
\(641\) 1.37535e7 1.32211 0.661057 0.750336i \(-0.270108\pi\)
0.661057 + 0.750336i \(0.270108\pi\)
\(642\) 0 0
\(643\) 1.62140e7i 1.54654i −0.634075 0.773272i \(-0.718619\pi\)
0.634075 0.773272i \(-0.281381\pi\)
\(644\) 0 0
\(645\) 2.88624e6 + 3.78965e6i 0.273170 + 0.358674i
\(646\) 0 0
\(647\) 1.27009e7i 1.19282i 0.802680 + 0.596410i \(0.203407\pi\)
−0.802680 + 0.596410i \(0.796593\pi\)
\(648\) 0 0
\(649\) 1.93734e7 1.80548
\(650\) 0 0
\(651\) −1.77698e6 −0.164335
\(652\) 0 0
\(653\) 1.73886e7i 1.59581i 0.602781 + 0.797907i \(0.294059\pi\)
−0.602781 + 0.797907i \(0.705941\pi\)
\(654\) 0 0
\(655\) −7.89179e6 1.03620e7i −0.718740 0.943709i
\(656\) 0 0
\(657\) 2.51765e6i 0.227552i
\(658\) 0 0
\(659\) 1.26691e7 1.13640 0.568200 0.822891i \(-0.307640\pi\)
0.568200 + 0.822891i \(0.307640\pi\)
\(660\) 0 0
\(661\) 6.69054e6 0.595604 0.297802 0.954628i \(-0.403746\pi\)
0.297802 + 0.954628i \(0.403746\pi\)
\(662\) 0 0
\(663\) 240673.i 0.0212639i
\(664\) 0 0
\(665\) 9.50489e6 7.23904e6i 0.833476 0.634785i
\(666\) 0 0
\(667\) 7.78157e6i 0.677255i
\(668\) 0 0
\(669\) 6.12561e6 0.529156
\(670\) 0 0
\(671\) −1.86555e7 −1.59956
\(672\) 0 0
\(673\) 1.31246e7i 1.11699i −0.829509 0.558494i \(-0.811379\pi\)
0.829509 0.558494i \(-0.188621\pi\)
\(674\) 0 0
\(675\) −2.19619e6 605481.i −0.185528 0.0511494i
\(676\) 0 0
\(677\) 6.74331e6i 0.565460i −0.959200 0.282730i \(-0.908760\pi\)
0.959200 0.282730i \(-0.0912400\pi\)
\(678\) 0 0
\(679\) 3.42674e6 0.285237
\(680\) 0 0
\(681\) −9.09027e6 −0.751119
\(682\) 0 0
\(683\) 1.57439e7i 1.29140i −0.763593 0.645698i \(-0.776566\pi\)
0.763593 0.645698i \(-0.223434\pi\)
\(684\) 0 0
\(685\) −6.20703e6 + 4.72735e6i −0.505426 + 0.384939i
\(686\) 0 0
\(687\) 1.10466e7i 0.892972i
\(688\) 0 0
\(689\) 537196. 0.0431107
\(690\) 0 0
\(691\) −1.89262e7 −1.50789 −0.753943 0.656940i \(-0.771850\pi\)
−0.753943 + 0.656940i \(0.771850\pi\)
\(692\) 0 0
\(693\) 3.39446e6i 0.268496i
\(694\) 0 0
\(695\) 8.93549e6 + 1.17323e7i 0.701708 + 0.921345i
\(696\) 0 0
\(697\) 1.05786e7i 0.824797i
\(698\) 0 0
\(699\) 5.39535e6 0.417664
\(700\) 0 0
\(701\) 1.21080e7 0.930628 0.465314 0.885146i \(-0.345941\pi\)
0.465314 + 0.885146i \(0.345941\pi\)
\(702\) 0 0
\(703\) 2.64573e7i 2.01910i
\(704\) 0 0
\(705\) −4.36626e6 5.73292e6i −0.330854 0.434413i
\(706\) 0 0
\(707\) 1.00582e7i 0.756782i
\(708\) 0 0
\(709\) 1.59350e6 0.119052 0.0595259 0.998227i \(-0.481041\pi\)
0.0595259 + 0.998227i \(0.481041\pi\)
\(710\) 0 0
\(711\) −3.52158e6 −0.261254
\(712\) 0 0
\(713\) 9.48447e6i 0.698698i
\(714\) 0 0
\(715\) −837800. + 638079.i −0.0612880 + 0.0466777i
\(716\) 0 0
\(717\) 1.23446e7i 0.896763i
\(718\) 0 0
\(719\) 1.65457e7 1.19361 0.596806 0.802386i \(-0.296436\pi\)
0.596806 + 0.802386i \(0.296436\pi\)
\(720\) 0 0
\(721\) 22838.6 0.00163618
\(722\) 0 0
\(723\) 1.23171e7i 0.876323i
\(724\) 0 0
\(725\) −1.56703e6 + 5.68392e6i −0.110722 + 0.401608i
\(726\) 0 0
\(727\) 1.71115e7i 1.20075i −0.799720 0.600373i \(-0.795019\pi\)
0.799720 0.600373i \(-0.204981\pi\)
\(728\) 0 0
\(729\) −531441. −0.0370370
\(730\) 0 0
\(731\) 6.55992e6 0.454051
\(732\) 0 0
\(733\) 1.21563e7i 0.835683i −0.908520 0.417841i \(-0.862787\pi\)
0.908520 0.417841i \(-0.137213\pi\)
\(734\) 0 0
\(735\) 3.77642e6 2.87617e6i 0.257847 0.196379i
\(736\) 0 0
\(737\) 691317.i 0.0468823i
\(738\) 0 0
\(739\) −981165. −0.0660893 −0.0330446 0.999454i \(-0.510520\pi\)
−0.0330446 + 0.999454i \(0.510520\pi\)
\(740\) 0 0
\(741\) 864702. 0.0578523
\(742\) 0 0
\(743\) 2.75144e6i 0.182847i 0.995812 + 0.0914237i \(0.0291417\pi\)
−0.995812 + 0.0914237i \(0.970858\pi\)
\(744\) 0 0
\(745\) −1.16573e7 1.53061e7i −0.769498 1.01035i
\(746\) 0 0
\(747\) 7.02269e6i 0.460471i
\(748\) 0 0
\(749\) 1.03161e7 0.671912
\(750\) 0 0
\(751\) 2.03594e6 0.131724 0.0658622 0.997829i \(-0.479020\pi\)
0.0658622 + 0.997829i \(0.479020\pi\)
\(752\) 0 0
\(753\) 6.57263e6i 0.422427i
\(754\) 0 0
\(755\) −416161. 546421.i −0.0265702 0.0348867i
\(756\) 0 0
\(757\) 2.50989e7i 1.59189i 0.605366 + 0.795947i \(0.293027\pi\)
−0.605366 + 0.795947i \(0.706973\pi\)
\(758\) 0 0
\(759\) −1.81176e7 −1.14155
\(760\) 0 0
\(761\) 715007. 0.0447557 0.0223779 0.999750i \(-0.492876\pi\)
0.0223779 + 0.999750i \(0.492876\pi\)
\(762\) 0 0
\(763\) 1.16397e7i 0.723819i
\(764\) 0 0
\(765\) −2.49577e6 + 1.90081e6i −0.154188 + 0.117432i
\(766\) 0 0
\(767\) 1.53201e6i 0.0940317i
\(768\) 0 0
\(769\) 2.97361e6 0.181329 0.0906646 0.995881i \(-0.471101\pi\)
0.0906646 + 0.995881i \(0.471101\pi\)
\(770\) 0 0
\(771\) 1.23149e7 0.746095
\(772\) 0 0
\(773\) 2.89819e7i 1.74453i 0.489035 + 0.872264i \(0.337349\pi\)
−0.489035 + 0.872264i \(0.662651\pi\)
\(774\) 0 0
\(775\) 1.90996e6 6.92778e6i 0.114227 0.414324i
\(776\) 0 0
\(777\) 8.21310e6i 0.488039i
\(778\) 0 0
\(779\) 3.80073e7 2.24400
\(780\) 0 0
\(781\) 5.67989e6 0.333206
\(782\) 0 0
\(783\) 1.37541e6i 0.0801731i
\(784\) 0 0
\(785\) −1.07047e7 + 8.15280e6i −0.620011 + 0.472208i
\(786\) 0 0
\(787\) 3.25612e7i 1.87397i 0.349364 + 0.936987i \(0.386398\pi\)
−0.349364 + 0.936987i \(0.613602\pi\)
\(788\) 0 0
\(789\) 1.13638e7 0.649879
\(790\) 0 0
\(791\) 8.07598e6 0.458938
\(792\) 0 0
\(793\) 1.47524e6i 0.0833067i
\(794\) 0 0
\(795\) 4.24272e6 + 5.57071e6i 0.238082 + 0.312603i
\(796\) 0 0
\(797\) 1.77148e7i 0.987848i −0.869505 0.493924i \(-0.835562\pi\)
0.869505 0.493924i \(-0.164438\pi\)
\(798\) 0 0
\(799\) −9.92373e6 −0.549931
\(800\) 0 0
\(801\) −8.16755e6 −0.449791
\(802\) 0 0
\(803\) 1.51707e7i 0.830268i
\(804\) 0 0
\(805\) −1.19942e7 1.57485e7i −0.652353 0.856543i
\(806\) 0 0
\(807\) 5.87606e6i 0.317616i
\(808\) 0 0
\(809\) 2.42153e6 0.130083 0.0650413 0.997883i \(-0.479282\pi\)
0.0650413 + 0.997883i \(0.479282\pi\)
\(810\) 0 0
\(811\) −6.47458e6 −0.345668 −0.172834 0.984951i \(-0.555292\pi\)
−0.172834 + 0.984951i \(0.555292\pi\)
\(812\) 0 0
\(813\) 5.84164e6i 0.309962i
\(814\) 0 0
\(815\) −2.51428e7 + 1.91491e7i −1.32593 + 1.00984i
\(816\) 0 0
\(817\) 2.35688e7i 1.23533i
\(818\) 0 0
\(819\) −268428. −0.0139836
\(820\) 0 0
\(821\) −5.71963e6 −0.296149 −0.148074 0.988976i \(-0.547308\pi\)
−0.148074 + 0.988976i \(0.547308\pi\)
\(822\) 0 0
\(823\) 1.45747e7i 0.750066i 0.927011 + 0.375033i \(0.122369\pi\)
−0.927011 + 0.375033i \(0.877631\pi\)
\(824\) 0 0
\(825\) −1.32337e7 3.64848e6i −0.676935 0.186628i
\(826\) 0 0
\(827\) 5.71684e6i 0.290664i 0.989383 + 0.145332i \(0.0464251\pi\)
−0.989383 + 0.145332i \(0.953575\pi\)
\(828\) 0 0
\(829\) 3.16906e7 1.60156 0.800781 0.598958i \(-0.204418\pi\)
0.800781 + 0.598958i \(0.204418\pi\)
\(830\) 0 0
\(831\) −6.01650e6 −0.302233
\(832\) 0 0
\(833\) 6.53702e6i 0.326413i
\(834\) 0 0
\(835\) −1.82798e7 + 1.39221e7i −0.907309 + 0.691017i
\(836\) 0 0
\(837\) 1.67641e6i 0.0827115i
\(838\) 0 0
\(839\) 1.30388e7 0.639487 0.319744 0.947504i \(-0.396403\pi\)
0.319744 + 0.947504i \(0.396403\pi\)
\(840\) 0 0
\(841\) −1.69515e7 −0.826451
\(842\) 0 0
\(843\) 9.29910e6i 0.450684i
\(844\) 0 0
\(845\) 1.25255e7 + 1.64460e7i 0.603465 + 0.792352i
\(846\) 0 0
\(847\) 6.62644e6i 0.317374i
\(848\) 0 0
\(849\) −3.46399e6 −0.164933
\(850\) 0 0
\(851\) −4.38367e7 −2.07498
\(852\) 0 0
\(853\) 1.19404e6i 0.0561883i −0.999605 0.0280941i \(-0.991056\pi\)
0.999605 0.0280941i \(-0.00894382\pi\)
\(854\) 0 0
\(855\) 6.82932e6 + 8.96693e6i 0.319494 + 0.419497i
\(856\) 0 0
\(857\) 1.25697e7i 0.584617i 0.956324 + 0.292309i \(0.0944234\pi\)
−0.956324 + 0.292309i \(0.905577\pi\)
\(858\) 0 0
\(859\) 8.48043e6 0.392135 0.196067 0.980590i \(-0.437183\pi\)
0.196067 + 0.980590i \(0.437183\pi\)
\(860\) 0 0
\(861\) −1.17985e7 −0.542401
\(862\) 0 0
\(863\) 1.53122e6i 0.0699859i −0.999388 0.0349929i \(-0.988859\pi\)
0.999388 0.0349929i \(-0.0111409\pi\)
\(864\) 0 0
\(865\) 8.39263e6 6.39193e6i 0.381380 0.290464i
\(866\) 0 0
\(867\) 8.45850e6i 0.382161i
\(868\) 0 0
\(869\) −2.12202e7 −0.953235
\(870\) 0 0
\(871\) −54668.1 −0.00244168
\(872\) 0 0
\(873\) 3.23279e6i 0.143563i
\(874\) 0 0
\(875\) −5.58960e6 1.39186e7i −0.246809 0.614576i
\(876\) 0 0
\(877\) 3.58663e7i 1.57466i −0.616530 0.787331i \(-0.711462\pi\)
0.616530 0.787331i \(-0.288538\pi\)
\(878\) 0 0
\(879\) 672777. 0.0293697
\(880\) 0 0
\(881\) −2.74419e7 −1.19117 −0.595586 0.803291i \(-0.703080\pi\)
−0.595586 + 0.803291i \(0.703080\pi\)
\(882\) 0 0
\(883\) 1.71743e7i 0.741273i 0.928778 + 0.370637i \(0.120861\pi\)
−0.928778 + 0.370637i \(0.879139\pi\)
\(884\) 0 0
\(885\) −1.58869e7 + 1.20997e7i −0.681839 + 0.519297i
\(886\) 0 0
\(887\) 9.60304e6i 0.409826i 0.978780 + 0.204913i \(0.0656912\pi\)
−0.978780 + 0.204913i \(0.934309\pi\)
\(888\) 0 0
\(889\) −1.01719e7 −0.431666
\(890\) 0 0
\(891\) −3.20234e6 −0.135137
\(892\) 0 0
\(893\) 3.56544e7i 1.49618i
\(894\) 0 0
\(895\) 2.03892e7 + 2.67711e7i 0.850831 + 1.11714i
\(896\) 0 0
\(897\) 1.43271e6i 0.0594534i
\(898\) 0 0
\(899\) −4.33868e6 −0.179043
\(900\) 0 0
\(901\) 9.64295e6 0.395729
\(902\) 0 0
\(903\) 7.31641e6i 0.298592i
\(904\) 0 0
\(905\) −2.83169e7 3.71802e7i −1.14928 1.50900i
\(906\) 0 0
\(907\) 4.28904e7i 1.73118i 0.500754 + 0.865590i \(0.333056\pi\)
−0.500754 + 0.865590i \(0.666944\pi\)
\(908\) 0 0
\(909\) 9.48890e6 0.380896
\(910\) 0 0
\(911\) 2.43996e7 0.974061 0.487031 0.873385i \(-0.338080\pi\)
0.487031 + 0.873385i \(0.338080\pi\)
\(912\) 0 0
\(913\) 4.23171e7i 1.68011i
\(914\) 0 0
\(915\) 1.52982e7 1.16513e7i 0.604071 0.460068i
\(916\) 0 0
\(917\) 2.00051e7i 0.785628i
\(918\) 0 0
\(919\) 4.90096e7 1.91422 0.957112 0.289719i \(-0.0935617\pi\)
0.957112 + 0.289719i \(0.0935617\pi\)
\(920\) 0 0
\(921\) 1.77290e7 0.688707
\(922\) 0 0
\(923\) 449156.i 0.0173537i
\(924\) 0 0
\(925\) −3.20198e7 8.82774e6i −1.23045 0.339231i
\(926\) 0 0
\(927\) 21546.0i 0.000823506i
\(928\) 0 0
\(929\) −4.34428e7 −1.65150 −0.825750 0.564036i \(-0.809248\pi\)
−0.825750 + 0.564036i \(0.809248\pi\)
\(930\) 0 0
\(931\) −2.34865e7 −0.888064
\(932\) 0 0
\(933\) 1.73313e7i 0.651820i
\(934\) 0 0
\(935\) −1.50389e7 + 1.14538e7i −0.562585 + 0.428472i
\(936\) 0 0
\(937\) 2.45065e6i 0.0911868i 0.998960 + 0.0455934i \(0.0145179\pi\)
−0.998960 + 0.0455934i \(0.985482\pi\)
\(938\) 0 0
\(939\) 9.46141e6 0.350181
\(940\) 0 0
\(941\) 9.14331e6 0.336612 0.168306 0.985735i \(-0.446170\pi\)
0.168306 + 0.985735i \(0.446170\pi\)
\(942\) 0 0
\(943\) 6.29737e7i 2.30611i
\(944\) 0 0
\(945\) −2.12001e6 2.78359e6i −0.0772252 0.101397i
\(946\) 0 0
\(947\) 1.87759e7i 0.680341i −0.940364 0.340171i \(-0.889515\pi\)
0.940364 0.340171i \(-0.110485\pi\)
\(948\) 0 0
\(949\) 1.19968e6 0.0432413
\(950\) 0 0
\(951\) 2.41622e7 0.866334
\(952\) 0 0
\(953\) 5.76978e6i 0.205791i 0.994692 + 0.102896i \(0.0328108\pi\)
−0.994692 + 0.102896i \(0.967189\pi\)
\(954\) 0 0
\(955\) 1.70267e7 + 2.23561e7i 0.604118 + 0.793210i
\(956\) 0 0
\(957\) 8.28791e6i 0.292527i
\(958\) 0 0
\(959\) −1.19835e7 −0.420762
\(960\) 0 0
\(961\) −2.33410e7 −0.815288
\(962\) 0 0
\(963\) 9.73227e6i 0.338180i
\(964\) 0 0
\(965\) 3.25161e7 2.47646e7i 1.12403 0.856078i
\(966\) 0 0
\(967\) 2.51533e6i 0.0865024i −0.999064 0.0432512i \(-0.986228\pi\)
0.999064 0.0432512i \(-0.0137716\pi\)
\(968\) 0 0
\(969\) 1.55218e7 0.531048
\(970\) 0 0
\(971\) 3.98957e7 1.35793 0.678966 0.734170i \(-0.262428\pi\)
0.678966 + 0.734170i \(0.262428\pi\)
\(972\) 0 0
\(973\) 2.26508e7i 0.767011i
\(974\) 0 0
\(975\) 288516. 1.04650e6i 0.00971981 0.0352555i
\(976\) 0 0
\(977\) 5.40009e7i 1.80994i 0.425473 + 0.904971i \(0.360108\pi\)
−0.425473 + 0.904971i \(0.639892\pi\)
\(978\) 0 0
\(979\) −4.92157e7 −1.64115
\(980\) 0 0
\(981\) −1.09809e7 −0.364306
\(982\) 0 0
\(983\) 3.78231e7i 1.24846i −0.781242 0.624228i \(-0.785414\pi\)
0.781242 0.624228i \(-0.214586\pi\)
\(984\) 0 0
\(985\) 3.87748e7 2.95314e7i 1.27338 0.969825i
\(986\) 0 0
\(987\) 1.10681e7i 0.361644i
\(988\) 0 0
\(989\) −3.90507e7 −1.26952
\(990\) 0 0
\(991\) 5.61819e6 0.181724 0.0908620 0.995863i \(-0.471038\pi\)
0.0908620 + 0.995863i \(0.471038\pi\)
\(992\) 0 0
\(993\) 1.35410e7i 0.435792i
\(994\) 0 0
\(995\) 3.43145e6 + 4.50551e6i 0.109880 + 0.144273i
\(996\) 0 0
\(997\) 4.35983e7i 1.38910i −0.719447 0.694548i \(-0.755605\pi\)
0.719447 0.694548i \(-0.244395\pi\)
\(998\) 0 0
\(999\) −7.74826e6 −0.245635
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 120.6.f.a.49.2 6
3.2 odd 2 360.6.f.a.289.3 6
4.3 odd 2 240.6.f.e.49.5 6
5.2 odd 4 600.6.a.r.1.1 3
5.3 odd 4 600.6.a.s.1.3 3
5.4 even 2 inner 120.6.f.a.49.5 yes 6
12.11 even 2 720.6.f.l.289.3 6
15.14 odd 2 360.6.f.a.289.4 6
20.19 odd 2 240.6.f.e.49.2 6
60.59 even 2 720.6.f.l.289.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.6.f.a.49.2 6 1.1 even 1 trivial
120.6.f.a.49.5 yes 6 5.4 even 2 inner
240.6.f.e.49.2 6 20.19 odd 2
240.6.f.e.49.5 6 4.3 odd 2
360.6.f.a.289.3 6 3.2 odd 2
360.6.f.a.289.4 6 15.14 odd 2
600.6.a.r.1.1 3 5.2 odd 4
600.6.a.s.1.3 3 5.3 odd 4
720.6.f.l.289.3 6 12.11 even 2
720.6.f.l.289.4 6 60.59 even 2