Properties

Label 600.6.a.r.1.1
Level $600$
Weight $6$
Character 600.1
Self dual yes
Analytic conductor $96.230$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,6,Mod(1,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(96.2302918878\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.20073.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 30x - 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 5 \)
Twist minimal: no (minimal twist has level 120)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(6.33429\) of defining polynomial
Character \(\chi\) \(=\) 600.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000 q^{3} -85.8595 q^{7} +81.0000 q^{9} -488.087 q^{11} -38.5971 q^{13} +692.837 q^{17} +2489.26 q^{19} +772.735 q^{21} +4124.41 q^{23} -729.000 q^{27} -1886.71 q^{29} -2299.60 q^{31} +4392.78 q^{33} -10628.6 q^{37} +347.373 q^{39} -15268.5 q^{41} +9468.20 q^{43} +14323.3 q^{47} -9435.15 q^{49} -6235.53 q^{51} +13918.1 q^{53} -22403.3 q^{57} +39692.5 q^{59} +38221.6 q^{61} -6954.62 q^{63} +1416.38 q^{67} -37119.6 q^{69} -11637.1 q^{71} +31082.1 q^{73} +41906.9 q^{77} -43476.3 q^{79} +6561.00 q^{81} -86699.9 q^{83} +16980.4 q^{87} -100834. q^{89} +3313.92 q^{91} +20696.4 q^{93} +39911.0 q^{97} -39535.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 27 q^{3} + 104 q^{7} + 243 q^{9} - 332 q^{11} + 88 q^{13} - 1116 q^{17} - 144 q^{19} - 936 q^{21} + 2868 q^{23} - 2187 q^{27} + 946 q^{29} - 5124 q^{31} + 2988 q^{33} - 7808 q^{37} - 792 q^{39} - 662 q^{41}+ \cdots - 26892 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −85.8595 −0.662282 −0.331141 0.943581i \(-0.607434\pi\)
−0.331141 + 0.943581i \(0.607434\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) −488.087 −1.21623 −0.608114 0.793849i \(-0.708074\pi\)
−0.608114 + 0.793849i \(0.708074\pi\)
\(12\) 0 0
\(13\) −38.5971 −0.0633426 −0.0316713 0.999498i \(-0.510083\pi\)
−0.0316713 + 0.999498i \(0.510083\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 692.837 0.581445 0.290723 0.956807i \(-0.406104\pi\)
0.290723 + 0.956807i \(0.406104\pi\)
\(18\) 0 0
\(19\) 2489.26 1.58192 0.790962 0.611865i \(-0.209581\pi\)
0.790962 + 0.611865i \(0.209581\pi\)
\(20\) 0 0
\(21\) 772.735 0.382369
\(22\) 0 0
\(23\) 4124.41 1.62571 0.812853 0.582470i \(-0.197913\pi\)
0.812853 + 0.582470i \(0.197913\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) −1886.71 −0.416592 −0.208296 0.978066i \(-0.566792\pi\)
−0.208296 + 0.978066i \(0.566792\pi\)
\(30\) 0 0
\(31\) −2299.60 −0.429781 −0.214891 0.976638i \(-0.568940\pi\)
−0.214891 + 0.976638i \(0.568940\pi\)
\(32\) 0 0
\(33\) 4392.78 0.702190
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −10628.6 −1.27636 −0.638178 0.769888i \(-0.720312\pi\)
−0.638178 + 0.769888i \(0.720312\pi\)
\(38\) 0 0
\(39\) 347.373 0.0365709
\(40\) 0 0
\(41\) −15268.5 −1.41853 −0.709264 0.704943i \(-0.750973\pi\)
−0.709264 + 0.704943i \(0.750973\pi\)
\(42\) 0 0
\(43\) 9468.20 0.780901 0.390451 0.920624i \(-0.372319\pi\)
0.390451 + 0.920624i \(0.372319\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 14323.3 0.945800 0.472900 0.881116i \(-0.343207\pi\)
0.472900 + 0.881116i \(0.343207\pi\)
\(48\) 0 0
\(49\) −9435.15 −0.561382
\(50\) 0 0
\(51\) −6235.53 −0.335698
\(52\) 0 0
\(53\) 13918.1 0.680596 0.340298 0.940318i \(-0.389472\pi\)
0.340298 + 0.940318i \(0.389472\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −22403.3 −0.913324
\(58\) 0 0
\(59\) 39692.5 1.48449 0.742247 0.670126i \(-0.233760\pi\)
0.742247 + 0.670126i \(0.233760\pi\)
\(60\) 0 0
\(61\) 38221.6 1.31518 0.657588 0.753377i \(-0.271577\pi\)
0.657588 + 0.753377i \(0.271577\pi\)
\(62\) 0 0
\(63\) −6954.62 −0.220761
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1416.38 0.0385472 0.0192736 0.999814i \(-0.493865\pi\)
0.0192736 + 0.999814i \(0.493865\pi\)
\(68\) 0 0
\(69\) −37119.6 −0.938601
\(70\) 0 0
\(71\) −11637.1 −0.273966 −0.136983 0.990573i \(-0.543741\pi\)
−0.136983 + 0.990573i \(0.543741\pi\)
\(72\) 0 0
\(73\) 31082.1 0.682657 0.341329 0.939944i \(-0.389123\pi\)
0.341329 + 0.939944i \(0.389123\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 41906.9 0.805487
\(78\) 0 0
\(79\) −43476.3 −0.783763 −0.391881 0.920016i \(-0.628176\pi\)
−0.391881 + 0.920016i \(0.628176\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −86699.9 −1.38141 −0.690706 0.723135i \(-0.742700\pi\)
−0.690706 + 0.723135i \(0.742700\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 16980.4 0.240519
\(88\) 0 0
\(89\) −100834. −1.34937 −0.674686 0.738105i \(-0.735721\pi\)
−0.674686 + 0.738105i \(0.735721\pi\)
\(90\) 0 0
\(91\) 3313.92 0.0419507
\(92\) 0 0
\(93\) 20696.4 0.248134
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 39911.0 0.430688 0.215344 0.976538i \(-0.430913\pi\)
0.215344 + 0.976538i \(0.430913\pi\)
\(98\) 0 0
\(99\) −39535.0 −0.405410
\(100\) 0 0
\(101\) −117147. −1.14269 −0.571344 0.820711i \(-0.693578\pi\)
−0.571344 + 0.820711i \(0.693578\pi\)
\(102\) 0 0
\(103\) −266.000 −0.00247052 −0.00123526 0.999999i \(-0.500393\pi\)
−0.00123526 + 0.999999i \(0.500393\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 120151. 1.01454 0.507270 0.861787i \(-0.330655\pi\)
0.507270 + 0.861787i \(0.330655\pi\)
\(108\) 0 0
\(109\) −135567. −1.09292 −0.546458 0.837486i \(-0.684024\pi\)
−0.546458 + 0.837486i \(0.684024\pi\)
\(110\) 0 0
\(111\) 95657.5 0.736905
\(112\) 0 0
\(113\) −94060.5 −0.692965 −0.346482 0.938056i \(-0.612624\pi\)
−0.346482 + 0.938056i \(0.612624\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −3126.36 −0.0211142
\(118\) 0 0
\(119\) −59486.6 −0.385081
\(120\) 0 0
\(121\) 77177.7 0.479213
\(122\) 0 0
\(123\) 137417. 0.818988
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −118472. −0.651786 −0.325893 0.945407i \(-0.605665\pi\)
−0.325893 + 0.945407i \(0.605665\pi\)
\(128\) 0 0
\(129\) −85213.8 −0.450854
\(130\) 0 0
\(131\) −232998. −1.18624 −0.593122 0.805113i \(-0.702105\pi\)
−0.593122 + 0.805113i \(0.702105\pi\)
\(132\) 0 0
\(133\) −213726. −1.04768
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −139571. −0.635321 −0.317661 0.948204i \(-0.602897\pi\)
−0.317661 + 0.948204i \(0.602897\pi\)
\(138\) 0 0
\(139\) −263812. −1.15813 −0.579066 0.815280i \(-0.696583\pi\)
−0.579066 + 0.815280i \(0.696583\pi\)
\(140\) 0 0
\(141\) −128910. −0.546058
\(142\) 0 0
\(143\) 18838.7 0.0770391
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 84916.4 0.324114
\(148\) 0 0
\(149\) 344172. 1.27002 0.635008 0.772505i \(-0.280997\pi\)
0.635008 + 0.772505i \(0.280997\pi\)
\(150\) 0 0
\(151\) −12286.8 −0.0438527 −0.0219263 0.999760i \(-0.506980\pi\)
−0.0219263 + 0.999760i \(0.506980\pi\)
\(152\) 0 0
\(153\) 56119.8 0.193815
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −240704. −0.779354 −0.389677 0.920952i \(-0.627413\pi\)
−0.389677 + 0.920952i \(0.627413\pi\)
\(158\) 0 0
\(159\) −125263. −0.392942
\(160\) 0 0
\(161\) −354119. −1.07668
\(162\) 0 0
\(163\) 565359. 1.66669 0.833346 0.552752i \(-0.186422\pi\)
0.833346 + 0.552752i \(0.186422\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −411038. −1.14049 −0.570244 0.821475i \(-0.693151\pi\)
−0.570244 + 0.821475i \(0.693151\pi\)
\(168\) 0 0
\(169\) −369803. −0.995988
\(170\) 0 0
\(171\) 201630. 0.527308
\(172\) 0 0
\(173\) −188716. −0.479395 −0.239698 0.970848i \(-0.577048\pi\)
−0.239698 + 0.970848i \(0.577048\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −357233. −0.857073
\(178\) 0 0
\(179\) −601974. −1.40425 −0.702126 0.712053i \(-0.747766\pi\)
−0.702126 + 0.712053i \(0.747766\pi\)
\(180\) 0 0
\(181\) −836032. −1.89682 −0.948410 0.317045i \(-0.897309\pi\)
−0.948410 + 0.317045i \(0.897309\pi\)
\(182\) 0 0
\(183\) −343994. −0.759318
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −338165. −0.707170
\(188\) 0 0
\(189\) 62591.6 0.127456
\(190\) 0 0
\(191\) 502698. 0.997066 0.498533 0.866871i \(-0.333872\pi\)
0.498533 + 0.866871i \(0.333872\pi\)
\(192\) 0 0
\(193\) −731154. −1.41291 −0.706457 0.707756i \(-0.749707\pi\)
−0.706457 + 0.707756i \(0.749707\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 871888. 1.60065 0.800323 0.599569i \(-0.204661\pi\)
0.800323 + 0.599569i \(0.204661\pi\)
\(198\) 0 0
\(199\) −101311. −0.181352 −0.0906760 0.995880i \(-0.528903\pi\)
−0.0906760 + 0.995880i \(0.528903\pi\)
\(200\) 0 0
\(201\) −12747.4 −0.0222553
\(202\) 0 0
\(203\) 161992. 0.275901
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 334077. 0.541902
\(208\) 0 0
\(209\) −1.21497e6 −1.92398
\(210\) 0 0
\(211\) −725153. −1.12130 −0.560652 0.828051i \(-0.689450\pi\)
−0.560652 + 0.828051i \(0.689450\pi\)
\(212\) 0 0
\(213\) 104734. 0.158175
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 197442. 0.284637
\(218\) 0 0
\(219\) −279739. −0.394132
\(220\) 0 0
\(221\) −26741.5 −0.0368302
\(222\) 0 0
\(223\) 680623. 0.916526 0.458263 0.888817i \(-0.348472\pi\)
0.458263 + 0.888817i \(0.348472\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.01003e6 1.30098 0.650488 0.759516i \(-0.274564\pi\)
0.650488 + 0.759516i \(0.274564\pi\)
\(228\) 0 0
\(229\) −1.22740e6 −1.54667 −0.773337 0.633996i \(-0.781414\pi\)
−0.773337 + 0.633996i \(0.781414\pi\)
\(230\) 0 0
\(231\) −377162. −0.465048
\(232\) 0 0
\(233\) 599483. 0.723415 0.361707 0.932292i \(-0.382194\pi\)
0.361707 + 0.932292i \(0.382194\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 391287. 0.452506
\(238\) 0 0
\(239\) −1.37162e6 −1.55324 −0.776620 0.629970i \(-0.783067\pi\)
−0.776620 + 0.629970i \(0.783067\pi\)
\(240\) 0 0
\(241\) 1.36857e6 1.51784 0.758918 0.651186i \(-0.225728\pi\)
0.758918 + 0.651186i \(0.225728\pi\)
\(242\) 0 0
\(243\) −59049.0 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −96078.0 −0.100203
\(248\) 0 0
\(249\) 780299. 0.797559
\(250\) 0 0
\(251\) 730293. 0.731666 0.365833 0.930681i \(-0.380784\pi\)
0.365833 + 0.930681i \(0.380784\pi\)
\(252\) 0 0
\(253\) −2.01307e6 −1.97723
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.36832e6 −1.29228 −0.646138 0.763221i \(-0.723617\pi\)
−0.646138 + 0.763221i \(0.723617\pi\)
\(258\) 0 0
\(259\) 912567. 0.845309
\(260\) 0 0
\(261\) −152824. −0.138864
\(262\) 0 0
\(263\) 1.26265e6 1.12562 0.562811 0.826585i \(-0.309720\pi\)
0.562811 + 0.826585i \(0.309720\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 907505. 0.779060
\(268\) 0 0
\(269\) 652896. 0.550127 0.275064 0.961426i \(-0.411301\pi\)
0.275064 + 0.961426i \(0.411301\pi\)
\(270\) 0 0
\(271\) −649071. −0.536870 −0.268435 0.963298i \(-0.586506\pi\)
−0.268435 + 0.963298i \(0.586506\pi\)
\(272\) 0 0
\(273\) −29825.3 −0.0242202
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 668500. 0.523482 0.261741 0.965138i \(-0.415703\pi\)
0.261741 + 0.965138i \(0.415703\pi\)
\(278\) 0 0
\(279\) −186267. −0.143260
\(280\) 0 0
\(281\) 1.03323e6 0.780607 0.390304 0.920686i \(-0.372370\pi\)
0.390304 + 0.920686i \(0.372370\pi\)
\(282\) 0 0
\(283\) −384887. −0.285672 −0.142836 0.989746i \(-0.545622\pi\)
−0.142836 + 0.989746i \(0.545622\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.31095e6 0.939466
\(288\) 0 0
\(289\) −939834. −0.661922
\(290\) 0 0
\(291\) −359199. −0.248658
\(292\) 0 0
\(293\) 74753.1 0.0508698 0.0254349 0.999676i \(-0.491903\pi\)
0.0254349 + 0.999676i \(0.491903\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 355815. 0.234063
\(298\) 0 0
\(299\) −159190. −0.102976
\(300\) 0 0
\(301\) −812934. −0.517177
\(302\) 0 0
\(303\) 1.05432e6 0.659731
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1.96989e6 −1.19288 −0.596438 0.802659i \(-0.703418\pi\)
−0.596438 + 0.802659i \(0.703418\pi\)
\(308\) 0 0
\(309\) 2394.00 0.00142635
\(310\) 0 0
\(311\) −1.92570e6 −1.12899 −0.564493 0.825438i \(-0.690928\pi\)
−0.564493 + 0.825438i \(0.690928\pi\)
\(312\) 0 0
\(313\) 1.05127e6 0.606531 0.303265 0.952906i \(-0.401923\pi\)
0.303265 + 0.952906i \(0.401923\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.68469e6 −1.50053 −0.750267 0.661134i \(-0.770075\pi\)
−0.750267 + 0.661134i \(0.770075\pi\)
\(318\) 0 0
\(319\) 920879. 0.506671
\(320\) 0 0
\(321\) −1.08136e6 −0.585745
\(322\) 0 0
\(323\) 1.72465e6 0.919802
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.22010e6 0.630996
\(328\) 0 0
\(329\) −1.22979e6 −0.626387
\(330\) 0 0
\(331\) −1.50456e6 −0.754813 −0.377407 0.926048i \(-0.623184\pi\)
−0.377407 + 0.926048i \(0.623184\pi\)
\(332\) 0 0
\(333\) −860917. −0.425452
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −3.84030e6 −1.84200 −0.921001 0.389559i \(-0.872627\pi\)
−0.921001 + 0.389559i \(0.872627\pi\)
\(338\) 0 0
\(339\) 846544. 0.400083
\(340\) 0 0
\(341\) 1.12240e6 0.522713
\(342\) 0 0
\(343\) 2.25314e6 1.03408
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −939488. −0.418859 −0.209429 0.977824i \(-0.567161\pi\)
−0.209429 + 0.977824i \(0.567161\pi\)
\(348\) 0 0
\(349\) 3.56398e6 1.56629 0.783144 0.621841i \(-0.213615\pi\)
0.783144 + 0.621841i \(0.213615\pi\)
\(350\) 0 0
\(351\) 28137.2 0.0121903
\(352\) 0 0
\(353\) −2.24033e6 −0.956919 −0.478459 0.878110i \(-0.658805\pi\)
−0.478459 + 0.878110i \(0.658805\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 535380. 0.222327
\(358\) 0 0
\(359\) 290038. 0.118773 0.0593867 0.998235i \(-0.481085\pi\)
0.0593867 + 0.998235i \(0.481085\pi\)
\(360\) 0 0
\(361\) 3.72030e6 1.50248
\(362\) 0 0
\(363\) −694599. −0.276674
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 961035. 0.372455 0.186228 0.982507i \(-0.440374\pi\)
0.186228 + 0.982507i \(0.440374\pi\)
\(368\) 0 0
\(369\) −1.23675e6 −0.472843
\(370\) 0 0
\(371\) −1.19500e6 −0.450746
\(372\) 0 0
\(373\) −3.48605e6 −1.29736 −0.648681 0.761060i \(-0.724679\pi\)
−0.648681 + 0.761060i \(0.724679\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 72821.5 0.0263880
\(378\) 0 0
\(379\) 3.08939e6 1.10478 0.552389 0.833587i \(-0.313716\pi\)
0.552389 + 0.833587i \(0.313716\pi\)
\(380\) 0 0
\(381\) 1.06624e6 0.376309
\(382\) 0 0
\(383\) 513758. 0.178962 0.0894812 0.995989i \(-0.471479\pi\)
0.0894812 + 0.995989i \(0.471479\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 766924. 0.260300
\(388\) 0 0
\(389\) 5.32273e6 1.78345 0.891725 0.452578i \(-0.149496\pi\)
0.891725 + 0.452578i \(0.149496\pi\)
\(390\) 0 0
\(391\) 2.85754e6 0.945258
\(392\) 0 0
\(393\) 2.09698e6 0.684878
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −2.10400e6 −0.669990 −0.334995 0.942220i \(-0.608735\pi\)
−0.334995 + 0.942220i \(0.608735\pi\)
\(398\) 0 0
\(399\) 1.92354e6 0.604878
\(400\) 0 0
\(401\) 1.41705e6 0.440072 0.220036 0.975492i \(-0.429382\pi\)
0.220036 + 0.975492i \(0.429382\pi\)
\(402\) 0 0
\(403\) 88757.7 0.0272235
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.18768e6 1.55234
\(408\) 0 0
\(409\) 1.07044e6 0.316414 0.158207 0.987406i \(-0.449429\pi\)
0.158207 + 0.987406i \(0.449429\pi\)
\(410\) 0 0
\(411\) 1.25614e6 0.366803
\(412\) 0 0
\(413\) −3.40798e6 −0.983154
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2.37431e6 0.668648
\(418\) 0 0
\(419\) 2.75665e6 0.767090 0.383545 0.923522i \(-0.374703\pi\)
0.383545 + 0.923522i \(0.374703\pi\)
\(420\) 0 0
\(421\) −3.32521e6 −0.914352 −0.457176 0.889376i \(-0.651139\pi\)
−0.457176 + 0.889376i \(0.651139\pi\)
\(422\) 0 0
\(423\) 1.16019e6 0.315267
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −3.28169e6 −0.871018
\(428\) 0 0
\(429\) −169548. −0.0444785
\(430\) 0 0
\(431\) 1.26909e6 0.329078 0.164539 0.986371i \(-0.447386\pi\)
0.164539 + 0.986371i \(0.447386\pi\)
\(432\) 0 0
\(433\) −5.17143e6 −1.32553 −0.662767 0.748826i \(-0.730618\pi\)
−0.662767 + 0.748826i \(0.730618\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.02667e7 2.57174
\(438\) 0 0
\(439\) −6.78923e6 −1.68136 −0.840678 0.541536i \(-0.817843\pi\)
−0.840678 + 0.541536i \(0.817843\pi\)
\(440\) 0 0
\(441\) −764247. −0.187127
\(442\) 0 0
\(443\) 3.16608e6 0.766500 0.383250 0.923645i \(-0.374805\pi\)
0.383250 + 0.923645i \(0.374805\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −3.09755e6 −0.733245
\(448\) 0 0
\(449\) 4.91937e6 1.15158 0.575790 0.817598i \(-0.304695\pi\)
0.575790 + 0.817598i \(0.304695\pi\)
\(450\) 0 0
\(451\) 7.45238e6 1.72526
\(452\) 0 0
\(453\) 110581. 0.0253184
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7.30601e6 −1.63640 −0.818201 0.574932i \(-0.805028\pi\)
−0.818201 + 0.574932i \(0.805028\pi\)
\(458\) 0 0
\(459\) −505078. −0.111899
\(460\) 0 0
\(461\) −2.52155e6 −0.552606 −0.276303 0.961071i \(-0.589109\pi\)
−0.276303 + 0.961071i \(0.589109\pi\)
\(462\) 0 0
\(463\) −6.44859e6 −1.39802 −0.699008 0.715114i \(-0.746375\pi\)
−0.699008 + 0.715114i \(0.746375\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.39798e6 1.14535 0.572676 0.819782i \(-0.305905\pi\)
0.572676 + 0.819782i \(0.305905\pi\)
\(468\) 0 0
\(469\) −121610. −0.0255291
\(470\) 0 0
\(471\) 2.16634e6 0.449960
\(472\) 0 0
\(473\) −4.62130e6 −0.949755
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.12736e6 0.226865
\(478\) 0 0
\(479\) 5.25882e6 1.04725 0.523624 0.851950i \(-0.324580\pi\)
0.523624 + 0.851950i \(0.324580\pi\)
\(480\) 0 0
\(481\) 410233. 0.0808477
\(482\) 0 0
\(483\) 3.18707e6 0.621619
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −5.61141e6 −1.07214 −0.536068 0.844175i \(-0.680091\pi\)
−0.536068 + 0.844175i \(0.680091\pi\)
\(488\) 0 0
\(489\) −5.08823e6 −0.962265
\(490\) 0 0
\(491\) 5.14176e6 0.962516 0.481258 0.876579i \(-0.340180\pi\)
0.481258 + 0.876579i \(0.340180\pi\)
\(492\) 0 0
\(493\) −1.30718e6 −0.242225
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 999151. 0.181443
\(498\) 0 0
\(499\) 4.53158e6 0.814701 0.407350 0.913272i \(-0.366453\pi\)
0.407350 + 0.913272i \(0.366453\pi\)
\(500\) 0 0
\(501\) 3.69934e6 0.658461
\(502\) 0 0
\(503\) 3.93518e6 0.693497 0.346749 0.937958i \(-0.387286\pi\)
0.346749 + 0.937958i \(0.387286\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3.32823e6 0.575034
\(508\) 0 0
\(509\) −1.37582e6 −0.235378 −0.117689 0.993050i \(-0.537549\pi\)
−0.117689 + 0.993050i \(0.537549\pi\)
\(510\) 0 0
\(511\) −2.66869e6 −0.452112
\(512\) 0 0
\(513\) −1.81467e6 −0.304441
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −6.99103e6 −1.15031
\(518\) 0 0
\(519\) 1.69844e6 0.276779
\(520\) 0 0
\(521\) −7.67174e6 −1.23822 −0.619112 0.785302i \(-0.712507\pi\)
−0.619112 + 0.785302i \(0.712507\pi\)
\(522\) 0 0
\(523\) 1.16971e7 1.86993 0.934964 0.354743i \(-0.115432\pi\)
0.934964 + 0.354743i \(0.115432\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.59325e6 −0.249894
\(528\) 0 0
\(529\) 1.05744e7 1.64292
\(530\) 0 0
\(531\) 3.21509e6 0.494831
\(532\) 0 0
\(533\) 589321. 0.0898533
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 5.41777e6 0.810745
\(538\) 0 0
\(539\) 4.60517e6 0.682769
\(540\) 0 0
\(541\) −3.26111e6 −0.479041 −0.239521 0.970891i \(-0.576990\pi\)
−0.239521 + 0.970891i \(0.576990\pi\)
\(542\) 0 0
\(543\) 7.52429e6 1.09513
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −707108. −0.101046 −0.0505228 0.998723i \(-0.516089\pi\)
−0.0505228 + 0.998723i \(0.516089\pi\)
\(548\) 0 0
\(549\) 3.09595e6 0.438392
\(550\) 0 0
\(551\) −4.69651e6 −0.659016
\(552\) 0 0
\(553\) 3.73285e6 0.519072
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.55292e6 −0.348657 −0.174329 0.984688i \(-0.555776\pi\)
−0.174329 + 0.984688i \(0.555776\pi\)
\(558\) 0 0
\(559\) −365445. −0.0494643
\(560\) 0 0
\(561\) 3.04348e6 0.408285
\(562\) 0 0
\(563\) 1.60880e6 0.213910 0.106955 0.994264i \(-0.465890\pi\)
0.106955 + 0.994264i \(0.465890\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −563324. −0.0735869
\(568\) 0 0
\(569\) 1.25953e7 1.63091 0.815453 0.578823i \(-0.196488\pi\)
0.815453 + 0.578823i \(0.196488\pi\)
\(570\) 0 0
\(571\) 2.22289e6 0.285317 0.142659 0.989772i \(-0.454435\pi\)
0.142659 + 0.989772i \(0.454435\pi\)
\(572\) 0 0
\(573\) −4.52429e6 −0.575657
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −8.71842e6 −1.09018 −0.545090 0.838377i \(-0.683505\pi\)
−0.545090 + 0.838377i \(0.683505\pi\)
\(578\) 0 0
\(579\) 6.58039e6 0.815746
\(580\) 0 0
\(581\) 7.44401e6 0.914885
\(582\) 0 0
\(583\) −6.79322e6 −0.827760
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.00682e6 0.360174 0.180087 0.983651i \(-0.442362\pi\)
0.180087 + 0.983651i \(0.442362\pi\)
\(588\) 0 0
\(589\) −5.72429e6 −0.679882
\(590\) 0 0
\(591\) −7.84700e6 −0.924133
\(592\) 0 0
\(593\) −224622. −0.0262311 −0.0131155 0.999914i \(-0.504175\pi\)
−0.0131155 + 0.999914i \(0.504175\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 911795. 0.104704
\(598\) 0 0
\(599\) −1.14533e7 −1.30426 −0.652129 0.758108i \(-0.726124\pi\)
−0.652129 + 0.758108i \(0.726124\pi\)
\(600\) 0 0
\(601\) −1.17677e7 −1.32894 −0.664470 0.747315i \(-0.731343\pi\)
−0.664470 + 0.747315i \(0.731343\pi\)
\(602\) 0 0
\(603\) 114727. 0.0128491
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −1.24589e6 −0.137248 −0.0686242 0.997643i \(-0.521861\pi\)
−0.0686242 + 0.997643i \(0.521861\pi\)
\(608\) 0 0
\(609\) −1.45793e6 −0.159292
\(610\) 0 0
\(611\) −552838. −0.0599094
\(612\) 0 0
\(613\) 1.45412e7 1.56296 0.781480 0.623931i \(-0.214465\pi\)
0.781480 + 0.623931i \(0.214465\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.06609e6 0.535747 0.267874 0.963454i \(-0.413679\pi\)
0.267874 + 0.963454i \(0.413679\pi\)
\(618\) 0 0
\(619\) 1.03229e7 1.08287 0.541435 0.840742i \(-0.317881\pi\)
0.541435 + 0.840742i \(0.317881\pi\)
\(620\) 0 0
\(621\) −3.00669e6 −0.312867
\(622\) 0 0
\(623\) 8.65755e6 0.893665
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.09348e7 1.11081
\(628\) 0 0
\(629\) −7.36389e6 −0.742132
\(630\) 0 0
\(631\) 1.27332e7 1.27310 0.636552 0.771234i \(-0.280360\pi\)
0.636552 + 0.771234i \(0.280360\pi\)
\(632\) 0 0
\(633\) 6.52638e6 0.647386
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 364169. 0.0355594
\(638\) 0 0
\(639\) −942602. −0.0913221
\(640\) 0 0
\(641\) 1.37535e7 1.32211 0.661057 0.750336i \(-0.270108\pi\)
0.661057 + 0.750336i \(0.270108\pi\)
\(642\) 0 0
\(643\) −1.62140e7 −1.54654 −0.773272 0.634075i \(-0.781381\pi\)
−0.773272 + 0.634075i \(0.781381\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.27009e7 −1.19282 −0.596410 0.802680i \(-0.703407\pi\)
−0.596410 + 0.802680i \(0.703407\pi\)
\(648\) 0 0
\(649\) −1.93734e7 −1.80548
\(650\) 0 0
\(651\) −1.77698e6 −0.164335
\(652\) 0 0
\(653\) 1.73886e7 1.59581 0.797907 0.602781i \(-0.205941\pi\)
0.797907 + 0.602781i \(0.205941\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.51765e6 0.227552
\(658\) 0 0
\(659\) −1.26691e7 −1.13640 −0.568200 0.822891i \(-0.692360\pi\)
−0.568200 + 0.822891i \(0.692360\pi\)
\(660\) 0 0
\(661\) 6.69054e6 0.595604 0.297802 0.954628i \(-0.403746\pi\)
0.297802 + 0.954628i \(0.403746\pi\)
\(662\) 0 0
\(663\) 240673. 0.0212639
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −7.78157e6 −0.677255
\(668\) 0 0
\(669\) −6.12561e6 −0.529156
\(670\) 0 0
\(671\) −1.86555e7 −1.59956
\(672\) 0 0
\(673\) −1.31246e7 −1.11699 −0.558494 0.829509i \(-0.688621\pi\)
−0.558494 + 0.829509i \(0.688621\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.74331e6 0.565460 0.282730 0.959200i \(-0.408760\pi\)
0.282730 + 0.959200i \(0.408760\pi\)
\(678\) 0 0
\(679\) −3.42674e6 −0.285237
\(680\) 0 0
\(681\) −9.09027e6 −0.751119
\(682\) 0 0
\(683\) −1.57439e7 −1.29140 −0.645698 0.763593i \(-0.723434\pi\)
−0.645698 + 0.763593i \(0.723434\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.10466e7 0.892972
\(688\) 0 0
\(689\) −537196. −0.0431107
\(690\) 0 0
\(691\) −1.89262e7 −1.50789 −0.753943 0.656940i \(-0.771850\pi\)
−0.753943 + 0.656940i \(0.771850\pi\)
\(692\) 0 0
\(693\) 3.39446e6 0.268496
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1.05786e7 −0.824797
\(698\) 0 0
\(699\) −5.39535e6 −0.417664
\(700\) 0 0
\(701\) 1.21080e7 0.930628 0.465314 0.885146i \(-0.345941\pi\)
0.465314 + 0.885146i \(0.345941\pi\)
\(702\) 0 0
\(703\) −2.64573e7 −2.01910
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.00582e7 0.756782
\(708\) 0 0
\(709\) −1.59350e6 −0.119052 −0.0595259 0.998227i \(-0.518959\pi\)
−0.0595259 + 0.998227i \(0.518959\pi\)
\(710\) 0 0
\(711\) −3.52158e6 −0.261254
\(712\) 0 0
\(713\) −9.48447e6 −0.698698
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.23446e7 0.896763
\(718\) 0 0
\(719\) −1.65457e7 −1.19361 −0.596806 0.802386i \(-0.703564\pi\)
−0.596806 + 0.802386i \(0.703564\pi\)
\(720\) 0 0
\(721\) 22838.6 0.00163618
\(722\) 0 0
\(723\) −1.23171e7 −0.876323
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.71115e7 1.20075 0.600373 0.799720i \(-0.295019\pi\)
0.600373 + 0.799720i \(0.295019\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 6.55992e6 0.454051
\(732\) 0 0
\(733\) −1.21563e7 −0.835683 −0.417841 0.908520i \(-0.637213\pi\)
−0.417841 + 0.908520i \(0.637213\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −691317. −0.0468823
\(738\) 0 0
\(739\) 981165. 0.0660893 0.0330446 0.999454i \(-0.489480\pi\)
0.0330446 + 0.999454i \(0.489480\pi\)
\(740\) 0 0
\(741\) 864702. 0.0578523
\(742\) 0 0
\(743\) 2.75144e6 0.182847 0.0914237 0.995812i \(-0.470858\pi\)
0.0914237 + 0.995812i \(0.470858\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −7.02269e6 −0.460471
\(748\) 0 0
\(749\) −1.03161e7 −0.671912
\(750\) 0 0
\(751\) 2.03594e6 0.131724 0.0658622 0.997829i \(-0.479020\pi\)
0.0658622 + 0.997829i \(0.479020\pi\)
\(752\) 0 0
\(753\) −6.57263e6 −0.422427
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −2.50989e7 −1.59189 −0.795947 0.605366i \(-0.793027\pi\)
−0.795947 + 0.605366i \(0.793027\pi\)
\(758\) 0 0
\(759\) 1.81176e7 1.14155
\(760\) 0 0
\(761\) 715007. 0.0447557 0.0223779 0.999750i \(-0.492876\pi\)
0.0223779 + 0.999750i \(0.492876\pi\)
\(762\) 0 0
\(763\) 1.16397e7 0.723819
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.53201e6 −0.0940317
\(768\) 0 0
\(769\) −2.97361e6 −0.181329 −0.0906646 0.995881i \(-0.528899\pi\)
−0.0906646 + 0.995881i \(0.528899\pi\)
\(770\) 0 0
\(771\) 1.23149e7 0.746095
\(772\) 0 0
\(773\) 2.89819e7 1.74453 0.872264 0.489035i \(-0.162651\pi\)
0.872264 + 0.489035i \(0.162651\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −8.21310e6 −0.488039
\(778\) 0 0
\(779\) −3.80073e7 −2.24400
\(780\) 0 0
\(781\) 5.67989e6 0.333206
\(782\) 0 0
\(783\) 1.37541e6 0.0801731
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −3.25612e7 −1.87397 −0.936987 0.349364i \(-0.886398\pi\)
−0.936987 + 0.349364i \(0.886398\pi\)
\(788\) 0 0
\(789\) −1.13638e7 −0.649879
\(790\) 0 0
\(791\) 8.07598e6 0.458938
\(792\) 0 0
\(793\) −1.47524e6 −0.0833067
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.77148e7 0.987848 0.493924 0.869505i \(-0.335562\pi\)
0.493924 + 0.869505i \(0.335562\pi\)
\(798\) 0 0
\(799\) 9.92373e6 0.549931
\(800\) 0 0
\(801\) −8.16755e6 −0.449791
\(802\) 0 0
\(803\) −1.51707e7 −0.830268
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −5.87606e6 −0.317616
\(808\) 0 0
\(809\) −2.42153e6 −0.130083 −0.0650413 0.997883i \(-0.520718\pi\)
−0.0650413 + 0.997883i \(0.520718\pi\)
\(810\) 0 0
\(811\) −6.47458e6 −0.345668 −0.172834 0.984951i \(-0.555292\pi\)
−0.172834 + 0.984951i \(0.555292\pi\)
\(812\) 0 0
\(813\) 5.84164e6 0.309962
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 2.35688e7 1.23533
\(818\) 0 0
\(819\) 268428. 0.0139836
\(820\) 0 0
\(821\) −5.71963e6 −0.296149 −0.148074 0.988976i \(-0.547308\pi\)
−0.148074 + 0.988976i \(0.547308\pi\)
\(822\) 0 0
\(823\) 1.45747e7 0.750066 0.375033 0.927011i \(-0.377631\pi\)
0.375033 + 0.927011i \(0.377631\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −5.71684e6 −0.290664 −0.145332 0.989383i \(-0.546425\pi\)
−0.145332 + 0.989383i \(0.546425\pi\)
\(828\) 0 0
\(829\) −3.16906e7 −1.60156 −0.800781 0.598958i \(-0.795582\pi\)
−0.800781 + 0.598958i \(0.795582\pi\)
\(830\) 0 0
\(831\) −6.01650e6 −0.302233
\(832\) 0 0
\(833\) −6.53702e6 −0.326413
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.67641e6 0.0827115
\(838\) 0 0
\(839\) −1.30388e7 −0.639487 −0.319744 0.947504i \(-0.603597\pi\)
−0.319744 + 0.947504i \(0.603597\pi\)
\(840\) 0 0
\(841\) −1.69515e7 −0.826451
\(842\) 0 0
\(843\) −9.29910e6 −0.450684
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −6.62644e6 −0.317374
\(848\) 0 0
\(849\) 3.46399e6 0.164933
\(850\) 0 0
\(851\) −4.38367e7 −2.07498
\(852\) 0 0
\(853\) −1.19404e6 −0.0561883 −0.0280941 0.999605i \(-0.508944\pi\)
−0.0280941 + 0.999605i \(0.508944\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.25697e7 −0.584617 −0.292309 0.956324i \(-0.594423\pi\)
−0.292309 + 0.956324i \(0.594423\pi\)
\(858\) 0 0
\(859\) −8.48043e6 −0.392135 −0.196067 0.980590i \(-0.562817\pi\)
−0.196067 + 0.980590i \(0.562817\pi\)
\(860\) 0 0
\(861\) −1.17985e7 −0.542401
\(862\) 0 0
\(863\) −1.53122e6 −0.0699859 −0.0349929 0.999388i \(-0.511141\pi\)
−0.0349929 + 0.999388i \(0.511141\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 8.45850e6 0.382161
\(868\) 0 0
\(869\) 2.12202e7 0.953235
\(870\) 0 0
\(871\) −54668.1 −0.00244168
\(872\) 0 0
\(873\) 3.23279e6 0.143563
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.58663e7 1.57466 0.787331 0.616530i \(-0.211462\pi\)
0.787331 + 0.616530i \(0.211462\pi\)
\(878\) 0 0
\(879\) −672777. −0.0293697
\(880\) 0 0
\(881\) −2.74419e7 −1.19117 −0.595586 0.803291i \(-0.703080\pi\)
−0.595586 + 0.803291i \(0.703080\pi\)
\(882\) 0 0
\(883\) 1.71743e7 0.741273 0.370637 0.928778i \(-0.379139\pi\)
0.370637 + 0.928778i \(0.379139\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −9.60304e6 −0.409826 −0.204913 0.978780i \(-0.565691\pi\)
−0.204913 + 0.978780i \(0.565691\pi\)
\(888\) 0 0
\(889\) 1.01719e7 0.431666
\(890\) 0 0
\(891\) −3.20234e6 −0.135137
\(892\) 0 0
\(893\) 3.56544e7 1.49618
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.43271e6 0.0594534
\(898\) 0 0
\(899\) 4.33868e6 0.179043
\(900\) 0 0
\(901\) 9.64295e6 0.395729
\(902\) 0 0
\(903\) 7.31641e6 0.298592
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −4.28904e7 −1.73118 −0.865590 0.500754i \(-0.833056\pi\)
−0.865590 + 0.500754i \(0.833056\pi\)
\(908\) 0 0
\(909\) −9.48890e6 −0.380896
\(910\) 0 0
\(911\) 2.43996e7 0.974061 0.487031 0.873385i \(-0.338080\pi\)
0.487031 + 0.873385i \(0.338080\pi\)
\(912\) 0 0
\(913\) 4.23171e7 1.68011
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.00051e7 0.785628
\(918\) 0 0
\(919\) −4.90096e7 −1.91422 −0.957112 0.289719i \(-0.906438\pi\)
−0.957112 + 0.289719i \(0.906438\pi\)
\(920\) 0 0
\(921\) 1.77290e7 0.688707
\(922\) 0 0
\(923\) 449156. 0.0173537
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −21546.0 −0.000823506 0
\(928\) 0 0
\(929\) 4.34428e7 1.65150 0.825750 0.564036i \(-0.190752\pi\)
0.825750 + 0.564036i \(0.190752\pi\)
\(930\) 0 0
\(931\) −2.34865e7 −0.888064
\(932\) 0 0
\(933\) 1.73313e7 0.651820
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −2.45065e6 −0.0911868 −0.0455934 0.998960i \(-0.514518\pi\)
−0.0455934 + 0.998960i \(0.514518\pi\)
\(938\) 0 0
\(939\) −9.46141e6 −0.350181
\(940\) 0 0
\(941\) 9.14331e6 0.336612 0.168306 0.985735i \(-0.446170\pi\)
0.168306 + 0.985735i \(0.446170\pi\)
\(942\) 0 0
\(943\) −6.29737e7 −2.30611
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.87759e7 0.680341 0.340171 0.940364i \(-0.389515\pi\)
0.340171 + 0.940364i \(0.389515\pi\)
\(948\) 0 0
\(949\) −1.19968e6 −0.0432413
\(950\) 0 0
\(951\) 2.41622e7 0.866334
\(952\) 0 0
\(953\) 5.76978e6 0.205791 0.102896 0.994692i \(-0.467189\pi\)
0.102896 + 0.994692i \(0.467189\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −8.28791e6 −0.292527
\(958\) 0 0
\(959\) 1.19835e7 0.420762
\(960\) 0 0
\(961\) −2.33410e7 −0.815288
\(962\) 0 0
\(963\) 9.73227e6 0.338180
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.51533e6 0.0865024 0.0432512 0.999064i \(-0.486228\pi\)
0.0432512 + 0.999064i \(0.486228\pi\)
\(968\) 0 0
\(969\) −1.55218e7 −0.531048
\(970\) 0 0
\(971\) 3.98957e7 1.35793 0.678966 0.734170i \(-0.262428\pi\)
0.678966 + 0.734170i \(0.262428\pi\)
\(972\) 0 0
\(973\) 2.26508e7 0.767011
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −5.40009e7 −1.80994 −0.904971 0.425473i \(-0.860108\pi\)
−0.904971 + 0.425473i \(0.860108\pi\)
\(978\) 0 0
\(979\) 4.92157e7 1.64115
\(980\) 0 0
\(981\) −1.09809e7 −0.364306
\(982\) 0 0
\(983\) −3.78231e7 −1.24846 −0.624228 0.781242i \(-0.714586\pi\)
−0.624228 + 0.781242i \(0.714586\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1.10681e7 0.361644
\(988\) 0 0
\(989\) 3.90507e7 1.26952
\(990\) 0 0
\(991\) 5.61819e6 0.181724 0.0908620 0.995863i \(-0.471038\pi\)
0.0908620 + 0.995863i \(0.471038\pi\)
\(992\) 0 0
\(993\) 1.35410e7 0.435792
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 4.35983e7 1.38910 0.694548 0.719447i \(-0.255605\pi\)
0.694548 + 0.719447i \(0.255605\pi\)
\(998\) 0 0
\(999\) 7.74826e6 0.245635
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.6.a.r.1.1 3
5.2 odd 4 120.6.f.a.49.5 yes 6
5.3 odd 4 120.6.f.a.49.2 6
5.4 even 2 600.6.a.s.1.3 3
15.2 even 4 360.6.f.a.289.4 6
15.8 even 4 360.6.f.a.289.3 6
20.3 even 4 240.6.f.e.49.5 6
20.7 even 4 240.6.f.e.49.2 6
60.23 odd 4 720.6.f.l.289.3 6
60.47 odd 4 720.6.f.l.289.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.6.f.a.49.2 6 5.3 odd 4
120.6.f.a.49.5 yes 6 5.2 odd 4
240.6.f.e.49.2 6 20.7 even 4
240.6.f.e.49.5 6 20.3 even 4
360.6.f.a.289.3 6 15.8 even 4
360.6.f.a.289.4 6 15.2 even 4
600.6.a.r.1.1 3 1.1 even 1 trivial
600.6.a.s.1.3 3 5.4 even 2
720.6.f.l.289.3 6 60.23 odd 4
720.6.f.l.289.4 6 60.47 odd 4