Properties

Label 1200.3.bg.b.1057.2
Level $1200$
Weight $3$
Character 1200.1057
Analytic conductor $32.698$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1200,3,Mod(193,1200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1200, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1200.193");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1200.bg (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.6976317232\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 600)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1057.2
Root \(1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1200.1057
Dual form 1200.3.bg.b.193.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 - 1.22474i) q^{3} +(-6.44949 - 6.44949i) q^{7} -3.00000i q^{9} +11.7980 q^{11} +(-2.44949 + 2.44949i) q^{13} +(-0.898979 - 0.898979i) q^{17} -33.5959i q^{19} -15.7980 q^{21} +(-21.7980 + 21.7980i) q^{23} +(-3.67423 - 3.67423i) q^{27} +3.59592i q^{29} +25.1918 q^{31} +(14.4495 - 14.4495i) q^{33} +(-9.14643 - 9.14643i) q^{37} +6.00000i q^{39} -60.7878 q^{41} +(22.2020 - 22.2020i) q^{43} +(-4.49490 - 4.49490i) q^{47} +34.1918i q^{49} -2.20204 q^{51} +(-52.0908 + 52.0908i) q^{53} +(-41.1464 - 41.1464i) q^{57} -86.9898i q^{59} -108.384 q^{61} +(-19.3485 + 19.3485i) q^{63} +(-77.8888 - 77.8888i) q^{67} +53.3939i q^{69} +66.7878 q^{71} +(-78.6969 + 78.6969i) q^{73} +(-76.0908 - 76.0908i) q^{77} +66.0000i q^{79} -9.00000 q^{81} +(-84.0908 + 84.0908i) q^{83} +(4.40408 + 4.40408i) q^{87} +9.59592i q^{89} +31.5959 q^{91} +(30.8536 - 30.8536i) q^{93} +(-53.0806 - 53.0806i) q^{97} -35.3939i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{7} + 8 q^{11} + 16 q^{17} - 24 q^{21} - 48 q^{23} - 56 q^{31} + 48 q^{33} + 32 q^{37} - 8 q^{41} + 128 q^{43} + 80 q^{47} - 48 q^{51} - 32 q^{53} - 96 q^{57} - 120 q^{61} - 48 q^{63} - 96 q^{67}+ \cdots + 160 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.22474 1.22474i 0.408248 0.408248i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −6.44949 6.44949i −0.921356 0.921356i 0.0757697 0.997125i \(-0.475859\pi\)
−0.997125 + 0.0757697i \(0.975859\pi\)
\(8\) 0 0
\(9\) 3.00000i 0.333333i
\(10\) 0 0
\(11\) 11.7980 1.07254 0.536271 0.844046i \(-0.319833\pi\)
0.536271 + 0.844046i \(0.319833\pi\)
\(12\) 0 0
\(13\) −2.44949 + 2.44949i −0.188422 + 0.188422i −0.795014 0.606591i \(-0.792536\pi\)
0.606591 + 0.795014i \(0.292536\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.898979 0.898979i −0.0528811 0.0528811i 0.680172 0.733053i \(-0.261905\pi\)
−0.733053 + 0.680172i \(0.761905\pi\)
\(18\) 0 0
\(19\) 33.5959i 1.76821i −0.467292 0.884103i \(-0.654770\pi\)
0.467292 0.884103i \(-0.345230\pi\)
\(20\) 0 0
\(21\) −15.7980 −0.752284
\(22\) 0 0
\(23\) −21.7980 + 21.7980i −0.947737 + 0.947737i −0.998701 0.0509632i \(-0.983771\pi\)
0.0509632 + 0.998701i \(0.483771\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) 0 0
\(29\) 3.59592i 0.123997i 0.998076 + 0.0619986i \(0.0197474\pi\)
−0.998076 + 0.0619986i \(0.980253\pi\)
\(30\) 0 0
\(31\) 25.1918 0.812640 0.406320 0.913731i \(-0.366812\pi\)
0.406320 + 0.913731i \(0.366812\pi\)
\(32\) 0 0
\(33\) 14.4495 14.4495i 0.437863 0.437863i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −9.14643 9.14643i −0.247201 0.247201i 0.572620 0.819821i \(-0.305927\pi\)
−0.819821 + 0.572620i \(0.805927\pi\)
\(38\) 0 0
\(39\) 6.00000i 0.153846i
\(40\) 0 0
\(41\) −60.7878 −1.48263 −0.741314 0.671158i \(-0.765797\pi\)
−0.741314 + 0.671158i \(0.765797\pi\)
\(42\) 0 0
\(43\) 22.2020 22.2020i 0.516327 0.516327i −0.400131 0.916458i \(-0.631035\pi\)
0.916458 + 0.400131i \(0.131035\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.49490 4.49490i −0.0956361 0.0956361i 0.657670 0.753306i \(-0.271542\pi\)
−0.753306 + 0.657670i \(0.771542\pi\)
\(48\) 0 0
\(49\) 34.1918i 0.697793i
\(50\) 0 0
\(51\) −2.20204 −0.0431773
\(52\) 0 0
\(53\) −52.0908 + 52.0908i −0.982846 + 0.982846i −0.999855 0.0170098i \(-0.994585\pi\)
0.0170098 + 0.999855i \(0.494585\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −41.1464 41.1464i −0.721867 0.721867i
\(58\) 0 0
\(59\) 86.9898i 1.47440i −0.675673 0.737202i \(-0.736147\pi\)
0.675673 0.737202i \(-0.263853\pi\)
\(60\) 0 0
\(61\) −108.384 −1.77678 −0.888391 0.459088i \(-0.848176\pi\)
−0.888391 + 0.459088i \(0.848176\pi\)
\(62\) 0 0
\(63\) −19.3485 + 19.3485i −0.307119 + 0.307119i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −77.8888 77.8888i −1.16252 1.16252i −0.983922 0.178597i \(-0.942844\pi\)
−0.178597 0.983922i \(-0.557156\pi\)
\(68\) 0 0
\(69\) 53.3939i 0.773824i
\(70\) 0 0
\(71\) 66.7878 0.940673 0.470336 0.882487i \(-0.344133\pi\)
0.470336 + 0.882487i \(0.344133\pi\)
\(72\) 0 0
\(73\) −78.6969 + 78.6969i −1.07804 + 1.07804i −0.0813551 + 0.996685i \(0.525925\pi\)
−0.996685 + 0.0813551i \(0.974075\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −76.0908 76.0908i −0.988192 0.988192i
\(78\) 0 0
\(79\) 66.0000i 0.835443i 0.908575 + 0.417722i \(0.137171\pi\)
−0.908575 + 0.417722i \(0.862829\pi\)
\(80\) 0 0
\(81\) −9.00000 −0.111111
\(82\) 0 0
\(83\) −84.0908 + 84.0908i −1.01314 + 1.01314i −0.0132299 + 0.999912i \(0.504211\pi\)
−0.999912 + 0.0132299i \(0.995789\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 4.40408 + 4.40408i 0.0506216 + 0.0506216i
\(88\) 0 0
\(89\) 9.59592i 0.107819i 0.998546 + 0.0539097i \(0.0171683\pi\)
−0.998546 + 0.0539097i \(0.982832\pi\)
\(90\) 0 0
\(91\) 31.5959 0.347208
\(92\) 0 0
\(93\) 30.8536 30.8536i 0.331759 0.331759i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −53.0806 53.0806i −0.547223 0.547223i 0.378414 0.925637i \(-0.376470\pi\)
−0.925637 + 0.378414i \(0.876470\pi\)
\(98\) 0 0
\(99\) 35.3939i 0.357514i
\(100\) 0 0
\(101\) 155.192 1.53655 0.768276 0.640118i \(-0.221115\pi\)
0.768276 + 0.640118i \(0.221115\pi\)
\(102\) 0 0
\(103\) 42.3587 42.3587i 0.411249 0.411249i −0.470924 0.882174i \(-0.656080\pi\)
0.882174 + 0.470924i \(0.156080\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −29.8888 29.8888i −0.279334 0.279334i 0.553509 0.832843i \(-0.313288\pi\)
−0.832843 + 0.553509i \(0.813288\pi\)
\(108\) 0 0
\(109\) 17.1918i 0.157723i −0.996886 0.0788616i \(-0.974871\pi\)
0.996886 0.0788616i \(-0.0251285\pi\)
\(110\) 0 0
\(111\) −22.4041 −0.201839
\(112\) 0 0
\(113\) 134.293 134.293i 1.18843 1.18843i 0.210932 0.977501i \(-0.432350\pi\)
0.977501 0.210932i \(-0.0676497\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 7.34847 + 7.34847i 0.0628074 + 0.0628074i
\(118\) 0 0
\(119\) 11.5959i 0.0974447i
\(120\) 0 0
\(121\) 18.1918 0.150346
\(122\) 0 0
\(123\) −74.4495 + 74.4495i −0.605280 + 0.605280i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −153.237 153.237i −1.20659 1.20659i −0.972124 0.234469i \(-0.924665\pi\)
−0.234469 0.972124i \(-0.575335\pi\)
\(128\) 0 0
\(129\) 54.3837i 0.421579i
\(130\) 0 0
\(131\) 196.606 1.50081 0.750405 0.660978i \(-0.229858\pi\)
0.750405 + 0.660978i \(0.229858\pi\)
\(132\) 0 0
\(133\) −216.677 + 216.677i −1.62915 + 1.62915i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −81.0806 81.0806i −0.591829 0.591829i 0.346296 0.938125i \(-0.387439\pi\)
−0.938125 + 0.346296i \(0.887439\pi\)
\(138\) 0 0
\(139\) 37.1918i 0.267567i 0.991011 + 0.133784i \(0.0427127\pi\)
−0.991011 + 0.133784i \(0.957287\pi\)
\(140\) 0 0
\(141\) −11.0102 −0.0780866
\(142\) 0 0
\(143\) −28.8990 + 28.8990i −0.202091 + 0.202091i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 41.8763 + 41.8763i 0.284873 + 0.284873i
\(148\) 0 0
\(149\) 86.7878i 0.582468i −0.956652 0.291234i \(-0.905934\pi\)
0.956652 0.291234i \(-0.0940658\pi\)
\(150\) 0 0
\(151\) −266.767 −1.76667 −0.883336 0.468741i \(-0.844708\pi\)
−0.883336 + 0.468741i \(0.844708\pi\)
\(152\) 0 0
\(153\) −2.69694 + 2.69694i −0.0176270 + 0.0176270i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 203.439 + 203.439i 1.29579 + 1.29579i 0.931147 + 0.364645i \(0.118810\pi\)
0.364645 + 0.931147i \(0.381190\pi\)
\(158\) 0 0
\(159\) 127.596i 0.802490i
\(160\) 0 0
\(161\) 281.171 1.74641
\(162\) 0 0
\(163\) 29.2122 29.2122i 0.179216 0.179216i −0.611798 0.791014i \(-0.709553\pi\)
0.791014 + 0.611798i \(0.209553\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −116.182 116.182i −0.695698 0.695698i 0.267781 0.963480i \(-0.413710\pi\)
−0.963480 + 0.267781i \(0.913710\pi\)
\(168\) 0 0
\(169\) 157.000i 0.928994i
\(170\) 0 0
\(171\) −100.788 −0.589402
\(172\) 0 0
\(173\) −60.2724 + 60.2724i −0.348396 + 0.348396i −0.859512 0.511116i \(-0.829232\pi\)
0.511116 + 0.859512i \(0.329232\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −106.540 106.540i −0.601923 0.601923i
\(178\) 0 0
\(179\) 176.161i 0.984141i 0.870555 + 0.492070i \(0.163760\pi\)
−0.870555 + 0.492070i \(0.836240\pi\)
\(180\) 0 0
\(181\) 161.959 0.894802 0.447401 0.894333i \(-0.352350\pi\)
0.447401 + 0.894333i \(0.352350\pi\)
\(182\) 0 0
\(183\) −132.742 + 132.742i −0.725368 + 0.725368i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −10.6061 10.6061i −0.0567172 0.0567172i
\(188\) 0 0
\(189\) 47.3939i 0.250761i
\(190\) 0 0
\(191\) −250.747 −1.31281 −0.656406 0.754408i \(-0.727924\pi\)
−0.656406 + 0.754408i \(0.727924\pi\)
\(192\) 0 0
\(193\) −8.62653 + 8.62653i −0.0446971 + 0.0446971i −0.729102 0.684405i \(-0.760062\pi\)
0.684405 + 0.729102i \(0.260062\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −182.202 182.202i −0.924883 0.924883i 0.0724860 0.997369i \(-0.476907\pi\)
−0.997369 + 0.0724860i \(0.976907\pi\)
\(198\) 0 0
\(199\) 81.1918i 0.407999i 0.978971 + 0.204000i \(0.0653941\pi\)
−0.978971 + 0.204000i \(0.934606\pi\)
\(200\) 0 0
\(201\) −190.788 −0.949193
\(202\) 0 0
\(203\) 23.1918 23.1918i 0.114245 0.114245i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 65.3939 + 65.3939i 0.315912 + 0.315912i
\(208\) 0 0
\(209\) 396.363i 1.89647i
\(210\) 0 0
\(211\) −199.576 −0.945855 −0.472928 0.881101i \(-0.656803\pi\)
−0.472928 + 0.881101i \(0.656803\pi\)
\(212\) 0 0
\(213\) 81.7980 81.7980i 0.384028 0.384028i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −162.474 162.474i −0.748730 0.748730i
\(218\) 0 0
\(219\) 192.767i 0.880216i
\(220\) 0 0
\(221\) 4.40408 0.0199280
\(222\) 0 0
\(223\) 134.944 134.944i 0.605132 0.605132i −0.336538 0.941670i \(-0.609256\pi\)
0.941670 + 0.336538i \(0.109256\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 60.8990 + 60.8990i 0.268277 + 0.268277i 0.828406 0.560128i \(-0.189248\pi\)
−0.560128 + 0.828406i \(0.689248\pi\)
\(228\) 0 0
\(229\) 138.767i 0.605971i −0.952995 0.302985i \(-0.902017\pi\)
0.952995 0.302985i \(-0.0979834\pi\)
\(230\) 0 0
\(231\) −186.384 −0.806856
\(232\) 0 0
\(233\) 254.656 254.656i 1.09294 1.09294i 0.0977319 0.995213i \(-0.468841\pi\)
0.995213 0.0977319i \(-0.0311588\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 80.8332 + 80.8332i 0.341068 + 0.341068i
\(238\) 0 0
\(239\) 422.788i 1.76899i −0.466553 0.884493i \(-0.654504\pi\)
0.466553 0.884493i \(-0.345496\pi\)
\(240\) 0 0
\(241\) 10.7673 0.0446778 0.0223389 0.999750i \(-0.492889\pi\)
0.0223389 + 0.999750i \(0.492889\pi\)
\(242\) 0 0
\(243\) −11.0227 + 11.0227i −0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 82.2929 + 82.2929i 0.333169 + 0.333169i
\(248\) 0 0
\(249\) 205.980i 0.827227i
\(250\) 0 0
\(251\) 177.818 0.708440 0.354220 0.935162i \(-0.384746\pi\)
0.354220 + 0.935162i \(0.384746\pi\)
\(252\) 0 0
\(253\) −257.171 + 257.171i −1.01649 + 1.01649i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 142.293 + 142.293i 0.553669 + 0.553669i 0.927498 0.373829i \(-0.121955\pi\)
−0.373829 + 0.927498i \(0.621955\pi\)
\(258\) 0 0
\(259\) 117.980i 0.455520i
\(260\) 0 0
\(261\) 10.7878 0.0413324
\(262\) 0 0
\(263\) −36.0000 + 36.0000i −0.136882 + 0.136882i −0.772228 0.635346i \(-0.780858\pi\)
0.635346 + 0.772228i \(0.280858\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 11.7526 + 11.7526i 0.0440170 + 0.0440170i
\(268\) 0 0
\(269\) 38.8286i 0.144344i −0.997392 0.0721721i \(-0.977007\pi\)
0.997392 0.0721721i \(-0.0229931\pi\)
\(270\) 0 0
\(271\) 11.5755 0.0427141 0.0213570 0.999772i \(-0.493201\pi\)
0.0213570 + 0.999772i \(0.493201\pi\)
\(272\) 0 0
\(273\) 38.6969 38.6969i 0.141747 0.141747i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 282.499 + 282.499i 1.01985 + 1.01985i 0.999799 + 0.0200549i \(0.00638409\pi\)
0.0200549 + 0.999799i \(0.493616\pi\)
\(278\) 0 0
\(279\) 75.5755i 0.270880i
\(280\) 0 0
\(281\) 432.384 1.53873 0.769366 0.638808i \(-0.220572\pi\)
0.769366 + 0.638808i \(0.220572\pi\)
\(282\) 0 0
\(283\) 223.868 223.868i 0.791054 0.791054i −0.190611 0.981666i \(-0.561047\pi\)
0.981666 + 0.190611i \(0.0610470\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 392.050 + 392.050i 1.36603 + 1.36603i
\(288\) 0 0
\(289\) 287.384i 0.994407i
\(290\) 0 0
\(291\) −130.020 −0.446806
\(292\) 0 0
\(293\) −196.767 + 196.767i −0.671561 + 0.671561i −0.958076 0.286515i \(-0.907503\pi\)
0.286515 + 0.958076i \(0.407503\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −43.3485 43.3485i −0.145954 0.145954i
\(298\) 0 0
\(299\) 106.788i 0.357150i
\(300\) 0 0
\(301\) −286.384 −0.951441
\(302\) 0 0
\(303\) 190.070 190.070i 0.627295 0.627295i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −141.707 141.707i −0.461587 0.461587i 0.437589 0.899175i \(-0.355833\pi\)
−0.899175 + 0.437589i \(0.855833\pi\)
\(308\) 0 0
\(309\) 103.757i 0.335784i
\(310\) 0 0
\(311\) 411.555 1.32333 0.661664 0.749800i \(-0.269850\pi\)
0.661664 + 0.749800i \(0.269850\pi\)
\(312\) 0 0
\(313\) 365.939 365.939i 1.16913 1.16913i 0.186720 0.982413i \(-0.440214\pi\)
0.982413 0.186720i \(-0.0597858\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 338.343 + 338.343i 1.06733 + 1.06733i 0.997564 + 0.0697641i \(0.0222247\pi\)
0.0697641 + 0.997564i \(0.477775\pi\)
\(318\) 0 0
\(319\) 42.4245i 0.132992i
\(320\) 0 0
\(321\) −73.2122 −0.228076
\(322\) 0 0
\(323\) −30.2020 + 30.2020i −0.0935048 + 0.0935048i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −21.0556 21.0556i −0.0643903 0.0643903i
\(328\) 0 0
\(329\) 57.9796i 0.176230i
\(330\) 0 0
\(331\) 97.5551 0.294728 0.147364 0.989082i \(-0.452921\pi\)
0.147364 + 0.989082i \(0.452921\pi\)
\(332\) 0 0
\(333\) −27.4393 + 27.4393i −0.0824003 + 0.0824003i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 72.4949 + 72.4949i 0.215118 + 0.215118i 0.806438 0.591319i \(-0.201393\pi\)
−0.591319 + 0.806438i \(0.701393\pi\)
\(338\) 0 0
\(339\) 328.949i 0.970351i
\(340\) 0 0
\(341\) 297.212 0.871590
\(342\) 0 0
\(343\) −95.5051 + 95.5051i −0.278441 + 0.278441i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 40.8582 + 40.8582i 0.117747 + 0.117747i 0.763525 0.645778i \(-0.223467\pi\)
−0.645778 + 0.763525i \(0.723467\pi\)
\(348\) 0 0
\(349\) 332.343i 0.952272i 0.879372 + 0.476136i \(0.157963\pi\)
−0.879372 + 0.476136i \(0.842037\pi\)
\(350\) 0 0
\(351\) 18.0000 0.0512821
\(352\) 0 0
\(353\) 260.232 260.232i 0.737200 0.737200i −0.234835 0.972035i \(-0.575455\pi\)
0.972035 + 0.234835i \(0.0754550\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 14.2020 + 14.2020i 0.0397816 + 0.0397816i
\(358\) 0 0
\(359\) 332.000i 0.924791i −0.886674 0.462396i \(-0.846990\pi\)
0.886674 0.462396i \(-0.153010\pi\)
\(360\) 0 0
\(361\) −767.686 −2.12655
\(362\) 0 0
\(363\) 22.2804 22.2804i 0.0613784 0.0613784i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 210.409 + 210.409i 0.573321 + 0.573321i 0.933055 0.359734i \(-0.117133\pi\)
−0.359734 + 0.933055i \(0.617133\pi\)
\(368\) 0 0
\(369\) 182.363i 0.494209i
\(370\) 0 0
\(371\) 671.918 1.81110
\(372\) 0 0
\(373\) 222.672 222.672i 0.596976 0.596976i −0.342531 0.939507i \(-0.611284\pi\)
0.939507 + 0.342531i \(0.111284\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.80816 8.80816i −0.0233638 0.0233638i
\(378\) 0 0
\(379\) 222.767i 0.587777i −0.955840 0.293888i \(-0.905051\pi\)
0.955840 0.293888i \(-0.0949494\pi\)
\(380\) 0 0
\(381\) −375.353 −0.985179
\(382\) 0 0
\(383\) −120.717 + 120.717i −0.315189 + 0.315189i −0.846916 0.531727i \(-0.821543\pi\)
0.531727 + 0.846916i \(0.321543\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −66.6061 66.6061i −0.172109 0.172109i
\(388\) 0 0
\(389\) 80.8082i 0.207733i −0.994591 0.103867i \(-0.966879\pi\)
0.994591 0.103867i \(-0.0331215\pi\)
\(390\) 0 0
\(391\) 39.1918 0.100235
\(392\) 0 0
\(393\) 240.792 240.792i 0.612703 0.612703i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −21.9954 21.9954i −0.0554041 0.0554041i 0.678862 0.734266i \(-0.262473\pi\)
−0.734266 + 0.678862i \(0.762473\pi\)
\(398\) 0 0
\(399\) 530.747i 1.33019i
\(400\) 0 0
\(401\) −267.131 −0.666161 −0.333081 0.942898i \(-0.608088\pi\)
−0.333081 + 0.942898i \(0.608088\pi\)
\(402\) 0 0
\(403\) −61.7071 + 61.7071i −0.153119 + 0.153119i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −107.909 107.909i −0.265133 0.265133i
\(408\) 0 0
\(409\) 510.767i 1.24882i 0.781097 + 0.624410i \(0.214661\pi\)
−0.781097 + 0.624410i \(0.785339\pi\)
\(410\) 0 0
\(411\) −198.606 −0.483227
\(412\) 0 0
\(413\) −561.040 + 561.040i −1.35845 + 1.35845i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 45.5505 + 45.5505i 0.109234 + 0.109234i
\(418\) 0 0
\(419\) 40.1204i 0.0957527i −0.998853 0.0478764i \(-0.984755\pi\)
0.998853 0.0478764i \(-0.0152454\pi\)
\(420\) 0 0
\(421\) −132.343 −0.314354 −0.157177 0.987570i \(-0.550239\pi\)
−0.157177 + 0.987570i \(0.550239\pi\)
\(422\) 0 0
\(423\) −13.4847 + 13.4847i −0.0318787 + 0.0318787i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 699.019 + 699.019i 1.63705 + 1.63705i
\(428\) 0 0
\(429\) 70.7878i 0.165006i
\(430\) 0 0
\(431\) 510.343 1.18409 0.592045 0.805905i \(-0.298321\pi\)
0.592045 + 0.805905i \(0.298321\pi\)
\(432\) 0 0
\(433\) 443.828 443.828i 1.02501 1.02501i 0.0253266 0.999679i \(-0.491937\pi\)
0.999679 0.0253266i \(-0.00806258\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 732.322 + 732.322i 1.67580 + 1.67580i
\(438\) 0 0
\(439\) 306.808i 0.698880i 0.936959 + 0.349440i \(0.113628\pi\)
−0.936959 + 0.349440i \(0.886372\pi\)
\(440\) 0 0
\(441\) 102.576 0.232598
\(442\) 0 0
\(443\) 443.646 443.646i 1.00146 1.00146i 0.00145911 0.999999i \(-0.499536\pi\)
0.999999 0.00145911i \(-0.000464448\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −106.293 106.293i −0.237792 0.237792i
\(448\) 0 0
\(449\) 230.727i 0.513868i 0.966429 + 0.256934i \(0.0827122\pi\)
−0.966429 + 0.256934i \(0.917288\pi\)
\(450\) 0 0
\(451\) −717.171 −1.59018
\(452\) 0 0
\(453\) −326.722 + 326.722i −0.721240 + 0.721240i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 27.2827 + 27.2827i 0.0596995 + 0.0596995i 0.736326 0.676627i \(-0.236559\pi\)
−0.676627 + 0.736326i \(0.736559\pi\)
\(458\) 0 0
\(459\) 6.60612i 0.0143924i
\(460\) 0 0
\(461\) −256.322 −0.556014 −0.278007 0.960579i \(-0.589674\pi\)
−0.278007 + 0.960579i \(0.589674\pi\)
\(462\) 0 0
\(463\) 173.196 173.196i 0.374074 0.374074i −0.494884 0.868959i \(-0.664790\pi\)
0.868959 + 0.494884i \(0.164790\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 285.707 + 285.707i 0.611793 + 0.611793i 0.943413 0.331620i \(-0.107595\pi\)
−0.331620 + 0.943413i \(0.607595\pi\)
\(468\) 0 0
\(469\) 1004.69i 2.14219i
\(470\) 0 0
\(471\) 498.322 1.05801
\(472\) 0 0
\(473\) 261.939 261.939i 0.553782 0.553782i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 156.272 + 156.272i 0.327615 + 0.327615i
\(478\) 0 0
\(479\) 356.404i 0.744059i −0.928221 0.372029i \(-0.878662\pi\)
0.928221 0.372029i \(-0.121338\pi\)
\(480\) 0 0
\(481\) 44.8082 0.0931563
\(482\) 0 0
\(483\) 344.363 344.363i 0.712967 0.712967i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −55.6209 55.6209i −0.114211 0.114211i 0.647691 0.761903i \(-0.275735\pi\)
−0.761903 + 0.647691i \(0.775735\pi\)
\(488\) 0 0
\(489\) 71.5551i 0.146329i
\(490\) 0 0
\(491\) −106.141 −0.216173 −0.108086 0.994142i \(-0.534472\pi\)
−0.108086 + 0.994142i \(0.534472\pi\)
\(492\) 0 0
\(493\) 3.23266 3.23266i 0.00655711 0.00655711i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −430.747 430.747i −0.866694 0.866694i
\(498\) 0 0
\(499\) 298.363i 0.597922i −0.954265 0.298961i \(-0.903360\pi\)
0.954265 0.298961i \(-0.0966401\pi\)
\(500\) 0 0
\(501\) −284.586 −0.568035
\(502\) 0 0
\(503\) 655.101 655.101i 1.30239 1.30239i 0.375610 0.926778i \(-0.377433\pi\)
0.926778 0.375610i \(-0.122567\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 192.285 + 192.285i 0.379260 + 0.379260i
\(508\) 0 0
\(509\) 683.110i 1.34206i −0.741429 0.671032i \(-0.765851\pi\)
0.741429 0.671032i \(-0.234149\pi\)
\(510\) 0 0
\(511\) 1015.11 1.98652
\(512\) 0 0
\(513\) −123.439 + 123.439i −0.240622 + 0.240622i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −53.0306 53.0306i −0.102574 0.102574i
\(518\) 0 0
\(519\) 147.637i 0.284464i
\(520\) 0 0
\(521\) −6.76734 −0.0129891 −0.00649457 0.999979i \(-0.502067\pi\)
−0.00649457 + 0.999979i \(0.502067\pi\)
\(522\) 0 0
\(523\) −600.990 + 600.990i −1.14912 + 1.14912i −0.162394 + 0.986726i \(0.551922\pi\)
−0.986726 + 0.162394i \(0.948078\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −22.6469 22.6469i −0.0429733 0.0429733i
\(528\) 0 0
\(529\) 421.302i 0.796412i
\(530\) 0 0
\(531\) −260.969 −0.491468
\(532\) 0 0
\(533\) 148.899 148.899i 0.279360 0.279360i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 215.753 + 215.753i 0.401774 + 0.401774i
\(538\) 0 0
\(539\) 403.394i 0.748412i
\(540\) 0 0
\(541\) 177.110 0.327376 0.163688 0.986512i \(-0.447661\pi\)
0.163688 + 0.986512i \(0.447661\pi\)
\(542\) 0 0
\(543\) 198.359 198.359i 0.365301 0.365301i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −35.3326 35.3326i −0.0645935 0.0645935i 0.674072 0.738666i \(-0.264544\pi\)
−0.738666 + 0.674072i \(0.764544\pi\)
\(548\) 0 0
\(549\) 325.151i 0.592261i
\(550\) 0 0
\(551\) 120.808 0.219253
\(552\) 0 0
\(553\) 425.666 425.666i 0.769740 0.769740i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −121.930 121.930i −0.218904 0.218904i 0.589132 0.808037i \(-0.299470\pi\)
−0.808037 + 0.589132i \(0.799470\pi\)
\(558\) 0 0
\(559\) 108.767i 0.194575i
\(560\) 0 0
\(561\) −25.9796 −0.0463094
\(562\) 0 0
\(563\) −436.636 + 436.636i −0.775552 + 0.775552i −0.979071 0.203519i \(-0.934762\pi\)
0.203519 + 0.979071i \(0.434762\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 58.0454 + 58.0454i 0.102373 + 0.102373i
\(568\) 0 0
\(569\) 394.363i 0.693081i 0.938035 + 0.346541i \(0.112644\pi\)
−0.938035 + 0.346541i \(0.887356\pi\)
\(570\) 0 0
\(571\) −32.0612 −0.0561493 −0.0280746 0.999606i \(-0.508938\pi\)
−0.0280746 + 0.999606i \(0.508938\pi\)
\(572\) 0 0
\(573\) −307.101 + 307.101i −0.535953 + 0.535953i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −545.848 545.848i −0.946010 0.946010i 0.0526051 0.998615i \(-0.483248\pi\)
−0.998615 + 0.0526051i \(0.983248\pi\)
\(578\) 0 0
\(579\) 21.1306i 0.0364950i
\(580\) 0 0
\(581\) 1084.69 1.86693
\(582\) 0 0
\(583\) −614.565 + 614.565i −1.05414 + 1.05414i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −307.728 307.728i −0.524238 0.524238i 0.394611 0.918848i \(-0.370879\pi\)
−0.918848 + 0.394611i \(0.870879\pi\)
\(588\) 0 0
\(589\) 846.343i 1.43691i
\(590\) 0 0
\(591\) −446.302 −0.755164
\(592\) 0 0
\(593\) −228.940 + 228.940i −0.386070 + 0.386070i −0.873283 0.487213i \(-0.838014\pi\)
0.487213 + 0.873283i \(0.338014\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 99.4393 + 99.4393i 0.166565 + 0.166565i
\(598\) 0 0
\(599\) 345.657i 0.577057i −0.957471 0.288529i \(-0.906834\pi\)
0.957471 0.288529i \(-0.0931660\pi\)
\(600\) 0 0
\(601\) 893.069 1.48597 0.742986 0.669307i \(-0.233409\pi\)
0.742986 + 0.669307i \(0.233409\pi\)
\(602\) 0 0
\(603\) −233.666 + 233.666i −0.387506 + 0.387506i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 560.974 + 560.974i 0.924175 + 0.924175i 0.997321 0.0731466i \(-0.0233041\pi\)
−0.0731466 + 0.997321i \(0.523304\pi\)
\(608\) 0 0
\(609\) 56.8082i 0.0932811i
\(610\) 0 0
\(611\) 22.0204 0.0360400
\(612\) 0 0
\(613\) −439.448 + 439.448i −0.716882 + 0.716882i −0.967965 0.251084i \(-0.919213\pi\)
0.251084 + 0.967965i \(0.419213\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −199.201 199.201i −0.322854 0.322854i 0.527007 0.849861i \(-0.323314\pi\)
−0.849861 + 0.527007i \(0.823314\pi\)
\(618\) 0 0
\(619\) 121.151i 0.195721i −0.995200 0.0978603i \(-0.968800\pi\)
0.995200 0.0978603i \(-0.0311998\pi\)
\(620\) 0 0
\(621\) 160.182 0.257941
\(622\) 0 0
\(623\) 61.8888 61.8888i 0.0993399 0.0993399i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −485.444 485.444i −0.774233 0.774233i
\(628\) 0 0
\(629\) 16.4449i 0.0261445i
\(630\) 0 0
\(631\) −247.494 −0.392225 −0.196112 0.980581i \(-0.562832\pi\)
−0.196112 + 0.980581i \(0.562832\pi\)
\(632\) 0 0
\(633\) −244.429 + 244.429i −0.386144 + 0.386144i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −83.7526 83.7526i −0.131480 0.131480i
\(638\) 0 0
\(639\) 200.363i 0.313558i
\(640\) 0 0
\(641\) 70.6857 0.110274 0.0551371 0.998479i \(-0.482440\pi\)
0.0551371 + 0.998479i \(0.482440\pi\)
\(642\) 0 0
\(643\) −231.373 + 231.373i −0.359834 + 0.359834i −0.863752 0.503917i \(-0.831892\pi\)
0.503917 + 0.863752i \(0.331892\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −500.958 500.958i −0.774278 0.774278i 0.204573 0.978851i \(-0.434419\pi\)
−0.978851 + 0.204573i \(0.934419\pi\)
\(648\) 0 0
\(649\) 1026.30i 1.58136i
\(650\) 0 0
\(651\) −397.980 −0.611336
\(652\) 0 0
\(653\) 261.031 261.031i 0.399741 0.399741i −0.478401 0.878142i \(-0.658783\pi\)
0.878142 + 0.478401i \(0.158783\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 236.091 + 236.091i 0.359347 + 0.359347i
\(658\) 0 0
\(659\) 800.524i 1.21476i 0.794413 + 0.607378i \(0.207779\pi\)
−0.794413 + 0.607378i \(0.792221\pi\)
\(660\) 0 0
\(661\) −313.192 −0.473815 −0.236908 0.971532i \(-0.576134\pi\)
−0.236908 + 0.971532i \(0.576134\pi\)
\(662\) 0 0
\(663\) 5.39388 5.39388i 0.00813556 0.00813556i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −78.3837 78.3837i −0.117517 0.117517i
\(668\) 0 0
\(669\) 330.545i 0.494088i
\(670\) 0 0
\(671\) −1278.71 −1.90567
\(672\) 0 0
\(673\) 688.677 688.677i 1.02329 1.02329i 0.0235713 0.999722i \(-0.492496\pi\)
0.999722 0.0235713i \(-0.00750369\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 660.767 + 660.767i 0.976023 + 0.976023i 0.999719 0.0236965i \(-0.00754355\pi\)
−0.0236965 + 0.999719i \(0.507544\pi\)
\(678\) 0 0
\(679\) 684.686i 1.00837i
\(680\) 0 0
\(681\) 149.171 0.219048
\(682\) 0 0
\(683\) 952.232 952.232i 1.39419 1.39419i 0.578525 0.815664i \(-0.303628\pi\)
0.815664 0.578525i \(-0.196372\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −169.955 169.955i −0.247387 0.247387i
\(688\) 0 0
\(689\) 255.192i 0.370380i
\(690\) 0 0
\(691\) −568.665 −0.822960 −0.411480 0.911419i \(-0.634988\pi\)
−0.411480 + 0.911419i \(0.634988\pi\)
\(692\) 0 0
\(693\) −228.272 + 228.272i −0.329397 + 0.329397i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 54.6469 + 54.6469i 0.0784031 + 0.0784031i
\(698\) 0 0
\(699\) 623.778i 0.892386i
\(700\) 0 0
\(701\) −125.698 −0.179312 −0.0896562 0.995973i \(-0.528577\pi\)
−0.0896562 + 0.995973i \(0.528577\pi\)
\(702\) 0 0
\(703\) −307.283 + 307.283i −0.437102 + 0.437102i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1000.91 1000.91i −1.41571 1.41571i
\(708\) 0 0
\(709\) 201.069i 0.283596i −0.989896 0.141798i \(-0.954712\pi\)
0.989896 0.141798i \(-0.0452883\pi\)
\(710\) 0 0
\(711\) 198.000 0.278481
\(712\) 0 0
\(713\) −549.131 + 549.131i −0.770169 + 0.770169i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −517.807 517.807i −0.722186 0.722186i
\(718\) 0 0
\(719\) 785.576i 1.09259i −0.837591 0.546297i \(-0.816037\pi\)
0.837591 0.546297i \(-0.183963\pi\)
\(720\) 0 0
\(721\) −546.384 −0.757814
\(722\) 0 0
\(723\) 13.1872 13.1872i 0.0182396 0.0182396i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −282.459 282.459i −0.388526 0.388526i 0.485635 0.874162i \(-0.338588\pi\)
−0.874162 + 0.485635i \(0.838588\pi\)
\(728\) 0 0
\(729\) 27.0000i 0.0370370i
\(730\) 0 0
\(731\) −39.9184 −0.0546079
\(732\) 0 0
\(733\) −54.9036 + 54.9036i −0.0749025 + 0.0749025i −0.743566 0.668663i \(-0.766867\pi\)
0.668663 + 0.743566i \(0.266867\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −918.929 918.929i −1.24685 1.24685i
\(738\) 0 0
\(739\) 276.624i 0.374323i 0.982329 + 0.187161i \(0.0599287\pi\)
−0.982329 + 0.187161i \(0.940071\pi\)
\(740\) 0 0
\(741\) 201.576 0.272032
\(742\) 0 0
\(743\) −143.101 + 143.101i −0.192599 + 0.192599i −0.796818 0.604219i \(-0.793485\pi\)
0.604219 + 0.796818i \(0.293485\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 252.272 + 252.272i 0.337714 + 0.337714i
\(748\) 0 0
\(749\) 385.535i 0.514733i
\(750\) 0 0
\(751\) −871.453 −1.16039 −0.580195 0.814478i \(-0.697024\pi\)
−0.580195 + 0.814478i \(0.697024\pi\)
\(752\) 0 0
\(753\) 217.782 217.782i 0.289219 0.289219i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −304.702 304.702i −0.402512 0.402512i 0.476605 0.879117i \(-0.341867\pi\)
−0.879117 + 0.476605i \(0.841867\pi\)
\(758\) 0 0
\(759\) 629.939i 0.829959i
\(760\) 0 0
\(761\) 613.959 0.806779 0.403390 0.915028i \(-0.367832\pi\)
0.403390 + 0.915028i \(0.367832\pi\)
\(762\) 0 0
\(763\) −110.879 + 110.879i −0.145319 + 0.145319i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 213.081 + 213.081i 0.277810 + 0.277810i
\(768\) 0 0
\(769\) 887.412i 1.15398i 0.816750 + 0.576991i \(0.195773\pi\)
−0.816750 + 0.576991i \(0.804227\pi\)
\(770\) 0 0
\(771\) 348.545 0.452069
\(772\) 0 0
\(773\) −605.757 + 605.757i −0.783644 + 0.783644i −0.980444 0.196799i \(-0.936945\pi\)
0.196799 + 0.980444i \(0.436945\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 144.495 + 144.495i 0.185965 + 0.185965i
\(778\) 0 0
\(779\) 2042.22i 2.62159i
\(780\) 0 0
\(781\) 787.959 1.00891
\(782\) 0 0
\(783\) 13.2122 13.2122i 0.0168739 0.0168739i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −616.463 616.463i −0.783308 0.783308i 0.197080 0.980387i \(-0.436854\pi\)
−0.980387 + 0.197080i \(0.936854\pi\)
\(788\) 0 0
\(789\) 88.1816i 0.111764i
\(790\) 0 0
\(791\) −1732.24 −2.18994
\(792\) 0 0
\(793\) 265.485 265.485i 0.334785 0.334785i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 247.768 + 247.768i 0.310876 + 0.310876i 0.845249 0.534373i \(-0.179452\pi\)
−0.534373 + 0.845249i \(0.679452\pi\)
\(798\) 0 0
\(799\) 8.08164i 0.0101147i
\(800\) 0 0
\(801\) 28.7878 0.0359398
\(802\) 0 0
\(803\) −928.463 + 928.463i −1.15624 + 1.15624i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −47.5551 47.5551i −0.0589282 0.0589282i
\(808\) 0 0
\(809\) 1556.10i 1.92348i −0.273958 0.961742i \(-0.588333\pi\)
0.273958 0.961742i \(-0.411667\pi\)
\(810\) 0 0
\(811\) −277.192 −0.341790 −0.170895 0.985289i \(-0.554666\pi\)
−0.170895 + 0.985289i \(0.554666\pi\)
\(812\) 0 0
\(813\) 14.1770 14.1770i 0.0174379 0.0174379i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −745.898 745.898i −0.912972 0.912972i
\(818\) 0 0
\(819\) 94.7878i 0.115736i
\(820\) 0 0
\(821\) −1485.86 −1.80981 −0.904907 0.425610i \(-0.860060\pi\)
−0.904907 + 0.425610i \(0.860060\pi\)
\(822\) 0 0
\(823\) −809.519 + 809.519i −0.983620 + 0.983620i −0.999868 0.0162485i \(-0.994828\pi\)
0.0162485 + 0.999868i \(0.494828\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1122.66 + 1122.66i 1.35750 + 1.35750i 0.876983 + 0.480521i \(0.159553\pi\)
0.480521 + 0.876983i \(0.340447\pi\)
\(828\) 0 0
\(829\) 849.151i 1.02431i −0.858894 0.512154i \(-0.828848\pi\)
0.858894 0.512154i \(-0.171152\pi\)
\(830\) 0 0
\(831\) 691.980 0.832707
\(832\) 0 0
\(833\) 30.7378 30.7378i 0.0369001 0.0369001i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −92.5607 92.5607i −0.110586 0.110586i
\(838\) 0 0
\(839\) 1606.26i 1.91449i −0.289270 0.957247i \(-0.593413\pi\)
0.289270 0.957247i \(-0.406587\pi\)
\(840\) 0 0
\(841\) 828.069 0.984625
\(842\) 0 0
\(843\) 529.560 529.560i 0.628185 0.628185i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −117.328 117.328i −0.138522 0.138522i
\(848\) 0 0
\(849\) 548.363i 0.645893i
\(850\) 0 0
\(851\) 398.747 0.468563
\(852\) 0 0
\(853\) −632.702 + 632.702i −0.741737 + 0.741737i −0.972912 0.231175i \(-0.925743\pi\)
0.231175 + 0.972912i \(0.425743\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −258.879 258.879i −0.302075 0.302075i 0.539750 0.841825i \(-0.318519\pi\)
−0.841825 + 0.539750i \(0.818519\pi\)
\(858\) 0 0
\(859\) 534.082i 0.621748i −0.950451 0.310874i \(-0.899378\pi\)
0.950451 0.310874i \(-0.100622\pi\)
\(860\) 0 0
\(861\) 960.322 1.11536
\(862\) 0 0
\(863\) −711.878 + 711.878i −0.824887 + 0.824887i −0.986804 0.161917i \(-0.948232\pi\)
0.161917 + 0.986804i \(0.448232\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −351.972 351.972i −0.405965 0.405965i
\(868\) 0 0
\(869\) 778.665i 0.896048i
\(870\) 0 0
\(871\) 381.576 0.438089
\(872\) 0 0
\(873\) −159.242 + 159.242i −0.182408 + 0.182408i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −742.590 742.590i −0.846739 0.846739i 0.142986 0.989725i \(-0.454330\pi\)
−0.989725 + 0.142986i \(0.954330\pi\)
\(878\) 0 0
\(879\) 481.980i 0.548327i
\(880\) 0 0
\(881\) −1000.75 −1.13592 −0.567961 0.823056i \(-0.692267\pi\)
−0.567961 + 0.823056i \(0.692267\pi\)
\(882\) 0 0
\(883\) 546.788 546.788i 0.619239 0.619239i −0.326097 0.945336i \(-0.605734\pi\)
0.945336 + 0.326097i \(0.105734\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1138.48 1138.48i −1.28352 1.28352i −0.938650 0.344872i \(-0.887922\pi\)
−0.344872 0.938650i \(-0.612078\pi\)
\(888\) 0 0
\(889\) 1976.60i 2.22340i
\(890\) 0 0
\(891\) −106.182 −0.119171
\(892\) 0 0
\(893\) −151.010 + 151.010i −0.169104 + 0.169104i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −130.788 130.788i −0.145806 0.145806i
\(898\) 0 0
\(899\) 90.5878i 0.100765i
\(900\) 0 0
\(901\) 93.6571 0.103948
\(902\) 0 0
\(903\) −350.747 + 350.747i −0.388424 + 0.388424i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 162.706 + 162.706i 0.179389 + 0.179389i 0.791090 0.611700i \(-0.209514\pi\)
−0.611700 + 0.791090i \(0.709514\pi\)
\(908\) 0 0
\(909\) 465.576i 0.512184i
\(910\) 0 0
\(911\) 386.988 0.424794 0.212397 0.977183i \(-0.431873\pi\)
0.212397 + 0.977183i \(0.431873\pi\)
\(912\) 0 0
\(913\) −992.100 + 992.100i −1.08664 + 1.08664i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1268.01 1268.01i −1.38278 1.38278i
\(918\) 0 0
\(919\) 1101.80i 1.19891i −0.800409 0.599454i \(-0.795385\pi\)
0.800409 0.599454i \(-0.204615\pi\)
\(920\) 0 0
\(921\) −347.110 −0.376884
\(922\) 0 0
\(923\) −163.596 + 163.596i −0.177244 + 0.177244i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −127.076 127.076i −0.137083 0.137083i
\(928\) 0 0
\(929\) 261.273i 0.281242i 0.990064 + 0.140621i \(0.0449098\pi\)
−0.990064 + 0.140621i \(0.955090\pi\)
\(930\) 0 0
\(931\) 1148.71 1.23384
\(932\) 0 0
\(933\) 504.050 504.050i 0.540247 0.540247i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 57.7980 + 57.7980i 0.0616841 + 0.0616841i 0.737276 0.675592i \(-0.236112\pi\)
−0.675592 + 0.737276i \(0.736112\pi\)
\(938\) 0 0
\(939\) 896.363i 0.954593i
\(940\) 0 0
\(941\) 399.837 0.424906 0.212453 0.977171i \(-0.431855\pi\)
0.212453 + 0.977171i \(0.431855\pi\)
\(942\) 0 0
\(943\) 1325.05 1325.05i 1.40514 1.40514i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −464.958 464.958i −0.490980 0.490980i 0.417635 0.908615i \(-0.362859\pi\)
−0.908615 + 0.417635i \(0.862859\pi\)
\(948\) 0 0
\(949\) 385.535i 0.406254i
\(950\) 0 0
\(951\) 828.767 0.871469
\(952\) 0 0
\(953\) −627.242 + 627.242i −0.658176 + 0.658176i −0.954948 0.296772i \(-0.904090\pi\)
0.296772 + 0.954948i \(0.404090\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 51.9592 + 51.9592i 0.0542938 + 0.0542938i
\(958\) 0 0
\(959\) 1045.86i 1.09057i
\(960\) 0 0
\(961\) −326.371 −0.339616
\(962\) 0 0
\(963\) −89.6663 + 89.6663i −0.0931114 + 0.0931114i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1334.02 1334.02i −1.37955 1.37955i −0.845375 0.534173i \(-0.820623\pi\)
−0.534173 0.845375i \(-0.679377\pi\)
\(968\) 0 0
\(969\) 73.9796i 0.0763463i
\(970\) 0 0
\(971\) 1489.17 1.53365 0.766823 0.641859i \(-0.221837\pi\)
0.766823 + 0.641859i \(0.221837\pi\)
\(972\) 0 0
\(973\) 239.868 239.868i 0.246525 0.246525i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1134.66 + 1134.66i 1.16137 + 1.16137i 0.984176 + 0.177191i \(0.0567011\pi\)
0.177191 + 0.984176i \(0.443299\pi\)
\(978\) 0 0
\(979\) 113.212i 0.115641i
\(980\) 0 0
\(981\) −51.5755 −0.0525744
\(982\) 0 0
\(983\) −261.485 + 261.485i −0.266007 + 0.266007i −0.827489 0.561482i \(-0.810231\pi\)
0.561482 + 0.827489i \(0.310231\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 71.0102 + 71.0102i 0.0719455 + 0.0719455i
\(988\) 0 0
\(989\) 967.918i 0.978684i
\(990\) 0 0
\(991\) 950.645 0.959278 0.479639 0.877466i \(-0.340768\pi\)
0.479639 + 0.877466i \(0.340768\pi\)
\(992\) 0 0
\(993\) 119.480 119.480i 0.120322 0.120322i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 96.0566 + 96.0566i 0.0963457 + 0.0963457i 0.753637 0.657291i \(-0.228298\pi\)
−0.657291 + 0.753637i \(0.728298\pi\)
\(998\) 0 0
\(999\) 67.2122i 0.0672795i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1200.3.bg.b.1057.2 4
4.3 odd 2 600.3.u.f.457.1 yes 4
5.2 odd 4 1200.3.bg.m.193.1 4
5.3 odd 4 inner 1200.3.bg.b.193.2 4
5.4 even 2 1200.3.bg.m.1057.1 4
12.11 even 2 1800.3.v.q.1657.2 4
20.3 even 4 600.3.u.f.193.1 yes 4
20.7 even 4 600.3.u.a.193.2 4
20.19 odd 2 600.3.u.a.457.2 yes 4
60.23 odd 4 1800.3.v.q.793.2 4
60.47 odd 4 1800.3.v.j.793.1 4
60.59 even 2 1800.3.v.j.1657.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.3.u.a.193.2 4 20.7 even 4
600.3.u.a.457.2 yes 4 20.19 odd 2
600.3.u.f.193.1 yes 4 20.3 even 4
600.3.u.f.457.1 yes 4 4.3 odd 2
1200.3.bg.b.193.2 4 5.3 odd 4 inner
1200.3.bg.b.1057.2 4 1.1 even 1 trivial
1200.3.bg.m.193.1 4 5.2 odd 4
1200.3.bg.m.1057.1 4 5.4 even 2
1800.3.v.j.793.1 4 60.47 odd 4
1800.3.v.j.1657.1 4 60.59 even 2
1800.3.v.q.793.2 4 60.23 odd 4
1800.3.v.q.1657.2 4 12.11 even 2