Properties

Label 1200.4.a.bj
Level $1200$
Weight $4$
Character orbit 1200.a
Self dual yes
Analytic conductor $70.802$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1200,4,Mod(1,1200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1200.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.8022920069\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{3} + 20 q^{7} + 9 q^{9} - 16 q^{11} - 58 q^{13} - 38 q^{17} - 4 q^{19} + 60 q^{21} - 80 q^{23} + 27 q^{27} + 82 q^{29} + 8 q^{31} - 48 q^{33} - 426 q^{37} - 174 q^{39} - 246 q^{41} - 524 q^{43}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 0 0 20.0000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1200.4.a.bj 1
4.b odd 2 1 600.4.a.a 1
5.b even 2 1 240.4.a.a 1
5.c odd 4 2 1200.4.f.h 2
12.b even 2 1 1800.4.a.e 1
15.d odd 2 1 720.4.a.s 1
20.d odd 2 1 120.4.a.e 1
20.e even 4 2 600.4.f.f 2
40.e odd 2 1 960.4.a.q 1
40.f even 2 1 960.4.a.bd 1
60.h even 2 1 360.4.a.m 1
60.l odd 4 2 1800.4.f.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.4.a.e 1 20.d odd 2 1
240.4.a.a 1 5.b even 2 1
360.4.a.m 1 60.h even 2 1
600.4.a.a 1 4.b odd 2 1
600.4.f.f 2 20.e even 4 2
720.4.a.s 1 15.d odd 2 1
960.4.a.q 1 40.e odd 2 1
960.4.a.bd 1 40.f even 2 1
1200.4.a.bj 1 1.a even 1 1 trivial
1200.4.f.h 2 5.c odd 4 2
1800.4.a.e 1 12.b even 2 1
1800.4.f.k 2 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1200))\):

\( T_{7} - 20 \) Copy content Toggle raw display
\( T_{11} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 20 \) Copy content Toggle raw display
$11$ \( T + 16 \) Copy content Toggle raw display
$13$ \( T + 58 \) Copy content Toggle raw display
$17$ \( T + 38 \) Copy content Toggle raw display
$19$ \( T + 4 \) Copy content Toggle raw display
$23$ \( T + 80 \) Copy content Toggle raw display
$29$ \( T - 82 \) Copy content Toggle raw display
$31$ \( T - 8 \) Copy content Toggle raw display
$37$ \( T + 426 \) Copy content Toggle raw display
$41$ \( T + 246 \) Copy content Toggle raw display
$43$ \( T + 524 \) Copy content Toggle raw display
$47$ \( T + 464 \) Copy content Toggle raw display
$53$ \( T - 702 \) Copy content Toggle raw display
$59$ \( T - 592 \) Copy content Toggle raw display
$61$ \( T - 574 \) Copy content Toggle raw display
$67$ \( T + 172 \) Copy content Toggle raw display
$71$ \( T + 768 \) Copy content Toggle raw display
$73$ \( T - 558 \) Copy content Toggle raw display
$79$ \( T + 408 \) Copy content Toggle raw display
$83$ \( T - 164 \) Copy content Toggle raw display
$89$ \( T + 510 \) Copy content Toggle raw display
$97$ \( T + 514 \) Copy content Toggle raw display
show more
show less