gp: [N,k,chi] = [960,4,Mod(1,960)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(960, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("960.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,0,-3,0,5,0,20,0,9,0,-16]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
3 3 3
+ 1 +1 + 1
5 5 5
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 960 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(960)) S 4 n e w ( Γ 0 ( 9 6 0 ) ) :
T 7 − 20 T_{7} - 20 T 7 − 2 0
T7 - 20
T 11 + 16 T_{11} + 16 T 1 1 + 1 6
T11 + 16
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T + 3 T + 3 T + 3
T + 3
5 5 5
T − 5 T - 5 T − 5
T - 5
7 7 7
T − 20 T - 20 T − 2 0
T - 20
11 11 1 1
T + 16 T + 16 T + 1 6
T + 16
13 13 1 3
T + 58 T + 58 T + 5 8
T + 58
17 17 1 7
T − 38 T - 38 T − 3 8
T - 38
19 19 1 9
T + 4 T + 4 T + 4
T + 4
23 23 2 3
T + 80 T + 80 T + 8 0
T + 80
29 29 2 9
T + 82 T + 82 T + 8 2
T + 82
31 31 3 1
T + 8 T + 8 T + 8
T + 8
37 37 3 7
T + 426 T + 426 T + 4 2 6
T + 426
41 41 4 1
T + 246 T + 246 T + 2 4 6
T + 246
43 43 4 3
T − 524 T - 524 T − 5 2 4
T - 524
47 47 4 7
T + 464 T + 464 T + 4 6 4
T + 464
53 53 5 3
T − 702 T - 702 T − 7 0 2
T - 702
59 59 5 9
T − 592 T - 592 T − 5 9 2
T - 592
61 61 6 1
T + 574 T + 574 T + 5 7 4
T + 574
67 67 6 7
T − 172 T - 172 T − 1 7 2
T - 172
71 71 7 1
T − 768 T - 768 T − 7 6 8
T - 768
73 73 7 3
T + 558 T + 558 T + 5 5 8
T + 558
79 79 7 9
T − 408 T - 408 T − 4 0 8
T - 408
83 83 8 3
T + 164 T + 164 T + 1 6 4
T + 164
89 89 8 9
T + 510 T + 510 T + 5 1 0
T + 510
97 97 9 7
T − 514 T - 514 T − 5 1 4
T - 514
show more
show less