Properties

Label 1200.4.f.h
Level 12001200
Weight 44
Character orbit 1200.f
Analytic conductor 70.80270.802
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1200,4,Mod(49,1200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1200.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1200=24352 1200 = 2^{4} \cdot 3 \cdot 5^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1200.f (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 70.802292006970.8022920069
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q3iq3+20iq79q916q11+58iq1338iq17+4q19+60q21+80iq23+27iq2782q29+8q31+48iq33426iq37+174q39246q41++144q99+O(q100) q - 3 i q^{3} + 20 i q^{7} - 9 q^{9} - 16 q^{11} + 58 i q^{13} - 38 i q^{17} + 4 q^{19} + 60 q^{21} + 80 i q^{23} + 27 i q^{27} - 82 q^{29} + 8 q^{31} + 48 i q^{33} - 426 i q^{37} + 174 q^{39} - 246 q^{41} + \cdots + 144 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q18q932q11+8q19+120q21164q29+16q31+348q39492q41114q49228q511184q59+1148q61+480q691536q71+816q79+162q81++288q99+O(q100) 2 q - 18 q^{9} - 32 q^{11} + 8 q^{19} + 120 q^{21} - 164 q^{29} + 16 q^{31} + 348 q^{39} - 492 q^{41} - 114 q^{49} - 228 q^{51} - 1184 q^{59} + 1148 q^{61} + 480 q^{69} - 1536 q^{71} + 816 q^{79} + 162 q^{81}+ \cdots + 288 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1200Z)×\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times.

nn 401401 577577 751751 901901
χ(n)\chi(n) 11 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
1.00000i
1.00000i
0 3.00000i 0 0 0 20.0000i 0 −9.00000 0
49.2 0 3.00000i 0 0 0 20.0000i 0 −9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1200.4.f.h 2
4.b odd 2 1 600.4.f.f 2
5.b even 2 1 inner 1200.4.f.h 2
5.c odd 4 1 240.4.a.a 1
5.c odd 4 1 1200.4.a.bj 1
12.b even 2 1 1800.4.f.k 2
15.e even 4 1 720.4.a.s 1
20.d odd 2 1 600.4.f.f 2
20.e even 4 1 120.4.a.e 1
20.e even 4 1 600.4.a.a 1
40.i odd 4 1 960.4.a.bd 1
40.k even 4 1 960.4.a.q 1
60.h even 2 1 1800.4.f.k 2
60.l odd 4 1 360.4.a.m 1
60.l odd 4 1 1800.4.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.4.a.e 1 20.e even 4 1
240.4.a.a 1 5.c odd 4 1
360.4.a.m 1 60.l odd 4 1
600.4.a.a 1 20.e even 4 1
600.4.f.f 2 4.b odd 2 1
600.4.f.f 2 20.d odd 2 1
720.4.a.s 1 15.e even 4 1
960.4.a.q 1 40.k even 4 1
960.4.a.bd 1 40.i odd 4 1
1200.4.a.bj 1 5.c odd 4 1
1200.4.f.h 2 1.a even 1 1 trivial
1200.4.f.h 2 5.b even 2 1 inner
1800.4.a.e 1 60.l odd 4 1
1800.4.f.k 2 12.b even 2 1
1800.4.f.k 2 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(1200,[χ])S_{4}^{\mathrm{new}}(1200, [\chi]):

T72+400 T_{7}^{2} + 400 Copy content Toggle raw display
T11+16 T_{11} + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+9 T^{2} + 9 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+400 T^{2} + 400 Copy content Toggle raw display
1111 (T+16)2 (T + 16)^{2} Copy content Toggle raw display
1313 T2+3364 T^{2} + 3364 Copy content Toggle raw display
1717 T2+1444 T^{2} + 1444 Copy content Toggle raw display
1919 (T4)2 (T - 4)^{2} Copy content Toggle raw display
2323 T2+6400 T^{2} + 6400 Copy content Toggle raw display
2929 (T+82)2 (T + 82)^{2} Copy content Toggle raw display
3131 (T8)2 (T - 8)^{2} Copy content Toggle raw display
3737 T2+181476 T^{2} + 181476 Copy content Toggle raw display
4141 (T+246)2 (T + 246)^{2} Copy content Toggle raw display
4343 T2+274576 T^{2} + 274576 Copy content Toggle raw display
4747 T2+215296 T^{2} + 215296 Copy content Toggle raw display
5353 T2+492804 T^{2} + 492804 Copy content Toggle raw display
5959 (T+592)2 (T + 592)^{2} Copy content Toggle raw display
6161 (T574)2 (T - 574)^{2} Copy content Toggle raw display
6767 T2+29584 T^{2} + 29584 Copy content Toggle raw display
7171 (T+768)2 (T + 768)^{2} Copy content Toggle raw display
7373 T2+311364 T^{2} + 311364 Copy content Toggle raw display
7979 (T408)2 (T - 408)^{2} Copy content Toggle raw display
8383 T2+26896 T^{2} + 26896 Copy content Toggle raw display
8989 (T510)2 (T - 510)^{2} Copy content Toggle raw display
9797 T2+264196 T^{2} + 264196 Copy content Toggle raw display
show more
show less