Properties

Label 1216.2.k.b.305.30
Level $1216$
Weight $2$
Character 1216.305
Analytic conductor $9.710$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(305,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.305");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 304)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 305.30
Character \(\chi\) \(=\) 1216.305
Dual form 1216.2.k.b.913.30

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.89015 - 1.89015i) q^{3} +(-1.06645 - 1.06645i) q^{5} -4.02959i q^{7} -4.14533i q^{9} +O(q^{10})\) \(q+(1.89015 - 1.89015i) q^{3} +(-1.06645 - 1.06645i) q^{5} -4.02959i q^{7} -4.14533i q^{9} +(-0.552303 - 0.552303i) q^{11} +(-4.37311 + 4.37311i) q^{13} -4.03151 q^{15} +0.608142 q^{17} +(0.707107 - 0.707107i) q^{19} +(-7.61653 - 7.61653i) q^{21} -0.900783i q^{23} -2.72536i q^{25} +(-2.16485 - 2.16485i) q^{27} +(6.34029 - 6.34029i) q^{29} -7.50604 q^{31} -2.08787 q^{33} +(-4.29737 + 4.29737i) q^{35} +(4.12547 + 4.12547i) q^{37} +16.5317i q^{39} +3.15335i q^{41} +(4.34630 + 4.34630i) q^{43} +(-4.42080 + 4.42080i) q^{45} -12.4949 q^{47} -9.23758 q^{49} +(1.14948 - 1.14948i) q^{51} +(0.257543 + 0.257543i) q^{53} +1.17801i q^{55} -2.67308i q^{57} +(3.92257 + 3.92257i) q^{59} +(4.73541 - 4.73541i) q^{61} -16.7040 q^{63} +9.32743 q^{65} +(9.32201 - 9.32201i) q^{67} +(-1.70262 - 1.70262i) q^{69} -0.270319i q^{71} -12.3210i q^{73} +(-5.15133 - 5.15133i) q^{75} +(-2.22555 + 2.22555i) q^{77} +1.74353 q^{79} +4.25220 q^{81} +(2.77691 - 2.77691i) q^{83} +(-0.648554 - 0.648554i) q^{85} -23.9682i q^{87} +10.4507i q^{89} +(17.6218 + 17.6218i) q^{91} +(-14.1875 + 14.1875i) q^{93} -1.50819 q^{95} -3.49540 q^{97} +(-2.28948 + 2.28948i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q - 4 q^{3} + 8 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 68 q - 4 q^{3} + 8 q^{5} - 4 q^{11} + 16 q^{15} + 4 q^{17} + 16 q^{21} - 28 q^{27} - 32 q^{31} - 16 q^{33} + 24 q^{35} - 24 q^{37} + 16 q^{43} + 24 q^{47} - 56 q^{49} + 52 q^{51} + 32 q^{53} - 28 q^{59} - 24 q^{63} - 16 q^{65} - 28 q^{67} - 8 q^{69} - 44 q^{75} - 12 q^{77} - 8 q^{79} - 76 q^{81} - 40 q^{83} - 8 q^{85} + 4 q^{91} - 84 q^{93} - 32 q^{95} - 16 q^{97} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.89015 1.89015i 1.09128 1.09128i 0.0958864 0.995392i \(-0.469431\pi\)
0.995392 0.0958864i \(-0.0305685\pi\)
\(4\) 0 0
\(5\) −1.06645 1.06645i −0.476932 0.476932i 0.427217 0.904149i \(-0.359494\pi\)
−0.904149 + 0.427217i \(0.859494\pi\)
\(6\) 0 0
\(7\) 4.02959i 1.52304i −0.648141 0.761521i \(-0.724453\pi\)
0.648141 0.761521i \(-0.275547\pi\)
\(8\) 0 0
\(9\) 4.14533i 1.38178i
\(10\) 0 0
\(11\) −0.552303 0.552303i −0.166526 0.166526i 0.618925 0.785450i \(-0.287569\pi\)
−0.785450 + 0.618925i \(0.787569\pi\)
\(12\) 0 0
\(13\) −4.37311 + 4.37311i −1.21288 + 1.21288i −0.242807 + 0.970075i \(0.578068\pi\)
−0.970075 + 0.242807i \(0.921932\pi\)
\(14\) 0 0
\(15\) −4.03151 −1.04093
\(16\) 0 0
\(17\) 0.608142 0.147496 0.0737480 0.997277i \(-0.476504\pi\)
0.0737480 + 0.997277i \(0.476504\pi\)
\(18\) 0 0
\(19\) 0.707107 0.707107i 0.162221 0.162221i
\(20\) 0 0
\(21\) −7.61653 7.61653i −1.66206 1.66206i
\(22\) 0 0
\(23\) 0.900783i 0.187826i −0.995580 0.0939132i \(-0.970062\pi\)
0.995580 0.0939132i \(-0.0299376\pi\)
\(24\) 0 0
\(25\) 2.72536i 0.545071i
\(26\) 0 0
\(27\) −2.16485 2.16485i −0.416626 0.416626i
\(28\) 0 0
\(29\) 6.34029 6.34029i 1.17736 1.17736i 0.196949 0.980414i \(-0.436897\pi\)
0.980414 0.196949i \(-0.0631033\pi\)
\(30\) 0 0
\(31\) −7.50604 −1.34813 −0.674063 0.738674i \(-0.735452\pi\)
−0.674063 + 0.738674i \(0.735452\pi\)
\(32\) 0 0
\(33\) −2.08787 −0.363452
\(34\) 0 0
\(35\) −4.29737 + 4.29737i −0.726387 + 0.726387i
\(36\) 0 0
\(37\) 4.12547 + 4.12547i 0.678223 + 0.678223i 0.959598 0.281375i \(-0.0907905\pi\)
−0.281375 + 0.959598i \(0.590790\pi\)
\(38\) 0 0
\(39\) 16.5317i 2.64718i
\(40\) 0 0
\(41\) 3.15335i 0.492471i 0.969210 + 0.246236i \(0.0791937\pi\)
−0.969210 + 0.246236i \(0.920806\pi\)
\(42\) 0 0
\(43\) 4.34630 + 4.34630i 0.662805 + 0.662805i 0.956040 0.293235i \(-0.0947319\pi\)
−0.293235 + 0.956040i \(0.594732\pi\)
\(44\) 0 0
\(45\) −4.42080 + 4.42080i −0.659015 + 0.659015i
\(46\) 0 0
\(47\) −12.4949 −1.82258 −0.911288 0.411770i \(-0.864911\pi\)
−0.911288 + 0.411770i \(0.864911\pi\)
\(48\) 0 0
\(49\) −9.23758 −1.31965
\(50\) 0 0
\(51\) 1.14948 1.14948i 0.160959 0.160959i
\(52\) 0 0
\(53\) 0.257543 + 0.257543i 0.0353763 + 0.0353763i 0.724574 0.689197i \(-0.242037\pi\)
−0.689197 + 0.724574i \(0.742037\pi\)
\(54\) 0 0
\(55\) 1.17801i 0.158843i
\(56\) 0 0
\(57\) 2.67308i 0.354058i
\(58\) 0 0
\(59\) 3.92257 + 3.92257i 0.510675 + 0.510675i 0.914733 0.404059i \(-0.132401\pi\)
−0.404059 + 0.914733i \(0.632401\pi\)
\(60\) 0 0
\(61\) 4.73541 4.73541i 0.606307 0.606307i −0.335672 0.941979i \(-0.608963\pi\)
0.941979 + 0.335672i \(0.108963\pi\)
\(62\) 0 0
\(63\) −16.7040 −2.10451
\(64\) 0 0
\(65\) 9.32743 1.15692
\(66\) 0 0
\(67\) 9.32201 9.32201i 1.13886 1.13886i 0.150211 0.988654i \(-0.452005\pi\)
0.988654 0.150211i \(-0.0479953\pi\)
\(68\) 0 0
\(69\) −1.70262 1.70262i −0.204971 0.204971i
\(70\) 0 0
\(71\) 0.270319i 0.0320809i −0.999871 0.0160405i \(-0.994894\pi\)
0.999871 0.0160405i \(-0.00510605\pi\)
\(72\) 0 0
\(73\) 12.3210i 1.44206i −0.692903 0.721031i \(-0.743669\pi\)
0.692903 0.721031i \(-0.256331\pi\)
\(74\) 0 0
\(75\) −5.15133 5.15133i −0.594825 0.594825i
\(76\) 0 0
\(77\) −2.22555 + 2.22555i −0.253625 + 0.253625i
\(78\) 0 0
\(79\) 1.74353 0.196162 0.0980810 0.995178i \(-0.468730\pi\)
0.0980810 + 0.995178i \(0.468730\pi\)
\(80\) 0 0
\(81\) 4.25220 0.472467
\(82\) 0 0
\(83\) 2.77691 2.77691i 0.304805 0.304805i −0.538085 0.842890i \(-0.680852\pi\)
0.842890 + 0.538085i \(0.180852\pi\)
\(84\) 0 0
\(85\) −0.648554 0.648554i −0.0703456 0.0703456i
\(86\) 0 0
\(87\) 23.9682i 2.56966i
\(88\) 0 0
\(89\) 10.4507i 1.10778i 0.832591 + 0.553888i \(0.186856\pi\)
−0.832591 + 0.553888i \(0.813144\pi\)
\(90\) 0 0
\(91\) 17.6218 + 17.6218i 1.84727 + 1.84727i
\(92\) 0 0
\(93\) −14.1875 + 14.1875i −1.47118 + 1.47118i
\(94\) 0 0
\(95\) −1.50819 −0.154737
\(96\) 0 0
\(97\) −3.49540 −0.354904 −0.177452 0.984129i \(-0.556785\pi\)
−0.177452 + 0.984129i \(0.556785\pi\)
\(98\) 0 0
\(99\) −2.28948 + 2.28948i −0.230102 + 0.230102i
\(100\) 0 0
\(101\) −12.3075 12.3075i −1.22464 1.22464i −0.965965 0.258673i \(-0.916715\pi\)
−0.258673 0.965965i \(-0.583285\pi\)
\(102\) 0 0
\(103\) 5.57914i 0.549729i −0.961483 0.274865i \(-0.911367\pi\)
0.961483 0.274865i \(-0.0886330\pi\)
\(104\) 0 0
\(105\) 16.2453i 1.58538i
\(106\) 0 0
\(107\) −4.04485 4.04485i −0.391031 0.391031i 0.484024 0.875055i \(-0.339175\pi\)
−0.875055 + 0.484024i \(0.839175\pi\)
\(108\) 0 0
\(109\) 3.65197 3.65197i 0.349796 0.349796i −0.510238 0.860033i \(-0.670443\pi\)
0.860033 + 0.510238i \(0.170443\pi\)
\(110\) 0 0
\(111\) 15.5955 1.48026
\(112\) 0 0
\(113\) −4.70937 −0.443020 −0.221510 0.975158i \(-0.571099\pi\)
−0.221510 + 0.975158i \(0.571099\pi\)
\(114\) 0 0
\(115\) −0.960643 + 0.960643i −0.0895804 + 0.0895804i
\(116\) 0 0
\(117\) 18.1280 + 18.1280i 1.67593 + 1.67593i
\(118\) 0 0
\(119\) 2.45056i 0.224643i
\(120\) 0 0
\(121\) 10.3899i 0.944538i
\(122\) 0 0
\(123\) 5.96031 + 5.96031i 0.537423 + 0.537423i
\(124\) 0 0
\(125\) −8.23873 + 8.23873i −0.736894 + 0.736894i
\(126\) 0 0
\(127\) 15.6940 1.39262 0.696311 0.717741i \(-0.254824\pi\)
0.696311 + 0.717741i \(0.254824\pi\)
\(128\) 0 0
\(129\) 16.4303 1.44661
\(130\) 0 0
\(131\) −1.22078 + 1.22078i −0.106660 + 0.106660i −0.758423 0.651763i \(-0.774030\pi\)
0.651763 + 0.758423i \(0.274030\pi\)
\(132\) 0 0
\(133\) −2.84935 2.84935i −0.247070 0.247070i
\(134\) 0 0
\(135\) 4.61743i 0.397405i
\(136\) 0 0
\(137\) 0.501149i 0.0428160i 0.999771 + 0.0214080i \(0.00681491\pi\)
−0.999771 + 0.0214080i \(0.993185\pi\)
\(138\) 0 0
\(139\) −9.02230 9.02230i −0.765261 0.765261i 0.212007 0.977268i \(-0.432000\pi\)
−0.977268 + 0.212007i \(0.932000\pi\)
\(140\) 0 0
\(141\) −23.6173 + 23.6173i −1.98894 + 1.98894i
\(142\) 0 0
\(143\) 4.83056 0.403952
\(144\) 0 0
\(145\) −13.5232 −1.12304
\(146\) 0 0
\(147\) −17.4604 + 17.4604i −1.44011 + 1.44011i
\(148\) 0 0
\(149\) 15.6712 + 15.6712i 1.28383 + 1.28383i 0.938469 + 0.345363i \(0.112244\pi\)
0.345363 + 0.938469i \(0.387756\pi\)
\(150\) 0 0
\(151\) 12.8059i 1.04213i −0.853516 0.521066i \(-0.825534\pi\)
0.853516 0.521066i \(-0.174466\pi\)
\(152\) 0 0
\(153\) 2.52095i 0.203807i
\(154\) 0 0
\(155\) 8.00484 + 8.00484i 0.642964 + 0.642964i
\(156\) 0 0
\(157\) 13.3219 13.3219i 1.06320 1.06320i 0.0653374 0.997863i \(-0.479188\pi\)
0.997863 0.0653374i \(-0.0208124\pi\)
\(158\) 0 0
\(159\) 0.973591 0.0772108
\(160\) 0 0
\(161\) −3.62979 −0.286067
\(162\) 0 0
\(163\) −2.50875 + 2.50875i −0.196501 + 0.196501i −0.798498 0.601997i \(-0.794372\pi\)
0.601997 + 0.798498i \(0.294372\pi\)
\(164\) 0 0
\(165\) 2.22662 + 2.22662i 0.173342 + 0.173342i
\(166\) 0 0
\(167\) 13.2280i 1.02361i 0.859101 + 0.511806i \(0.171023\pi\)
−0.859101 + 0.511806i \(0.828977\pi\)
\(168\) 0 0
\(169\) 25.2481i 1.94216i
\(170\) 0 0
\(171\) −2.93119 2.93119i −0.224154 0.224154i
\(172\) 0 0
\(173\) 2.64423 2.64423i 0.201037 0.201037i −0.599407 0.800444i \(-0.704597\pi\)
0.800444 + 0.599407i \(0.204597\pi\)
\(174\) 0 0
\(175\) −10.9821 −0.830166
\(176\) 0 0
\(177\) 14.8285 1.11458
\(178\) 0 0
\(179\) 5.58253 5.58253i 0.417258 0.417258i −0.467000 0.884257i \(-0.654665\pi\)
0.884257 + 0.467000i \(0.154665\pi\)
\(180\) 0 0
\(181\) 12.3479 + 12.3479i 0.917815 + 0.917815i 0.996870 0.0790555i \(-0.0251904\pi\)
−0.0790555 + 0.996870i \(0.525190\pi\)
\(182\) 0 0
\(183\) 17.9013i 1.32330i
\(184\) 0 0
\(185\) 8.79924i 0.646933i
\(186\) 0 0
\(187\) −0.335879 0.335879i −0.0245619 0.0245619i
\(188\) 0 0
\(189\) −8.72347 + 8.72347i −0.634539 + 0.634539i
\(190\) 0 0
\(191\) −2.01504 −0.145804 −0.0729018 0.997339i \(-0.523226\pi\)
−0.0729018 + 0.997339i \(0.523226\pi\)
\(192\) 0 0
\(193\) 2.51436 0.180987 0.0904937 0.995897i \(-0.471155\pi\)
0.0904937 + 0.995897i \(0.471155\pi\)
\(194\) 0 0
\(195\) 17.6302 17.6302i 1.26253 1.26253i
\(196\) 0 0
\(197\) 8.73121 + 8.73121i 0.622073 + 0.622073i 0.946061 0.323988i \(-0.105024\pi\)
−0.323988 + 0.946061i \(0.605024\pi\)
\(198\) 0 0
\(199\) 3.61211i 0.256056i −0.991771 0.128028i \(-0.959135\pi\)
0.991771 0.128028i \(-0.0408647\pi\)
\(200\) 0 0
\(201\) 35.2400i 2.48564i
\(202\) 0 0
\(203\) −25.5488 25.5488i −1.79317 1.79317i
\(204\) 0 0
\(205\) 3.36290 3.36290i 0.234875 0.234875i
\(206\) 0 0
\(207\) −3.73405 −0.259534
\(208\) 0 0
\(209\) −0.781075 −0.0540281
\(210\) 0 0
\(211\) −3.51585 + 3.51585i −0.242041 + 0.242041i −0.817694 0.575653i \(-0.804748\pi\)
0.575653 + 0.817694i \(0.304748\pi\)
\(212\) 0 0
\(213\) −0.510943 0.510943i −0.0350092 0.0350092i
\(214\) 0 0
\(215\) 9.27026i 0.632226i
\(216\) 0 0
\(217\) 30.2463i 2.05325i
\(218\) 0 0
\(219\) −23.2885 23.2885i −1.57369 1.57369i
\(220\) 0 0
\(221\) −2.65947 + 2.65947i −0.178895 + 0.178895i
\(222\) 0 0
\(223\) 25.9333 1.73663 0.868313 0.496017i \(-0.165205\pi\)
0.868313 + 0.496017i \(0.165205\pi\)
\(224\) 0 0
\(225\) −11.2975 −0.753168
\(226\) 0 0
\(227\) −15.5390 + 15.5390i −1.03136 + 1.03136i −0.0318692 + 0.999492i \(0.510146\pi\)
−0.999492 + 0.0318692i \(0.989854\pi\)
\(228\) 0 0
\(229\) −7.93339 7.93339i −0.524253 0.524253i 0.394600 0.918853i \(-0.370883\pi\)
−0.918853 + 0.394600i \(0.870883\pi\)
\(230\) 0 0
\(231\) 8.41326i 0.553552i
\(232\) 0 0
\(233\) 13.0596i 0.855564i −0.903882 0.427782i \(-0.859295\pi\)
0.903882 0.427782i \(-0.140705\pi\)
\(234\) 0 0
\(235\) 13.3253 + 13.3253i 0.869245 + 0.869245i
\(236\) 0 0
\(237\) 3.29553 3.29553i 0.214067 0.214067i
\(238\) 0 0
\(239\) −3.88146 −0.251071 −0.125535 0.992089i \(-0.540065\pi\)
−0.125535 + 0.992089i \(0.540065\pi\)
\(240\) 0 0
\(241\) −21.7242 −1.39938 −0.699689 0.714448i \(-0.746678\pi\)
−0.699689 + 0.714448i \(0.746678\pi\)
\(242\) 0 0
\(243\) 14.5319 14.5319i 0.932220 0.932220i
\(244\) 0 0
\(245\) 9.85145 + 9.85145i 0.629386 + 0.629386i
\(246\) 0 0
\(247\) 6.18451i 0.393511i
\(248\) 0 0
\(249\) 10.4975i 0.665255i
\(250\) 0 0
\(251\) 20.9875 + 20.9875i 1.32472 + 1.32472i 0.909909 + 0.414807i \(0.136151\pi\)
0.414807 + 0.909909i \(0.363849\pi\)
\(252\) 0 0
\(253\) −0.497505 + 0.497505i −0.0312779 + 0.0312779i
\(254\) 0 0
\(255\) −2.45173 −0.153533
\(256\) 0 0
\(257\) 3.05424 0.190518 0.0952590 0.995453i \(-0.469632\pi\)
0.0952590 + 0.995453i \(0.469632\pi\)
\(258\) 0 0
\(259\) 16.6239 16.6239i 1.03296 1.03296i
\(260\) 0 0
\(261\) −26.2826 26.2826i −1.62685 1.62685i
\(262\) 0 0
\(263\) 19.3970i 1.19607i 0.801469 + 0.598036i \(0.204052\pi\)
−0.801469 + 0.598036i \(0.795948\pi\)
\(264\) 0 0
\(265\) 0.549315i 0.0337442i
\(266\) 0 0
\(267\) 19.7535 + 19.7535i 1.20889 + 1.20889i
\(268\) 0 0
\(269\) 12.1781 12.1781i 0.742514 0.742514i −0.230547 0.973061i \(-0.574052\pi\)
0.973061 + 0.230547i \(0.0740516\pi\)
\(270\) 0 0
\(271\) 18.7432 1.13857 0.569285 0.822140i \(-0.307220\pi\)
0.569285 + 0.822140i \(0.307220\pi\)
\(272\) 0 0
\(273\) 66.6158 4.03177
\(274\) 0 0
\(275\) −1.50522 + 1.50522i −0.0907684 + 0.0907684i
\(276\) 0 0
\(277\) 4.84631 + 4.84631i 0.291187 + 0.291187i 0.837549 0.546362i \(-0.183988\pi\)
−0.546362 + 0.837549i \(0.683988\pi\)
\(278\) 0 0
\(279\) 31.1151i 1.86281i
\(280\) 0 0
\(281\) 7.27330i 0.433889i 0.976184 + 0.216944i \(0.0696090\pi\)
−0.976184 + 0.216944i \(0.930391\pi\)
\(282\) 0 0
\(283\) 4.02007 + 4.02007i 0.238968 + 0.238968i 0.816423 0.577455i \(-0.195954\pi\)
−0.577455 + 0.816423i \(0.695954\pi\)
\(284\) 0 0
\(285\) −2.85071 + 2.85071i −0.168861 + 0.168861i
\(286\) 0 0
\(287\) 12.7067 0.750054
\(288\) 0 0
\(289\) −16.6302 −0.978245
\(290\) 0 0
\(291\) −6.60683 + 6.60683i −0.387299 + 0.387299i
\(292\) 0 0
\(293\) 13.2722 + 13.2722i 0.775370 + 0.775370i 0.979040 0.203670i \(-0.0652869\pi\)
−0.203670 + 0.979040i \(0.565287\pi\)
\(294\) 0 0
\(295\) 8.36646i 0.487114i
\(296\) 0 0
\(297\) 2.39131i 0.138758i
\(298\) 0 0
\(299\) 3.93922 + 3.93922i 0.227811 + 0.227811i
\(300\) 0 0
\(301\) 17.5138 17.5138i 1.00948 1.00948i
\(302\) 0 0
\(303\) −46.5259 −2.67284
\(304\) 0 0
\(305\) −10.1002 −0.578335
\(306\) 0 0
\(307\) −14.4957 + 14.4957i −0.827315 + 0.827315i −0.987145 0.159830i \(-0.948906\pi\)
0.159830 + 0.987145i \(0.448906\pi\)
\(308\) 0 0
\(309\) −10.5454 10.5454i −0.599908 0.599908i
\(310\) 0 0
\(311\) 5.20251i 0.295007i −0.989062 0.147504i \(-0.952876\pi\)
0.989062 0.147504i \(-0.0471238\pi\)
\(312\) 0 0
\(313\) 25.8149i 1.45914i −0.683904 0.729572i \(-0.739719\pi\)
0.683904 0.729572i \(-0.260281\pi\)
\(314\) 0 0
\(315\) 17.8140 + 17.8140i 1.00371 + 1.00371i
\(316\) 0 0
\(317\) 13.8188 13.8188i 0.776142 0.776142i −0.203030 0.979172i \(-0.565079\pi\)
0.979172 + 0.203030i \(0.0650790\pi\)
\(318\) 0 0
\(319\) −7.00353 −0.392122
\(320\) 0 0
\(321\) −15.2908 −0.853447
\(322\) 0 0
\(323\) 0.430021 0.430021i 0.0239270 0.0239270i
\(324\) 0 0
\(325\) 11.9183 + 11.9183i 0.661107 + 0.661107i
\(326\) 0 0
\(327\) 13.8056i 0.763449i
\(328\) 0 0
\(329\) 50.3495i 2.77586i
\(330\) 0 0
\(331\) 12.6291 + 12.6291i 0.694160 + 0.694160i 0.963144 0.268985i \(-0.0866882\pi\)
−0.268985 + 0.963144i \(0.586688\pi\)
\(332\) 0 0
\(333\) 17.1014 17.1014i 0.937154 0.937154i
\(334\) 0 0
\(335\) −19.8830 −1.08632
\(336\) 0 0
\(337\) −11.1511 −0.607438 −0.303719 0.952762i \(-0.598228\pi\)
−0.303719 + 0.952762i \(0.598228\pi\)
\(338\) 0 0
\(339\) −8.90141 + 8.90141i −0.483458 + 0.483458i
\(340\) 0 0
\(341\) 4.14561 + 4.14561i 0.224497 + 0.224497i
\(342\) 0 0
\(343\) 9.01654i 0.486847i
\(344\) 0 0
\(345\) 3.63152i 0.195514i
\(346\) 0 0
\(347\) 10.3939 + 10.3939i 0.557974 + 0.557974i 0.928730 0.370756i \(-0.120901\pi\)
−0.370756 + 0.928730i \(0.620901\pi\)
\(348\) 0 0
\(349\) −10.9522 + 10.9522i −0.586258 + 0.586258i −0.936616 0.350358i \(-0.886060\pi\)
0.350358 + 0.936616i \(0.386060\pi\)
\(350\) 0 0
\(351\) 18.9343 1.01064
\(352\) 0 0
\(353\) 28.2593 1.50409 0.752045 0.659111i \(-0.229067\pi\)
0.752045 + 0.659111i \(0.229067\pi\)
\(354\) 0 0
\(355\) −0.288282 + 0.288282i −0.0153004 + 0.0153004i
\(356\) 0 0
\(357\) −4.63193 4.63193i −0.245148 0.245148i
\(358\) 0 0
\(359\) 6.64825i 0.350881i 0.984490 + 0.175441i \(0.0561350\pi\)
−0.984490 + 0.175441i \(0.943865\pi\)
\(360\) 0 0
\(361\) 1.00000i 0.0526316i
\(362\) 0 0
\(363\) −19.6385 19.6385i −1.03075 1.03075i
\(364\) 0 0
\(365\) −13.1397 + 13.1397i −0.687765 + 0.687765i
\(366\) 0 0
\(367\) 8.84035 0.461462 0.230731 0.973018i \(-0.425888\pi\)
0.230731 + 0.973018i \(0.425888\pi\)
\(368\) 0 0
\(369\) 13.0717 0.680486
\(370\) 0 0
\(371\) 1.03779 1.03779i 0.0538795 0.0538795i
\(372\) 0 0
\(373\) −8.66241 8.66241i −0.448522 0.448522i 0.446341 0.894863i \(-0.352727\pi\)
−0.894863 + 0.446341i \(0.852727\pi\)
\(374\) 0 0
\(375\) 31.1449i 1.60831i
\(376\) 0 0
\(377\) 55.4536i 2.85600i
\(378\) 0 0
\(379\) −8.58240 8.58240i −0.440848 0.440848i 0.451449 0.892297i \(-0.350907\pi\)
−0.892297 + 0.451449i \(0.850907\pi\)
\(380\) 0 0
\(381\) 29.6641 29.6641i 1.51974 1.51974i
\(382\) 0 0
\(383\) 29.4894 1.50684 0.753420 0.657540i \(-0.228403\pi\)
0.753420 + 0.657540i \(0.228403\pi\)
\(384\) 0 0
\(385\) 4.74690 0.241924
\(386\) 0 0
\(387\) 18.0169 18.0169i 0.915850 0.915850i
\(388\) 0 0
\(389\) −9.54195 9.54195i −0.483796 0.483796i 0.422546 0.906342i \(-0.361137\pi\)
−0.906342 + 0.422546i \(0.861137\pi\)
\(390\) 0 0
\(391\) 0.547804i 0.0277036i
\(392\) 0 0
\(393\) 4.61492i 0.232792i
\(394\) 0 0
\(395\) −1.85939 1.85939i −0.0935560 0.0935560i
\(396\) 0 0
\(397\) −16.2249 + 16.2249i −0.814306 + 0.814306i −0.985276 0.170970i \(-0.945310\pi\)
0.170970 + 0.985276i \(0.445310\pi\)
\(398\) 0 0
\(399\) −10.7714 −0.539244
\(400\) 0 0
\(401\) 10.8292 0.540783 0.270392 0.962750i \(-0.412847\pi\)
0.270392 + 0.962750i \(0.412847\pi\)
\(402\) 0 0
\(403\) 32.8247 32.8247i 1.63512 1.63512i
\(404\) 0 0
\(405\) −4.53478 4.53478i −0.225335 0.225335i
\(406\) 0 0
\(407\) 4.55702i 0.225883i
\(408\) 0 0
\(409\) 19.3955i 0.959048i 0.877529 + 0.479524i \(0.159191\pi\)
−0.877529 + 0.479524i \(0.840809\pi\)
\(410\) 0 0
\(411\) 0.947247 + 0.947247i 0.0467242 + 0.0467242i
\(412\) 0 0
\(413\) 15.8063 15.8063i 0.777779 0.777779i
\(414\) 0 0
\(415\) −5.92288 −0.290743
\(416\) 0 0
\(417\) −34.1070 −1.67023
\(418\) 0 0
\(419\) −7.01113 + 7.01113i −0.342516 + 0.342516i −0.857313 0.514796i \(-0.827868\pi\)
0.514796 + 0.857313i \(0.327868\pi\)
\(420\) 0 0
\(421\) 4.19487 + 4.19487i 0.204445 + 0.204445i 0.801902 0.597456i \(-0.203822\pi\)
−0.597456 + 0.801902i \(0.703822\pi\)
\(422\) 0 0
\(423\) 51.7957i 2.51840i
\(424\) 0 0
\(425\) 1.65740i 0.0803959i
\(426\) 0 0
\(427\) −19.0818 19.0818i −0.923431 0.923431i
\(428\) 0 0
\(429\) 9.13049 9.13049i 0.440824 0.440824i
\(430\) 0 0
\(431\) −1.34988 −0.0650215 −0.0325107 0.999471i \(-0.510350\pi\)
−0.0325107 + 0.999471i \(0.510350\pi\)
\(432\) 0 0
\(433\) 29.1510 1.40091 0.700454 0.713698i \(-0.252981\pi\)
0.700454 + 0.713698i \(0.252981\pi\)
\(434\) 0 0
\(435\) −25.5610 + 25.5610i −1.22555 + 1.22555i
\(436\) 0 0
\(437\) −0.636950 0.636950i −0.0304695 0.0304695i
\(438\) 0 0
\(439\) 4.37163i 0.208646i −0.994543 0.104323i \(-0.966732\pi\)
0.994543 0.104323i \(-0.0332676\pi\)
\(440\) 0 0
\(441\) 38.2929i 1.82347i
\(442\) 0 0
\(443\) 20.5023 + 20.5023i 0.974092 + 0.974092i 0.999673 0.0255807i \(-0.00814349\pi\)
−0.0255807 + 0.999673i \(0.508143\pi\)
\(444\) 0 0
\(445\) 11.1452 11.1452i 0.528334 0.528334i
\(446\) 0 0
\(447\) 59.2417 2.80204
\(448\) 0 0
\(449\) −8.68234 −0.409745 −0.204873 0.978789i \(-0.565678\pi\)
−0.204873 + 0.978789i \(0.565678\pi\)
\(450\) 0 0
\(451\) 1.74161 1.74161i 0.0820091 0.0820091i
\(452\) 0 0
\(453\) −24.2051 24.2051i −1.13726 1.13726i
\(454\) 0 0
\(455\) 37.5857i 1.76204i
\(456\) 0 0
\(457\) 25.4118i 1.18871i 0.804202 + 0.594356i \(0.202593\pi\)
−0.804202 + 0.594356i \(0.797407\pi\)
\(458\) 0 0
\(459\) −1.31654 1.31654i −0.0614507 0.0614507i
\(460\) 0 0
\(461\) −4.47785 + 4.47785i −0.208554 + 0.208554i −0.803653 0.595098i \(-0.797113\pi\)
0.595098 + 0.803653i \(0.297113\pi\)
\(462\) 0 0
\(463\) 14.9185 0.693320 0.346660 0.937991i \(-0.387316\pi\)
0.346660 + 0.937991i \(0.387316\pi\)
\(464\) 0 0
\(465\) 30.2607 1.40331
\(466\) 0 0
\(467\) −21.1197 + 21.1197i −0.977301 + 0.977301i −0.999748 0.0224468i \(-0.992854\pi\)
0.0224468 + 0.999748i \(0.492854\pi\)
\(468\) 0 0
\(469\) −37.5639 37.5639i −1.73454 1.73454i
\(470\) 0 0
\(471\) 50.3606i 2.32050i
\(472\) 0 0
\(473\) 4.80095i 0.220748i
\(474\) 0 0
\(475\) −1.92712 1.92712i −0.0884223 0.0884223i
\(476\) 0 0
\(477\) 1.06760 1.06760i 0.0488822 0.0488822i
\(478\) 0 0
\(479\) −27.6920 −1.26528 −0.632641 0.774446i \(-0.718029\pi\)
−0.632641 + 0.774446i \(0.718029\pi\)
\(480\) 0 0
\(481\) −36.0822 −1.64521
\(482\) 0 0
\(483\) −6.86084 + 6.86084i −0.312179 + 0.312179i
\(484\) 0 0
\(485\) 3.72768 + 3.72768i 0.169265 + 0.169265i
\(486\) 0 0
\(487\) 35.2062i 1.59534i 0.603091 + 0.797672i \(0.293935\pi\)
−0.603091 + 0.797672i \(0.706065\pi\)
\(488\) 0 0
\(489\) 9.48384i 0.428874i
\(490\) 0 0
\(491\) −21.0214 21.0214i −0.948681 0.948681i 0.0500647 0.998746i \(-0.484057\pi\)
−0.998746 + 0.0500647i \(0.984057\pi\)
\(492\) 0 0
\(493\) 3.85580 3.85580i 0.173656 0.173656i
\(494\) 0 0
\(495\) 4.88325 0.219486
\(496\) 0 0
\(497\) −1.08927 −0.0488605
\(498\) 0 0
\(499\) 0.953966 0.953966i 0.0427054 0.0427054i −0.685432 0.728137i \(-0.740386\pi\)
0.728137 + 0.685432i \(0.240386\pi\)
\(500\) 0 0
\(501\) 25.0029 + 25.0029i 1.11705 + 1.11705i
\(502\) 0 0
\(503\) 4.28185i 0.190918i 0.995433 + 0.0954592i \(0.0304320\pi\)
−0.995433 + 0.0954592i \(0.969568\pi\)
\(504\) 0 0
\(505\) 26.2506i 1.16814i
\(506\) 0 0
\(507\) −47.7228 47.7228i −2.11944 2.11944i
\(508\) 0 0
\(509\) −21.8211 + 21.8211i −0.967202 + 0.967202i −0.999479 0.0322767i \(-0.989724\pi\)
0.0322767 + 0.999479i \(0.489724\pi\)
\(510\) 0 0
\(511\) −49.6485 −2.19632
\(512\) 0 0
\(513\) −3.06157 −0.135171
\(514\) 0 0
\(515\) −5.94989 + 5.94989i −0.262184 + 0.262184i
\(516\) 0 0
\(517\) 6.90100 + 6.90100i 0.303506 + 0.303506i
\(518\) 0 0
\(519\) 9.99598i 0.438775i
\(520\) 0 0
\(521\) 32.0921i 1.40598i −0.711199 0.702991i \(-0.751848\pi\)
0.711199 0.702991i \(-0.248152\pi\)
\(522\) 0 0
\(523\) −23.2846 23.2846i −1.01816 1.01816i −0.999832 0.0183319i \(-0.994164\pi\)
−0.0183319 0.999832i \(-0.505836\pi\)
\(524\) 0 0
\(525\) −20.7578 + 20.7578i −0.905943 + 0.905943i
\(526\) 0 0
\(527\) −4.56474 −0.198843
\(528\) 0 0
\(529\) 22.1886 0.964721
\(530\) 0 0
\(531\) 16.2603 16.2603i 0.705639 0.705639i
\(532\) 0 0
\(533\) −13.7900 13.7900i −0.597309 0.597309i
\(534\) 0 0
\(535\) 8.62729i 0.372990i
\(536\) 0 0
\(537\) 21.1036i 0.910689i
\(538\) 0 0
\(539\) 5.10195 + 5.10195i 0.219756 + 0.219756i
\(540\) 0 0
\(541\) −12.1744 + 12.1744i −0.523420 + 0.523420i −0.918602 0.395183i \(-0.870681\pi\)
0.395183 + 0.918602i \(0.370681\pi\)
\(542\) 0 0
\(543\) 46.6789 2.00318
\(544\) 0 0
\(545\) −7.78931 −0.333658
\(546\) 0 0
\(547\) 10.7020 10.7020i 0.457584 0.457584i −0.440277 0.897862i \(-0.645120\pi\)
0.897862 + 0.440277i \(0.145120\pi\)
\(548\) 0 0
\(549\) −19.6299 19.6299i −0.837782 0.837782i
\(550\) 0 0
\(551\) 8.96653i 0.381987i
\(552\) 0 0
\(553\) 7.02569i 0.298763i
\(554\) 0 0
\(555\) −16.6319 16.6319i −0.705984 0.705984i
\(556\) 0 0
\(557\) 10.6604 10.6604i 0.451695 0.451695i −0.444222 0.895917i \(-0.646520\pi\)
0.895917 + 0.444222i \(0.146520\pi\)
\(558\) 0 0
\(559\) −38.0137 −1.60781
\(560\) 0 0
\(561\) −1.26972 −0.0536077
\(562\) 0 0
\(563\) −12.8332 + 12.8332i −0.540854 + 0.540854i −0.923779 0.382926i \(-0.874917\pi\)
0.382926 + 0.923779i \(0.374917\pi\)
\(564\) 0 0
\(565\) 5.02232 + 5.02232i 0.211291 + 0.211291i
\(566\) 0 0
\(567\) 17.1346i 0.719587i
\(568\) 0 0
\(569\) 15.4815i 0.649020i −0.945882 0.324510i \(-0.894801\pi\)
0.945882 0.324510i \(-0.105199\pi\)
\(570\) 0 0
\(571\) −17.8262 17.8262i −0.746004 0.746004i 0.227722 0.973726i \(-0.426872\pi\)
−0.973726 + 0.227722i \(0.926872\pi\)
\(572\) 0 0
\(573\) −3.80874 + 3.80874i −0.159112 + 0.159112i
\(574\) 0 0
\(575\) −2.45496 −0.102379
\(576\) 0 0
\(577\) −5.29423 −0.220401 −0.110201 0.993909i \(-0.535149\pi\)
−0.110201 + 0.993909i \(0.535149\pi\)
\(578\) 0 0
\(579\) 4.75251 4.75251i 0.197508 0.197508i
\(580\) 0 0
\(581\) −11.1898 11.1898i −0.464231 0.464231i
\(582\) 0 0
\(583\) 0.284484i 0.0117821i
\(584\) 0 0
\(585\) 38.6653i 1.59861i
\(586\) 0 0
\(587\) 27.4763 + 27.4763i 1.13407 + 1.13407i 0.989494 + 0.144574i \(0.0461811\pi\)
0.144574 + 0.989494i \(0.453819\pi\)
\(588\) 0 0
\(589\) −5.30757 + 5.30757i −0.218695 + 0.218695i
\(590\) 0 0
\(591\) 33.0066 1.35771
\(592\) 0 0
\(593\) −26.3502 −1.08207 −0.541036 0.841000i \(-0.681968\pi\)
−0.541036 + 0.841000i \(0.681968\pi\)
\(594\) 0 0
\(595\) −2.61341 + 2.61341i −0.107139 + 0.107139i
\(596\) 0 0
\(597\) −6.82744 6.82744i −0.279428 0.279428i
\(598\) 0 0
\(599\) 18.7420i 0.765776i 0.923795 + 0.382888i \(0.125070\pi\)
−0.923795 + 0.382888i \(0.874930\pi\)
\(600\) 0 0
\(601\) 6.35121i 0.259071i 0.991575 + 0.129536i \(0.0413486\pi\)
−0.991575 + 0.129536i \(0.958651\pi\)
\(602\) 0 0
\(603\) −38.6429 38.6429i −1.57366 1.57366i
\(604\) 0 0
\(605\) −11.0804 + 11.0804i −0.450481 + 0.450481i
\(606\) 0 0
\(607\) −21.4722 −0.871531 −0.435765 0.900060i \(-0.643522\pi\)
−0.435765 + 0.900060i \(0.643522\pi\)
\(608\) 0 0
\(609\) −96.5820 −3.91370
\(610\) 0 0
\(611\) 54.6418 54.6418i 2.21057 2.21057i
\(612\) 0 0
\(613\) 29.5806 + 29.5806i 1.19475 + 1.19475i 0.975717 + 0.219033i \(0.0702904\pi\)
0.219033 + 0.975717i \(0.429710\pi\)
\(614\) 0 0
\(615\) 12.7128i 0.512629i
\(616\) 0 0
\(617\) 17.8609i 0.719051i −0.933135 0.359525i \(-0.882939\pi\)
0.933135 0.359525i \(-0.117061\pi\)
\(618\) 0 0
\(619\) 3.98730 + 3.98730i 0.160263 + 0.160263i 0.782683 0.622420i \(-0.213850\pi\)
−0.622420 + 0.782683i \(0.713850\pi\)
\(620\) 0 0
\(621\) −1.95006 + 1.95006i −0.0782534 + 0.0782534i
\(622\) 0 0
\(623\) 42.1122 1.68719
\(624\) 0 0
\(625\) 3.94565 0.157826
\(626\) 0 0
\(627\) −1.47635 + 1.47635i −0.0589597 + 0.0589597i
\(628\) 0 0
\(629\) 2.50887 + 2.50887i 0.100035 + 0.100035i
\(630\) 0 0
\(631\) 30.3473i 1.20811i −0.796944 0.604053i \(-0.793552\pi\)
0.796944 0.604053i \(-0.206448\pi\)
\(632\) 0 0
\(633\) 13.2910i 0.528269i
\(634\) 0 0
\(635\) −16.7370 16.7370i −0.664186 0.664186i
\(636\) 0 0
\(637\) 40.3969 40.3969i 1.60059 1.60059i
\(638\) 0 0
\(639\) −1.12056 −0.0443287
\(640\) 0 0
\(641\) −26.6647 −1.05319 −0.526595 0.850116i \(-0.676532\pi\)
−0.526595 + 0.850116i \(0.676532\pi\)
\(642\) 0 0
\(643\) 17.4776 17.4776i 0.689250 0.689250i −0.272816 0.962066i \(-0.587955\pi\)
0.962066 + 0.272816i \(0.0879550\pi\)
\(644\) 0 0
\(645\) −17.5222 17.5222i −0.689935 0.689935i
\(646\) 0 0
\(647\) 21.9528i 0.863055i −0.902100 0.431528i \(-0.857975\pi\)
0.902100 0.431528i \(-0.142025\pi\)
\(648\) 0 0
\(649\) 4.33289i 0.170081i
\(650\) 0 0
\(651\) 57.1700 + 57.1700i 2.24067 + 2.24067i
\(652\) 0 0
\(653\) −20.4948 + 20.4948i −0.802024 + 0.802024i −0.983412 0.181387i \(-0.941941\pi\)
0.181387 + 0.983412i \(0.441941\pi\)
\(654\) 0 0
\(655\) 2.60381 0.101739
\(656\) 0 0
\(657\) −51.0746 −1.99261
\(658\) 0 0
\(659\) −36.1034 + 36.1034i −1.40639 + 1.40639i −0.628905 + 0.777482i \(0.716496\pi\)
−0.777482 + 0.628905i \(0.783504\pi\)
\(660\) 0 0
\(661\) −6.46495 6.46495i −0.251457 0.251457i 0.570111 0.821568i \(-0.306900\pi\)
−0.821568 + 0.570111i \(0.806900\pi\)
\(662\) 0 0
\(663\) 10.0536i 0.390449i
\(664\) 0 0
\(665\) 6.07739i 0.235671i
\(666\) 0 0
\(667\) −5.71123 5.71123i −0.221140 0.221140i
\(668\) 0 0
\(669\) 49.0179 49.0179i 1.89514 1.89514i
\(670\) 0 0
\(671\) −5.23077 −0.201932
\(672\) 0 0
\(673\) 4.15503 0.160165 0.0800823 0.996788i \(-0.474482\pi\)
0.0800823 + 0.996788i \(0.474482\pi\)
\(674\) 0 0
\(675\) −5.90000 + 5.90000i −0.227091 + 0.227091i
\(676\) 0 0
\(677\) −2.06257 2.06257i −0.0792710 0.0792710i 0.666360 0.745631i \(-0.267852\pi\)
−0.745631 + 0.666360i \(0.767852\pi\)
\(678\) 0 0
\(679\) 14.0850i 0.540534i
\(680\) 0 0
\(681\) 58.7422i 2.25100i
\(682\) 0 0
\(683\) −10.6287 10.6287i −0.406695 0.406695i 0.473890 0.880584i \(-0.342850\pi\)
−0.880584 + 0.473890i \(0.842850\pi\)
\(684\) 0 0
\(685\) 0.534452 0.534452i 0.0204204 0.0204204i
\(686\) 0 0
\(687\) −29.9906 −1.14421
\(688\) 0 0
\(689\) −2.25253 −0.0858145
\(690\) 0 0
\(691\) −16.9758 + 16.9758i −0.645790 + 0.645790i −0.951973 0.306183i \(-0.900948\pi\)
0.306183 + 0.951973i \(0.400948\pi\)
\(692\) 0 0
\(693\) 9.22567 + 9.22567i 0.350454 + 0.350454i
\(694\) 0 0
\(695\) 19.2437i 0.729956i
\(696\) 0 0
\(697\) 1.91769i 0.0726375i
\(698\) 0 0
\(699\) −24.6847 24.6847i −0.933659 0.933659i
\(700\) 0 0
\(701\) −8.20712 + 8.20712i −0.309979 + 0.309979i −0.844901 0.534922i \(-0.820341\pi\)
0.534922 + 0.844901i \(0.320341\pi\)
\(702\) 0 0
\(703\) 5.83429 0.220045
\(704\) 0 0
\(705\) 50.3735 1.89718
\(706\) 0 0
\(707\) −49.5940 + 49.5940i −1.86517 + 1.86517i
\(708\) 0 0
\(709\) 2.94396 + 2.94396i 0.110563 + 0.110563i 0.760224 0.649661i \(-0.225089\pi\)
−0.649661 + 0.760224i \(0.725089\pi\)
\(710\) 0 0
\(711\) 7.22750i 0.271052i
\(712\) 0 0
\(713\) 6.76132i 0.253213i
\(714\) 0 0
\(715\) −5.15157 5.15157i −0.192658 0.192658i
\(716\) 0 0
\(717\) −7.33654 + 7.33654i −0.273988 + 0.273988i
\(718\) 0 0
\(719\) −11.3521 −0.423362 −0.211681 0.977339i \(-0.567894\pi\)
−0.211681 + 0.977339i \(0.567894\pi\)
\(720\) 0 0
\(721\) −22.4816 −0.837260
\(722\) 0 0
\(723\) −41.0620 + 41.0620i −1.52711 + 1.52711i
\(724\) 0 0
\(725\) −17.2796 17.2796i −0.641747 0.641747i
\(726\) 0 0
\(727\) 7.72299i 0.286430i −0.989692 0.143215i \(-0.954256\pi\)
0.989692 0.143215i \(-0.0457440\pi\)
\(728\) 0 0
\(729\) 42.1782i 1.56216i
\(730\) 0 0
\(731\) 2.64317 + 2.64317i 0.0977611 + 0.0977611i
\(732\) 0 0
\(733\) 25.6965 25.6965i 0.949122 0.949122i −0.0496448 0.998767i \(-0.515809\pi\)
0.998767 + 0.0496448i \(0.0158089\pi\)
\(734\) 0 0
\(735\) 37.2414 1.37367
\(736\) 0 0
\(737\) −10.2972 −0.379300
\(738\) 0 0
\(739\) 14.2617 14.2617i 0.524627 0.524627i −0.394338 0.918965i \(-0.629026\pi\)
0.918965 + 0.394338i \(0.129026\pi\)
\(740\) 0 0
\(741\) 11.6896 + 11.6896i 0.429430 + 0.429430i
\(742\) 0 0
\(743\) 19.0364i 0.698379i −0.937052 0.349190i \(-0.886457\pi\)
0.937052 0.349190i \(-0.113543\pi\)
\(744\) 0 0
\(745\) 33.4251i 1.22460i
\(746\) 0 0
\(747\) −11.5112 11.5112i −0.421173 0.421173i
\(748\) 0 0
\(749\) −16.2991 + 16.2991i −0.595556 + 0.595556i
\(750\) 0 0
\(751\) 30.0230 1.09556 0.547778 0.836624i \(-0.315474\pi\)
0.547778 + 0.836624i \(0.315474\pi\)
\(752\) 0 0
\(753\) 79.3389 2.89127
\(754\) 0 0
\(755\) −13.6569 + 13.6569i −0.497027 + 0.497027i
\(756\) 0 0
\(757\) 18.8213 + 18.8213i 0.684071 + 0.684071i 0.960915 0.276844i \(-0.0892884\pi\)
−0.276844 + 0.960915i \(0.589288\pi\)
\(758\) 0 0
\(759\) 1.88072i 0.0682658i
\(760\) 0 0
\(761\) 0.500291i 0.0181355i 0.999959 + 0.00906777i \(0.00288640\pi\)
−0.999959 + 0.00906777i \(0.997114\pi\)
\(762\) 0 0
\(763\) −14.7159 14.7159i −0.532753 0.532753i
\(764\) 0 0
\(765\) −2.68847 + 2.68847i −0.0972020 + 0.0972020i
\(766\) 0 0
\(767\) −34.3076 −1.23878
\(768\) 0 0
\(769\) −6.22678 −0.224543 −0.112272 0.993678i \(-0.535813\pi\)
−0.112272 + 0.993678i \(0.535813\pi\)
\(770\) 0 0
\(771\) 5.77297 5.77297i 0.207908 0.207908i
\(772\) 0 0
\(773\) −22.7785 22.7785i −0.819287 0.819287i 0.166718 0.986005i \(-0.446683\pi\)
−0.986005 + 0.166718i \(0.946683\pi\)
\(774\) 0 0
\(775\) 20.4566i 0.734824i
\(776\) 0 0
\(777\) 62.8435i 2.25450i
\(778\) 0 0
\(779\) 2.22976 + 2.22976i 0.0798893 + 0.0798893i
\(780\) 0 0
\(781\) −0.149298 + 0.149298i −0.00534229 + 0.00534229i
\(782\) 0 0
\(783\) −27.4516 −0.981041
\(784\) 0 0
\(785\) −28.4143 −1.01415
\(786\) 0 0
\(787\) −15.6427 + 15.6427i −0.557601 + 0.557601i −0.928624 0.371023i \(-0.879007\pi\)
0.371023 + 0.928624i \(0.379007\pi\)
\(788\) 0 0
\(789\) 36.6633 + 36.6633i 1.30525 + 1.30525i
\(790\) 0 0
\(791\) 18.9768i 0.674738i
\(792\) 0 0
\(793\) 41.4169i 1.47076i
\(794\) 0 0
\(795\) −1.03829 1.03829i −0.0368243 0.0368243i
\(796\) 0 0
\(797\) −31.3227 + 31.3227i −1.10951 + 1.10951i −0.116291 + 0.993215i \(0.537100\pi\)
−0.993215 + 0.116291i \(0.962900\pi\)
\(798\) 0 0
\(799\) −7.59870 −0.268823
\(800\) 0 0
\(801\) 43.3218 1.53070
\(802\) 0 0
\(803\) −6.80491 + 6.80491i −0.240140 + 0.240140i
\(804\) 0 0
\(805\) 3.87100 + 3.87100i 0.136435 + 0.136435i
\(806\) 0 0
\(807\) 46.0370i 1.62058i
\(808\) 0 0
\(809\) 42.4127i 1.49115i 0.666421 + 0.745575i \(0.267825\pi\)
−0.666421 + 0.745575i \(0.732175\pi\)
\(810\) 0 0
\(811\) 14.3351 + 14.3351i 0.503374 + 0.503374i 0.912485 0.409111i \(-0.134161\pi\)
−0.409111 + 0.912485i \(0.634161\pi\)
\(812\) 0 0
\(813\) 35.4275 35.4275i 1.24250 1.24250i
\(814\) 0 0
\(815\) 5.35094 0.187435
\(816\) 0 0
\(817\) 6.14660 0.215042
\(818\) 0 0
\(819\) 73.0484 73.0484i 2.55252 2.55252i
\(820\) 0 0
\(821\) 0.414946 + 0.414946i 0.0144817 + 0.0144817i 0.714311 0.699829i \(-0.246740\pi\)
−0.699829 + 0.714311i \(0.746740\pi\)
\(822\) 0 0
\(823\) 24.2381i 0.844888i 0.906389 + 0.422444i \(0.138828\pi\)
−0.906389 + 0.422444i \(0.861172\pi\)
\(824\) 0 0
\(825\) 5.69020i 0.198107i
\(826\) 0 0
\(827\) 13.1438 + 13.1438i 0.457056 + 0.457056i 0.897688 0.440632i \(-0.145246\pi\)
−0.440632 + 0.897688i \(0.645246\pi\)
\(828\) 0 0
\(829\) 13.6134 13.6134i 0.472814 0.472814i −0.430010 0.902824i \(-0.641490\pi\)
0.902824 + 0.430010i \(0.141490\pi\)
\(830\) 0 0
\(831\) 18.3205 0.635531
\(832\) 0 0
\(833\) −5.61776 −0.194644
\(834\) 0 0
\(835\) 14.1070 14.1070i 0.488194 0.488194i
\(836\) 0 0
\(837\) 16.2495 + 16.2495i 0.561664 + 0.561664i
\(838\) 0 0
\(839\) 29.7619i 1.02750i −0.857941 0.513748i \(-0.828257\pi\)
0.857941 0.513748i \(-0.171743\pi\)
\(840\) 0 0
\(841\) 51.3986i 1.77237i
\(842\) 0 0
\(843\) 13.7476 + 13.7476i 0.473493 + 0.473493i
\(844\) 0 0
\(845\) −26.9259 + 26.9259i −0.926281 + 0.926281i
\(846\) 0 0
\(847\) −41.8671 −1.43857
\(848\) 0 0
\(849\) 15.1971 0.521562
\(850\) 0 0
\(851\) 3.71615 3.71615i 0.127388 0.127388i
\(852\) 0 0
\(853\) −2.40701 2.40701i −0.0824143 0.0824143i 0.664698 0.747112i \(-0.268560\pi\)
−0.747112 + 0.664698i \(0.768560\pi\)
\(854\) 0 0
\(855\) 6.25196i 0.213813i
\(856\) 0 0
\(857\) 42.4913i 1.45148i 0.687972 + 0.725738i \(0.258501\pi\)
−0.687972 + 0.725738i \(0.741499\pi\)
\(858\) 0 0
\(859\) 36.3033 + 36.3033i 1.23865 + 1.23865i 0.960552 + 0.278102i \(0.0897053\pi\)
0.278102 + 0.960552i \(0.410295\pi\)
\(860\) 0 0
\(861\) 24.0176 24.0176i 0.818518 0.818518i
\(862\) 0 0
\(863\) 40.3605 1.37389 0.686943 0.726711i \(-0.258952\pi\)
0.686943 + 0.726711i \(0.258952\pi\)
\(864\) 0 0
\(865\) −5.63989 −0.191762
\(866\) 0 0
\(867\) −31.4335 + 31.4335i −1.06754 + 1.06754i
\(868\) 0 0
\(869\) −0.962955 0.962955i −0.0326660 0.0326660i
\(870\) 0 0
\(871\) 81.5323i 2.76262i
\(872\) 0 0
\(873\) 14.4896i 0.490399i
\(874\) 0 0
\(875\) 33.1987 + 33.1987i 1.12232 + 1.12232i
\(876\) 0 0
\(877\) −12.7663 + 12.7663i −0.431087 + 0.431087i −0.888998 0.457911i \(-0.848598\pi\)
0.457911 + 0.888998i \(0.348598\pi\)
\(878\) 0 0
\(879\) 50.1729 1.69229
\(880\) 0 0
\(881\) −53.9328 −1.81704 −0.908521 0.417839i \(-0.862788\pi\)
−0.908521 + 0.417839i \(0.862788\pi\)
\(882\) 0 0
\(883\) 34.7449 34.7449i 1.16926 1.16926i 0.186874 0.982384i \(-0.440164\pi\)
0.982384 0.186874i \(-0.0598356\pi\)
\(884\) 0 0
\(885\) −15.8139 15.8139i −0.531577 0.531577i
\(886\) 0 0
\(887\) 45.2215i 1.51839i 0.650864 + 0.759195i \(0.274407\pi\)
−0.650864 + 0.759195i \(0.725593\pi\)
\(888\) 0 0
\(889\) 63.2405i 2.12102i
\(890\) 0 0
\(891\) −2.34851 2.34851i −0.0786779 0.0786779i
\(892\) 0 0
\(893\) −8.83526 + 8.83526i −0.295661 + 0.295661i
\(894\) 0 0
\(895\) −11.9070 −0.398007
\(896\) 0 0
\(897\) 14.8914 0.497211
\(898\) 0 0
\(899\) −47.5905 + 47.5905i −1.58723 + 1.58723i
\(900\) 0 0
\(901\) 0.156623 + 0.156623i 0.00521786 + 0.00521786i
\(902\) 0 0
\(903\) 66.2075i 2.20325i
\(904\) 0 0
\(905\) 26.3370i 0.875471i
\(906\) 0 0
\(907\) −11.5383 11.5383i −0.383123 0.383123i 0.489103 0.872226i \(-0.337324\pi\)
−0.872226 + 0.489103i \(0.837324\pi\)
\(908\) 0 0
\(909\) −51.0185 + 51.0185i −1.69218 + 1.69218i
\(910\) 0 0
\(911\) −28.5045 −0.944395 −0.472198 0.881493i \(-0.656539\pi\)
−0.472198 + 0.881493i \(0.656539\pi\)
\(912\) 0 0
\(913\) −3.06739 −0.101516
\(914\) 0 0
\(915\) −19.0909 + 19.0909i −0.631125 + 0.631125i
\(916\) 0 0
\(917\) 4.91925 + 4.91925i 0.162448 + 0.162448i
\(918\) 0 0
\(919\) 5.64101i 0.186080i 0.995662 + 0.0930399i \(0.0296584\pi\)
−0.995662 + 0.0930399i \(0.970342\pi\)
\(920\) 0 0
\(921\) 54.7982i 1.80566i
\(922\) 0 0
\(923\) 1.18213 + 1.18213i 0.0389103 + 0.0389103i
\(924\) 0 0
\(925\) 11.2434 11.2434i 0.369680 0.369680i
\(926\) 0 0
\(927\) −23.1274 −0.759604
\(928\) 0 0
\(929\) 14.2171 0.466448 0.233224 0.972423i \(-0.425072\pi\)
0.233224 + 0.972423i \(0.425072\pi\)
\(930\) 0 0
\(931\) −6.53196 + 6.53196i −0.214076 + 0.214076i
\(932\) 0 0
\(933\) −9.83353 9.83353i −0.321935 0.321935i
\(934\) 0 0
\(935\) 0.716397i 0.0234287i
\(936\) 0 0
\(937\) 19.4713i 0.636101i −0.948074 0.318051i \(-0.896972\pi\)
0.948074 0.318051i \(-0.103028\pi\)
\(938\) 0 0
\(939\) −48.7940 48.7940i −1.59233 1.59233i
\(940\) 0 0
\(941\) 38.1234 38.1234i 1.24279 1.24279i 0.283947 0.958840i \(-0.408356\pi\)
0.958840 0.283947i \(-0.0916441\pi\)
\(942\) 0 0
\(943\) 2.84049 0.0924990
\(944\) 0 0
\(945\) 18.6063 0.605264
\(946\) 0 0
\(947\) −8.23030 + 8.23030i −0.267449 + 0.267449i −0.828071 0.560623i \(-0.810562\pi\)
0.560623 + 0.828071i \(0.310562\pi\)
\(948\) 0 0
\(949\) 53.8810 + 53.8810i 1.74905 + 1.74905i
\(950\) 0 0
\(951\) 52.2393i 1.69397i
\(952\) 0 0
\(953\) 13.2093i 0.427890i −0.976846 0.213945i \(-0.931369\pi\)
0.976846 0.213945i \(-0.0686314\pi\)
\(954\) 0 0
\(955\) 2.14895 + 2.14895i 0.0695384 + 0.0695384i
\(956\) 0 0
\(957\) −13.2377 + 13.2377i −0.427915 + 0.427915i
\(958\) 0 0
\(959\) 2.01942 0.0652106
\(960\) 0 0
\(961\) 25.3407 0.817441
\(962\) 0 0
\(963\) −16.7673 + 16.7673i −0.540318 + 0.540318i
\(964\) 0 0
\(965\) −2.68144 2.68144i −0.0863187 0.0863187i
\(966\) 0 0
\(967\) 9.64759i 0.310246i 0.987895 + 0.155123i \(0.0495773\pi\)
−0.987895 + 0.155123i \(0.950423\pi\)
\(968\) 0 0
\(969\) 1.62561i 0.0522221i
\(970\) 0 0
\(971\) −1.09782 1.09782i −0.0352307 0.0352307i 0.689272 0.724503i \(-0.257931\pi\)
−0.724503 + 0.689272i \(0.757931\pi\)
\(972\) 0 0
\(973\) −36.3562 + 36.3562i −1.16552 + 1.16552i
\(974\) 0 0
\(975\) 45.0547 1.44290
\(976\) 0 0
\(977\) 0.637383 0.0203917 0.0101958 0.999948i \(-0.496755\pi\)
0.0101958 + 0.999948i \(0.496755\pi\)
\(978\) 0 0
\(979\) 5.77197 5.77197i 0.184473 0.184473i
\(980\) 0 0
\(981\) −15.1386 15.1386i −0.483340 0.483340i
\(982\) 0 0
\(983\) 17.4766i 0.557418i −0.960376 0.278709i \(-0.910093\pi\)
0.960376 0.278709i \(-0.0899065\pi\)
\(984\) 0 0
\(985\) 18.6229i 0.593374i
\(986\) 0 0
\(987\) 95.1681 + 95.1681i 3.02923 + 3.02923i
\(988\) 0 0
\(989\) 3.91508 3.91508i 0.124492 0.124492i
\(990\) 0 0
\(991\) 13.2083 0.419576 0.209788 0.977747i \(-0.432723\pi\)
0.209788 + 0.977747i \(0.432723\pi\)
\(992\) 0 0
\(993\) 47.7419 1.51504
\(994\) 0 0
\(995\) −3.85215 + 3.85215i −0.122121 + 0.122121i
\(996\) 0 0
\(997\) 14.8543 + 14.8543i 0.470440 + 0.470440i 0.902057 0.431617i \(-0.142057\pi\)
−0.431617 + 0.902057i \(0.642057\pi\)
\(998\) 0 0
\(999\) 17.8621i 0.565131i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.2.k.b.305.30 68
4.3 odd 2 304.2.k.b.229.34 yes 68
16.3 odd 4 304.2.k.b.77.34 68
16.13 even 4 inner 1216.2.k.b.913.30 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
304.2.k.b.77.34 68 16.3 odd 4
304.2.k.b.229.34 yes 68 4.3 odd 2
1216.2.k.b.305.30 68 1.1 even 1 trivial
1216.2.k.b.913.30 68 16.13 even 4 inner