Properties

Label 304.2.k.b.77.34
Level $304$
Weight $2$
Character 304.77
Analytic conductor $2.427$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [304,2,Mod(77,304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(304, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("304.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 304 = 2^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 304.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.42745222145\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.34
Character \(\chi\) \(=\) 304.77
Dual form 304.2.k.b.229.34

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41380 - 0.0343004i) q^{2} +(-1.89015 - 1.89015i) q^{3} +(1.99765 - 0.0969877i) q^{4} +(-1.06645 + 1.06645i) q^{5} +(-2.73712 - 2.60746i) q^{6} -4.02959i q^{7} +(2.82094 - 0.205641i) q^{8} +4.14533i q^{9} +O(q^{10})\) \(q+(1.41380 - 0.0343004i) q^{2} +(-1.89015 - 1.89015i) q^{3} +(1.99765 - 0.0969877i) q^{4} +(-1.06645 + 1.06645i) q^{5} +(-2.73712 - 2.60746i) q^{6} -4.02959i q^{7} +(2.82094 - 0.205641i) q^{8} +4.14533i q^{9} +(-1.47117 + 1.54433i) q^{10} +(0.552303 - 0.552303i) q^{11} +(-3.95917 - 3.59253i) q^{12} +(-4.37311 - 4.37311i) q^{13} +(-0.138217 - 5.69702i) q^{14} +4.03151 q^{15} +(3.98119 - 0.387494i) q^{16} +0.608142 q^{17} +(0.142187 + 5.86066i) q^{18} +(-0.707107 - 0.707107i) q^{19} +(-2.02696 + 2.23383i) q^{20} +(-7.61653 + 7.61653i) q^{21} +(0.761901 - 0.799789i) q^{22} -0.900783i q^{23} +(-5.72070 - 4.94331i) q^{24} +2.72536i q^{25} +(-6.33269 - 6.03269i) q^{26} +(2.16485 - 2.16485i) q^{27} +(-0.390820 - 8.04970i) q^{28} +(6.34029 + 6.34029i) q^{29} +(5.69974 - 0.138282i) q^{30} +7.50604 q^{31} +(5.61530 - 0.684395i) q^{32} -2.08787 q^{33} +(0.859789 - 0.0208595i) q^{34} +(4.29737 + 4.29737i) q^{35} +(0.402046 + 8.28092i) q^{36} +(4.12547 - 4.12547i) q^{37} +(-1.02396 - 0.975452i) q^{38} +16.5317i q^{39} +(-2.78909 + 3.22771i) q^{40} -3.15335i q^{41} +(-10.5070 + 11.0295i) q^{42} +(-4.34630 + 4.34630i) q^{43} +(1.04974 - 1.15687i) q^{44} +(-4.42080 - 4.42080i) q^{45} +(-0.0308972 - 1.27353i) q^{46} +12.4949 q^{47} +(-8.25746 - 6.79262i) q^{48} -9.23758 q^{49} +(0.0934808 + 3.85310i) q^{50} +(-1.14948 - 1.14948i) q^{51} +(-9.16006 - 8.31179i) q^{52} +(0.257543 - 0.257543i) q^{53} +(2.98641 - 3.13492i) q^{54} +1.17801i q^{55} +(-0.828649 - 11.3672i) q^{56} +2.67308i q^{57} +(9.18136 + 8.74641i) q^{58} +(-3.92257 + 3.92257i) q^{59} +(8.05354 - 0.391007i) q^{60} +(4.73541 + 4.73541i) q^{61} +(10.6120 - 0.257460i) q^{62} +16.7040 q^{63} +(7.91542 - 1.16020i) q^{64} +9.32743 q^{65} +(-2.95183 + 0.0716148i) q^{66} +(-9.32201 - 9.32201i) q^{67} +(1.21485 - 0.0589822i) q^{68} +(-1.70262 + 1.70262i) q^{69} +(6.22301 + 5.92820i) q^{70} -0.270319i q^{71} +(0.852451 + 11.6937i) q^{72} +12.3210i q^{73} +(5.69107 - 5.97408i) q^{74} +(5.15133 - 5.15133i) q^{75} +(-1.48113 - 1.34397i) q^{76} +(-2.22555 - 2.22555i) q^{77} +(0.567043 + 23.3724i) q^{78} -1.74353 q^{79} +(-3.83250 + 4.65899i) q^{80} +4.25220 q^{81} +(-0.108161 - 4.45820i) q^{82} +(-2.77691 - 2.77691i) q^{83} +(-14.4764 + 15.9538i) q^{84} +(-0.648554 + 0.648554i) q^{85} +(-5.99571 + 6.29387i) q^{86} -23.9682i q^{87} +(1.44444 - 1.67159i) q^{88} -10.4507i q^{89} +(-6.40176 - 6.09849i) q^{90} +(-17.6218 + 17.6218i) q^{91} +(-0.0873649 - 1.79945i) q^{92} +(-14.1875 - 14.1875i) q^{93} +(17.6653 - 0.428582i) q^{94} +1.50819 q^{95} +(-11.9074 - 9.32015i) q^{96} -3.49540 q^{97} +(-13.0601 + 0.316853i) q^{98} +(2.28948 + 2.28948i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 4 q^{3} + 4 q^{4} + 8 q^{5} - 8 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 68 q + 4 q^{3} + 4 q^{4} + 8 q^{5} - 8 q^{6} + 4 q^{11} - 4 q^{12} + 20 q^{14} - 16 q^{15} + 4 q^{16} + 4 q^{17} - 16 q^{18} + 16 q^{21} + 4 q^{22} - 4 q^{24} - 36 q^{26} + 28 q^{27} - 24 q^{28} + 24 q^{30} + 32 q^{31} - 20 q^{32} - 16 q^{33} - 32 q^{34} - 24 q^{35} + 52 q^{36} - 24 q^{37} - 4 q^{38} - 8 q^{40} - 40 q^{42} - 16 q^{43} - 36 q^{44} - 8 q^{46} - 24 q^{47} + 36 q^{48} - 56 q^{49} + 24 q^{50} - 52 q^{51} - 28 q^{52} + 32 q^{53} - 52 q^{54} + 12 q^{56} + 52 q^{58} + 28 q^{59} - 64 q^{60} - 12 q^{62} + 24 q^{63} - 32 q^{64} - 16 q^{65} - 44 q^{66} + 28 q^{67} - 48 q^{68} - 8 q^{69} + 4 q^{70} + 108 q^{72} + 72 q^{74} + 44 q^{75} - 12 q^{77} + 100 q^{78} + 8 q^{79} - 56 q^{80} - 76 q^{81} + 28 q^{82} + 40 q^{83} + 52 q^{84} - 8 q^{85} - 20 q^{86} - 56 q^{88} - 24 q^{90} - 4 q^{91} + 72 q^{92} - 84 q^{93} - 24 q^{94} + 32 q^{95} + 72 q^{96} - 16 q^{97} - 80 q^{98} - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/304\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41380 0.0343004i 0.999706 0.0242540i
\(3\) −1.89015 1.89015i −1.09128 1.09128i −0.995392 0.0958864i \(-0.969431\pi\)
−0.0958864 0.995392i \(-0.530569\pi\)
\(4\) 1.99765 0.0969877i 0.998823 0.0484938i
\(5\) −1.06645 + 1.06645i −0.476932 + 0.476932i −0.904149 0.427217i \(-0.859494\pi\)
0.427217 + 0.904149i \(0.359494\pi\)
\(6\) −2.73712 2.60746i −1.11743 1.06449i
\(7\) 4.02959i 1.52304i −0.648141 0.761521i \(-0.724453\pi\)
0.648141 0.761521i \(-0.275547\pi\)
\(8\) 2.82094 0.205641i 0.997353 0.0727051i
\(9\) 4.14533i 1.38178i
\(10\) −1.47117 + 1.54433i −0.465224 + 0.488359i
\(11\) 0.552303 0.552303i 0.166526 0.166526i −0.618925 0.785450i \(-0.712431\pi\)
0.785450 + 0.618925i \(0.212431\pi\)
\(12\) −3.95917 3.59253i −1.14292 1.03707i
\(13\) −4.37311 4.37311i −1.21288 1.21288i −0.970075 0.242807i \(-0.921932\pi\)
−0.242807 0.970075i \(-0.578068\pi\)
\(14\) −0.138217 5.69702i −0.0369399 1.52259i
\(15\) 4.03151 1.04093
\(16\) 3.98119 0.387494i 0.995297 0.0968735i
\(17\) 0.608142 0.147496 0.0737480 0.997277i \(-0.476504\pi\)
0.0737480 + 0.997277i \(0.476504\pi\)
\(18\) 0.142187 + 5.86066i 0.0335137 + 1.38137i
\(19\) −0.707107 0.707107i −0.162221 0.162221i
\(20\) −2.02696 + 2.23383i −0.453243 + 0.499499i
\(21\) −7.61653 + 7.61653i −1.66206 + 1.66206i
\(22\) 0.761901 0.799789i 0.162438 0.170516i
\(23\) 0.900783i 0.187826i −0.995580 0.0939132i \(-0.970062\pi\)
0.995580 0.0939132i \(-0.0299376\pi\)
\(24\) −5.72070 4.94331i −1.16773 1.00905i
\(25\) 2.72536i 0.545071i
\(26\) −6.33269 6.03269i −1.24194 1.18311i
\(27\) 2.16485 2.16485i 0.416626 0.416626i
\(28\) −0.390820 8.04970i −0.0738581 1.52125i
\(29\) 6.34029 + 6.34029i 1.17736 + 1.17736i 0.980414 + 0.196949i \(0.0631033\pi\)
0.196949 + 0.980414i \(0.436897\pi\)
\(30\) 5.69974 0.138282i 1.04063 0.0252468i
\(31\) 7.50604 1.34813 0.674063 0.738674i \(-0.264548\pi\)
0.674063 + 0.738674i \(0.264548\pi\)
\(32\) 5.61530 0.684395i 0.992654 0.120985i
\(33\) −2.08787 −0.363452
\(34\) 0.859789 0.0208595i 0.147453 0.00357738i
\(35\) 4.29737 + 4.29737i 0.726387 + 0.726387i
\(36\) 0.402046 + 8.28092i 0.0670077 + 1.38015i
\(37\) 4.12547 4.12547i 0.678223 0.678223i −0.281375 0.959598i \(-0.590790\pi\)
0.959598 + 0.281375i \(0.0907905\pi\)
\(38\) −1.02396 0.975452i −0.166108 0.158239i
\(39\) 16.5317i 2.64718i
\(40\) −2.78909 + 3.22771i −0.440995 + 0.510345i
\(41\) 3.15335i 0.492471i −0.969210 0.246236i \(-0.920806\pi\)
0.969210 0.246236i \(-0.0791937\pi\)
\(42\) −10.5070 + 11.0295i −1.62126 + 1.70189i
\(43\) −4.34630 + 4.34630i −0.662805 + 0.662805i −0.956040 0.293235i \(-0.905268\pi\)
0.293235 + 0.956040i \(0.405268\pi\)
\(44\) 1.04974 1.15687i 0.158254 0.174405i
\(45\) −4.42080 4.42080i −0.659015 0.659015i
\(46\) −0.0308972 1.27353i −0.00455555 0.187771i
\(47\) 12.4949 1.82258 0.911288 0.411770i \(-0.135089\pi\)
0.911288 + 0.411770i \(0.135089\pi\)
\(48\) −8.25746 6.79262i −1.19186 0.980430i
\(49\) −9.23758 −1.31965
\(50\) 0.0934808 + 3.85310i 0.0132202 + 0.544911i
\(51\) −1.14948 1.14948i −0.160959 0.160959i
\(52\) −9.16006 8.31179i −1.27027 1.15264i
\(53\) 0.257543 0.257543i 0.0353763 0.0353763i −0.689197 0.724574i \(-0.742037\pi\)
0.724574 + 0.689197i \(0.242037\pi\)
\(54\) 2.98641 3.13492i 0.406399 0.426609i
\(55\) 1.17801i 0.158843i
\(56\) −0.828649 11.3672i −0.110733 1.51901i
\(57\) 2.67308i 0.354058i
\(58\) 9.18136 + 8.74641i 1.20557 + 1.14846i
\(59\) −3.92257 + 3.92257i −0.510675 + 0.510675i −0.914733 0.404059i \(-0.867599\pi\)
0.404059 + 0.914733i \(0.367599\pi\)
\(60\) 8.05354 0.391007i 1.03971 0.0504788i
\(61\) 4.73541 + 4.73541i 0.606307 + 0.606307i 0.941979 0.335672i \(-0.108963\pi\)
−0.335672 + 0.941979i \(0.608963\pi\)
\(62\) 10.6120 0.257460i 1.34773 0.0326975i
\(63\) 16.7040 2.10451
\(64\) 7.91542 1.16020i 0.989428 0.145025i
\(65\) 9.32743 1.15692
\(66\) −2.95183 + 0.0716148i −0.363345 + 0.00881518i
\(67\) −9.32201 9.32201i −1.13886 1.13886i −0.988654 0.150211i \(-0.952005\pi\)
−0.150211 0.988654i \(-0.547995\pi\)
\(68\) 1.21485 0.0589822i 0.147322 0.00715265i
\(69\) −1.70262 + 1.70262i −0.204971 + 0.204971i
\(70\) 6.22301 + 5.92820i 0.743792 + 0.708556i
\(71\) 0.270319i 0.0320809i −0.999871 0.0160405i \(-0.994894\pi\)
0.999871 0.0160405i \(-0.00510605\pi\)
\(72\) 0.852451 + 11.6937i 0.100462 + 1.37812i
\(73\) 12.3210i 1.44206i 0.692903 + 0.721031i \(0.256331\pi\)
−0.692903 + 0.721031i \(0.743669\pi\)
\(74\) 5.69107 5.97408i 0.661574 0.694473i
\(75\) 5.15133 5.15133i 0.594825 0.594825i
\(76\) −1.48113 1.34397i −0.169897 0.154164i
\(77\) −2.22555 2.22555i −0.253625 0.253625i
\(78\) 0.567043 + 23.3724i 0.0642049 + 2.64641i
\(79\) −1.74353 −0.196162 −0.0980810 0.995178i \(-0.531270\pi\)
−0.0980810 + 0.995178i \(0.531270\pi\)
\(80\) −3.83250 + 4.65899i −0.428487 + 0.520891i
\(81\) 4.25220 0.472467
\(82\) −0.108161 4.45820i −0.0119444 0.492326i
\(83\) −2.77691 2.77691i −0.304805 0.304805i 0.538085 0.842890i \(-0.319148\pi\)
−0.842890 + 0.538085i \(0.819148\pi\)
\(84\) −14.4764 + 15.9538i −1.57951 + 1.74071i
\(85\) −0.648554 + 0.648554i −0.0703456 + 0.0703456i
\(86\) −5.99571 + 6.29387i −0.646534 + 0.678686i
\(87\) 23.9682i 2.56966i
\(88\) 1.44444 1.67159i 0.153978 0.178192i
\(89\) 10.4507i 1.10778i −0.832591 0.553888i \(-0.813144\pi\)
0.832591 0.553888i \(-0.186856\pi\)
\(90\) −6.40176 6.09849i −0.674804 0.642837i
\(91\) −17.6218 + 17.6218i −1.84727 + 1.84727i
\(92\) −0.0873649 1.79945i −0.00910842 0.187605i
\(93\) −14.1875 14.1875i −1.47118 1.47118i
\(94\) 17.6653 0.428582i 1.82204 0.0442048i
\(95\) 1.50819 0.154737
\(96\) −11.9074 9.32015i −1.21529 0.951234i
\(97\) −3.49540 −0.354904 −0.177452 0.984129i \(-0.556785\pi\)
−0.177452 + 0.984129i \(0.556785\pi\)
\(98\) −13.0601 + 0.316853i −1.31927 + 0.0320070i
\(99\) 2.28948 + 2.28948i 0.230102 + 0.230102i
\(100\) 0.264326 + 5.44430i 0.0264326 + 0.544430i
\(101\) −12.3075 + 12.3075i −1.22464 + 1.22464i −0.258673 + 0.965965i \(0.583285\pi\)
−0.965965 + 0.258673i \(0.916715\pi\)
\(102\) −1.66456 1.58570i −0.164816 0.157008i
\(103\) 5.57914i 0.549729i −0.961483 0.274865i \(-0.911367\pi\)
0.961483 0.274865i \(-0.0886330\pi\)
\(104\) −13.2356 11.4370i −1.29785 1.12149i
\(105\) 16.2453i 1.58538i
\(106\) 0.355280 0.372948i 0.0345079 0.0362239i
\(107\) 4.04485 4.04485i 0.391031 0.391031i −0.484024 0.875055i \(-0.660825\pi\)
0.875055 + 0.484024i \(0.160825\pi\)
\(108\) 4.11465 4.53458i 0.395932 0.436340i
\(109\) 3.65197 + 3.65197i 0.349796 + 0.349796i 0.860033 0.510238i \(-0.170443\pi\)
−0.510238 + 0.860033i \(0.670443\pi\)
\(110\) 0.0404062 + 1.66547i 0.00385258 + 0.158796i
\(111\) −15.5955 −1.48026
\(112\) −1.56144 16.0425i −0.147542 1.51588i
\(113\) −4.70937 −0.443020 −0.221510 0.975158i \(-0.571099\pi\)
−0.221510 + 0.975158i \(0.571099\pi\)
\(114\) 0.0916876 + 3.77919i 0.00858733 + 0.353953i
\(115\) 0.960643 + 0.960643i 0.0895804 + 0.0895804i
\(116\) 13.2806 + 12.0507i 1.23307 + 1.11888i
\(117\) 18.1280 18.1280i 1.67593 1.67593i
\(118\) −5.41117 + 5.68026i −0.498138 + 0.522910i
\(119\) 2.45056i 0.224643i
\(120\) 11.3727 0.829044i 1.03818 0.0756810i
\(121\) 10.3899i 0.944538i
\(122\) 6.85734 + 6.53249i 0.620835 + 0.591424i
\(123\) −5.96031 + 5.96031i −0.537423 + 0.537423i
\(124\) 14.9944 0.727993i 1.34654 0.0653757i
\(125\) −8.23873 8.23873i −0.736894 0.736894i
\(126\) 23.6161 0.572954i 2.10389 0.0510428i
\(127\) −15.6940 −1.39262 −0.696311 0.717741i \(-0.745176\pi\)
−0.696311 + 0.717741i \(0.745176\pi\)
\(128\) 11.1510 1.91179i 0.985619 0.168980i
\(129\) 16.4303 1.44661
\(130\) 13.1871 0.319934i 1.15658 0.0280601i
\(131\) 1.22078 + 1.22078i 0.106660 + 0.106660i 0.758423 0.651763i \(-0.225970\pi\)
−0.651763 + 0.758423i \(0.725970\pi\)
\(132\) −4.17083 + 0.202498i −0.363024 + 0.0176252i
\(133\) −2.84935 + 2.84935i −0.247070 + 0.247070i
\(134\) −13.4992 12.8597i −1.16615 1.11091i
\(135\) 4.61743i 0.397405i
\(136\) 1.71553 0.125059i 0.147106 0.0107237i
\(137\) 0.501149i 0.0428160i −0.999771 0.0214080i \(-0.993185\pi\)
0.999771 0.0214080i \(-0.00681491\pi\)
\(138\) −2.34875 + 2.46555i −0.199939 + 0.209882i
\(139\) 9.02230 9.02230i 0.765261 0.765261i −0.212007 0.977268i \(-0.568000\pi\)
0.977268 + 0.212007i \(0.0679999\pi\)
\(140\) 9.00141 + 8.16783i 0.760758 + 0.690308i
\(141\) −23.6173 23.6173i −1.98894 1.98894i
\(142\) −0.00927203 0.382176i −0.000778092 0.0320715i
\(143\) −4.83056 −0.403952
\(144\) 1.60629 + 16.5034i 0.133858 + 1.37528i
\(145\) −13.5232 −1.12304
\(146\) 0.422614 + 17.4194i 0.0349758 + 1.44164i
\(147\) 17.4604 + 17.4604i 1.44011 + 1.44011i
\(148\) 7.84111 8.64135i 0.644535 0.710315i
\(149\) 15.6712 15.6712i 1.28383 1.28383i 0.345363 0.938469i \(-0.387756\pi\)
0.938469 0.345363i \(-0.112244\pi\)
\(150\) 7.10625 7.45964i 0.580223 0.609077i
\(151\) 12.8059i 1.04213i −0.853516 0.521066i \(-0.825534\pi\)
0.853516 0.521066i \(-0.174466\pi\)
\(152\) −2.14012 1.84930i −0.173586 0.149998i
\(153\) 2.52095i 0.203807i
\(154\) −3.22282 3.07015i −0.259702 0.247399i
\(155\) −8.00484 + 8.00484i −0.642964 + 0.642964i
\(156\) 1.60337 + 33.0244i 0.128372 + 2.64407i
\(157\) 13.3219 + 13.3219i 1.06320 + 1.06320i 0.997863 + 0.0653374i \(0.0208124\pi\)
0.0653374 + 0.997863i \(0.479188\pi\)
\(158\) −2.46499 + 0.0598036i −0.196104 + 0.00475772i
\(159\) −0.973591 −0.0772108
\(160\) −5.25858 + 6.71833i −0.415727 + 0.531130i
\(161\) −3.62979 −0.286067
\(162\) 6.01176 0.145852i 0.472328 0.0114592i
\(163\) 2.50875 + 2.50875i 0.196501 + 0.196501i 0.798498 0.601997i \(-0.205628\pi\)
−0.601997 + 0.798498i \(0.705628\pi\)
\(164\) −0.305836 6.29929i −0.0238818 0.491892i
\(165\) 2.22662 2.22662i 0.173342 0.173342i
\(166\) −4.02123 3.83074i −0.312108 0.297323i
\(167\) 13.2280i 1.02361i 0.859101 + 0.511806i \(0.171023\pi\)
−0.859101 + 0.511806i \(0.828977\pi\)
\(168\) −19.9195 + 23.0520i −1.53682 + 1.77850i
\(169\) 25.2481i 1.94216i
\(170\) −0.894679 + 0.939170i −0.0686187 + 0.0720311i
\(171\) 2.93119 2.93119i 0.224154 0.224154i
\(172\) −8.26084 + 9.10392i −0.629883 + 0.694167i
\(173\) 2.64423 + 2.64423i 0.201037 + 0.201037i 0.800444 0.599407i \(-0.204597\pi\)
−0.599407 + 0.800444i \(0.704597\pi\)
\(174\) −0.822119 33.8862i −0.0623247 2.56891i
\(175\) 10.9821 0.830166
\(176\) 1.98481 2.41284i 0.149611 0.181874i
\(177\) 14.8285 1.11458
\(178\) −0.358464 14.7752i −0.0268680 1.10745i
\(179\) −5.58253 5.58253i −0.417258 0.417258i 0.467000 0.884257i \(-0.345335\pi\)
−0.884257 + 0.467000i \(0.845335\pi\)
\(180\) −9.25997 8.40244i −0.690197 0.626281i
\(181\) 12.3479 12.3479i 0.917815 0.917815i −0.0790555 0.996870i \(-0.525190\pi\)
0.996870 + 0.0790555i \(0.0251904\pi\)
\(182\) −24.3093 + 25.5181i −1.80192 + 1.89153i
\(183\) 17.9013i 1.32330i
\(184\) −0.185238 2.54106i −0.0136559 0.187329i
\(185\) 8.79924i 0.646933i
\(186\) −20.5450 19.5717i −1.50643 1.43507i
\(187\) 0.335879 0.335879i 0.0245619 0.0245619i
\(188\) 24.9605 1.21186i 1.82043 0.0883837i
\(189\) −8.72347 8.72347i −0.634539 0.634539i
\(190\) 2.13228 0.0517316i 0.154692 0.00375300i
\(191\) 2.01504 0.145804 0.0729018 0.997339i \(-0.476774\pi\)
0.0729018 + 0.997339i \(0.476774\pi\)
\(192\) −17.1543 12.7684i −1.23800 0.921479i
\(193\) 2.51436 0.180987 0.0904937 0.995897i \(-0.471155\pi\)
0.0904937 + 0.995897i \(0.471155\pi\)
\(194\) −4.94179 + 0.119894i −0.354800 + 0.00860786i
\(195\) −17.6302 17.6302i −1.26253 1.26253i
\(196\) −18.4534 + 0.895932i −1.31810 + 0.0639951i
\(197\) 8.73121 8.73121i 0.622073 0.622073i −0.323988 0.946061i \(-0.605024\pi\)
0.946061 + 0.323988i \(0.105024\pi\)
\(198\) 3.31539 + 3.15833i 0.235615 + 0.224453i
\(199\) 3.61211i 0.256056i −0.991771 0.128028i \(-0.959135\pi\)
0.991771 0.128028i \(-0.0408647\pi\)
\(200\) 0.560445 + 7.68807i 0.0396295 + 0.543629i
\(201\) 35.2400i 2.48564i
\(202\) −16.9781 + 17.8224i −1.19458 + 1.25398i
\(203\) 25.5488 25.5488i 1.79317 1.79317i
\(204\) −2.40774 2.18477i −0.168575 0.152964i
\(205\) 3.36290 + 3.36290i 0.234875 + 0.234875i
\(206\) −0.191367 7.88778i −0.0133332 0.549567i
\(207\) 3.73405 0.259534
\(208\) −19.1047 15.7156i −1.32467 1.08968i
\(209\) −0.781075 −0.0540281
\(210\) −0.557222 22.9676i −0.0384519 1.58492i
\(211\) 3.51585 + 3.51585i 0.242041 + 0.242041i 0.817694 0.575653i \(-0.195252\pi\)
−0.575653 + 0.817694i \(0.695252\pi\)
\(212\) 0.489502 0.539459i 0.0336191 0.0370502i
\(213\) −0.510943 + 0.510943i −0.0350092 + 0.0350092i
\(214\) 5.57986 5.85734i 0.381432 0.400400i
\(215\) 9.27026i 0.632226i
\(216\) 5.66174 6.55211i 0.385233 0.445815i
\(217\) 30.2463i 2.05325i
\(218\) 5.28841 + 5.03789i 0.358177 + 0.341209i
\(219\) 23.2885 23.2885i 1.57369 1.57369i
\(220\) 0.114252 + 2.35325i 0.00770290 + 0.158656i
\(221\) −2.65947 2.65947i −0.178895 0.178895i
\(222\) −22.0489 + 0.534932i −1.47982 + 0.0359023i
\(223\) −25.9333 −1.73663 −0.868313 0.496017i \(-0.834795\pi\)
−0.868313 + 0.496017i \(0.834795\pi\)
\(224\) −2.75783 22.6274i −0.184265 1.51185i
\(225\) −11.2975 −0.753168
\(226\) −6.65809 + 0.161533i −0.442890 + 0.0107450i
\(227\) 15.5390 + 15.5390i 1.03136 + 1.03136i 0.999492 + 0.0318692i \(0.0101460\pi\)
0.0318692 + 0.999492i \(0.489854\pi\)
\(228\) 0.259255 + 5.33986i 0.0171696 + 0.353641i
\(229\) −7.93339 + 7.93339i −0.524253 + 0.524253i −0.918853 0.394600i \(-0.870883\pi\)
0.394600 + 0.918853i \(0.370883\pi\)
\(230\) 1.39111 + 1.32520i 0.0917268 + 0.0873814i
\(231\) 8.41326i 0.553552i
\(232\) 19.1894 + 16.5818i 1.25985 + 1.08865i
\(233\) 13.0596i 0.855564i 0.903882 + 0.427782i \(0.140705\pi\)
−0.903882 + 0.427782i \(0.859295\pi\)
\(234\) 25.0075 26.2511i 1.63479 1.71609i
\(235\) −13.3253 + 13.3253i −0.869245 + 0.869245i
\(236\) −7.45546 + 8.21634i −0.485309 + 0.534838i
\(237\) 3.29553 + 3.29553i 0.214067 + 0.214067i
\(238\) −0.0840552 3.46460i −0.00544849 0.224576i
\(239\) 3.88146 0.251071 0.125535 0.992089i \(-0.459935\pi\)
0.125535 + 0.992089i \(0.459935\pi\)
\(240\) 16.0502 1.56219i 1.03604 0.100839i
\(241\) −21.7242 −1.39938 −0.699689 0.714448i \(-0.746678\pi\)
−0.699689 + 0.714448i \(0.746678\pi\)
\(242\) 0.356379 + 14.6892i 0.0229089 + 0.944261i
\(243\) −14.5319 14.5319i −0.932220 0.932220i
\(244\) 9.91896 + 9.00041i 0.634996 + 0.576192i
\(245\) 9.85145 9.85145i 0.629386 0.629386i
\(246\) −8.22223 + 8.63111i −0.524230 + 0.550300i
\(247\) 6.18451i 0.393511i
\(248\) 21.1741 1.54355i 1.34456 0.0980155i
\(249\) 10.4975i 0.665255i
\(250\) −11.9305 11.3653i −0.754550 0.718805i
\(251\) −20.9875 + 20.9875i −1.32472 + 1.32472i −0.414807 + 0.909909i \(0.636151\pi\)
−0.909909 + 0.414807i \(0.863849\pi\)
\(252\) 33.3687 1.62008i 2.10203 0.102056i
\(253\) −0.497505 0.497505i −0.0312779 0.0312779i
\(254\) −22.1882 + 0.538312i −1.39221 + 0.0337767i
\(255\) 2.45173 0.153533
\(256\) 15.6997 3.08537i 0.981231 0.192836i
\(257\) 3.05424 0.190518 0.0952590 0.995453i \(-0.469632\pi\)
0.0952590 + 0.995453i \(0.469632\pi\)
\(258\) 23.2292 0.563567i 1.44618 0.0350862i
\(259\) −16.6239 16.6239i −1.03296 1.03296i
\(260\) 18.6329 0.904645i 1.15556 0.0561037i
\(261\) −26.2826 + 26.2826i −1.62685 + 1.62685i
\(262\) 1.76781 + 1.68406i 0.109216 + 0.104042i
\(263\) 19.3970i 1.19607i 0.801469 + 0.598036i \(0.204052\pi\)
−0.801469 + 0.598036i \(0.795948\pi\)
\(264\) −5.88976 + 0.429352i −0.362490 + 0.0264248i
\(265\) 0.549315i 0.0337442i
\(266\) −3.93067 + 4.12614i −0.241005 + 0.252990i
\(267\) −19.7535 + 19.7535i −1.20889 + 1.20889i
\(268\) −19.5262 17.7180i −1.19275 1.08230i
\(269\) 12.1781 + 12.1781i 0.742514 + 0.742514i 0.973061 0.230547i \(-0.0740516\pi\)
−0.230547 + 0.973061i \(0.574052\pi\)
\(270\) 0.158380 + 6.52811i 0.00963868 + 0.397288i
\(271\) −18.7432 −1.13857 −0.569285 0.822140i \(-0.692780\pi\)
−0.569285 + 0.822140i \(0.692780\pi\)
\(272\) 2.42113 0.235651i 0.146802 0.0142885i
\(273\) 66.6158 4.03177
\(274\) −0.0171896 0.708523i −0.00103846 0.0428035i
\(275\) 1.50522 + 1.50522i 0.0907684 + 0.0907684i
\(276\) −3.23609 + 3.56636i −0.194790 + 0.214670i
\(277\) 4.84631 4.84631i 0.291187 0.291187i −0.546362 0.837549i \(-0.683988\pi\)
0.837549 + 0.546362i \(0.183988\pi\)
\(278\) 12.4462 13.0652i 0.746476 0.783597i
\(279\) 31.1151i 1.86281i
\(280\) 13.0063 + 11.2389i 0.777277 + 0.671653i
\(281\) 7.27330i 0.433889i −0.976184 0.216944i \(-0.930391\pi\)
0.976184 0.216944i \(-0.0696090\pi\)
\(282\) −34.2002 32.5800i −2.03659 1.94011i
\(283\) −4.02007 + 4.02007i −0.238968 + 0.238968i −0.816423 0.577455i \(-0.804046\pi\)
0.577455 + 0.816423i \(0.304046\pi\)
\(284\) −0.0262176 0.540001i −0.00155573 0.0320432i
\(285\) −2.85071 2.85071i −0.168861 0.168861i
\(286\) −6.82944 + 0.165690i −0.403833 + 0.00979747i
\(287\) −12.7067 −0.750054
\(288\) 2.83704 + 23.2773i 0.167174 + 1.37163i
\(289\) −16.6302 −0.978245
\(290\) −19.1191 + 0.463853i −1.12271 + 0.0272384i
\(291\) 6.60683 + 6.60683i 0.387299 + 0.387299i
\(292\) 1.19498 + 24.6130i 0.0699311 + 1.44036i
\(293\) 13.2722 13.2722i 0.775370 0.775370i −0.203670 0.979040i \(-0.565287\pi\)
0.979040 + 0.203670i \(0.0652869\pi\)
\(294\) 25.2844 + 24.0866i 1.47462 + 1.40476i
\(295\) 8.36646i 0.487114i
\(296\) 10.7893 12.4861i 0.627118 0.725738i
\(297\) 2.39131i 0.138758i
\(298\) 21.6183 22.6934i 1.25232 1.31459i
\(299\) −3.93922 + 3.93922i −0.227811 + 0.227811i
\(300\) 9.79093 10.7902i 0.565280 0.622970i
\(301\) 17.5138 + 17.5138i 1.00948 + 1.00948i
\(302\) −0.439249 18.1050i −0.0252759 1.04183i
\(303\) 46.5259 2.67284
\(304\) −3.08912 2.54112i −0.177173 0.145743i
\(305\) −10.1002 −0.578335
\(306\) 0.0864696 + 3.56411i 0.00494314 + 0.203747i
\(307\) 14.4957 + 14.4957i 0.827315 + 0.827315i 0.987145 0.159830i \(-0.0510945\pi\)
−0.159830 + 0.987145i \(0.551094\pi\)
\(308\) −4.66172 4.23002i −0.265626 0.241028i
\(309\) −10.5454 + 10.5454i −0.599908 + 0.599908i
\(310\) −11.0427 + 11.5918i −0.627181 + 0.658370i
\(311\) 5.20251i 0.295007i −0.989062 0.147504i \(-0.952876\pi\)
0.989062 0.147504i \(-0.0471238\pi\)
\(312\) 3.39959 + 46.6348i 0.192464 + 2.64018i
\(313\) 25.8149i 1.45914i 0.683904 + 0.729572i \(0.260281\pi\)
−0.683904 + 0.729572i \(0.739719\pi\)
\(314\) 19.2914 + 18.3775i 1.08867 + 1.03710i
\(315\) −17.8140 + 17.8140i −1.00371 + 1.00371i
\(316\) −3.48295 + 0.169100i −0.195931 + 0.00951265i
\(317\) 13.8188 + 13.8188i 0.776142 + 0.776142i 0.979172 0.203030i \(-0.0650790\pi\)
−0.203030 + 0.979172i \(0.565079\pi\)
\(318\) −1.37646 + 0.0333946i −0.0771881 + 0.00187267i
\(319\) 7.00353 0.392122
\(320\) −7.20412 + 9.67873i −0.402723 + 0.541057i
\(321\) −15.2908 −0.853447
\(322\) −5.13178 + 0.124503i −0.285983 + 0.00693829i
\(323\) −0.430021 0.430021i −0.0239270 0.0239270i
\(324\) 8.49440 0.412411i 0.471911 0.0229117i
\(325\) 11.9183 11.9183i 0.661107 0.661107i
\(326\) 3.63292 + 3.46082i 0.201209 + 0.191677i
\(327\) 13.8056i 0.763449i
\(328\) −0.648459 8.89543i −0.0358051 0.491168i
\(329\) 50.3495i 2.77586i
\(330\) 3.07161 3.22436i 0.169087 0.177495i
\(331\) −12.6291 + 12.6291i −0.694160 + 0.694160i −0.963144 0.268985i \(-0.913312\pi\)
0.268985 + 0.963144i \(0.413312\pi\)
\(332\) −5.81661 5.27796i −0.319228 0.289665i
\(333\) 17.1014 + 17.1014i 0.937154 + 0.937154i
\(334\) 0.453725 + 18.7017i 0.0248267 + 1.02331i
\(335\) 19.8830 1.08632
\(336\) −27.3715 + 33.2742i −1.49324 + 1.81526i
\(337\) −11.1511 −0.607438 −0.303719 0.952762i \(-0.598228\pi\)
−0.303719 + 0.952762i \(0.598228\pi\)
\(338\) 0.866021 + 35.6958i 0.0471054 + 1.94159i
\(339\) 8.90141 + 8.90141i 0.483458 + 0.483458i
\(340\) −1.23268 + 1.35848i −0.0668515 + 0.0736742i
\(341\) 4.14561 4.14561i 0.224497 0.224497i
\(342\) 4.04357 4.24466i 0.218651 0.229525i
\(343\) 9.01654i 0.486847i
\(344\) −11.3669 + 13.1544i −0.612862 + 0.709240i
\(345\) 3.63152i 0.195514i
\(346\) 3.82910 + 3.64771i 0.205854 + 0.196102i
\(347\) −10.3939 + 10.3939i −0.557974 + 0.557974i −0.928730 0.370756i \(-0.879099\pi\)
0.370756 + 0.928730i \(0.379099\pi\)
\(348\) −2.32462 47.8800i −0.124613 2.56664i
\(349\) −10.9522 10.9522i −0.586258 0.586258i 0.350358 0.936616i \(-0.386060\pi\)
−0.936616 + 0.350358i \(0.886060\pi\)
\(350\) 15.5264 0.376689i 0.829922 0.0201349i
\(351\) −18.9343 −1.01064
\(352\) 2.72335 3.47934i 0.145155 0.185450i
\(353\) 28.2593 1.50409 0.752045 0.659111i \(-0.229067\pi\)
0.752045 + 0.659111i \(0.229067\pi\)
\(354\) 20.9645 0.508623i 1.11425 0.0270330i
\(355\) 0.288282 + 0.288282i 0.0153004 + 0.0153004i
\(356\) −1.01359 20.8769i −0.0537203 1.10647i
\(357\) −4.63193 + 4.63193i −0.245148 + 0.245148i
\(358\) −8.08405 7.70108i −0.427255 0.407015i
\(359\) 6.64825i 0.350881i 0.984490 + 0.175441i \(0.0561350\pi\)
−0.984490 + 0.175441i \(0.943865\pi\)
\(360\) −13.3799 11.5617i −0.705184 0.609357i
\(361\) 1.00000i 0.0526316i
\(362\) 17.0339 17.8810i 0.895284 0.939805i
\(363\) 19.6385 19.6385i 1.03075 1.03075i
\(364\) −33.4931 + 36.9113i −1.75551 + 1.93468i
\(365\) −13.1397 13.1397i −0.687765 0.687765i
\(366\) −0.614021 25.3088i −0.0320954 1.32291i
\(367\) −8.84035 −0.461462 −0.230731 0.973018i \(-0.574112\pi\)
−0.230731 + 0.973018i \(0.574112\pi\)
\(368\) −0.349048 3.58619i −0.0181954 0.186943i
\(369\) 13.0717 0.680486
\(370\) 0.301817 + 12.4403i 0.0156907 + 0.646742i
\(371\) −1.03779 1.03779i −0.0538795 0.0538795i
\(372\) −29.7177 26.9657i −1.54079 1.39811i
\(373\) −8.66241 + 8.66241i −0.448522 + 0.448522i −0.894863 0.446341i \(-0.852727\pi\)
0.446341 + 0.894863i \(0.352727\pi\)
\(374\) 0.463343 0.486385i 0.0239589 0.0251504i
\(375\) 31.1449i 1.60831i
\(376\) 35.2475 2.56947i 1.81775 0.132511i
\(377\) 55.4536i 2.85600i
\(378\) −12.6324 12.0340i −0.649743 0.618962i
\(379\) 8.58240 8.58240i 0.440848 0.440848i −0.451449 0.892297i \(-0.649093\pi\)
0.892297 + 0.451449i \(0.149093\pi\)
\(380\) 3.01284 0.146276i 0.154555 0.00750380i
\(381\) 29.6641 + 29.6641i 1.51974 + 1.51974i
\(382\) 2.84887 0.0691169i 0.145761 0.00353633i
\(383\) −29.4894 −1.50684 −0.753420 0.657540i \(-0.771597\pi\)
−0.753420 + 0.657540i \(0.771597\pi\)
\(384\) −24.6907 17.4635i −1.25999 0.891181i
\(385\) 4.74690 0.241924
\(386\) 3.55479 0.0862435i 0.180934 0.00438968i
\(387\) −18.0169 18.0169i −0.915850 0.915850i
\(388\) −6.98258 + 0.339011i −0.354487 + 0.0172107i
\(389\) −9.54195 + 9.54195i −0.483796 + 0.483796i −0.906342 0.422546i \(-0.861137\pi\)
0.422546 + 0.906342i \(0.361137\pi\)
\(390\) −25.5303 24.3209i −1.29278 1.23153i
\(391\) 0.547804i 0.0277036i
\(392\) −26.0587 + 1.89963i −1.31616 + 0.0959456i
\(393\) 4.61492i 0.232792i
\(394\) 12.0447 12.6437i 0.606803 0.636978i
\(395\) 1.85939 1.85939i 0.0935560 0.0935560i
\(396\) 4.79563 + 4.35152i 0.240989 + 0.218672i
\(397\) −16.2249 16.2249i −0.814306 0.814306i 0.170970 0.985276i \(-0.445310\pi\)
−0.985276 + 0.170970i \(0.945310\pi\)
\(398\) −0.123897 5.10680i −0.00621039 0.255981i
\(399\) 10.7714 0.539244
\(400\) 1.05606 + 10.8502i 0.0528030 + 0.542508i
\(401\) 10.8292 0.540783 0.270392 0.962750i \(-0.412847\pi\)
0.270392 + 0.962750i \(0.412847\pi\)
\(402\) 1.20875 + 49.8222i 0.0602868 + 2.48491i
\(403\) −32.8247 32.8247i −1.63512 1.63512i
\(404\) −23.3923 + 25.7796i −1.16381 + 1.28258i
\(405\) −4.53478 + 4.53478i −0.225335 + 0.225335i
\(406\) 35.2445 36.9971i 1.74915 1.83614i
\(407\) 4.55702i 0.225883i
\(408\) −3.47899 3.00623i −0.172236 0.148831i
\(409\) 19.3955i 0.959048i −0.877529 0.479524i \(-0.840809\pi\)
0.877529 0.479524i \(-0.159191\pi\)
\(410\) 4.86981 + 4.63911i 0.240503 + 0.229110i
\(411\) −0.947247 + 0.947247i −0.0467242 + 0.0467242i
\(412\) −0.541108 11.1452i −0.0266585 0.549082i
\(413\) 15.8063 + 15.8063i 0.777779 + 0.777779i
\(414\) 5.27919 0.128079i 0.259458 0.00629476i
\(415\) 5.92288 0.290743
\(416\) −27.5492 21.5634i −1.35071 1.05723i
\(417\) −34.1070 −1.67023
\(418\) −1.10428 + 0.0267912i −0.0540122 + 0.00131040i
\(419\) 7.01113 + 7.01113i 0.342516 + 0.342516i 0.857313 0.514796i \(-0.172132\pi\)
−0.514796 + 0.857313i \(0.672132\pi\)
\(420\) −1.57560 32.4524i −0.0768813 1.58352i
\(421\) 4.19487 4.19487i 0.204445 0.204445i −0.597456 0.801902i \(-0.703822\pi\)
0.801902 + 0.597456i \(0.203822\pi\)
\(422\) 5.09130 + 4.85011i 0.247841 + 0.236100i
\(423\) 51.7957i 2.51840i
\(424\) 0.673553 0.779476i 0.0327106 0.0378547i
\(425\) 1.65740i 0.0803959i
\(426\) −0.704844 + 0.739895i −0.0341498 + 0.0358480i
\(427\) 19.0818 19.0818i 0.923431 0.923431i
\(428\) 7.68789 8.47249i 0.371608 0.409533i
\(429\) 9.13049 + 9.13049i 0.440824 + 0.440824i
\(430\) −0.317974 13.1063i −0.0153340 0.632040i
\(431\) 1.34988 0.0650215 0.0325107 0.999471i \(-0.489650\pi\)
0.0325107 + 0.999471i \(0.489650\pi\)
\(432\) 7.77982 9.45756i 0.374307 0.455027i
\(433\) 29.1510 1.40091 0.700454 0.713698i \(-0.252981\pi\)
0.700454 + 0.713698i \(0.252981\pi\)
\(434\) −1.03746 42.7621i −0.0497996 2.05265i
\(435\) 25.5610 + 25.5610i 1.22555 + 1.22555i
\(436\) 7.64955 + 6.94116i 0.366347 + 0.332421i
\(437\) −0.636950 + 0.636950i −0.0304695 + 0.0304695i
\(438\) 32.1264 33.7240i 1.53506 1.61140i
\(439\) 4.37163i 0.208646i −0.994543 0.104323i \(-0.966732\pi\)
0.994543 0.104323i \(-0.0332676\pi\)
\(440\) 0.242247 + 3.32310i 0.0115487 + 0.158423i
\(441\) 38.2929i 1.82347i
\(442\) −3.85117 3.66873i −0.183182 0.174504i
\(443\) −20.5023 + 20.5023i −0.974092 + 0.974092i −0.999673 0.0255807i \(-0.991857\pi\)
0.0255807 + 0.999673i \(0.491857\pi\)
\(444\) −31.1543 + 1.51257i −1.47852 + 0.0717835i
\(445\) 11.1452 + 11.1452i 0.528334 + 0.528334i
\(446\) −36.6645 + 0.889524i −1.73611 + 0.0421202i
\(447\) −59.2417 −2.80204
\(448\) −4.67514 31.8959i −0.220880 1.50694i
\(449\) −8.68234 −0.409745 −0.204873 0.978789i \(-0.565678\pi\)
−0.204873 + 0.978789i \(0.565678\pi\)
\(450\) −15.9724 + 0.387509i −0.752946 + 0.0182674i
\(451\) −1.74161 1.74161i −0.0820091 0.0820091i
\(452\) −9.40766 + 0.456751i −0.442499 + 0.0214837i
\(453\) −24.2051 + 24.2051i −1.13726 + 1.13726i
\(454\) 22.5020 + 21.4360i 1.05607 + 1.00604i
\(455\) 37.5857i 1.76204i
\(456\) 0.549694 + 7.54059i 0.0257418 + 0.353121i
\(457\) 25.4118i 1.18871i −0.804202 0.594356i \(-0.797407\pi\)
0.804202 0.594356i \(-0.202593\pi\)
\(458\) −10.9441 + 11.4883i −0.511384 + 0.536814i
\(459\) 1.31654 1.31654i 0.0614507 0.0614507i
\(460\) 2.01220 + 1.82586i 0.0938191 + 0.0851309i
\(461\) −4.47785 4.47785i −0.208554 0.208554i 0.595098 0.803653i \(-0.297113\pi\)
−0.803653 + 0.595098i \(0.797113\pi\)
\(462\) 0.288578 + 11.8947i 0.0134259 + 0.553389i
\(463\) −14.9185 −0.693320 −0.346660 0.937991i \(-0.612684\pi\)
−0.346660 + 0.937991i \(0.612684\pi\)
\(464\) 27.6987 + 22.7851i 1.28588 + 1.05777i
\(465\) 30.2607 1.40331
\(466\) 0.447950 + 18.4637i 0.0207509 + 0.855313i
\(467\) 21.1197 + 21.1197i 0.977301 + 0.977301i 0.999748 0.0224468i \(-0.00714563\pi\)
−0.0224468 + 0.999748i \(0.507146\pi\)
\(468\) 34.4551 37.9715i 1.59269 1.75523i
\(469\) −37.5639 + 37.5639i −1.73454 + 1.73454i
\(470\) −18.3822 + 19.2963i −0.847907 + 0.890072i
\(471\) 50.3606i 2.32050i
\(472\) −10.2587 + 11.8720i −0.472194 + 0.546452i
\(473\) 4.80095i 0.220748i
\(474\) 4.77224 + 4.54617i 0.219196 + 0.208812i
\(475\) 1.92712 1.92712i 0.0884223 0.0884223i
\(476\) −0.237674 4.89535i −0.0108938 0.224378i
\(477\) 1.06760 + 1.06760i 0.0488822 + 0.0488822i
\(478\) 5.48760 0.133136i 0.250997 0.00608948i
\(479\) 27.6920 1.26528 0.632641 0.774446i \(-0.281971\pi\)
0.632641 + 0.774446i \(0.281971\pi\)
\(480\) 22.6382 2.75915i 1.03329 0.125937i
\(481\) −36.0822 −1.64521
\(482\) −30.7136 + 0.745148i −1.39897 + 0.0339406i
\(483\) 6.86084 + 6.86084i 0.312179 + 0.312179i
\(484\) 1.00769 + 20.7554i 0.0458043 + 0.943427i
\(485\) 3.72768 3.72768i 0.169265 0.169265i
\(486\) −21.0436 20.0467i −0.954556 0.909335i
\(487\) 35.2062i 1.59534i 0.603091 + 0.797672i \(0.293935\pi\)
−0.603091 + 0.797672i \(0.706065\pi\)
\(488\) 14.3321 + 12.3845i 0.648785 + 0.560621i
\(489\) 9.48384i 0.428874i
\(490\) 13.5900 14.2659i 0.613936 0.644466i
\(491\) 21.0214 21.0214i 0.948681 0.948681i −0.0500647 0.998746i \(-0.515943\pi\)
0.998746 + 0.0500647i \(0.0159428\pi\)
\(492\) −11.3285 + 12.4847i −0.510729 + 0.562853i
\(493\) 3.85580 + 3.85580i 0.173656 + 0.173656i
\(494\) 0.212131 + 8.74364i 0.00954423 + 0.393395i
\(495\) −4.88325 −0.219486
\(496\) 29.8830 2.90855i 1.34178 0.130598i
\(497\) −1.08927 −0.0488605
\(498\) 0.360070 + 14.8414i 0.0161351 + 0.665059i
\(499\) −0.953966 0.953966i −0.0427054 0.0427054i 0.685432 0.728137i \(-0.259614\pi\)
−0.728137 + 0.685432i \(0.759614\pi\)
\(500\) −17.2571 15.6590i −0.771762 0.700292i
\(501\) 25.0029 25.0029i 1.11705 1.11705i
\(502\) −28.9521 + 30.3919i −1.29220 + 1.35646i
\(503\) 4.28185i 0.190918i 0.995433 + 0.0954592i \(0.0304320\pi\)
−0.995433 + 0.0954592i \(0.969568\pi\)
\(504\) 47.1210 3.43503i 2.09894 0.153008i
\(505\) 26.2506i 1.16814i
\(506\) −0.720437 0.686307i −0.0320273 0.0305101i
\(507\) 47.7228 47.7228i 2.11944 2.11944i
\(508\) −31.3512 + 1.52213i −1.39098 + 0.0675335i
\(509\) −21.8211 21.8211i −0.967202 0.967202i 0.0322767 0.999479i \(-0.489724\pi\)
−0.999479 + 0.0322767i \(0.989724\pi\)
\(510\) 3.46625 0.0840953i 0.153488 0.00372380i
\(511\) 49.6485 2.19632
\(512\) 22.0904 4.90060i 0.976265 0.216578i
\(513\) −3.06157 −0.135171
\(514\) 4.31807 0.104762i 0.190462 0.00462083i
\(515\) 5.94989 + 5.94989i 0.262184 + 0.262184i
\(516\) 32.8220 1.59354i 1.44491 0.0701517i
\(517\) 6.90100 6.90100i 0.303506 0.303506i
\(518\) −24.0731 22.9327i −1.05771 1.00760i
\(519\) 9.99598i 0.438775i
\(520\) 26.3121 1.91810i 1.15386 0.0841143i
\(521\) 32.0921i 1.40598i 0.711199 + 0.702991i \(0.248152\pi\)
−0.711199 + 0.702991i \(0.751848\pi\)
\(522\) −36.2568 + 38.0598i −1.58692 + 1.66583i
\(523\) 23.2846 23.2846i 1.01816 1.01816i 0.0183319 0.999832i \(-0.494164\pi\)
0.999832 0.0183319i \(-0.00583556\pi\)
\(524\) 2.55709 + 2.32029i 0.111707 + 0.101362i
\(525\) −20.7578 20.7578i −0.905943 0.905943i
\(526\) 0.665326 + 27.4235i 0.0290096 + 1.19572i
\(527\) 4.56474 0.198843
\(528\) −8.31221 + 0.809038i −0.361742 + 0.0352089i
\(529\) 22.1886 0.964721
\(530\) 0.0188417 + 0.776621i 0.000818433 + 0.0337342i
\(531\) −16.2603 16.2603i −0.705639 0.705639i
\(532\) −5.41564 + 5.96835i −0.234798 + 0.258761i
\(533\) −13.7900 + 13.7900i −0.597309 + 0.597309i
\(534\) −27.2498 + 28.6049i −1.17922 + 1.23786i
\(535\) 8.62729i 0.372990i
\(536\) −28.2138 24.3799i −1.21865 1.05305i
\(537\) 21.1036i 0.910689i
\(538\) 17.6351 + 16.7997i 0.760304 + 0.724287i
\(539\) −5.10195 + 5.10195i −0.219756 + 0.219756i
\(540\) 0.447834 + 9.22399i 0.0192717 + 0.396938i
\(541\) −12.1744 12.1744i −0.523420 0.523420i 0.395183 0.918602i \(-0.370681\pi\)
−0.918602 + 0.395183i \(0.870681\pi\)
\(542\) −26.4991 + 0.642900i −1.13823 + 0.0276149i
\(543\) −46.6789 −2.00318
\(544\) 3.41490 0.416209i 0.146413 0.0178448i
\(545\) −7.78931 −0.333658
\(546\) 94.1812 2.28495i 4.03058 0.0977868i
\(547\) −10.7020 10.7020i −0.457584 0.457584i 0.440277 0.897862i \(-0.354880\pi\)
−0.897862 + 0.440277i \(0.854880\pi\)
\(548\) −0.0486053 1.00112i −0.00207631 0.0427657i
\(549\) −19.6299 + 19.6299i −0.837782 + 0.837782i
\(550\) 2.17971 + 2.07645i 0.0929432 + 0.0885402i
\(551\) 8.96653i 0.381987i
\(552\) −4.45285 + 5.15311i −0.189526 + 0.219331i
\(553\) 7.02569i 0.298763i
\(554\) 6.68547 7.01793i 0.284038 0.298163i
\(555\) 16.6319 16.6319i 0.705984 0.705984i
\(556\) 17.1483 18.8984i 0.727251 0.801472i
\(557\) 10.6604 + 10.6604i 0.451695 + 0.451695i 0.895917 0.444222i \(-0.146520\pi\)
−0.444222 + 0.895917i \(0.646520\pi\)
\(558\) 1.06726 + 43.9904i 0.0451807 + 1.86226i
\(559\) 38.0137 1.60781
\(560\) 18.7738 + 15.4434i 0.793339 + 0.652603i
\(561\) −1.26972 −0.0536077
\(562\) −0.249477 10.2830i −0.0105236 0.433761i
\(563\) 12.8332 + 12.8332i 0.540854 + 0.540854i 0.923779 0.382926i \(-0.125083\pi\)
−0.382926 + 0.923779i \(0.625083\pi\)
\(564\) −49.4697 44.8885i −2.08305 1.89015i
\(565\) 5.02232 5.02232i 0.211291 0.211291i
\(566\) −5.54567 + 5.82145i −0.233102 + 0.244694i
\(567\) 17.1346i 0.719587i
\(568\) −0.0555886 0.762553i −0.00233244 0.0319960i
\(569\) 15.4815i 0.649020i 0.945882 + 0.324510i \(0.105199\pi\)
−0.945882 + 0.324510i \(0.894801\pi\)
\(570\) −4.12811 3.93255i −0.172907 0.164716i
\(571\) 17.8262 17.8262i 0.746004 0.746004i −0.227722 0.973726i \(-0.573128\pi\)
0.973726 + 0.227722i \(0.0731277\pi\)
\(572\) −9.64976 + 0.468505i −0.403477 + 0.0195892i
\(573\) −3.80874 3.80874i −0.159112 0.159112i
\(574\) −17.9647 + 0.435845i −0.749833 + 0.0181918i
\(575\) 2.45496 0.102379
\(576\) 4.80943 + 32.8121i 0.200393 + 1.36717i
\(577\) −5.29423 −0.220401 −0.110201 0.993909i \(-0.535149\pi\)
−0.110201 + 0.993909i \(0.535149\pi\)
\(578\) −23.5117 + 0.570421i −0.977957 + 0.0237264i
\(579\) −4.75251 4.75251i −0.197508 0.197508i
\(580\) −27.0147 + 1.31159i −1.12172 + 0.0544607i
\(581\) −11.1898 + 11.1898i −0.464231 + 0.464231i
\(582\) 9.56734 + 9.11411i 0.396579 + 0.377792i
\(583\) 0.284484i 0.0117821i
\(584\) 2.53370 + 34.7568i 0.104845 + 1.43824i
\(585\) 38.6653i 1.59861i
\(586\) 18.3090 19.2194i 0.756336 0.793948i
\(587\) −27.4763 + 27.4763i −1.13407 + 1.13407i −0.144574 + 0.989494i \(0.546181\pi\)
−0.989494 + 0.144574i \(0.953819\pi\)
\(588\) 36.5732 + 33.1863i 1.50825 + 1.36858i
\(589\) −5.30757 5.30757i −0.218695 0.218695i
\(590\) −0.286973 11.8285i −0.0118145 0.486971i
\(591\) −33.0066 −1.35771
\(592\) 14.8257 18.0229i 0.609331 0.740735i
\(593\) −26.3502 −1.08207 −0.541036 0.841000i \(-0.681968\pi\)
−0.541036 + 0.841000i \(0.681968\pi\)
\(594\) −0.0820230 3.38083i −0.00336544 0.138717i
\(595\) 2.61341 + 2.61341i 0.107139 + 0.107139i
\(596\) 29.7856 32.8254i 1.22006 1.34458i
\(597\) −6.82744 + 6.82744i −0.279428 + 0.279428i
\(598\) −5.43415 + 5.70438i −0.222219 + 0.233269i
\(599\) 18.7420i 0.765776i 0.923795 + 0.382888i \(0.125070\pi\)
−0.923795 + 0.382888i \(0.874930\pi\)
\(600\) 13.4723 15.5909i 0.550004 0.636497i
\(601\) 6.35121i 0.259071i −0.991575 0.129536i \(-0.958651\pi\)
0.991575 0.129536i \(-0.0413486\pi\)
\(602\) 25.3617 + 24.1603i 1.03367 + 0.984699i
\(603\) 38.6429 38.6429i 1.57366 1.57366i
\(604\) −1.24202 25.5817i −0.0505370 1.04091i
\(605\) −11.0804 11.0804i −0.450481 0.450481i
\(606\) 65.7782 1.59586i 2.67206 0.0648273i
\(607\) 21.4722 0.871531 0.435765 0.900060i \(-0.356478\pi\)
0.435765 + 0.900060i \(0.356478\pi\)
\(608\) −4.45456 3.48668i −0.180656 0.141403i
\(609\) −96.5820 −3.91370
\(610\) −14.2796 + 0.346441i −0.578165 + 0.0140270i
\(611\) −54.6418 54.6418i −2.21057 2.21057i
\(612\) 0.244501 + 5.03597i 0.00988337 + 0.203567i
\(613\) 29.5806 29.5806i 1.19475 1.19475i 0.219033 0.975717i \(-0.429710\pi\)
0.975717 0.219033i \(-0.0702904\pi\)
\(614\) 20.9912 + 19.9968i 0.847137 + 0.807006i
\(615\) 12.7128i 0.512629i
\(616\) −6.73582 5.82049i −0.271394 0.234514i
\(617\) 17.8609i 0.719051i 0.933135 + 0.359525i \(0.117061\pi\)
−0.933135 + 0.359525i \(0.882939\pi\)
\(618\) −14.5474 + 15.2708i −0.585181 + 0.614281i
\(619\) −3.98730 + 3.98730i −0.160263 + 0.160263i −0.782683 0.622420i \(-0.786150\pi\)
0.622420 + 0.782683i \(0.286150\pi\)
\(620\) −15.2145 + 16.7672i −0.611028 + 0.673388i
\(621\) −1.95006 1.95006i −0.0782534 0.0782534i
\(622\) −0.178448 7.35530i −0.00715513 0.294921i
\(623\) −42.1122 −1.68719
\(624\) 6.40592 + 65.8156i 0.256442 + 2.63473i
\(625\) 3.94565 0.157826
\(626\) 0.885462 + 36.4971i 0.0353902 + 1.45872i
\(627\) 1.47635 + 1.47635i 0.0589597 + 0.0589597i
\(628\) 27.9044 + 25.3203i 1.11351 + 1.01039i
\(629\) 2.50887 2.50887i 0.100035 0.100035i
\(630\) −24.5744 + 25.7964i −0.979067 + 1.02775i
\(631\) 30.3473i 1.20811i −0.796944 0.604053i \(-0.793552\pi\)
0.796944 0.604053i \(-0.206448\pi\)
\(632\) −4.91838 + 0.358540i −0.195643 + 0.0142620i
\(633\) 13.2910i 0.528269i
\(634\) 20.0110 + 19.0630i 0.794738 + 0.757089i
\(635\) 16.7370 16.7370i 0.664186 0.664186i
\(636\) −1.94489 + 0.0944263i −0.0771199 + 0.00374425i
\(637\) 40.3969 + 40.3969i 1.60059 + 1.60059i
\(638\) 9.90157 0.240224i 0.392007 0.00951055i
\(639\) 1.12056 0.0443287
\(640\) −9.85319 + 13.9309i −0.389481 + 0.550666i
\(641\) −26.6647 −1.05319 −0.526595 0.850116i \(-0.676532\pi\)
−0.526595 + 0.850116i \(0.676532\pi\)
\(642\) −21.6180 + 0.524479i −0.853196 + 0.0206995i
\(643\) −17.4776 17.4776i −0.689250 0.689250i 0.272816 0.962066i \(-0.412045\pi\)
−0.962066 + 0.272816i \(0.912045\pi\)
\(644\) −7.25103 + 0.352044i −0.285731 + 0.0138725i
\(645\) −17.5222 + 17.5222i −0.689935 + 0.689935i
\(646\) −0.622713 0.593213i −0.0245003 0.0233396i
\(647\) 21.9528i 0.863055i −0.902100 0.431528i \(-0.857975\pi\)
0.902100 0.431528i \(-0.142025\pi\)
\(648\) 11.9952 0.874428i 0.471217 0.0343508i
\(649\) 4.33289i 0.170081i
\(650\) 16.4412 17.2588i 0.644878 0.676947i
\(651\) −57.1700 + 57.1700i −2.24067 + 2.24067i
\(652\) 5.25492 + 4.76829i 0.205799 + 0.186741i
\(653\) −20.4948 20.4948i −0.802024 0.802024i 0.181387 0.983412i \(-0.441941\pi\)
−0.983412 + 0.181387i \(0.941941\pi\)
\(654\) −0.473536 19.5183i −0.0185167 0.763224i
\(655\) −2.60381 −0.101739
\(656\) −1.22191 12.5541i −0.0477074 0.490155i
\(657\) −51.0746 −1.99261
\(658\) −1.72701 71.1840i −0.0673258 2.77504i
\(659\) 36.1034 + 36.1034i 1.40639 + 1.40639i 0.777482 + 0.628905i \(0.216496\pi\)
0.628905 + 0.777482i \(0.283504\pi\)
\(660\) 4.23204 4.66395i 0.164732 0.181544i
\(661\) −6.46495 + 6.46495i −0.251457 + 0.251457i −0.821568 0.570111i \(-0.806900\pi\)
0.570111 + 0.821568i \(0.306900\pi\)
\(662\) −17.4218 + 18.2882i −0.677119 + 0.710792i
\(663\) 10.0536i 0.390449i
\(664\) −8.40454 7.26245i −0.326159 0.281838i
\(665\) 6.07739i 0.235671i
\(666\) 24.7646 + 23.5914i 0.959608 + 0.914148i
\(667\) 5.71123 5.71123i 0.221140 0.221140i
\(668\) 1.28295 + 26.4249i 0.0496389 + 1.02241i
\(669\) 49.0179 + 49.0179i 1.89514 + 1.89514i
\(670\) 28.1105 0.681994i 1.08600 0.0263477i
\(671\) 5.23077 0.201932
\(672\) −37.5564 + 47.9818i −1.44877 + 1.85094i
\(673\) 4.15503 0.160165 0.0800823 0.996788i \(-0.474482\pi\)
0.0800823 + 0.996788i \(0.474482\pi\)
\(674\) −15.7654 + 0.382487i −0.607259 + 0.0147328i
\(675\) 5.90000 + 5.90000i 0.227091 + 0.227091i
\(676\) 2.44876 + 50.4369i 0.0941830 + 1.93988i
\(677\) −2.06257 + 2.06257i −0.0792710 + 0.0792710i −0.745631 0.666360i \(-0.767852\pi\)
0.666360 + 0.745631i \(0.267852\pi\)
\(678\) 12.8901 + 12.2795i 0.495042 + 0.471590i
\(679\) 14.0850i 0.540534i
\(680\) −1.69616 + 1.96290i −0.0650449 + 0.0752739i
\(681\) 58.7422i 2.25100i
\(682\) 5.71886 6.00325i 0.218986 0.229876i
\(683\) 10.6287 10.6287i 0.406695 0.406695i −0.473890 0.880584i \(-0.657150\pi\)
0.880584 + 0.473890i \(0.157150\pi\)
\(684\) 5.57120 6.13978i 0.213020 0.234760i
\(685\) 0.534452 + 0.534452i 0.0204204 + 0.0204204i
\(686\) 0.309271 + 12.7476i 0.0118080 + 0.486704i
\(687\) 29.9906 1.14421
\(688\) −15.6193 + 18.9876i −0.595479 + 0.723896i
\(689\) −2.25253 −0.0858145
\(690\) −0.124563 5.13423i −0.00474202 0.195457i
\(691\) 16.9758 + 16.9758i 0.645790 + 0.645790i 0.951973 0.306183i \(-0.0990519\pi\)
−0.306183 + 0.951973i \(0.599052\pi\)
\(692\) 5.53869 + 5.02578i 0.210550 + 0.191051i
\(693\) 9.22567 9.22567i 0.350454 0.350454i
\(694\) −14.3384 + 15.0514i −0.544277 + 0.571343i
\(695\) 19.2437i 0.729956i
\(696\) −4.92885 67.6129i −0.186827 2.56286i
\(697\) 1.91769i 0.0726375i
\(698\) −15.8599 15.1085i −0.600305 0.571866i
\(699\) 24.6847 24.6847i 0.933659 0.933659i
\(700\) 21.9383 1.06512i 0.829189 0.0402579i
\(701\) −8.20712 8.20712i −0.309979 0.309979i 0.534922 0.844901i \(-0.320341\pi\)
−0.844901 + 0.534922i \(0.820341\pi\)
\(702\) −26.7692 + 0.649454i −1.01034 + 0.0245120i
\(703\) −5.83429 −0.220045
\(704\) 3.73093 5.01250i 0.140615 0.188916i
\(705\) 50.3735 1.89718
\(706\) 39.9529 0.969305i 1.50365 0.0364803i
\(707\) 49.5940 + 49.5940i 1.86517 + 1.86517i
\(708\) 29.6221 1.43818i 1.11327 0.0540501i
\(709\) 2.94396 2.94396i 0.110563 0.110563i −0.649661 0.760224i \(-0.725089\pi\)
0.760224 + 0.649661i \(0.225089\pi\)
\(710\) 0.417460 + 0.397684i 0.0156670 + 0.0149248i
\(711\) 7.22750i 0.271052i
\(712\) −2.14910 29.4809i −0.0805409 1.10484i
\(713\) 6.76132i 0.253213i
\(714\) −6.38973 + 6.70748i −0.239130 + 0.251021i
\(715\) 5.15157 5.15157i 0.192658 0.192658i
\(716\) −11.6934 10.6105i −0.437001 0.396532i
\(717\) −7.33654 7.33654i −0.273988 0.273988i
\(718\) 0.228038 + 9.39928i 0.00851029 + 0.350778i
\(719\) 11.3521 0.423362 0.211681 0.977339i \(-0.432106\pi\)
0.211681 + 0.977339i \(0.432106\pi\)
\(720\) −19.3131 15.8870i −0.719756 0.592074i
\(721\) −22.4816 −0.837260
\(722\) 0.0343004 + 1.41380i 0.00127653 + 0.0526161i
\(723\) 41.0620 + 41.0620i 1.52711 + 1.52711i
\(724\) 23.4692 25.8644i 0.872226 0.961243i
\(725\) −17.2796 + 17.2796i −0.641747 + 0.641747i
\(726\) 27.0913 28.4385i 1.00545 1.05545i
\(727\) 7.72299i 0.286430i −0.989692 0.143215i \(-0.954256\pi\)
0.989692 0.143215i \(-0.0457440\pi\)
\(728\) −46.0864 + 53.3339i −1.70807 + 1.97669i
\(729\) 42.1782i 1.56216i
\(730\) −19.0276 18.1262i −0.704244 0.670882i
\(731\) −2.64317 + 2.64317i −0.0977611 + 0.0977611i
\(732\) −1.73620 35.7604i −0.0641719 1.32174i
\(733\) 25.6965 + 25.6965i 0.949122 + 0.949122i 0.998767 0.0496448i \(-0.0158089\pi\)
−0.0496448 + 0.998767i \(0.515809\pi\)
\(734\) −12.4985 + 0.303228i −0.461327 + 0.0111923i
\(735\) −37.2414 −1.37367
\(736\) −0.616491 5.05817i −0.0227242 0.186447i
\(737\) −10.2972 −0.379300
\(738\) 18.4807 0.448365i 0.680286 0.0165045i
\(739\) −14.2617 14.2617i −0.524627 0.524627i 0.394338 0.918965i \(-0.370974\pi\)
−0.918965 + 0.394338i \(0.870974\pi\)
\(740\) 0.853417 + 17.5778i 0.0313722 + 0.646172i
\(741\) 11.6896 11.6896i 0.429430 0.429430i
\(742\) −1.50283 1.43163i −0.0551705 0.0525569i
\(743\) 19.0364i 0.698379i −0.937052 0.349190i \(-0.886457\pi\)
0.937052 0.349190i \(-0.113543\pi\)
\(744\) −42.9398 37.1047i −1.57425 1.36032i
\(745\) 33.4251i 1.22460i
\(746\) −11.9498 + 12.5440i −0.437512 + 0.459269i
\(747\) 11.5112 11.5112i 0.421173 0.421173i
\(748\) 0.638391 0.703543i 0.0233419 0.0257241i
\(749\) −16.2991 16.2991i −0.595556 0.595556i
\(750\) 1.06828 + 44.0325i 0.0390081 + 1.60784i
\(751\) −30.0230 −1.09556 −0.547778 0.836624i \(-0.684526\pi\)
−0.547778 + 0.836624i \(0.684526\pi\)
\(752\) 49.7447 4.84172i 1.81400 0.176559i
\(753\) 79.3389 2.89127
\(754\) −1.90208 78.4001i −0.0692697 2.85516i
\(755\) 13.6569 + 13.6569i 0.497027 + 0.497027i
\(756\) −18.2725 16.5803i −0.664564 0.603021i
\(757\) 18.8213 18.8213i 0.684071 0.684071i −0.276844 0.960915i \(-0.589288\pi\)
0.960915 + 0.276844i \(0.0892884\pi\)
\(758\) 11.8394 12.4282i 0.430026 0.451411i
\(759\) 1.88072i 0.0682658i
\(760\) 4.25452 0.310146i 0.154328 0.0112502i
\(761\) 0.500291i 0.0181355i −0.999959 0.00906777i \(-0.997114\pi\)
0.999959 0.00906777i \(-0.00288640\pi\)
\(762\) 42.9565 + 40.9215i 1.55615 + 1.48243i
\(763\) 14.7159 14.7159i 0.532753 0.532753i
\(764\) 4.02535 0.195434i 0.145632 0.00707057i
\(765\) −2.68847 2.68847i −0.0972020 0.0972020i
\(766\) −41.6921 + 1.01150i −1.50640 + 0.0365470i
\(767\) 34.3076 1.23878
\(768\) −35.5066 23.8430i −1.28123 0.860359i
\(769\) −6.22678 −0.224543 −0.112272 0.993678i \(-0.535813\pi\)
−0.112272 + 0.993678i \(0.535813\pi\)
\(770\) 6.71115 0.162820i 0.241853 0.00586764i
\(771\) −5.77297 5.77297i −0.207908 0.207908i
\(772\) 5.02280 0.243862i 0.180775 0.00877677i
\(773\) −22.7785 + 22.7785i −0.819287 + 0.819287i −0.986005 0.166718i \(-0.946683\pi\)
0.166718 + 0.986005i \(0.446683\pi\)
\(774\) −26.0902 24.8542i −0.937793 0.893367i
\(775\) 20.4566i 0.734824i
\(776\) −9.86032 + 0.718798i −0.353965 + 0.0258033i
\(777\) 62.8435i 2.25450i
\(778\) −13.1631 + 13.8177i −0.471920 + 0.495388i
\(779\) −2.22976 + 2.22976i −0.0798893 + 0.0798893i
\(780\) −36.9289 33.5091i −1.32227 1.19982i
\(781\) −0.149298 0.149298i −0.00534229 0.00534229i
\(782\) −0.0187899 0.774484i −0.000671925 0.0276955i
\(783\) 27.4516 0.981041
\(784\) −36.7765 + 3.57951i −1.31345 + 0.127840i
\(785\) −28.4143 −1.01415
\(786\) −0.158294 6.52456i −0.00564615 0.232723i
\(787\) 15.6427 + 15.6427i 0.557601 + 0.557601i 0.928624 0.371023i \(-0.120993\pi\)
−0.371023 + 0.928624i \(0.620993\pi\)
\(788\) 16.5951 18.2887i 0.591175 0.651508i
\(789\) 36.6633 36.6633i 1.30525 1.30525i
\(790\) 2.56502 2.69258i 0.0912593 0.0957976i
\(791\) 18.9768i 0.674738i
\(792\) 6.92930 + 5.98768i 0.246222 + 0.212763i
\(793\) 41.4169i 1.47076i
\(794\) −23.4953 22.3822i −0.833817 0.794316i
\(795\) 1.03829 1.03829i 0.0368243 0.0368243i
\(796\) −0.350330 7.21573i −0.0124171 0.255755i
\(797\) −31.3227 31.3227i −1.10951 1.10951i −0.993215 0.116291i \(-0.962900\pi\)
−0.116291 0.993215i \(-0.537100\pi\)
\(798\) 15.2286 0.369463i 0.539086 0.0130789i
\(799\) 7.59870 0.268823
\(800\) 1.86522 + 15.3037i 0.0659455 + 0.541067i
\(801\) 43.3218 1.53070
\(802\) 15.3103 0.371445i 0.540624 0.0131162i
\(803\) 6.80491 + 6.80491i 0.240140 + 0.240140i
\(804\) 3.41785 + 70.3971i 0.120538 + 2.48271i
\(805\) 3.87100 3.87100i 0.136435 0.136435i
\(806\) −47.5334 45.2816i −1.67429 1.59498i
\(807\) 46.0370i 1.62058i
\(808\) −32.1877 + 37.2495i −1.13236 + 1.31043i
\(809\) 42.4127i 1.49115i −0.666421 0.745575i \(-0.732175\pi\)
0.666421 0.745575i \(-0.267825\pi\)
\(810\) −6.25571 + 6.56680i −0.219803 + 0.230734i
\(811\) −14.3351 + 14.3351i −0.503374 + 0.503374i −0.912485 0.409111i \(-0.865839\pi\)
0.409111 + 0.912485i \(0.365839\pi\)
\(812\) 48.5595 53.5153i 1.70410 1.87802i
\(813\) 35.4275 + 35.4275i 1.24250 + 1.24250i
\(814\) −0.156308 6.44270i −0.00547858 0.225817i
\(815\) −5.35094 −0.187435
\(816\) −5.02171 4.13087i −0.175795 0.144610i
\(817\) 6.14660 0.215042
\(818\) −0.665275 27.4214i −0.0232608 0.958765i
\(819\) −73.0484 73.0484i −2.55252 2.55252i
\(820\) 7.04405 + 6.39173i 0.245989 + 0.223209i
\(821\) 0.414946 0.414946i 0.0144817 0.0144817i −0.699829 0.714311i \(-0.746740\pi\)
0.714311 + 0.699829i \(0.246740\pi\)
\(822\) −1.30672 + 1.37171i −0.0455772 + 0.0478437i
\(823\) 24.2381i 0.844888i 0.906389 + 0.422444i \(0.138828\pi\)
−0.906389 + 0.422444i \(0.861172\pi\)
\(824\) −1.14730 15.7384i −0.0399681 0.548274i
\(825\) 5.69020i 0.198107i
\(826\) 22.8891 + 21.8048i 0.796414 + 0.758685i
\(827\) −13.1438 + 13.1438i −0.457056 + 0.457056i −0.897688 0.440632i \(-0.854754\pi\)
0.440632 + 0.897688i \(0.354754\pi\)
\(828\) 7.45931 0.362157i 0.259229 0.0125858i
\(829\) 13.6134 + 13.6134i 0.472814 + 0.472814i 0.902824 0.430010i \(-0.141490\pi\)
−0.430010 + 0.902824i \(0.641490\pi\)
\(830\) 8.37376 0.203157i 0.290657 0.00705169i
\(831\) −18.3205 −0.635531
\(832\) −39.6887 29.5413i −1.37596 1.02416i
\(833\) −5.61776 −0.194644
\(834\) −48.2204 + 1.16988i −1.66974 + 0.0405098i
\(835\) −14.1070 14.1070i −0.488194 0.488194i
\(836\) −1.56031 + 0.0757546i −0.0539645 + 0.00262003i
\(837\) 16.2495 16.2495i 0.561664 0.561664i
\(838\) 10.1528 + 9.67184i 0.350723 + 0.334108i
\(839\) 29.7619i 1.02750i −0.857941 0.513748i \(-0.828257\pi\)
0.857941 0.513748i \(-0.171743\pi\)
\(840\) −3.34071 45.8271i −0.115265 1.58119i
\(841\) 51.3986i 1.77237i
\(842\) 5.78681 6.07458i 0.199427 0.209344i
\(843\) −13.7476 + 13.7476i −0.473493 + 0.473493i
\(844\) 7.36443 + 6.68244i 0.253494 + 0.230019i
\(845\) −26.9259 26.9259i −0.926281 0.926281i
\(846\) 1.77662 + 73.2287i 0.0610813 + 2.51765i
\(847\) 41.8671 1.43857
\(848\) 0.925531 1.12512i 0.0317829 0.0386369i
\(849\) 15.1971 0.521562
\(850\) 0.0568496 + 2.34323i 0.00194992 + 0.0803722i
\(851\) −3.71615 3.71615i −0.127388 0.127388i
\(852\) −0.971128 + 1.07024i −0.0332703 + 0.0366657i
\(853\) −2.40701 + 2.40701i −0.0824143 + 0.0824143i −0.747112 0.664698i \(-0.768560\pi\)
0.664698 + 0.747112i \(0.268560\pi\)
\(854\) 26.3232 27.6323i 0.900763 0.945557i
\(855\) 6.25196i 0.213813i
\(856\) 10.5785 12.2421i 0.361566 0.418426i
\(857\) 42.4913i 1.45148i −0.687972 0.725738i \(-0.741499\pi\)
0.687972 0.725738i \(-0.258501\pi\)
\(858\) 13.2218 + 12.5955i 0.451386 + 0.430003i
\(859\) −36.3033 + 36.3033i −1.23865 + 1.23865i −0.278102 + 0.960552i \(0.589705\pi\)
−0.960552 + 0.278102i \(0.910295\pi\)
\(860\) −0.899100 18.5187i −0.0306591 0.631482i
\(861\) 24.0176 + 24.0176i 0.818518 + 0.818518i
\(862\) 1.90846 0.0463014i 0.0650023 0.00157703i
\(863\) −40.3605 −1.37389 −0.686943 0.726711i \(-0.741048\pi\)
−0.686943 + 0.726711i \(0.741048\pi\)
\(864\) 10.6747 13.6379i 0.363160 0.463972i
\(865\) −5.63989 −0.191762
\(866\) 41.2136 0.999891i 1.40049 0.0339777i
\(867\) 31.4335 + 31.4335i 1.06754 + 1.06754i
\(868\) −2.93351 60.4214i −0.0995700 2.05083i
\(869\) −0.962955 + 0.962955i −0.0326660 + 0.0326660i
\(870\) 37.0148 + 35.2613i 1.25492 + 1.19547i
\(871\) 81.5323i 2.76262i
\(872\) 11.0530 + 9.55101i 0.374302 + 0.323438i
\(873\) 14.4896i 0.490399i
\(874\) −0.878671 + 0.922366i −0.0297215 + 0.0311995i
\(875\) −33.1987 + 33.1987i −1.12232 + 1.12232i
\(876\) 44.2635 48.7809i 1.49552 1.64815i
\(877\) −12.7663 12.7663i −0.431087 0.431087i 0.457911 0.888998i \(-0.348598\pi\)
−0.888998 + 0.457911i \(0.848598\pi\)
\(878\) −0.149949 6.18060i −0.00506052 0.208585i
\(879\) −50.1729 −1.69229
\(880\) 0.456472 + 4.68988i 0.0153877 + 0.158096i
\(881\) −53.9328 −1.81704 −0.908521 0.417839i \(-0.862788\pi\)
−0.908521 + 0.417839i \(0.862788\pi\)
\(882\) −1.31346 54.1384i −0.0442265 1.82293i
\(883\) −34.7449 34.7449i −1.16926 1.16926i −0.982384 0.186874i \(-0.940164\pi\)
−0.186874 0.982384i \(-0.559836\pi\)
\(884\) −5.57062 5.05474i −0.187360 0.170009i
\(885\) −15.8139 + 15.8139i −0.531577 + 0.531577i
\(886\) −28.2828 + 29.6893i −0.950180 + 0.997431i
\(887\) 45.2215i 1.51839i 0.650864 + 0.759195i \(0.274407\pi\)
−0.650864 + 0.759195i \(0.725593\pi\)
\(888\) −43.9940 + 3.20708i −1.47634 + 0.107622i
\(889\) 63.2405i 2.12102i
\(890\) 16.1394 + 15.3748i 0.540993 + 0.515364i
\(891\) 2.34851 2.34851i 0.0786779 0.0786779i
\(892\) −51.8057 + 2.51521i −1.73458 + 0.0842156i
\(893\) −8.83526 8.83526i −0.295661 0.295661i
\(894\) −83.7558 + 2.03202i −2.80121 + 0.0679608i
\(895\) 11.9070 0.398007
\(896\) −7.70374 44.9340i −0.257364 1.50114i
\(897\) 14.8914 0.497211
\(898\) −12.2751 + 0.297808i −0.409625 + 0.00993798i
\(899\) 47.5905 + 47.5905i 1.58723 + 1.58723i
\(900\) −22.5684 + 1.09572i −0.752282 + 0.0365240i
\(901\) 0.156623 0.156623i 0.00521786 0.00521786i
\(902\) −2.52202 2.40254i −0.0839740 0.0799959i
\(903\) 66.2075i 2.20325i
\(904\) −13.2849 + 0.968439i −0.441848 + 0.0322098i
\(905\) 26.3370i 0.875471i
\(906\) −33.3909 + 35.0514i −1.10934 + 1.16451i
\(907\) 11.5383 11.5383i 0.383123 0.383123i −0.489103 0.872226i \(-0.662676\pi\)
0.872226 + 0.489103i \(0.162676\pi\)
\(908\) 32.5486 + 29.5344i 1.08016 + 0.980133i
\(909\) −51.0185 51.0185i −1.69218 1.69218i
\(910\) −1.28920 53.1386i −0.0427367 1.76153i
\(911\) 28.5045 0.944395 0.472198 0.881493i \(-0.343461\pi\)
0.472198 + 0.881493i \(0.343461\pi\)
\(912\) 1.03580 + 10.6420i 0.0342988 + 0.352392i
\(913\) −3.06739 −0.101516
\(914\) −0.871634 35.9271i −0.0288311 1.18836i
\(915\) 19.0909 + 19.0909i 0.631125 + 0.631125i
\(916\) −15.0787 + 16.6175i −0.498213 + 0.549059i
\(917\) 4.91925 4.91925i 0.162448 0.162448i
\(918\) 1.81616 1.90648i 0.0599422 0.0629231i
\(919\) 5.64101i 0.186080i 0.995662 + 0.0930399i \(0.0296584\pi\)
−0.995662 + 0.0930399i \(0.970342\pi\)
\(920\) 2.90747 + 2.51237i 0.0958563 + 0.0828304i
\(921\) 54.7982i 1.80566i
\(922\) −6.48437 6.17718i −0.213551 0.203435i
\(923\) −1.18213 + 1.18213i −0.0389103 + 0.0389103i
\(924\) 0.815983 + 16.8067i 0.0268439 + 0.552901i
\(925\) 11.2434 + 11.2434i 0.369680 + 0.369680i
\(926\) −21.0917 + 0.511709i −0.693116 + 0.0168158i
\(927\) 23.1274 0.759604
\(928\) 39.9419 + 31.2634i 1.31116 + 1.02627i
\(929\) 14.2171 0.466448 0.233224 0.972423i \(-0.425072\pi\)
0.233224 + 0.972423i \(0.425072\pi\)
\(930\) 42.7825 1.03795i 1.40289 0.0340359i
\(931\) 6.53196 + 6.53196i 0.214076 + 0.214076i
\(932\) 1.26662 + 26.0885i 0.0414896 + 0.854558i
\(933\) −9.83353 + 9.83353i −0.321935 + 0.321935i
\(934\) 30.5833 + 29.1345i 1.00072 + 0.953310i
\(935\) 0.716397i 0.0234287i
\(936\) 47.4102 54.8659i 1.54965 1.79335i
\(937\) 19.4713i 0.636101i 0.948074 + 0.318051i \(0.103028\pi\)
−0.948074 + 0.318051i \(0.896972\pi\)
\(938\) −51.8193 + 54.3962i −1.69196 + 1.77610i
\(939\) 48.7940 48.7940i 1.59233 1.59233i
\(940\) −25.3268 + 27.9116i −0.826069 + 0.910375i
\(941\) 38.1234 + 38.1234i 1.24279 + 1.24279i 0.958840 + 0.283947i \(0.0916441\pi\)
0.283947 + 0.958840i \(0.408356\pi\)
\(942\) −1.72739 71.1998i −0.0562814 2.31981i
\(943\) −2.84049 −0.0924990
\(944\) −14.0965 + 17.1364i −0.458802 + 0.557744i
\(945\) 18.6063 0.605264
\(946\) 0.164675 + 6.78758i 0.00535404 + 0.220683i
\(947\) 8.23030 + 8.23030i 0.267449 + 0.267449i 0.828071 0.560623i \(-0.189438\pi\)
−0.560623 + 0.828071i \(0.689438\pi\)
\(948\) 6.90292 + 6.26367i 0.224196 + 0.203435i
\(949\) 53.8810 53.8810i 1.74905 1.74905i
\(950\) 2.65845 2.79066i 0.0862516 0.0905408i
\(951\) 52.2393i 1.69397i
\(952\) −0.503936 6.91289i −0.0163327 0.224048i
\(953\) 13.2093i 0.427890i 0.976846 + 0.213945i \(0.0686314\pi\)
−0.976846 + 0.213945i \(0.931369\pi\)
\(954\) 1.54599 + 1.47276i 0.0500534 + 0.0476822i
\(955\) −2.14895 + 2.14895i −0.0695384 + 0.0695384i
\(956\) 7.75379 0.376454i 0.250775 0.0121754i
\(957\) −13.2377 13.2377i −0.427915 0.427915i
\(958\) 39.1509 0.949848i 1.26491 0.0306882i
\(959\) −2.01942 −0.0652106
\(960\) 31.9111 4.67737i 1.02993 0.150961i
\(961\) 25.3407 0.817441
\(962\) −51.0130 + 1.23764i −1.64472 + 0.0399030i
\(963\) 16.7673 + 16.7673i 0.540318 + 0.540318i
\(964\) −43.3972 + 2.10698i −1.39773 + 0.0678612i
\(965\) −2.68144 + 2.68144i −0.0863187 + 0.0863187i
\(966\) 9.93517 + 9.46451i 0.319659 + 0.304516i
\(967\) 9.64759i 0.310246i 0.987895 + 0.155123i \(0.0495773\pi\)
−0.987895 + 0.155123i \(0.950423\pi\)
\(968\) 2.13659 + 29.3094i 0.0686727 + 0.942039i
\(969\) 1.62561i 0.0522221i
\(970\) 5.14232 5.39805i 0.165110 0.173321i
\(971\) 1.09782 1.09782i 0.0352307 0.0352307i −0.689272 0.724503i \(-0.742069\pi\)
0.724503 + 0.689272i \(0.242069\pi\)
\(972\) −30.4390 27.6201i −0.976330 0.885916i
\(973\) −36.3562 36.3562i −1.16552 1.16552i
\(974\) 1.20759 + 49.7744i 0.0386936 + 1.59488i
\(975\) −45.0547 −1.44290
\(976\) 20.6875 + 17.0176i 0.662191 + 0.544721i
\(977\) 0.637383 0.0203917 0.0101958 0.999948i \(-0.496755\pi\)
0.0101958 + 0.999948i \(0.496755\pi\)
\(978\) −0.325300 13.4082i −0.0104019 0.428748i
\(979\) −5.77197 5.77197i −0.184473 0.184473i
\(980\) 18.7242 20.6352i 0.598124 0.659167i
\(981\) −15.1386 + 15.1386i −0.483340 + 0.483340i
\(982\) 28.9989 30.4410i 0.925393 0.971412i
\(983\) 17.4766i 0.557418i −0.960376 0.278709i \(-0.910093\pi\)
0.960376 0.278709i \(-0.0899065\pi\)
\(984\) −15.5880 + 18.0394i −0.496927 + 0.575074i
\(985\) 18.6229i 0.593374i
\(986\) 5.58357 + 5.31906i 0.177817 + 0.169393i
\(987\) −95.1681 + 95.1681i −3.02923 + 3.02923i
\(988\) 0.599821 + 12.3545i 0.0190828 + 0.393048i
\(989\) 3.91508 + 3.91508i 0.124492 + 0.124492i
\(990\) −6.90392 + 0.167497i −0.219421 + 0.00532342i
\(991\) −13.2083 −0.419576 −0.209788 0.977747i \(-0.567277\pi\)
−0.209788 + 0.977747i \(0.567277\pi\)
\(992\) 42.1487 5.13710i 1.33822 0.163103i
\(993\) 47.7419 1.51504
\(994\) −1.54001 + 0.0373625i −0.0488462 + 0.00118507i
\(995\) 3.85215 + 3.85215i 0.122121 + 0.122121i
\(996\) 1.01813 + 20.9704i 0.0322608 + 0.664472i
\(997\) 14.8543 14.8543i 0.470440 0.470440i −0.431617 0.902057i \(-0.642057\pi\)
0.902057 + 0.431617i \(0.142057\pi\)
\(998\) −1.38144 1.31599i −0.0437286 0.0416570i
\(999\) 17.8621i 0.565131i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 304.2.k.b.77.34 68
4.3 odd 2 1216.2.k.b.913.30 68
16.5 even 4 inner 304.2.k.b.229.34 yes 68
16.11 odd 4 1216.2.k.b.305.30 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
304.2.k.b.77.34 68 1.1 even 1 trivial
304.2.k.b.229.34 yes 68 16.5 even 4 inner
1216.2.k.b.305.30 68 16.11 odd 4
1216.2.k.b.913.30 68 4.3 odd 2