Properties

Label 304.2.k.b.229.34
Level $304$
Weight $2$
Character 304.229
Analytic conductor $2.427$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [304,2,Mod(77,304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(304, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("304.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 304 = 2^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 304.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.42745222145\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 229.34
Character \(\chi\) \(=\) 304.229
Dual form 304.2.k.b.77.34

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41380 + 0.0343004i) q^{2} +(-1.89015 + 1.89015i) q^{3} +(1.99765 + 0.0969877i) q^{4} +(-1.06645 - 1.06645i) q^{5} +(-2.73712 + 2.60746i) q^{6} +4.02959i q^{7} +(2.82094 + 0.205641i) q^{8} -4.14533i q^{9} +O(q^{10})\) \(q+(1.41380 + 0.0343004i) q^{2} +(-1.89015 + 1.89015i) q^{3} +(1.99765 + 0.0969877i) q^{4} +(-1.06645 - 1.06645i) q^{5} +(-2.73712 + 2.60746i) q^{6} +4.02959i q^{7} +(2.82094 + 0.205641i) q^{8} -4.14533i q^{9} +(-1.47117 - 1.54433i) q^{10} +(0.552303 + 0.552303i) q^{11} +(-3.95917 + 3.59253i) q^{12} +(-4.37311 + 4.37311i) q^{13} +(-0.138217 + 5.69702i) q^{14} +4.03151 q^{15} +(3.98119 + 0.387494i) q^{16} +0.608142 q^{17} +(0.142187 - 5.86066i) q^{18} +(-0.707107 + 0.707107i) q^{19} +(-2.02696 - 2.23383i) q^{20} +(-7.61653 - 7.61653i) q^{21} +(0.761901 + 0.799789i) q^{22} +0.900783i q^{23} +(-5.72070 + 4.94331i) q^{24} -2.72536i q^{25} +(-6.33269 + 6.03269i) q^{26} +(2.16485 + 2.16485i) q^{27} +(-0.390820 + 8.04970i) q^{28} +(6.34029 - 6.34029i) q^{29} +(5.69974 + 0.138282i) q^{30} +7.50604 q^{31} +(5.61530 + 0.684395i) q^{32} -2.08787 q^{33} +(0.859789 + 0.0208595i) q^{34} +(4.29737 - 4.29737i) q^{35} +(0.402046 - 8.28092i) q^{36} +(4.12547 + 4.12547i) q^{37} +(-1.02396 + 0.975452i) q^{38} -16.5317i q^{39} +(-2.78909 - 3.22771i) q^{40} +3.15335i q^{41} +(-10.5070 - 11.0295i) q^{42} +(-4.34630 - 4.34630i) q^{43} +(1.04974 + 1.15687i) q^{44} +(-4.42080 + 4.42080i) q^{45} +(-0.0308972 + 1.27353i) q^{46} +12.4949 q^{47} +(-8.25746 + 6.79262i) q^{48} -9.23758 q^{49} +(0.0934808 - 3.85310i) q^{50} +(-1.14948 + 1.14948i) q^{51} +(-9.16006 + 8.31179i) q^{52} +(0.257543 + 0.257543i) q^{53} +(2.98641 + 3.13492i) q^{54} -1.17801i q^{55} +(-0.828649 + 11.3672i) q^{56} -2.67308i q^{57} +(9.18136 - 8.74641i) q^{58} +(-3.92257 - 3.92257i) q^{59} +(8.05354 + 0.391007i) q^{60} +(4.73541 - 4.73541i) q^{61} +(10.6120 + 0.257460i) q^{62} +16.7040 q^{63} +(7.91542 + 1.16020i) q^{64} +9.32743 q^{65} +(-2.95183 - 0.0716148i) q^{66} +(-9.32201 + 9.32201i) q^{67} +(1.21485 + 0.0589822i) q^{68} +(-1.70262 - 1.70262i) q^{69} +(6.22301 - 5.92820i) q^{70} +0.270319i q^{71} +(0.852451 - 11.6937i) q^{72} -12.3210i q^{73} +(5.69107 + 5.97408i) q^{74} +(5.15133 + 5.15133i) q^{75} +(-1.48113 + 1.34397i) q^{76} +(-2.22555 + 2.22555i) q^{77} +(0.567043 - 23.3724i) q^{78} -1.74353 q^{79} +(-3.83250 - 4.65899i) q^{80} +4.25220 q^{81} +(-0.108161 + 4.45820i) q^{82} +(-2.77691 + 2.77691i) q^{83} +(-14.4764 - 15.9538i) q^{84} +(-0.648554 - 0.648554i) q^{85} +(-5.99571 - 6.29387i) q^{86} +23.9682i q^{87} +(1.44444 + 1.67159i) q^{88} +10.4507i q^{89} +(-6.40176 + 6.09849i) q^{90} +(-17.6218 - 17.6218i) q^{91} +(-0.0873649 + 1.79945i) q^{92} +(-14.1875 + 14.1875i) q^{93} +(17.6653 + 0.428582i) q^{94} +1.50819 q^{95} +(-11.9074 + 9.32015i) q^{96} -3.49540 q^{97} +(-13.0601 - 0.316853i) q^{98} +(2.28948 - 2.28948i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 4 q^{3} + 4 q^{4} + 8 q^{5} - 8 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 68 q + 4 q^{3} + 4 q^{4} + 8 q^{5} - 8 q^{6} + 4 q^{11} - 4 q^{12} + 20 q^{14} - 16 q^{15} + 4 q^{16} + 4 q^{17} - 16 q^{18} + 16 q^{21} + 4 q^{22} - 4 q^{24} - 36 q^{26} + 28 q^{27} - 24 q^{28} + 24 q^{30} + 32 q^{31} - 20 q^{32} - 16 q^{33} - 32 q^{34} - 24 q^{35} + 52 q^{36} - 24 q^{37} - 4 q^{38} - 8 q^{40} - 40 q^{42} - 16 q^{43} - 36 q^{44} - 8 q^{46} - 24 q^{47} + 36 q^{48} - 56 q^{49} + 24 q^{50} - 52 q^{51} - 28 q^{52} + 32 q^{53} - 52 q^{54} + 12 q^{56} + 52 q^{58} + 28 q^{59} - 64 q^{60} - 12 q^{62} + 24 q^{63} - 32 q^{64} - 16 q^{65} - 44 q^{66} + 28 q^{67} - 48 q^{68} - 8 q^{69} + 4 q^{70} + 108 q^{72} + 72 q^{74} + 44 q^{75} - 12 q^{77} + 100 q^{78} + 8 q^{79} - 56 q^{80} - 76 q^{81} + 28 q^{82} + 40 q^{83} + 52 q^{84} - 8 q^{85} - 20 q^{86} - 56 q^{88} - 24 q^{90} - 4 q^{91} + 72 q^{92} - 84 q^{93} - 24 q^{94} + 32 q^{95} + 72 q^{96} - 16 q^{97} - 80 q^{98} - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/304\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41380 + 0.0343004i 0.999706 + 0.0242540i
\(3\) −1.89015 + 1.89015i −1.09128 + 1.09128i −0.0958864 + 0.995392i \(0.530569\pi\)
−0.995392 + 0.0958864i \(0.969431\pi\)
\(4\) 1.99765 + 0.0969877i 0.998823 + 0.0484938i
\(5\) −1.06645 1.06645i −0.476932 0.476932i 0.427217 0.904149i \(-0.359494\pi\)
−0.904149 + 0.427217i \(0.859494\pi\)
\(6\) −2.73712 + 2.60746i −1.11743 + 1.06449i
\(7\) 4.02959i 1.52304i 0.648141 + 0.761521i \(0.275547\pi\)
−0.648141 + 0.761521i \(0.724453\pi\)
\(8\) 2.82094 + 0.205641i 0.997353 + 0.0727051i
\(9\) 4.14533i 1.38178i
\(10\) −1.47117 1.54433i −0.465224 0.488359i
\(11\) 0.552303 + 0.552303i 0.166526 + 0.166526i 0.785450 0.618925i \(-0.212431\pi\)
−0.618925 + 0.785450i \(0.712431\pi\)
\(12\) −3.95917 + 3.59253i −1.14292 + 1.03707i
\(13\) −4.37311 + 4.37311i −1.21288 + 1.21288i −0.242807 + 0.970075i \(0.578068\pi\)
−0.970075 + 0.242807i \(0.921932\pi\)
\(14\) −0.138217 + 5.69702i −0.0369399 + 1.52259i
\(15\) 4.03151 1.04093
\(16\) 3.98119 + 0.387494i 0.995297 + 0.0968735i
\(17\) 0.608142 0.147496 0.0737480 0.997277i \(-0.476504\pi\)
0.0737480 + 0.997277i \(0.476504\pi\)
\(18\) 0.142187 5.86066i 0.0335137 1.38137i
\(19\) −0.707107 + 0.707107i −0.162221 + 0.162221i
\(20\) −2.02696 2.23383i −0.453243 0.499499i
\(21\) −7.61653 7.61653i −1.66206 1.66206i
\(22\) 0.761901 + 0.799789i 0.162438 + 0.170516i
\(23\) 0.900783i 0.187826i 0.995580 + 0.0939132i \(0.0299376\pi\)
−0.995580 + 0.0939132i \(0.970062\pi\)
\(24\) −5.72070 + 4.94331i −1.16773 + 1.00905i
\(25\) 2.72536i 0.545071i
\(26\) −6.33269 + 6.03269i −1.24194 + 1.18311i
\(27\) 2.16485 + 2.16485i 0.416626 + 0.416626i
\(28\) −0.390820 + 8.04970i −0.0738581 + 1.52125i
\(29\) 6.34029 6.34029i 1.17736 1.17736i 0.196949 0.980414i \(-0.436897\pi\)
0.980414 0.196949i \(-0.0631033\pi\)
\(30\) 5.69974 + 0.138282i 1.04063 + 0.0252468i
\(31\) 7.50604 1.34813 0.674063 0.738674i \(-0.264548\pi\)
0.674063 + 0.738674i \(0.264548\pi\)
\(32\) 5.61530 + 0.684395i 0.992654 + 0.120985i
\(33\) −2.08787 −0.363452
\(34\) 0.859789 + 0.0208595i 0.147453 + 0.00357738i
\(35\) 4.29737 4.29737i 0.726387 0.726387i
\(36\) 0.402046 8.28092i 0.0670077 1.38015i
\(37\) 4.12547 + 4.12547i 0.678223 + 0.678223i 0.959598 0.281375i \(-0.0907905\pi\)
−0.281375 + 0.959598i \(0.590790\pi\)
\(38\) −1.02396 + 0.975452i −0.166108 + 0.158239i
\(39\) 16.5317i 2.64718i
\(40\) −2.78909 3.22771i −0.440995 0.510345i
\(41\) 3.15335i 0.492471i 0.969210 + 0.246236i \(0.0791937\pi\)
−0.969210 + 0.246236i \(0.920806\pi\)
\(42\) −10.5070 11.0295i −1.62126 1.70189i
\(43\) −4.34630 4.34630i −0.662805 0.662805i 0.293235 0.956040i \(-0.405268\pi\)
−0.956040 + 0.293235i \(0.905268\pi\)
\(44\) 1.04974 + 1.15687i 0.158254 + 0.174405i
\(45\) −4.42080 + 4.42080i −0.659015 + 0.659015i
\(46\) −0.0308972 + 1.27353i −0.00455555 + 0.187771i
\(47\) 12.4949 1.82258 0.911288 0.411770i \(-0.135089\pi\)
0.911288 + 0.411770i \(0.135089\pi\)
\(48\) −8.25746 + 6.79262i −1.19186 + 0.980430i
\(49\) −9.23758 −1.31965
\(50\) 0.0934808 3.85310i 0.0132202 0.544911i
\(51\) −1.14948 + 1.14948i −0.160959 + 0.160959i
\(52\) −9.16006 + 8.31179i −1.27027 + 1.15264i
\(53\) 0.257543 + 0.257543i 0.0353763 + 0.0353763i 0.724574 0.689197i \(-0.242037\pi\)
−0.689197 + 0.724574i \(0.742037\pi\)
\(54\) 2.98641 + 3.13492i 0.406399 + 0.426609i
\(55\) 1.17801i 0.158843i
\(56\) −0.828649 + 11.3672i −0.110733 + 1.51901i
\(57\) 2.67308i 0.354058i
\(58\) 9.18136 8.74641i 1.20557 1.14846i
\(59\) −3.92257 3.92257i −0.510675 0.510675i 0.404059 0.914733i \(-0.367599\pi\)
−0.914733 + 0.404059i \(0.867599\pi\)
\(60\) 8.05354 + 0.391007i 1.03971 + 0.0504788i
\(61\) 4.73541 4.73541i 0.606307 0.606307i −0.335672 0.941979i \(-0.608963\pi\)
0.941979 + 0.335672i \(0.108963\pi\)
\(62\) 10.6120 + 0.257460i 1.34773 + 0.0326975i
\(63\) 16.7040 2.10451
\(64\) 7.91542 + 1.16020i 0.989428 + 0.145025i
\(65\) 9.32743 1.15692
\(66\) −2.95183 0.0716148i −0.363345 0.00881518i
\(67\) −9.32201 + 9.32201i −1.13886 + 1.13886i −0.150211 + 0.988654i \(0.547995\pi\)
−0.988654 + 0.150211i \(0.952005\pi\)
\(68\) 1.21485 + 0.0589822i 0.147322 + 0.00715265i
\(69\) −1.70262 1.70262i −0.204971 0.204971i
\(70\) 6.22301 5.92820i 0.743792 0.708556i
\(71\) 0.270319i 0.0320809i 0.999871 + 0.0160405i \(0.00510605\pi\)
−0.999871 + 0.0160405i \(0.994894\pi\)
\(72\) 0.852451 11.6937i 0.100462 1.37812i
\(73\) 12.3210i 1.44206i −0.692903 0.721031i \(-0.743669\pi\)
0.692903 0.721031i \(-0.256331\pi\)
\(74\) 5.69107 + 5.97408i 0.661574 + 0.694473i
\(75\) 5.15133 + 5.15133i 0.594825 + 0.594825i
\(76\) −1.48113 + 1.34397i −0.169897 + 0.154164i
\(77\) −2.22555 + 2.22555i −0.253625 + 0.253625i
\(78\) 0.567043 23.3724i 0.0642049 2.64641i
\(79\) −1.74353 −0.196162 −0.0980810 0.995178i \(-0.531270\pi\)
−0.0980810 + 0.995178i \(0.531270\pi\)
\(80\) −3.83250 4.65899i −0.428487 0.520891i
\(81\) 4.25220 0.472467
\(82\) −0.108161 + 4.45820i −0.0119444 + 0.492326i
\(83\) −2.77691 + 2.77691i −0.304805 + 0.304805i −0.842890 0.538085i \(-0.819148\pi\)
0.538085 + 0.842890i \(0.319148\pi\)
\(84\) −14.4764 15.9538i −1.57951 1.74071i
\(85\) −0.648554 0.648554i −0.0703456 0.0703456i
\(86\) −5.99571 6.29387i −0.646534 0.678686i
\(87\) 23.9682i 2.56966i
\(88\) 1.44444 + 1.67159i 0.153978 + 0.178192i
\(89\) 10.4507i 1.10778i 0.832591 + 0.553888i \(0.186856\pi\)
−0.832591 + 0.553888i \(0.813144\pi\)
\(90\) −6.40176 + 6.09849i −0.674804 + 0.642837i
\(91\) −17.6218 17.6218i −1.84727 1.84727i
\(92\) −0.0873649 + 1.79945i −0.00910842 + 0.187605i
\(93\) −14.1875 + 14.1875i −1.47118 + 1.47118i
\(94\) 17.6653 + 0.428582i 1.82204 + 0.0442048i
\(95\) 1.50819 0.154737
\(96\) −11.9074 + 9.32015i −1.21529 + 0.951234i
\(97\) −3.49540 −0.354904 −0.177452 0.984129i \(-0.556785\pi\)
−0.177452 + 0.984129i \(0.556785\pi\)
\(98\) −13.0601 0.316853i −1.31927 0.0320070i
\(99\) 2.28948 2.28948i 0.230102 0.230102i
\(100\) 0.264326 5.44430i 0.0264326 0.544430i
\(101\) −12.3075 12.3075i −1.22464 1.22464i −0.965965 0.258673i \(-0.916715\pi\)
−0.258673 0.965965i \(-0.583285\pi\)
\(102\) −1.66456 + 1.58570i −0.164816 + 0.157008i
\(103\) 5.57914i 0.549729i 0.961483 + 0.274865i \(0.0886330\pi\)
−0.961483 + 0.274865i \(0.911367\pi\)
\(104\) −13.2356 + 11.4370i −1.29785 + 1.12149i
\(105\) 16.2453i 1.58538i
\(106\) 0.355280 + 0.372948i 0.0345079 + 0.0362239i
\(107\) 4.04485 + 4.04485i 0.391031 + 0.391031i 0.875055 0.484024i \(-0.160825\pi\)
−0.484024 + 0.875055i \(0.660825\pi\)
\(108\) 4.11465 + 4.53458i 0.395932 + 0.436340i
\(109\) 3.65197 3.65197i 0.349796 0.349796i −0.510238 0.860033i \(-0.670443\pi\)
0.860033 + 0.510238i \(0.170443\pi\)
\(110\) 0.0404062 1.66547i 0.00385258 0.158796i
\(111\) −15.5955 −1.48026
\(112\) −1.56144 + 16.0425i −0.147542 + 1.51588i
\(113\) −4.70937 −0.443020 −0.221510 0.975158i \(-0.571099\pi\)
−0.221510 + 0.975158i \(0.571099\pi\)
\(114\) 0.0916876 3.77919i 0.00858733 0.353953i
\(115\) 0.960643 0.960643i 0.0895804 0.0895804i
\(116\) 13.2806 12.0507i 1.23307 1.11888i
\(117\) 18.1280 + 18.1280i 1.67593 + 1.67593i
\(118\) −5.41117 5.68026i −0.498138 0.522910i
\(119\) 2.45056i 0.224643i
\(120\) 11.3727 + 0.829044i 1.03818 + 0.0756810i
\(121\) 10.3899i 0.944538i
\(122\) 6.85734 6.53249i 0.620835 0.591424i
\(123\) −5.96031 5.96031i −0.537423 0.537423i
\(124\) 14.9944 + 0.727993i 1.34654 + 0.0653757i
\(125\) −8.23873 + 8.23873i −0.736894 + 0.736894i
\(126\) 23.6161 + 0.572954i 2.10389 + 0.0510428i
\(127\) −15.6940 −1.39262 −0.696311 0.717741i \(-0.745176\pi\)
−0.696311 + 0.717741i \(0.745176\pi\)
\(128\) 11.1510 + 1.91179i 0.985619 + 0.168980i
\(129\) 16.4303 1.44661
\(130\) 13.1871 + 0.319934i 1.15658 + 0.0280601i
\(131\) 1.22078 1.22078i 0.106660 0.106660i −0.651763 0.758423i \(-0.725970\pi\)
0.758423 + 0.651763i \(0.225970\pi\)
\(132\) −4.17083 0.202498i −0.363024 0.0176252i
\(133\) −2.84935 2.84935i −0.247070 0.247070i
\(134\) −13.4992 + 12.8597i −1.16615 + 1.11091i
\(135\) 4.61743i 0.397405i
\(136\) 1.71553 + 0.125059i 0.147106 + 0.0107237i
\(137\) 0.501149i 0.0428160i 0.999771 + 0.0214080i \(0.00681491\pi\)
−0.999771 + 0.0214080i \(0.993185\pi\)
\(138\) −2.34875 2.46555i −0.199939 0.209882i
\(139\) 9.02230 + 9.02230i 0.765261 + 0.765261i 0.977268 0.212007i \(-0.0679999\pi\)
−0.212007 + 0.977268i \(0.568000\pi\)
\(140\) 9.00141 8.16783i 0.760758 0.690308i
\(141\) −23.6173 + 23.6173i −1.98894 + 1.98894i
\(142\) −0.00927203 + 0.382176i −0.000778092 + 0.0320715i
\(143\) −4.83056 −0.403952
\(144\) 1.60629 16.5034i 0.133858 1.37528i
\(145\) −13.5232 −1.12304
\(146\) 0.422614 17.4194i 0.0349758 1.44164i
\(147\) 17.4604 17.4604i 1.44011 1.44011i
\(148\) 7.84111 + 8.64135i 0.644535 + 0.710315i
\(149\) 15.6712 + 15.6712i 1.28383 + 1.28383i 0.938469 + 0.345363i \(0.112244\pi\)
0.345363 + 0.938469i \(0.387756\pi\)
\(150\) 7.10625 + 7.45964i 0.580223 + 0.609077i
\(151\) 12.8059i 1.04213i 0.853516 + 0.521066i \(0.174466\pi\)
−0.853516 + 0.521066i \(0.825534\pi\)
\(152\) −2.14012 + 1.84930i −0.173586 + 0.149998i
\(153\) 2.52095i 0.203807i
\(154\) −3.22282 + 3.07015i −0.259702 + 0.247399i
\(155\) −8.00484 8.00484i −0.642964 0.642964i
\(156\) 1.60337 33.0244i 0.128372 2.64407i
\(157\) 13.3219 13.3219i 1.06320 1.06320i 0.0653374 0.997863i \(-0.479188\pi\)
0.997863 0.0653374i \(-0.0208124\pi\)
\(158\) −2.46499 0.0598036i −0.196104 0.00475772i
\(159\) −0.973591 −0.0772108
\(160\) −5.25858 6.71833i −0.415727 0.531130i
\(161\) −3.62979 −0.286067
\(162\) 6.01176 + 0.145852i 0.472328 + 0.0114592i
\(163\) 2.50875 2.50875i 0.196501 0.196501i −0.601997 0.798498i \(-0.705628\pi\)
0.798498 + 0.601997i \(0.205628\pi\)
\(164\) −0.305836 + 6.29929i −0.0238818 + 0.491892i
\(165\) 2.22662 + 2.22662i 0.173342 + 0.173342i
\(166\) −4.02123 + 3.83074i −0.312108 + 0.297323i
\(167\) 13.2280i 1.02361i −0.859101 0.511806i \(-0.828977\pi\)
0.859101 0.511806i \(-0.171023\pi\)
\(168\) −19.9195 23.0520i −1.53682 1.77850i
\(169\) 25.2481i 1.94216i
\(170\) −0.894679 0.939170i −0.0686187 0.0720311i
\(171\) 2.93119 + 2.93119i 0.224154 + 0.224154i
\(172\) −8.26084 9.10392i −0.629883 0.694167i
\(173\) 2.64423 2.64423i 0.201037 0.201037i −0.599407 0.800444i \(-0.704597\pi\)
0.800444 + 0.599407i \(0.204597\pi\)
\(174\) −0.822119 + 33.8862i −0.0623247 + 2.56891i
\(175\) 10.9821 0.830166
\(176\) 1.98481 + 2.41284i 0.149611 + 0.181874i
\(177\) 14.8285 1.11458
\(178\) −0.358464 + 14.7752i −0.0268680 + 1.10745i
\(179\) −5.58253 + 5.58253i −0.417258 + 0.417258i −0.884257 0.467000i \(-0.845335\pi\)
0.467000 + 0.884257i \(0.345335\pi\)
\(180\) −9.25997 + 8.40244i −0.690197 + 0.626281i
\(181\) 12.3479 + 12.3479i 0.917815 + 0.917815i 0.996870 0.0790555i \(-0.0251904\pi\)
−0.0790555 + 0.996870i \(0.525190\pi\)
\(182\) −24.3093 25.5181i −1.80192 1.89153i
\(183\) 17.9013i 1.32330i
\(184\) −0.185238 + 2.54106i −0.0136559 + 0.187329i
\(185\) 8.79924i 0.646933i
\(186\) −20.5450 + 19.5717i −1.50643 + 1.43507i
\(187\) 0.335879 + 0.335879i 0.0245619 + 0.0245619i
\(188\) 24.9605 + 1.21186i 1.82043 + 0.0883837i
\(189\) −8.72347 + 8.72347i −0.634539 + 0.634539i
\(190\) 2.13228 + 0.0517316i 0.154692 + 0.00375300i
\(191\) 2.01504 0.145804 0.0729018 0.997339i \(-0.476774\pi\)
0.0729018 + 0.997339i \(0.476774\pi\)
\(192\) −17.1543 + 12.7684i −1.23800 + 0.921479i
\(193\) 2.51436 0.180987 0.0904937 0.995897i \(-0.471155\pi\)
0.0904937 + 0.995897i \(0.471155\pi\)
\(194\) −4.94179 0.119894i −0.354800 0.00860786i
\(195\) −17.6302 + 17.6302i −1.26253 + 1.26253i
\(196\) −18.4534 0.895932i −1.31810 0.0639951i
\(197\) 8.73121 + 8.73121i 0.622073 + 0.622073i 0.946061 0.323988i \(-0.105024\pi\)
−0.323988 + 0.946061i \(0.605024\pi\)
\(198\) 3.31539 3.15833i 0.235615 0.224453i
\(199\) 3.61211i 0.256056i 0.991771 + 0.128028i \(0.0408647\pi\)
−0.991771 + 0.128028i \(0.959135\pi\)
\(200\) 0.560445 7.68807i 0.0396295 0.543629i
\(201\) 35.2400i 2.48564i
\(202\) −16.9781 17.8224i −1.19458 1.25398i
\(203\) 25.5488 + 25.5488i 1.79317 + 1.79317i
\(204\) −2.40774 + 2.18477i −0.168575 + 0.152964i
\(205\) 3.36290 3.36290i 0.234875 0.234875i
\(206\) −0.191367 + 7.88778i −0.0133332 + 0.549567i
\(207\) 3.73405 0.259534
\(208\) −19.1047 + 15.7156i −1.32467 + 1.08968i
\(209\) −0.781075 −0.0540281
\(210\) −0.557222 + 22.9676i −0.0384519 + 1.58492i
\(211\) 3.51585 3.51585i 0.242041 0.242041i −0.575653 0.817694i \(-0.695252\pi\)
0.817694 + 0.575653i \(0.195252\pi\)
\(212\) 0.489502 + 0.539459i 0.0336191 + 0.0370502i
\(213\) −0.510943 0.510943i −0.0350092 0.0350092i
\(214\) 5.57986 + 5.85734i 0.381432 + 0.400400i
\(215\) 9.27026i 0.632226i
\(216\) 5.66174 + 6.55211i 0.385233 + 0.445815i
\(217\) 30.2463i 2.05325i
\(218\) 5.28841 5.03789i 0.358177 0.341209i
\(219\) 23.2885 + 23.2885i 1.57369 + 1.57369i
\(220\) 0.114252 2.35325i 0.00770290 0.158656i
\(221\) −2.65947 + 2.65947i −0.178895 + 0.178895i
\(222\) −22.0489 0.534932i −1.47982 0.0359023i
\(223\) −25.9333 −1.73663 −0.868313 0.496017i \(-0.834795\pi\)
−0.868313 + 0.496017i \(0.834795\pi\)
\(224\) −2.75783 + 22.6274i −0.184265 + 1.51185i
\(225\) −11.2975 −0.753168
\(226\) −6.65809 0.161533i −0.442890 0.0107450i
\(227\) 15.5390 15.5390i 1.03136 1.03136i 0.0318692 0.999492i \(-0.489854\pi\)
0.999492 0.0318692i \(-0.0101460\pi\)
\(228\) 0.259255 5.33986i 0.0171696 0.353641i
\(229\) −7.93339 7.93339i −0.524253 0.524253i 0.394600 0.918853i \(-0.370883\pi\)
−0.918853 + 0.394600i \(0.870883\pi\)
\(230\) 1.39111 1.32520i 0.0917268 0.0873814i
\(231\) 8.41326i 0.553552i
\(232\) 19.1894 16.5818i 1.25985 1.08865i
\(233\) 13.0596i 0.855564i −0.903882 0.427782i \(-0.859295\pi\)
0.903882 0.427782i \(-0.140705\pi\)
\(234\) 25.0075 + 26.2511i 1.63479 + 1.71609i
\(235\) −13.3253 13.3253i −0.869245 0.869245i
\(236\) −7.45546 8.21634i −0.485309 0.534838i
\(237\) 3.29553 3.29553i 0.214067 0.214067i
\(238\) −0.0840552 + 3.46460i −0.00544849 + 0.224576i
\(239\) 3.88146 0.251071 0.125535 0.992089i \(-0.459935\pi\)
0.125535 + 0.992089i \(0.459935\pi\)
\(240\) 16.0502 + 1.56219i 1.03604 + 0.100839i
\(241\) −21.7242 −1.39938 −0.699689 0.714448i \(-0.746678\pi\)
−0.699689 + 0.714448i \(0.746678\pi\)
\(242\) 0.356379 14.6892i 0.0229089 0.944261i
\(243\) −14.5319 + 14.5319i −0.932220 + 0.932220i
\(244\) 9.91896 9.00041i 0.634996 0.576192i
\(245\) 9.85145 + 9.85145i 0.629386 + 0.629386i
\(246\) −8.22223 8.63111i −0.524230 0.550300i
\(247\) 6.18451i 0.393511i
\(248\) 21.1741 + 1.54355i 1.34456 + 0.0980155i
\(249\) 10.4975i 0.665255i
\(250\) −11.9305 + 11.3653i −0.754550 + 0.718805i
\(251\) −20.9875 20.9875i −1.32472 1.32472i −0.909909 0.414807i \(-0.863849\pi\)
−0.414807 0.909909i \(-0.636151\pi\)
\(252\) 33.3687 + 1.62008i 2.10203 + 0.102056i
\(253\) −0.497505 + 0.497505i −0.0312779 + 0.0312779i
\(254\) −22.1882 0.538312i −1.39221 0.0337767i
\(255\) 2.45173 0.153533
\(256\) 15.6997 + 3.08537i 0.981231 + 0.192836i
\(257\) 3.05424 0.190518 0.0952590 0.995453i \(-0.469632\pi\)
0.0952590 + 0.995453i \(0.469632\pi\)
\(258\) 23.2292 + 0.563567i 1.44618 + 0.0350862i
\(259\) −16.6239 + 16.6239i −1.03296 + 1.03296i
\(260\) 18.6329 + 0.904645i 1.15556 + 0.0561037i
\(261\) −26.2826 26.2826i −1.62685 1.62685i
\(262\) 1.76781 1.68406i 0.109216 0.104042i
\(263\) 19.3970i 1.19607i −0.801469 0.598036i \(-0.795948\pi\)
0.801469 0.598036i \(-0.204052\pi\)
\(264\) −5.88976 0.429352i −0.362490 0.0264248i
\(265\) 0.549315i 0.0337442i
\(266\) −3.93067 4.12614i −0.241005 0.252990i
\(267\) −19.7535 19.7535i −1.20889 1.20889i
\(268\) −19.5262 + 17.7180i −1.19275 + 1.08230i
\(269\) 12.1781 12.1781i 0.742514 0.742514i −0.230547 0.973061i \(-0.574052\pi\)
0.973061 + 0.230547i \(0.0740516\pi\)
\(270\) 0.158380 6.52811i 0.00963868 0.397288i
\(271\) −18.7432 −1.13857 −0.569285 0.822140i \(-0.692780\pi\)
−0.569285 + 0.822140i \(0.692780\pi\)
\(272\) 2.42113 + 0.235651i 0.146802 + 0.0142885i
\(273\) 66.6158 4.03177
\(274\) −0.0171896 + 0.708523i −0.00103846 + 0.0428035i
\(275\) 1.50522 1.50522i 0.0907684 0.0907684i
\(276\) −3.23609 3.56636i −0.194790 0.214670i
\(277\) 4.84631 + 4.84631i 0.291187 + 0.291187i 0.837549 0.546362i \(-0.183988\pi\)
−0.546362 + 0.837549i \(0.683988\pi\)
\(278\) 12.4462 + 13.0652i 0.746476 + 0.783597i
\(279\) 31.1151i 1.86281i
\(280\) 13.0063 11.2389i 0.777277 0.671653i
\(281\) 7.27330i 0.433889i 0.976184 + 0.216944i \(0.0696090\pi\)
−0.976184 + 0.216944i \(0.930391\pi\)
\(282\) −34.2002 + 32.5800i −2.03659 + 1.94011i
\(283\) −4.02007 4.02007i −0.238968 0.238968i 0.577455 0.816423i \(-0.304046\pi\)
−0.816423 + 0.577455i \(0.804046\pi\)
\(284\) −0.0262176 + 0.540001i −0.00155573 + 0.0320432i
\(285\) −2.85071 + 2.85071i −0.168861 + 0.168861i
\(286\) −6.82944 0.165690i −0.403833 0.00979747i
\(287\) −12.7067 −0.750054
\(288\) 2.83704 23.2773i 0.167174 1.37163i
\(289\) −16.6302 −0.978245
\(290\) −19.1191 0.463853i −1.12271 0.0272384i
\(291\) 6.60683 6.60683i 0.387299 0.387299i
\(292\) 1.19498 24.6130i 0.0699311 1.44036i
\(293\) 13.2722 + 13.2722i 0.775370 + 0.775370i 0.979040 0.203670i \(-0.0652869\pi\)
−0.203670 + 0.979040i \(0.565287\pi\)
\(294\) 25.2844 24.0866i 1.47462 1.40476i
\(295\) 8.36646i 0.487114i
\(296\) 10.7893 + 12.4861i 0.627118 + 0.725738i
\(297\) 2.39131i 0.138758i
\(298\) 21.6183 + 22.6934i 1.25232 + 1.31459i
\(299\) −3.93922 3.93922i −0.227811 0.227811i
\(300\) 9.79093 + 10.7902i 0.565280 + 0.622970i
\(301\) 17.5138 17.5138i 1.00948 1.00948i
\(302\) −0.439249 + 18.1050i −0.0252759 + 1.04183i
\(303\) 46.5259 2.67284
\(304\) −3.08912 + 2.54112i −0.177173 + 0.145743i
\(305\) −10.1002 −0.578335
\(306\) 0.0864696 3.56411i 0.00494314 0.203747i
\(307\) 14.4957 14.4957i 0.827315 0.827315i −0.159830 0.987145i \(-0.551094\pi\)
0.987145 + 0.159830i \(0.0510945\pi\)
\(308\) −4.66172 + 4.23002i −0.265626 + 0.241028i
\(309\) −10.5454 10.5454i −0.599908 0.599908i
\(310\) −11.0427 11.5918i −0.627181 0.658370i
\(311\) 5.20251i 0.295007i 0.989062 + 0.147504i \(0.0471238\pi\)
−0.989062 + 0.147504i \(0.952876\pi\)
\(312\) 3.39959 46.6348i 0.192464 2.64018i
\(313\) 25.8149i 1.45914i −0.683904 0.729572i \(-0.739719\pi\)
0.683904 0.729572i \(-0.260281\pi\)
\(314\) 19.2914 18.3775i 1.08867 1.03710i
\(315\) −17.8140 17.8140i −1.00371 1.00371i
\(316\) −3.48295 0.169100i −0.195931 0.00951265i
\(317\) 13.8188 13.8188i 0.776142 0.776142i −0.203030 0.979172i \(-0.565079\pi\)
0.979172 + 0.203030i \(0.0650790\pi\)
\(318\) −1.37646 0.0333946i −0.0771881 0.00187267i
\(319\) 7.00353 0.392122
\(320\) −7.20412 9.67873i −0.402723 0.541057i
\(321\) −15.2908 −0.853447
\(322\) −5.13178 0.124503i −0.285983 0.00693829i
\(323\) −0.430021 + 0.430021i −0.0239270 + 0.0239270i
\(324\) 8.49440 + 0.412411i 0.471911 + 0.0229117i
\(325\) 11.9183 + 11.9183i 0.661107 + 0.661107i
\(326\) 3.63292 3.46082i 0.201209 0.191677i
\(327\) 13.8056i 0.763449i
\(328\) −0.648459 + 8.89543i −0.0358051 + 0.491168i
\(329\) 50.3495i 2.77586i
\(330\) 3.07161 + 3.22436i 0.169087 + 0.177495i
\(331\) −12.6291 12.6291i −0.694160 0.694160i 0.268985 0.963144i \(-0.413312\pi\)
−0.963144 + 0.268985i \(0.913312\pi\)
\(332\) −5.81661 + 5.27796i −0.319228 + 0.289665i
\(333\) 17.1014 17.1014i 0.937154 0.937154i
\(334\) 0.453725 18.7017i 0.0248267 1.02331i
\(335\) 19.8830 1.08632
\(336\) −27.3715 33.2742i −1.49324 1.81526i
\(337\) −11.1511 −0.607438 −0.303719 0.952762i \(-0.598228\pi\)
−0.303719 + 0.952762i \(0.598228\pi\)
\(338\) 0.866021 35.6958i 0.0471054 1.94159i
\(339\) 8.90141 8.90141i 0.483458 0.483458i
\(340\) −1.23268 1.35848i −0.0668515 0.0736742i
\(341\) 4.14561 + 4.14561i 0.224497 + 0.224497i
\(342\) 4.04357 + 4.24466i 0.218651 + 0.229525i
\(343\) 9.01654i 0.486847i
\(344\) −11.3669 13.1544i −0.612862 0.709240i
\(345\) 3.63152i 0.195514i
\(346\) 3.82910 3.64771i 0.205854 0.196102i
\(347\) −10.3939 10.3939i −0.557974 0.557974i 0.370756 0.928730i \(-0.379099\pi\)
−0.928730 + 0.370756i \(0.879099\pi\)
\(348\) −2.32462 + 47.8800i −0.124613 + 2.56664i
\(349\) −10.9522 + 10.9522i −0.586258 + 0.586258i −0.936616 0.350358i \(-0.886060\pi\)
0.350358 + 0.936616i \(0.386060\pi\)
\(350\) 15.5264 + 0.376689i 0.829922 + 0.0201349i
\(351\) −18.9343 −1.01064
\(352\) 2.72335 + 3.47934i 0.145155 + 0.185450i
\(353\) 28.2593 1.50409 0.752045 0.659111i \(-0.229067\pi\)
0.752045 + 0.659111i \(0.229067\pi\)
\(354\) 20.9645 + 0.508623i 1.11425 + 0.0270330i
\(355\) 0.288282 0.288282i 0.0153004 0.0153004i
\(356\) −1.01359 + 20.8769i −0.0537203 + 1.10647i
\(357\) −4.63193 4.63193i −0.245148 0.245148i
\(358\) −8.08405 + 7.70108i −0.427255 + 0.407015i
\(359\) 6.64825i 0.350881i −0.984490 0.175441i \(-0.943865\pi\)
0.984490 0.175441i \(-0.0561350\pi\)
\(360\) −13.3799 + 11.5617i −0.705184 + 0.609357i
\(361\) 1.00000i 0.0526316i
\(362\) 17.0339 + 17.8810i 0.895284 + 0.939805i
\(363\) 19.6385 + 19.6385i 1.03075 + 1.03075i
\(364\) −33.4931 36.9113i −1.75551 1.93468i
\(365\) −13.1397 + 13.1397i −0.687765 + 0.687765i
\(366\) −0.614021 + 25.3088i −0.0320954 + 1.32291i
\(367\) −8.84035 −0.461462 −0.230731 0.973018i \(-0.574112\pi\)
−0.230731 + 0.973018i \(0.574112\pi\)
\(368\) −0.349048 + 3.58619i −0.0181954 + 0.186943i
\(369\) 13.0717 0.680486
\(370\) 0.301817 12.4403i 0.0156907 0.646742i
\(371\) −1.03779 + 1.03779i −0.0538795 + 0.0538795i
\(372\) −29.7177 + 26.9657i −1.54079 + 1.39811i
\(373\) −8.66241 8.66241i −0.448522 0.448522i 0.446341 0.894863i \(-0.352727\pi\)
−0.894863 + 0.446341i \(0.852727\pi\)
\(374\) 0.463343 + 0.486385i 0.0239589 + 0.0251504i
\(375\) 31.1449i 1.60831i
\(376\) 35.2475 + 2.56947i 1.81775 + 0.132511i
\(377\) 55.4536i 2.85600i
\(378\) −12.6324 + 12.0340i −0.649743 + 0.618962i
\(379\) 8.58240 + 8.58240i 0.440848 + 0.440848i 0.892297 0.451449i \(-0.149093\pi\)
−0.451449 + 0.892297i \(0.649093\pi\)
\(380\) 3.01284 + 0.146276i 0.154555 + 0.00750380i
\(381\) 29.6641 29.6641i 1.51974 1.51974i
\(382\) 2.84887 + 0.0691169i 0.145761 + 0.00353633i
\(383\) −29.4894 −1.50684 −0.753420 0.657540i \(-0.771597\pi\)
−0.753420 + 0.657540i \(0.771597\pi\)
\(384\) −24.6907 + 17.4635i −1.25999 + 0.891181i
\(385\) 4.74690 0.241924
\(386\) 3.55479 + 0.0862435i 0.180934 + 0.00438968i
\(387\) −18.0169 + 18.0169i −0.915850 + 0.915850i
\(388\) −6.98258 0.339011i −0.354487 0.0172107i
\(389\) −9.54195 9.54195i −0.483796 0.483796i 0.422546 0.906342i \(-0.361137\pi\)
−0.906342 + 0.422546i \(0.861137\pi\)
\(390\) −25.5303 + 24.3209i −1.29278 + 1.23153i
\(391\) 0.547804i 0.0277036i
\(392\) −26.0587 1.89963i −1.31616 0.0959456i
\(393\) 4.61492i 0.232792i
\(394\) 12.0447 + 12.6437i 0.606803 + 0.636978i
\(395\) 1.85939 + 1.85939i 0.0935560 + 0.0935560i
\(396\) 4.79563 4.35152i 0.240989 0.218672i
\(397\) −16.2249 + 16.2249i −0.814306 + 0.814306i −0.985276 0.170970i \(-0.945310\pi\)
0.170970 + 0.985276i \(0.445310\pi\)
\(398\) −0.123897 + 5.10680i −0.00621039 + 0.255981i
\(399\) 10.7714 0.539244
\(400\) 1.05606 10.8502i 0.0528030 0.542508i
\(401\) 10.8292 0.540783 0.270392 0.962750i \(-0.412847\pi\)
0.270392 + 0.962750i \(0.412847\pi\)
\(402\) 1.20875 49.8222i 0.0602868 2.48491i
\(403\) −32.8247 + 32.8247i −1.63512 + 1.63512i
\(404\) −23.3923 25.7796i −1.16381 1.28258i
\(405\) −4.53478 4.53478i −0.225335 0.225335i
\(406\) 35.2445 + 36.9971i 1.74915 + 1.83614i
\(407\) 4.55702i 0.225883i
\(408\) −3.47899 + 3.00623i −0.172236 + 0.148831i
\(409\) 19.3955i 0.959048i 0.877529 + 0.479524i \(0.159191\pi\)
−0.877529 + 0.479524i \(0.840809\pi\)
\(410\) 4.86981 4.63911i 0.240503 0.229110i
\(411\) −0.947247 0.947247i −0.0467242 0.0467242i
\(412\) −0.541108 + 11.1452i −0.0266585 + 0.549082i
\(413\) 15.8063 15.8063i 0.777779 0.777779i
\(414\) 5.27919 + 0.128079i 0.259458 + 0.00629476i
\(415\) 5.92288 0.290743
\(416\) −27.5492 + 21.5634i −1.35071 + 1.05723i
\(417\) −34.1070 −1.67023
\(418\) −1.10428 0.0267912i −0.0540122 0.00131040i
\(419\) 7.01113 7.01113i 0.342516 0.342516i −0.514796 0.857313i \(-0.672132\pi\)
0.857313 + 0.514796i \(0.172132\pi\)
\(420\) −1.57560 + 32.4524i −0.0768813 + 1.58352i
\(421\) 4.19487 + 4.19487i 0.204445 + 0.204445i 0.801902 0.597456i \(-0.203822\pi\)
−0.597456 + 0.801902i \(0.703822\pi\)
\(422\) 5.09130 4.85011i 0.247841 0.236100i
\(423\) 51.7957i 2.51840i
\(424\) 0.673553 + 0.779476i 0.0327106 + 0.0378547i
\(425\) 1.65740i 0.0803959i
\(426\) −0.704844 0.739895i −0.0341498 0.0358480i
\(427\) 19.0818 + 19.0818i 0.923431 + 0.923431i
\(428\) 7.68789 + 8.47249i 0.371608 + 0.409533i
\(429\) 9.13049 9.13049i 0.440824 0.440824i
\(430\) −0.317974 + 13.1063i −0.0153340 + 0.632040i
\(431\) 1.34988 0.0650215 0.0325107 0.999471i \(-0.489650\pi\)
0.0325107 + 0.999471i \(0.489650\pi\)
\(432\) 7.77982 + 9.45756i 0.374307 + 0.455027i
\(433\) 29.1510 1.40091 0.700454 0.713698i \(-0.252981\pi\)
0.700454 + 0.713698i \(0.252981\pi\)
\(434\) −1.03746 + 42.7621i −0.0497996 + 2.05265i
\(435\) 25.5610 25.5610i 1.22555 1.22555i
\(436\) 7.64955 6.94116i 0.366347 0.332421i
\(437\) −0.636950 0.636950i −0.0304695 0.0304695i
\(438\) 32.1264 + 33.7240i 1.53506 + 1.61140i
\(439\) 4.37163i 0.208646i 0.994543 + 0.104323i \(0.0332676\pi\)
−0.994543 + 0.104323i \(0.966732\pi\)
\(440\) 0.242247 3.32310i 0.0115487 0.158423i
\(441\) 38.2929i 1.82347i
\(442\) −3.85117 + 3.66873i −0.183182 + 0.174504i
\(443\) −20.5023 20.5023i −0.974092 0.974092i 0.0255807 0.999673i \(-0.491857\pi\)
−0.999673 + 0.0255807i \(0.991857\pi\)
\(444\) −31.1543 1.51257i −1.47852 0.0717835i
\(445\) 11.1452 11.1452i 0.528334 0.528334i
\(446\) −36.6645 0.889524i −1.73611 0.0421202i
\(447\) −59.2417 −2.80204
\(448\) −4.67514 + 31.8959i −0.220880 + 1.50694i
\(449\) −8.68234 −0.409745 −0.204873 0.978789i \(-0.565678\pi\)
−0.204873 + 0.978789i \(0.565678\pi\)
\(450\) −15.9724 0.387509i −0.752946 0.0182674i
\(451\) −1.74161 + 1.74161i −0.0820091 + 0.0820091i
\(452\) −9.40766 0.456751i −0.442499 0.0214837i
\(453\) −24.2051 24.2051i −1.13726 1.13726i
\(454\) 22.5020 21.4360i 1.05607 1.00604i
\(455\) 37.5857i 1.76204i
\(456\) 0.549694 7.54059i 0.0257418 0.353121i
\(457\) 25.4118i 1.18871i 0.804202 + 0.594356i \(0.202593\pi\)
−0.804202 + 0.594356i \(0.797407\pi\)
\(458\) −10.9441 11.4883i −0.511384 0.536814i
\(459\) 1.31654 + 1.31654i 0.0614507 + 0.0614507i
\(460\) 2.01220 1.82586i 0.0938191 0.0851309i
\(461\) −4.47785 + 4.47785i −0.208554 + 0.208554i −0.803653 0.595098i \(-0.797113\pi\)
0.595098 + 0.803653i \(0.297113\pi\)
\(462\) 0.288578 11.8947i 0.0134259 0.553389i
\(463\) −14.9185 −0.693320 −0.346660 0.937991i \(-0.612684\pi\)
−0.346660 + 0.937991i \(0.612684\pi\)
\(464\) 27.6987 22.7851i 1.28588 1.05777i
\(465\) 30.2607 1.40331
\(466\) 0.447950 18.4637i 0.0207509 0.855313i
\(467\) 21.1197 21.1197i 0.977301 0.977301i −0.0224468 0.999748i \(-0.507146\pi\)
0.999748 + 0.0224468i \(0.00714563\pi\)
\(468\) 34.4551 + 37.9715i 1.59269 + 1.75523i
\(469\) −37.5639 37.5639i −1.73454 1.73454i
\(470\) −18.3822 19.2963i −0.847907 0.890072i
\(471\) 50.3606i 2.32050i
\(472\) −10.2587 11.8720i −0.472194 0.546452i
\(473\) 4.80095i 0.220748i
\(474\) 4.77224 4.54617i 0.219196 0.208812i
\(475\) 1.92712 + 1.92712i 0.0884223 + 0.0884223i
\(476\) −0.237674 + 4.89535i −0.0108938 + 0.224378i
\(477\) 1.06760 1.06760i 0.0488822 0.0488822i
\(478\) 5.48760 + 0.133136i 0.250997 + 0.00608948i
\(479\) 27.6920 1.26528 0.632641 0.774446i \(-0.281971\pi\)
0.632641 + 0.774446i \(0.281971\pi\)
\(480\) 22.6382 + 2.75915i 1.03329 + 0.125937i
\(481\) −36.0822 −1.64521
\(482\) −30.7136 0.745148i −1.39897 0.0339406i
\(483\) 6.86084 6.86084i 0.312179 0.312179i
\(484\) 1.00769 20.7554i 0.0458043 0.943427i
\(485\) 3.72768 + 3.72768i 0.169265 + 0.169265i
\(486\) −21.0436 + 20.0467i −0.954556 + 0.909335i
\(487\) 35.2062i 1.59534i −0.603091 0.797672i \(-0.706065\pi\)
0.603091 0.797672i \(-0.293935\pi\)
\(488\) 14.3321 12.3845i 0.648785 0.560621i
\(489\) 9.48384i 0.428874i
\(490\) 13.5900 + 14.2659i 0.613936 + 0.644466i
\(491\) 21.0214 + 21.0214i 0.948681 + 0.948681i 0.998746 0.0500647i \(-0.0159428\pi\)
−0.0500647 + 0.998746i \(0.515943\pi\)
\(492\) −11.3285 12.4847i −0.510729 0.562853i
\(493\) 3.85580 3.85580i 0.173656 0.173656i
\(494\) 0.212131 8.74364i 0.00954423 0.393395i
\(495\) −4.88325 −0.219486
\(496\) 29.8830 + 2.90855i 1.34178 + 0.130598i
\(497\) −1.08927 −0.0488605
\(498\) 0.360070 14.8414i 0.0161351 0.665059i
\(499\) −0.953966 + 0.953966i −0.0427054 + 0.0427054i −0.728137 0.685432i \(-0.759614\pi\)
0.685432 + 0.728137i \(0.259614\pi\)
\(500\) −17.2571 + 15.6590i −0.771762 + 0.700292i
\(501\) 25.0029 + 25.0029i 1.11705 + 1.11705i
\(502\) −28.9521 30.3919i −1.29220 1.35646i
\(503\) 4.28185i 0.190918i −0.995433 0.0954592i \(-0.969568\pi\)
0.995433 0.0954592i \(-0.0304320\pi\)
\(504\) 47.1210 + 3.43503i 2.09894 + 0.153008i
\(505\) 26.2506i 1.16814i
\(506\) −0.720437 + 0.686307i −0.0320273 + 0.0305101i
\(507\) 47.7228 + 47.7228i 2.11944 + 2.11944i
\(508\) −31.3512 1.52213i −1.39098 0.0675335i
\(509\) −21.8211 + 21.8211i −0.967202 + 0.967202i −0.999479 0.0322767i \(-0.989724\pi\)
0.0322767 + 0.999479i \(0.489724\pi\)
\(510\) 3.46625 + 0.0840953i 0.153488 + 0.00372380i
\(511\) 49.6485 2.19632
\(512\) 22.0904 + 4.90060i 0.976265 + 0.216578i
\(513\) −3.06157 −0.135171
\(514\) 4.31807 + 0.104762i 0.190462 + 0.00462083i
\(515\) 5.94989 5.94989i 0.262184 0.262184i
\(516\) 32.8220 + 1.59354i 1.44491 + 0.0701517i
\(517\) 6.90100 + 6.90100i 0.303506 + 0.303506i
\(518\) −24.0731 + 22.9327i −1.05771 + 1.00760i
\(519\) 9.99598i 0.438775i
\(520\) 26.3121 + 1.91810i 1.15386 + 0.0841143i
\(521\) 32.0921i 1.40598i −0.711199 0.702991i \(-0.751848\pi\)
0.711199 0.702991i \(-0.248152\pi\)
\(522\) −36.2568 38.0598i −1.58692 1.66583i
\(523\) 23.2846 + 23.2846i 1.01816 + 1.01816i 0.999832 + 0.0183319i \(0.00583556\pi\)
0.0183319 + 0.999832i \(0.494164\pi\)
\(524\) 2.55709 2.32029i 0.111707 0.101362i
\(525\) −20.7578 + 20.7578i −0.905943 + 0.905943i
\(526\) 0.665326 27.4235i 0.0290096 1.19572i
\(527\) 4.56474 0.198843
\(528\) −8.31221 0.809038i −0.361742 0.0352089i
\(529\) 22.1886 0.964721
\(530\) 0.0188417 0.776621i 0.000818433 0.0337342i
\(531\) −16.2603 + 16.2603i −0.705639 + 0.705639i
\(532\) −5.41564 5.96835i −0.234798 0.258761i
\(533\) −13.7900 13.7900i −0.597309 0.597309i
\(534\) −27.2498 28.6049i −1.17922 1.23786i
\(535\) 8.62729i 0.372990i
\(536\) −28.2138 + 24.3799i −1.21865 + 1.05305i
\(537\) 21.1036i 0.910689i
\(538\) 17.6351 16.7997i 0.760304 0.724287i
\(539\) −5.10195 5.10195i −0.219756 0.219756i
\(540\) 0.447834 9.22399i 0.0192717 0.396938i
\(541\) −12.1744 + 12.1744i −0.523420 + 0.523420i −0.918602 0.395183i \(-0.870681\pi\)
0.395183 + 0.918602i \(0.370681\pi\)
\(542\) −26.4991 0.642900i −1.13823 0.0276149i
\(543\) −46.6789 −2.00318
\(544\) 3.41490 + 0.416209i 0.146413 + 0.0178448i
\(545\) −7.78931 −0.333658
\(546\) 94.1812 + 2.28495i 4.03058 + 0.0977868i
\(547\) −10.7020 + 10.7020i −0.457584 + 0.457584i −0.897862 0.440277i \(-0.854880\pi\)
0.440277 + 0.897862i \(0.354880\pi\)
\(548\) −0.0486053 + 1.00112i −0.00207631 + 0.0427657i
\(549\) −19.6299 19.6299i −0.837782 0.837782i
\(550\) 2.17971 2.07645i 0.0929432 0.0885402i
\(551\) 8.96653i 0.381987i
\(552\) −4.45285 5.15311i −0.189526 0.219331i
\(553\) 7.02569i 0.298763i
\(554\) 6.68547 + 7.01793i 0.284038 + 0.298163i
\(555\) 16.6319 + 16.6319i 0.705984 + 0.705984i
\(556\) 17.1483 + 18.8984i 0.727251 + 0.801472i
\(557\) 10.6604 10.6604i 0.451695 0.451695i −0.444222 0.895917i \(-0.646520\pi\)
0.895917 + 0.444222i \(0.146520\pi\)
\(558\) 1.06726 43.9904i 0.0451807 1.86226i
\(559\) 38.0137 1.60781
\(560\) 18.7738 15.4434i 0.793339 0.652603i
\(561\) −1.26972 −0.0536077
\(562\) −0.249477 + 10.2830i −0.0105236 + 0.433761i
\(563\) 12.8332 12.8332i 0.540854 0.540854i −0.382926 0.923779i \(-0.625083\pi\)
0.923779 + 0.382926i \(0.125083\pi\)
\(564\) −49.4697 + 44.8885i −2.08305 + 1.89015i
\(565\) 5.02232 + 5.02232i 0.211291 + 0.211291i
\(566\) −5.54567 5.82145i −0.233102 0.244694i
\(567\) 17.1346i 0.719587i
\(568\) −0.0555886 + 0.762553i −0.00233244 + 0.0319960i
\(569\) 15.4815i 0.649020i −0.945882 0.324510i \(-0.894801\pi\)
0.945882 0.324510i \(-0.105199\pi\)
\(570\) −4.12811 + 3.93255i −0.172907 + 0.164716i
\(571\) 17.8262 + 17.8262i 0.746004 + 0.746004i 0.973726 0.227722i \(-0.0731277\pi\)
−0.227722 + 0.973726i \(0.573128\pi\)
\(572\) −9.64976 0.468505i −0.403477 0.0195892i
\(573\) −3.80874 + 3.80874i −0.159112 + 0.159112i
\(574\) −17.9647 0.435845i −0.749833 0.0181918i
\(575\) 2.45496 0.102379
\(576\) 4.80943 32.8121i 0.200393 1.36717i
\(577\) −5.29423 −0.220401 −0.110201 0.993909i \(-0.535149\pi\)
−0.110201 + 0.993909i \(0.535149\pi\)
\(578\) −23.5117 0.570421i −0.977957 0.0237264i
\(579\) −4.75251 + 4.75251i −0.197508 + 0.197508i
\(580\) −27.0147 1.31159i −1.12172 0.0544607i
\(581\) −11.1898 11.1898i −0.464231 0.464231i
\(582\) 9.56734 9.11411i 0.396579 0.377792i
\(583\) 0.284484i 0.0117821i
\(584\) 2.53370 34.7568i 0.104845 1.43824i
\(585\) 38.6653i 1.59861i
\(586\) 18.3090 + 19.2194i 0.756336 + 0.793948i
\(587\) −27.4763 27.4763i −1.13407 1.13407i −0.989494 0.144574i \(-0.953819\pi\)
−0.144574 0.989494i \(-0.546181\pi\)
\(588\) 36.5732 33.1863i 1.50825 1.36858i
\(589\) −5.30757 + 5.30757i −0.218695 + 0.218695i
\(590\) −0.286973 + 11.8285i −0.0118145 + 0.486971i
\(591\) −33.0066 −1.35771
\(592\) 14.8257 + 18.0229i 0.609331 + 0.740735i
\(593\) −26.3502 −1.08207 −0.541036 0.841000i \(-0.681968\pi\)
−0.541036 + 0.841000i \(0.681968\pi\)
\(594\) −0.0820230 + 3.38083i −0.00336544 + 0.138717i
\(595\) 2.61341 2.61341i 0.107139 0.107139i
\(596\) 29.7856 + 32.8254i 1.22006 + 1.34458i
\(597\) −6.82744 6.82744i −0.279428 0.279428i
\(598\) −5.43415 5.70438i −0.222219 0.233269i
\(599\) 18.7420i 0.765776i −0.923795 0.382888i \(-0.874930\pi\)
0.923795 0.382888i \(-0.125070\pi\)
\(600\) 13.4723 + 15.5909i 0.550004 + 0.636497i
\(601\) 6.35121i 0.259071i 0.991575 + 0.129536i \(0.0413486\pi\)
−0.991575 + 0.129536i \(0.958651\pi\)
\(602\) 25.3617 24.1603i 1.03367 0.984699i
\(603\) 38.6429 + 38.6429i 1.57366 + 1.57366i
\(604\) −1.24202 + 25.5817i −0.0505370 + 1.04091i
\(605\) −11.0804 + 11.0804i −0.450481 + 0.450481i
\(606\) 65.7782 + 1.59586i 2.67206 + 0.0648273i
\(607\) 21.4722 0.871531 0.435765 0.900060i \(-0.356478\pi\)
0.435765 + 0.900060i \(0.356478\pi\)
\(608\) −4.45456 + 3.48668i −0.180656 + 0.141403i
\(609\) −96.5820 −3.91370
\(610\) −14.2796 0.346441i −0.578165 0.0140270i
\(611\) −54.6418 + 54.6418i −2.21057 + 2.21057i
\(612\) 0.244501 5.03597i 0.00988337 0.203567i
\(613\) 29.5806 + 29.5806i 1.19475 + 1.19475i 0.975717 + 0.219033i \(0.0702904\pi\)
0.219033 + 0.975717i \(0.429710\pi\)
\(614\) 20.9912 19.9968i 0.847137 0.807006i
\(615\) 12.7128i 0.512629i
\(616\) −6.73582 + 5.82049i −0.271394 + 0.234514i
\(617\) 17.8609i 0.719051i −0.933135 0.359525i \(-0.882939\pi\)
0.933135 0.359525i \(-0.117061\pi\)
\(618\) −14.5474 15.2708i −0.585181 0.614281i
\(619\) −3.98730 3.98730i −0.160263 0.160263i 0.622420 0.782683i \(-0.286150\pi\)
−0.782683 + 0.622420i \(0.786150\pi\)
\(620\) −15.2145 16.7672i −0.611028 0.673388i
\(621\) −1.95006 + 1.95006i −0.0782534 + 0.0782534i
\(622\) −0.178448 + 7.35530i −0.00715513 + 0.294921i
\(623\) −42.1122 −1.68719
\(624\) 6.40592 65.8156i 0.256442 2.63473i
\(625\) 3.94565 0.157826
\(626\) 0.885462 36.4971i 0.0353902 1.45872i
\(627\) 1.47635 1.47635i 0.0589597 0.0589597i
\(628\) 27.9044 25.3203i 1.11351 1.01039i
\(629\) 2.50887 + 2.50887i 0.100035 + 0.100035i
\(630\) −24.5744 25.7964i −0.979067 1.02775i
\(631\) 30.3473i 1.20811i 0.796944 + 0.604053i \(0.206448\pi\)
−0.796944 + 0.604053i \(0.793552\pi\)
\(632\) −4.91838 0.358540i −0.195643 0.0142620i
\(633\) 13.2910i 0.528269i
\(634\) 20.0110 19.0630i 0.794738 0.757089i
\(635\) 16.7370 + 16.7370i 0.664186 + 0.664186i
\(636\) −1.94489 0.0944263i −0.0771199 0.00374425i
\(637\) 40.3969 40.3969i 1.60059 1.60059i
\(638\) 9.90157 + 0.240224i 0.392007 + 0.00951055i
\(639\) 1.12056 0.0443287
\(640\) −9.85319 13.9309i −0.389481 0.550666i
\(641\) −26.6647 −1.05319 −0.526595 0.850116i \(-0.676532\pi\)
−0.526595 + 0.850116i \(0.676532\pi\)
\(642\) −21.6180 0.524479i −0.853196 0.0206995i
\(643\) −17.4776 + 17.4776i −0.689250 + 0.689250i −0.962066 0.272816i \(-0.912045\pi\)
0.272816 + 0.962066i \(0.412045\pi\)
\(644\) −7.25103 0.352044i −0.285731 0.0138725i
\(645\) −17.5222 17.5222i −0.689935 0.689935i
\(646\) −0.622713 + 0.593213i −0.0245003 + 0.0233396i
\(647\) 21.9528i 0.863055i 0.902100 + 0.431528i \(0.142025\pi\)
−0.902100 + 0.431528i \(0.857975\pi\)
\(648\) 11.9952 + 0.874428i 0.471217 + 0.0343508i
\(649\) 4.33289i 0.170081i
\(650\) 16.4412 + 17.2588i 0.644878 + 0.676947i
\(651\) −57.1700 57.1700i −2.24067 2.24067i
\(652\) 5.25492 4.76829i 0.205799 0.186741i
\(653\) −20.4948 + 20.4948i −0.802024 + 0.802024i −0.983412 0.181387i \(-0.941941\pi\)
0.181387 + 0.983412i \(0.441941\pi\)
\(654\) −0.473536 + 19.5183i −0.0185167 + 0.763224i
\(655\) −2.60381 −0.101739
\(656\) −1.22191 + 12.5541i −0.0477074 + 0.490155i
\(657\) −51.0746 −1.99261
\(658\) −1.72701 + 71.1840i −0.0673258 + 2.77504i
\(659\) 36.1034 36.1034i 1.40639 1.40639i 0.628905 0.777482i \(-0.283504\pi\)
0.777482 0.628905i \(-0.216496\pi\)
\(660\) 4.23204 + 4.66395i 0.164732 + 0.181544i
\(661\) −6.46495 6.46495i −0.251457 0.251457i 0.570111 0.821568i \(-0.306900\pi\)
−0.821568 + 0.570111i \(0.806900\pi\)
\(662\) −17.4218 18.2882i −0.677119 0.710792i
\(663\) 10.0536i 0.390449i
\(664\) −8.40454 + 7.26245i −0.326159 + 0.281838i
\(665\) 6.07739i 0.235671i
\(666\) 24.7646 23.5914i 0.959608 0.914148i
\(667\) 5.71123 + 5.71123i 0.221140 + 0.221140i
\(668\) 1.28295 26.4249i 0.0496389 1.02241i
\(669\) 49.0179 49.0179i 1.89514 1.89514i
\(670\) 28.1105 + 0.681994i 1.08600 + 0.0263477i
\(671\) 5.23077 0.201932
\(672\) −37.5564 47.9818i −1.44877 1.85094i
\(673\) 4.15503 0.160165 0.0800823 0.996788i \(-0.474482\pi\)
0.0800823 + 0.996788i \(0.474482\pi\)
\(674\) −15.7654 0.382487i −0.607259 0.0147328i
\(675\) 5.90000 5.90000i 0.227091 0.227091i
\(676\) 2.44876 50.4369i 0.0941830 1.93988i
\(677\) −2.06257 2.06257i −0.0792710 0.0792710i 0.666360 0.745631i \(-0.267852\pi\)
−0.745631 + 0.666360i \(0.767852\pi\)
\(678\) 12.8901 12.2795i 0.495042 0.471590i
\(679\) 14.0850i 0.540534i
\(680\) −1.69616 1.96290i −0.0650449 0.0752739i
\(681\) 58.7422i 2.25100i
\(682\) 5.71886 + 6.00325i 0.218986 + 0.229876i
\(683\) 10.6287 + 10.6287i 0.406695 + 0.406695i 0.880584 0.473890i \(-0.157150\pi\)
−0.473890 + 0.880584i \(0.657150\pi\)
\(684\) 5.57120 + 6.13978i 0.213020 + 0.234760i
\(685\) 0.534452 0.534452i 0.0204204 0.0204204i
\(686\) 0.309271 12.7476i 0.0118080 0.486704i
\(687\) 29.9906 1.14421
\(688\) −15.6193 18.9876i −0.595479 0.723896i
\(689\) −2.25253 −0.0858145
\(690\) −0.124563 + 5.13423i −0.00474202 + 0.195457i
\(691\) 16.9758 16.9758i 0.645790 0.645790i −0.306183 0.951973i \(-0.599052\pi\)
0.951973 + 0.306183i \(0.0990519\pi\)
\(692\) 5.53869 5.02578i 0.210550 0.191051i
\(693\) 9.22567 + 9.22567i 0.350454 + 0.350454i
\(694\) −14.3384 15.0514i −0.544277 0.571343i
\(695\) 19.2437i 0.729956i
\(696\) −4.92885 + 67.6129i −0.186827 + 2.56286i
\(697\) 1.91769i 0.0726375i
\(698\) −15.8599 + 15.1085i −0.600305 + 0.571866i
\(699\) 24.6847 + 24.6847i 0.933659 + 0.933659i
\(700\) 21.9383 + 1.06512i 0.829189 + 0.0402579i
\(701\) −8.20712 + 8.20712i −0.309979 + 0.309979i −0.844901 0.534922i \(-0.820341\pi\)
0.534922 + 0.844901i \(0.320341\pi\)
\(702\) −26.7692 0.649454i −1.01034 0.0245120i
\(703\) −5.83429 −0.220045
\(704\) 3.73093 + 5.01250i 0.140615 + 0.188916i
\(705\) 50.3735 1.89718
\(706\) 39.9529 + 0.969305i 1.50365 + 0.0364803i
\(707\) 49.5940 49.5940i 1.86517 1.86517i
\(708\) 29.6221 + 1.43818i 1.11327 + 0.0540501i
\(709\) 2.94396 + 2.94396i 0.110563 + 0.110563i 0.760224 0.649661i \(-0.225089\pi\)
−0.649661 + 0.760224i \(0.725089\pi\)
\(710\) 0.417460 0.397684i 0.0156670 0.0149248i
\(711\) 7.22750i 0.271052i
\(712\) −2.14910 + 29.4809i −0.0805409 + 1.10484i
\(713\) 6.76132i 0.253213i
\(714\) −6.38973 6.70748i −0.239130 0.251021i
\(715\) 5.15157 + 5.15157i 0.192658 + 0.192658i
\(716\) −11.6934 + 10.6105i −0.437001 + 0.396532i
\(717\) −7.33654 + 7.33654i −0.273988 + 0.273988i
\(718\) 0.228038 9.39928i 0.00851029 0.350778i
\(719\) 11.3521 0.423362 0.211681 0.977339i \(-0.432106\pi\)
0.211681 + 0.977339i \(0.432106\pi\)
\(720\) −19.3131 + 15.8870i −0.719756 + 0.592074i
\(721\) −22.4816 −0.837260
\(722\) 0.0343004 1.41380i 0.00127653 0.0526161i
\(723\) 41.0620 41.0620i 1.52711 1.52711i
\(724\) 23.4692 + 25.8644i 0.872226 + 0.961243i
\(725\) −17.2796 17.2796i −0.641747 0.641747i
\(726\) 27.0913 + 28.4385i 1.00545 + 1.05545i
\(727\) 7.72299i 0.286430i 0.989692 + 0.143215i \(0.0457440\pi\)
−0.989692 + 0.143215i \(0.954256\pi\)
\(728\) −46.0864 53.3339i −1.70807 1.97669i
\(729\) 42.1782i 1.56216i
\(730\) −19.0276 + 18.1262i −0.704244 + 0.670882i
\(731\) −2.64317 2.64317i −0.0977611 0.0977611i
\(732\) −1.73620 + 35.7604i −0.0641719 + 1.32174i
\(733\) 25.6965 25.6965i 0.949122 0.949122i −0.0496448 0.998767i \(-0.515809\pi\)
0.998767 + 0.0496448i \(0.0158089\pi\)
\(734\) −12.4985 0.303228i −0.461327 0.0111923i
\(735\) −37.2414 −1.37367
\(736\) −0.616491 + 5.05817i −0.0227242 + 0.186447i
\(737\) −10.2972 −0.379300
\(738\) 18.4807 + 0.448365i 0.680286 + 0.0165045i
\(739\) −14.2617 + 14.2617i −0.524627 + 0.524627i −0.918965 0.394338i \(-0.870974\pi\)
0.394338 + 0.918965i \(0.370974\pi\)
\(740\) 0.853417 17.5778i 0.0313722 0.646172i
\(741\) 11.6896 + 11.6896i 0.429430 + 0.429430i
\(742\) −1.50283 + 1.43163i −0.0551705 + 0.0525569i
\(743\) 19.0364i 0.698379i 0.937052 + 0.349190i \(0.113543\pi\)
−0.937052 + 0.349190i \(0.886457\pi\)
\(744\) −42.9398 + 37.1047i −1.57425 + 1.36032i
\(745\) 33.4251i 1.22460i
\(746\) −11.9498 12.5440i −0.437512 0.459269i
\(747\) 11.5112 + 11.5112i 0.421173 + 0.421173i
\(748\) 0.638391 + 0.703543i 0.0233419 + 0.0257241i
\(749\) −16.2991 + 16.2991i −0.595556 + 0.595556i
\(750\) 1.06828 44.0325i 0.0390081 1.60784i
\(751\) −30.0230 −1.09556 −0.547778 0.836624i \(-0.684526\pi\)
−0.547778 + 0.836624i \(0.684526\pi\)
\(752\) 49.7447 + 4.84172i 1.81400 + 0.176559i
\(753\) 79.3389 2.89127
\(754\) −1.90208 + 78.4001i −0.0692697 + 2.85516i
\(755\) 13.6569 13.6569i 0.497027 0.497027i
\(756\) −18.2725 + 16.5803i −0.664564 + 0.603021i
\(757\) 18.8213 + 18.8213i 0.684071 + 0.684071i 0.960915 0.276844i \(-0.0892884\pi\)
−0.276844 + 0.960915i \(0.589288\pi\)
\(758\) 11.8394 + 12.4282i 0.430026 + 0.451411i
\(759\) 1.88072i 0.0682658i
\(760\) 4.25452 + 0.310146i 0.154328 + 0.0112502i
\(761\) 0.500291i 0.0181355i 0.999959 + 0.00906777i \(0.00288640\pi\)
−0.999959 + 0.00906777i \(0.997114\pi\)
\(762\) 42.9565 40.9215i 1.55615 1.48243i
\(763\) 14.7159 + 14.7159i 0.532753 + 0.532753i
\(764\) 4.02535 + 0.195434i 0.145632 + 0.00707057i
\(765\) −2.68847 + 2.68847i −0.0972020 + 0.0972020i
\(766\) −41.6921 1.01150i −1.50640 0.0365470i
\(767\) 34.3076 1.23878
\(768\) −35.5066 + 23.8430i −1.28123 + 0.860359i
\(769\) −6.22678 −0.224543 −0.112272 0.993678i \(-0.535813\pi\)
−0.112272 + 0.993678i \(0.535813\pi\)
\(770\) 6.71115 + 0.162820i 0.241853 + 0.00586764i
\(771\) −5.77297 + 5.77297i −0.207908 + 0.207908i
\(772\) 5.02280 + 0.243862i 0.180775 + 0.00877677i
\(773\) −22.7785 22.7785i −0.819287 0.819287i 0.166718 0.986005i \(-0.446683\pi\)
−0.986005 + 0.166718i \(0.946683\pi\)
\(774\) −26.0902 + 24.8542i −0.937793 + 0.893367i
\(775\) 20.4566i 0.734824i
\(776\) −9.86032 0.718798i −0.353965 0.0258033i
\(777\) 62.8435i 2.25450i
\(778\) −13.1631 13.8177i −0.471920 0.495388i
\(779\) −2.22976 2.22976i −0.0798893 0.0798893i
\(780\) −36.9289 + 33.5091i −1.32227 + 1.19982i
\(781\) −0.149298 + 0.149298i −0.00534229 + 0.00534229i
\(782\) −0.0187899 + 0.774484i −0.000671925 + 0.0276955i
\(783\) 27.4516 0.981041
\(784\) −36.7765 3.57951i −1.31345 0.127840i
\(785\) −28.4143 −1.01415
\(786\) −0.158294 + 6.52456i −0.00564615 + 0.232723i
\(787\) 15.6427 15.6427i 0.557601 0.557601i −0.371023 0.928624i \(-0.620993\pi\)
0.928624 + 0.371023i \(0.120993\pi\)
\(788\) 16.5951 + 18.2887i 0.591175 + 0.651508i
\(789\) 36.6633 + 36.6633i 1.30525 + 1.30525i
\(790\) 2.56502 + 2.69258i 0.0912593 + 0.0957976i
\(791\) 18.9768i 0.674738i
\(792\) 6.92930 5.98768i 0.246222 0.212763i
\(793\) 41.4169i 1.47076i
\(794\) −23.4953 + 22.3822i −0.833817 + 0.794316i
\(795\) 1.03829 + 1.03829i 0.0368243 + 0.0368243i
\(796\) −0.350330 + 7.21573i −0.0124171 + 0.255755i
\(797\) −31.3227 + 31.3227i −1.10951 + 1.10951i −0.116291 + 0.993215i \(0.537100\pi\)
−0.993215 + 0.116291i \(0.962900\pi\)
\(798\) 15.2286 + 0.369463i 0.539086 + 0.0130789i
\(799\) 7.59870 0.268823
\(800\) 1.86522 15.3037i 0.0659455 0.541067i
\(801\) 43.3218 1.53070
\(802\) 15.3103 + 0.371445i 0.540624 + 0.0131162i
\(803\) 6.80491 6.80491i 0.240140 0.240140i
\(804\) 3.41785 70.3971i 0.120538 2.48271i
\(805\) 3.87100 + 3.87100i 0.136435 + 0.136435i
\(806\) −47.5334 + 45.2816i −1.67429 + 1.59498i
\(807\) 46.0370i 1.62058i
\(808\) −32.1877 37.2495i −1.13236 1.31043i
\(809\) 42.4127i 1.49115i 0.666421 + 0.745575i \(0.267825\pi\)
−0.666421 + 0.745575i \(0.732175\pi\)
\(810\) −6.25571 6.56680i −0.219803 0.230734i
\(811\) −14.3351 14.3351i −0.503374 0.503374i 0.409111 0.912485i \(-0.365839\pi\)
−0.912485 + 0.409111i \(0.865839\pi\)
\(812\) 48.5595 + 53.5153i 1.70410 + 1.87802i
\(813\) 35.4275 35.4275i 1.24250 1.24250i
\(814\) −0.156308 + 6.44270i −0.00547858 + 0.225817i
\(815\) −5.35094 −0.187435
\(816\) −5.02171 + 4.13087i −0.175795 + 0.144610i
\(817\) 6.14660 0.215042
\(818\) −0.665275 + 27.4214i −0.0232608 + 0.958765i
\(819\) −73.0484 + 73.0484i −2.55252 + 2.55252i
\(820\) 7.04405 6.39173i 0.245989 0.223209i
\(821\) 0.414946 + 0.414946i 0.0144817 + 0.0144817i 0.714311 0.699829i \(-0.246740\pi\)
−0.699829 + 0.714311i \(0.746740\pi\)
\(822\) −1.30672 1.37171i −0.0455772 0.0478437i
\(823\) 24.2381i 0.844888i −0.906389 0.422444i \(-0.861172\pi\)
0.906389 0.422444i \(-0.138828\pi\)
\(824\) −1.14730 + 15.7384i −0.0399681 + 0.548274i
\(825\) 5.69020i 0.198107i
\(826\) 22.8891 21.8048i 0.796414 0.758685i
\(827\) −13.1438 13.1438i −0.457056 0.457056i 0.440632 0.897688i \(-0.354754\pi\)
−0.897688 + 0.440632i \(0.854754\pi\)
\(828\) 7.45931 + 0.362157i 0.259229 + 0.0125858i
\(829\) 13.6134 13.6134i 0.472814 0.472814i −0.430010 0.902824i \(-0.641490\pi\)
0.902824 + 0.430010i \(0.141490\pi\)
\(830\) 8.37376 + 0.203157i 0.290657 + 0.00705169i
\(831\) −18.3205 −0.635531
\(832\) −39.6887 + 29.5413i −1.37596 + 1.02416i
\(833\) −5.61776 −0.194644
\(834\) −48.2204 1.16988i −1.66974 0.0405098i
\(835\) −14.1070 + 14.1070i −0.488194 + 0.488194i
\(836\) −1.56031 0.0757546i −0.0539645 0.00262003i
\(837\) 16.2495 + 16.2495i 0.561664 + 0.561664i
\(838\) 10.1528 9.67184i 0.350723 0.334108i
\(839\) 29.7619i 1.02750i 0.857941 + 0.513748i \(0.171743\pi\)
−0.857941 + 0.513748i \(0.828257\pi\)
\(840\) −3.34071 + 45.8271i −0.115265 + 1.58119i
\(841\) 51.3986i 1.77237i
\(842\) 5.78681 + 6.07458i 0.199427 + 0.209344i
\(843\) −13.7476 13.7476i −0.473493 0.473493i
\(844\) 7.36443 6.68244i 0.253494 0.230019i
\(845\) −26.9259 + 26.9259i −0.926281 + 0.926281i
\(846\) 1.77662 73.2287i 0.0610813 2.51765i
\(847\) 41.8671 1.43857
\(848\) 0.925531 + 1.12512i 0.0317829 + 0.0386369i
\(849\) 15.1971 0.521562
\(850\) 0.0568496 2.34323i 0.00194992 0.0803722i
\(851\) −3.71615 + 3.71615i −0.127388 + 0.127388i
\(852\) −0.971128 1.07024i −0.0332703 0.0366657i
\(853\) −2.40701 2.40701i −0.0824143 0.0824143i 0.664698 0.747112i \(-0.268560\pi\)
−0.747112 + 0.664698i \(0.768560\pi\)
\(854\) 26.3232 + 27.6323i 0.900763 + 0.945557i
\(855\) 6.25196i 0.213813i
\(856\) 10.5785 + 12.2421i 0.361566 + 0.418426i
\(857\) 42.4913i 1.45148i 0.687972 + 0.725738i \(0.258501\pi\)
−0.687972 + 0.725738i \(0.741499\pi\)
\(858\) 13.2218 12.5955i 0.451386 0.430003i
\(859\) −36.3033 36.3033i −1.23865 1.23865i −0.960552 0.278102i \(-0.910295\pi\)
−0.278102 0.960552i \(-0.589705\pi\)
\(860\) −0.899100 + 18.5187i −0.0306591 + 0.631482i
\(861\) 24.0176 24.0176i 0.818518 0.818518i
\(862\) 1.90846 + 0.0463014i 0.0650023 + 0.00157703i
\(863\) −40.3605 −1.37389 −0.686943 0.726711i \(-0.741048\pi\)
−0.686943 + 0.726711i \(0.741048\pi\)
\(864\) 10.6747 + 13.6379i 0.363160 + 0.463972i
\(865\) −5.63989 −0.191762
\(866\) 41.2136 + 0.999891i 1.40049 + 0.0339777i
\(867\) 31.4335 31.4335i 1.06754 1.06754i
\(868\) −2.93351 + 60.4214i −0.0995700 + 2.05083i
\(869\) −0.962955 0.962955i −0.0326660 0.0326660i
\(870\) 37.0148 35.2613i 1.25492 1.19547i
\(871\) 81.5323i 2.76262i
\(872\) 11.0530 9.55101i 0.374302 0.323438i
\(873\) 14.4896i 0.490399i
\(874\) −0.878671 0.922366i −0.0297215 0.0311995i
\(875\) −33.1987 33.1987i −1.12232 1.12232i
\(876\) 44.2635 + 48.7809i 1.49552 + 1.64815i
\(877\) −12.7663 + 12.7663i −0.431087 + 0.431087i −0.888998 0.457911i \(-0.848598\pi\)
0.457911 + 0.888998i \(0.348598\pi\)
\(878\) −0.149949 + 6.18060i −0.00506052 + 0.208585i
\(879\) −50.1729 −1.69229
\(880\) 0.456472 4.68988i 0.0153877 0.158096i
\(881\) −53.9328 −1.81704 −0.908521 0.417839i \(-0.862788\pi\)
−0.908521 + 0.417839i \(0.862788\pi\)
\(882\) −1.31346 + 54.1384i −0.0442265 + 1.82293i
\(883\) −34.7449 + 34.7449i −1.16926 + 1.16926i −0.186874 + 0.982384i \(0.559836\pi\)
−0.982384 + 0.186874i \(0.940164\pi\)
\(884\) −5.57062 + 5.05474i −0.187360 + 0.170009i
\(885\) −15.8139 15.8139i −0.531577 0.531577i
\(886\) −28.2828 29.6893i −0.950180 0.997431i
\(887\) 45.2215i 1.51839i −0.650864 0.759195i \(-0.725593\pi\)
0.650864 0.759195i \(-0.274407\pi\)
\(888\) −43.9940 3.20708i −1.47634 0.107622i
\(889\) 63.2405i 2.12102i
\(890\) 16.1394 15.3748i 0.540993 0.515364i
\(891\) 2.34851 + 2.34851i 0.0786779 + 0.0786779i
\(892\) −51.8057 2.51521i −1.73458 0.0842156i
\(893\) −8.83526 + 8.83526i −0.295661 + 0.295661i
\(894\) −83.7558 2.03202i −2.80121 0.0679608i
\(895\) 11.9070 0.398007
\(896\) −7.70374 + 44.9340i −0.257364 + 1.50114i
\(897\) 14.8914 0.497211
\(898\) −12.2751 0.297808i −0.409625 0.00993798i
\(899\) 47.5905 47.5905i 1.58723 1.58723i
\(900\) −22.5684 1.09572i −0.752282 0.0365240i
\(901\) 0.156623 + 0.156623i 0.00521786 + 0.00521786i
\(902\) −2.52202 + 2.40254i −0.0839740 + 0.0799959i
\(903\) 66.2075i 2.20325i
\(904\) −13.2849 0.968439i −0.441848 0.0322098i
\(905\) 26.3370i 0.875471i
\(906\) −33.3909 35.0514i −1.10934 1.16451i
\(907\) 11.5383 + 11.5383i 0.383123 + 0.383123i 0.872226 0.489103i \(-0.162676\pi\)
−0.489103 + 0.872226i \(0.662676\pi\)
\(908\) 32.5486 29.5344i 1.08016 0.980133i
\(909\) −51.0185 + 51.0185i −1.69218 + 1.69218i
\(910\) −1.28920 + 53.1386i −0.0427367 + 1.76153i
\(911\) 28.5045 0.944395 0.472198 0.881493i \(-0.343461\pi\)
0.472198 + 0.881493i \(0.343461\pi\)
\(912\) 1.03580 10.6420i 0.0342988 0.352392i
\(913\) −3.06739 −0.101516
\(914\) −0.871634 + 35.9271i −0.0288311 + 1.18836i
\(915\) 19.0909 19.0909i 0.631125 0.631125i
\(916\) −15.0787 16.6175i −0.498213 0.549059i
\(917\) 4.91925 + 4.91925i 0.162448 + 0.162448i
\(918\) 1.81616 + 1.90648i 0.0599422 + 0.0629231i
\(919\) 5.64101i 0.186080i −0.995662 0.0930399i \(-0.970342\pi\)
0.995662 0.0930399i \(-0.0296584\pi\)
\(920\) 2.90747 2.51237i 0.0958563 0.0828304i
\(921\) 54.7982i 1.80566i
\(922\) −6.48437 + 6.17718i −0.213551 + 0.203435i
\(923\) −1.18213 1.18213i −0.0389103 0.0389103i
\(924\) 0.815983 16.8067i 0.0268439 0.552901i
\(925\) 11.2434 11.2434i 0.369680 0.369680i
\(926\) −21.0917 0.511709i −0.693116 0.0168158i
\(927\) 23.1274 0.759604
\(928\) 39.9419 31.2634i 1.31116 1.02627i
\(929\) 14.2171 0.466448 0.233224 0.972423i \(-0.425072\pi\)
0.233224 + 0.972423i \(0.425072\pi\)
\(930\) 42.7825 + 1.03795i 1.40289 + 0.0340359i
\(931\) 6.53196 6.53196i 0.214076 0.214076i
\(932\) 1.26662 26.0885i 0.0414896 0.854558i
\(933\) −9.83353 9.83353i −0.321935 0.321935i
\(934\) 30.5833 29.1345i 1.00072 0.953310i
\(935\) 0.716397i 0.0234287i
\(936\) 47.4102 + 54.8659i 1.54965 + 1.79335i
\(937\) 19.4713i 0.636101i −0.948074 0.318051i \(-0.896972\pi\)
0.948074 0.318051i \(-0.103028\pi\)
\(938\) −51.8193 54.3962i −1.69196 1.77610i
\(939\) 48.7940 + 48.7940i 1.59233 + 1.59233i
\(940\) −25.3268 27.9116i −0.826069 0.910375i
\(941\) 38.1234 38.1234i 1.24279 1.24279i 0.283947 0.958840i \(-0.408356\pi\)
0.958840 0.283947i \(-0.0916441\pi\)
\(942\) −1.72739 + 71.1998i −0.0562814 + 2.31981i
\(943\) −2.84049 −0.0924990
\(944\) −14.0965 17.1364i −0.458802 0.557744i
\(945\) 18.6063 0.605264
\(946\) 0.164675 6.78758i 0.00535404 0.220683i
\(947\) 8.23030 8.23030i 0.267449 0.267449i −0.560623 0.828071i \(-0.689438\pi\)
0.828071 + 0.560623i \(0.189438\pi\)
\(948\) 6.90292 6.26367i 0.224196 0.203435i
\(949\) 53.8810 + 53.8810i 1.74905 + 1.74905i
\(950\) 2.65845 + 2.79066i 0.0862516 + 0.0905408i
\(951\) 52.2393i 1.69397i
\(952\) −0.503936 + 6.91289i −0.0163327 + 0.224048i
\(953\) 13.2093i 0.427890i −0.976846 0.213945i \(-0.931369\pi\)
0.976846 0.213945i \(-0.0686314\pi\)
\(954\) 1.54599 1.47276i 0.0500534 0.0476822i
\(955\) −2.14895 2.14895i −0.0695384 0.0695384i
\(956\) 7.75379 + 0.376454i 0.250775 + 0.0121754i
\(957\) −13.2377 + 13.2377i −0.427915 + 0.427915i
\(958\) 39.1509 + 0.949848i 1.26491 + 0.0306882i
\(959\) −2.01942 −0.0652106
\(960\) 31.9111 + 4.67737i 1.02993 + 0.150961i
\(961\) 25.3407 0.817441
\(962\) −51.0130 1.23764i −1.64472 0.0399030i
\(963\) 16.7673 16.7673i 0.540318 0.540318i
\(964\) −43.3972 2.10698i −1.39773 0.0678612i
\(965\) −2.68144 2.68144i −0.0863187 0.0863187i
\(966\) 9.93517 9.46451i 0.319659 0.304516i
\(967\) 9.64759i 0.310246i −0.987895 0.155123i \(-0.950423\pi\)
0.987895 0.155123i \(-0.0495773\pi\)
\(968\) 2.13659 29.3094i 0.0686727 0.942039i
\(969\) 1.62561i 0.0522221i
\(970\) 5.14232 + 5.39805i 0.165110 + 0.173321i
\(971\) 1.09782 + 1.09782i 0.0352307 + 0.0352307i 0.724503 0.689272i \(-0.242069\pi\)
−0.689272 + 0.724503i \(0.742069\pi\)
\(972\) −30.4390 + 27.6201i −0.976330 + 0.885916i
\(973\) −36.3562 + 36.3562i −1.16552 + 1.16552i
\(974\) 1.20759 49.7744i 0.0386936 1.59488i
\(975\) −45.0547 −1.44290
\(976\) 20.6875 17.0176i 0.662191 0.544721i
\(977\) 0.637383 0.0203917 0.0101958 0.999948i \(-0.496755\pi\)
0.0101958 + 0.999948i \(0.496755\pi\)
\(978\) −0.325300 + 13.4082i −0.0104019 + 0.428748i
\(979\) −5.77197 + 5.77197i −0.184473 + 0.184473i
\(980\) 18.7242 + 20.6352i 0.598124 + 0.659167i
\(981\) −15.1386 15.1386i −0.483340 0.483340i
\(982\) 28.9989 + 30.4410i 0.925393 + 0.971412i
\(983\) 17.4766i 0.557418i 0.960376 + 0.278709i \(0.0899065\pi\)
−0.960376 + 0.278709i \(0.910093\pi\)
\(984\) −15.5880 18.0394i −0.496927 0.575074i
\(985\) 18.6229i 0.593374i
\(986\) 5.58357 5.31906i 0.177817 0.169393i
\(987\) −95.1681 95.1681i −3.02923 3.02923i
\(988\) 0.599821 12.3545i 0.0190828 0.393048i
\(989\) 3.91508 3.91508i 0.124492 0.124492i
\(990\) −6.90392 0.167497i −0.219421 0.00532342i
\(991\) −13.2083 −0.419576 −0.209788 0.977747i \(-0.567277\pi\)
−0.209788 + 0.977747i \(0.567277\pi\)
\(992\) 42.1487 + 5.13710i 1.33822 + 0.163103i
\(993\) 47.7419 1.51504
\(994\) −1.54001 0.0373625i −0.0488462 0.00118507i
\(995\) 3.85215 3.85215i 0.122121 0.122121i
\(996\) 1.01813 20.9704i 0.0322608 0.664472i
\(997\) 14.8543 + 14.8543i 0.470440 + 0.470440i 0.902057 0.431617i \(-0.142057\pi\)
−0.431617 + 0.902057i \(0.642057\pi\)
\(998\) −1.38144 + 1.31599i −0.0437286 + 0.0416570i
\(999\) 17.8621i 0.565131i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 304.2.k.b.229.34 yes 68
4.3 odd 2 1216.2.k.b.305.30 68
16.3 odd 4 1216.2.k.b.913.30 68
16.13 even 4 inner 304.2.k.b.77.34 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
304.2.k.b.77.34 68 16.13 even 4 inner
304.2.k.b.229.34 yes 68 1.1 even 1 trivial
1216.2.k.b.305.30 68 4.3 odd 2
1216.2.k.b.913.30 68 16.3 odd 4