Properties

Label 1216.2.n.e.255.3
Level $1216$
Weight $2$
Character 1216.255
Analytic conductor $9.710$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(255,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.255");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.31726512.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 10x^{4} + 3x^{3} + 84x^{2} - 27x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 304)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 255.3
Root \(1.69617 - 2.93786i\) of defining polynomial
Character \(\chi\) \(=\) 1216.255
Dual form 1216.2.n.e.639.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.69617 - 2.93786i) q^{3} +(1.19617 - 2.07183i) q^{5} +1.22147i q^{7} +(-4.25400 - 7.36814i) q^{9} +O(q^{10})\) \(q+(1.69617 - 2.93786i) q^{3} +(1.19617 - 2.07183i) q^{5} +1.22147i q^{7} +(-4.25400 - 7.36814i) q^{9} -2.95353i q^{11} +(-3.00000 + 1.73205i) q^{13} +(-4.05783 - 7.02836i) q^{15} +(0.138344 - 0.239619i) q^{17} +(1.30383 + 4.15933i) q^{19} +(3.58852 + 2.07183i) q^{21} +(-1.05783 + 0.610737i) q^{23} +(-0.361656 - 0.626406i) q^{25} -18.6850 q^{27} +(6.58852 - 3.80388i) q^{29} -8.90034 q^{31} +(-8.67703 - 5.00969i) q^{33} +(2.53069 + 1.46109i) q^{35} -7.60776i q^{37} +11.7514i q^{39} +(8.26200 + 4.77007i) q^{41} +(3.00000 + 1.73205i) q^{43} -20.3541 q^{45} +(4.05783 - 2.34279i) q^{47} +5.50800 q^{49} +(-0.469311 - 0.812871i) q^{51} +(6.00000 - 3.46410i) q^{53} +(-6.11921 - 3.53292i) q^{55} +(14.4310 + 3.22448i) q^{57} +(3.44217 - 5.96202i) q^{59} +(3.19617 + 5.53593i) q^{61} +(9.00000 - 5.19615i) q^{63} +8.28732i q^{65} +(-3.83452 - 6.64158i) q^{67} +4.14366i q^{69} +(-3.00000 + 5.19615i) q^{71} +(1.75400 - 3.03802i) q^{73} -2.45372 q^{75} +3.60766 q^{77} +(-0.392344 + 0.679560i) q^{79} +(-18.9310 + 32.7895i) q^{81} +8.31866i q^{83} +(-0.330967 - 0.573252i) q^{85} -25.8082i q^{87} +(-2.58497 + 1.49243i) q^{89} +(-2.11566 - 3.66442i) q^{91} +(-15.0965 + 26.1479i) q^{93} +(10.1770 + 2.27396i) q^{95} +(-5.67703 - 3.27764i) q^{97} +(-21.7620 + 12.5643i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{3} - 2 q^{5} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + q^{3} - 2 q^{5} - 10 q^{9} - 18 q^{13} - 18 q^{15} - 2 q^{17} + 17 q^{19} - 6 q^{21} - 5 q^{25} - 26 q^{27} + 12 q^{29} - 4 q^{31} + 3 q^{33} - 6 q^{35} + 3 q^{41} + 18 q^{43} - 12 q^{45} + 18 q^{47} + 2 q^{49} - 24 q^{51} + 36 q^{53} + 12 q^{55} + 16 q^{57} + 27 q^{59} + 10 q^{61} + 54 q^{63} - 11 q^{67} - 18 q^{71} - 5 q^{73} + 46 q^{75} + 40 q^{77} + 16 q^{79} - 43 q^{81} - 26 q^{85} - 24 q^{89} - 32 q^{93} + 6 q^{95} + 21 q^{97} - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.69617 2.93786i 0.979285 1.69617i 0.314286 0.949328i \(-0.398235\pi\)
0.664999 0.746844i \(-0.268432\pi\)
\(4\) 0 0
\(5\) 1.19617 2.07183i 0.534944 0.926551i −0.464222 0.885719i \(-0.653666\pi\)
0.999166 0.0408319i \(-0.0130008\pi\)
\(6\) 0 0
\(7\) 1.22147i 0.461674i 0.972992 + 0.230837i \(0.0741464\pi\)
−0.972992 + 0.230837i \(0.925854\pi\)
\(8\) 0 0
\(9\) −4.25400 7.36814i −1.41800 2.45605i
\(10\) 0 0
\(11\) 2.95353i 0.890521i −0.895401 0.445261i \(-0.853111\pi\)
0.895401 0.445261i \(-0.146889\pi\)
\(12\) 0 0
\(13\) −3.00000 + 1.73205i −0.832050 + 0.480384i −0.854554 0.519362i \(-0.826170\pi\)
0.0225039 + 0.999747i \(0.492836\pi\)
\(14\) 0 0
\(15\) −4.05783 7.02836i −1.04773 1.81472i
\(16\) 0 0
\(17\) 0.138344 0.239619i 0.0335534 0.0581162i −0.848761 0.528777i \(-0.822651\pi\)
0.882314 + 0.470660i \(0.155984\pi\)
\(18\) 0 0
\(19\) 1.30383 + 4.15933i 0.299119 + 0.954216i
\(20\) 0 0
\(21\) 3.58852 + 2.07183i 0.783079 + 0.452111i
\(22\) 0 0
\(23\) −1.05783 + 0.610737i −0.220572 + 0.127348i −0.606215 0.795301i \(-0.707313\pi\)
0.385643 + 0.922648i \(0.373980\pi\)
\(24\) 0 0
\(25\) −0.361656 0.626406i −0.0723311 0.125281i
\(26\) 0 0
\(27\) −18.6850 −3.59594
\(28\) 0 0
\(29\) 6.58852 3.80388i 1.22346 0.706363i 0.257804 0.966197i \(-0.417001\pi\)
0.965653 + 0.259834i \(0.0836679\pi\)
\(30\) 0 0
\(31\) −8.90034 −1.59855 −0.799275 0.600966i \(-0.794783\pi\)
−0.799275 + 0.600966i \(0.794783\pi\)
\(32\) 0 0
\(33\) −8.67703 5.00969i −1.51048 0.872075i
\(34\) 0 0
\(35\) 2.53069 + 1.46109i 0.427764 + 0.246970i
\(36\) 0 0
\(37\) 7.60776i 1.25071i −0.780341 0.625354i \(-0.784954\pi\)
0.780341 0.625354i \(-0.215046\pi\)
\(38\) 0 0
\(39\) 11.7514i 1.88173i
\(40\) 0 0
\(41\) 8.26200 + 4.77007i 1.29031 + 0.744959i 0.978709 0.205254i \(-0.0658021\pi\)
0.311599 + 0.950214i \(0.399135\pi\)
\(42\) 0 0
\(43\) 3.00000 + 1.73205i 0.457496 + 0.264135i 0.710991 0.703201i \(-0.248247\pi\)
−0.253495 + 0.967337i \(0.581580\pi\)
\(44\) 0 0
\(45\) −20.3541 −3.03421
\(46\) 0 0
\(47\) 4.05783 2.34279i 0.591895 0.341731i −0.173951 0.984754i \(-0.555654\pi\)
0.765846 + 0.643023i \(0.222320\pi\)
\(48\) 0 0
\(49\) 5.50800 0.786857
\(50\) 0 0
\(51\) −0.469311 0.812871i −0.0657167 0.113825i
\(52\) 0 0
\(53\) 6.00000 3.46410i 0.824163 0.475831i −0.0276867 0.999617i \(-0.508814\pi\)
0.851850 + 0.523786i \(0.175481\pi\)
\(54\) 0 0
\(55\) −6.11921 3.53292i −0.825113 0.476379i
\(56\) 0 0
\(57\) 14.4310 + 3.22448i 1.91144 + 0.427093i
\(58\) 0 0
\(59\) 3.44217 5.96202i 0.448133 0.776188i −0.550132 0.835078i \(-0.685423\pi\)
0.998265 + 0.0588893i \(0.0187559\pi\)
\(60\) 0 0
\(61\) 3.19617 + 5.53593i 0.409228 + 0.708804i 0.994803 0.101814i \(-0.0324648\pi\)
−0.585576 + 0.810618i \(0.699131\pi\)
\(62\) 0 0
\(63\) 9.00000 5.19615i 1.13389 0.654654i
\(64\) 0 0
\(65\) 8.28732i 1.02792i
\(66\) 0 0
\(67\) −3.83452 6.64158i −0.468461 0.811398i 0.530889 0.847441i \(-0.321858\pi\)
−0.999350 + 0.0360433i \(0.988525\pi\)
\(68\) 0 0
\(69\) 4.14366i 0.498838i
\(70\) 0 0
\(71\) −3.00000 + 5.19615i −0.356034 + 0.616670i −0.987294 0.158901i \(-0.949205\pi\)
0.631260 + 0.775571i \(0.282538\pi\)
\(72\) 0 0
\(73\) 1.75400 3.03802i 0.205290 0.355573i −0.744935 0.667137i \(-0.767520\pi\)
0.950225 + 0.311564i \(0.100853\pi\)
\(74\) 0 0
\(75\) −2.45372 −0.283331
\(76\) 0 0
\(77\) 3.60766 0.411131
\(78\) 0 0
\(79\) −0.392344 + 0.679560i −0.0441422 + 0.0764565i −0.887252 0.461284i \(-0.847389\pi\)
0.843110 + 0.537741i \(0.180722\pi\)
\(80\) 0 0
\(81\) −18.9310 + 32.7895i −2.10345 + 3.64328i
\(82\) 0 0
\(83\) 8.31866i 0.913092i 0.889700 + 0.456546i \(0.150914\pi\)
−0.889700 + 0.456546i \(0.849086\pi\)
\(84\) 0 0
\(85\) −0.330967 0.573252i −0.0358984 0.0621779i
\(86\) 0 0
\(87\) 25.8082i 2.76692i
\(88\) 0 0
\(89\) −2.58497 + 1.49243i −0.274006 + 0.158197i −0.630707 0.776021i \(-0.717235\pi\)
0.356701 + 0.934219i \(0.383902\pi\)
\(90\) 0 0
\(91\) −2.11566 3.66442i −0.221781 0.384136i
\(92\) 0 0
\(93\) −15.0965 + 26.1479i −1.56544 + 2.71141i
\(94\) 0 0
\(95\) 10.1770 + 2.27396i 1.04414 + 0.233304i
\(96\) 0 0
\(97\) −5.67703 3.27764i −0.576415 0.332794i 0.183292 0.983058i \(-0.441325\pi\)
−0.759708 + 0.650265i \(0.774658\pi\)
\(98\) 0 0
\(99\) −21.7620 + 12.5643i −2.18716 + 1.26276i
\(100\) 0 0
\(101\) −8.09652 14.0236i −0.805634 1.39540i −0.915863 0.401492i \(-0.868492\pi\)
0.110229 0.993906i \(-0.464842\pi\)
\(102\) 0 0
\(103\) 2.55338 0.251592 0.125796 0.992056i \(-0.459852\pi\)
0.125796 + 0.992056i \(0.459852\pi\)
\(104\) 0 0
\(105\) 8.58497 4.95653i 0.837807 0.483708i
\(106\) 0 0
\(107\) −4.23131 −0.409056 −0.204528 0.978861i \(-0.565566\pi\)
−0.204528 + 0.978861i \(0.565566\pi\)
\(108\) 0 0
\(109\) 7.17703 + 4.14366i 0.687435 + 0.396891i 0.802650 0.596450i \(-0.203422\pi\)
−0.115215 + 0.993341i \(0.536756\pi\)
\(110\) 0 0
\(111\) −22.3505 12.9041i −2.12142 1.22480i
\(112\) 0 0
\(113\) 1.73205i 0.162938i 0.996676 + 0.0814688i \(0.0259611\pi\)
−0.996676 + 0.0814688i \(0.974039\pi\)
\(114\) 0 0
\(115\) 2.92219i 0.272495i
\(116\) 0 0
\(117\) 25.5240 + 14.7363i 2.35969 + 1.36237i
\(118\) 0 0
\(119\) 0.292689 + 0.168984i 0.0268307 + 0.0154907i
\(120\) 0 0
\(121\) 2.27669 0.206972
\(122\) 0 0
\(123\) 28.0275 16.1817i 2.52716 1.45906i
\(124\) 0 0
\(125\) 10.2313 0.915116
\(126\) 0 0
\(127\) 4.27669 + 7.40744i 0.379495 + 0.657304i 0.990989 0.133945i \(-0.0427645\pi\)
−0.611494 + 0.791249i \(0.709431\pi\)
\(128\) 0 0
\(129\) 10.1770 5.87571i 0.896038 0.517328i
\(130\) 0 0
\(131\) −5.97286 3.44843i −0.521851 0.301291i 0.215840 0.976429i \(-0.430751\pi\)
−0.737692 + 0.675138i \(0.764084\pi\)
\(132\) 0 0
\(133\) −5.08052 + 1.59259i −0.440537 + 0.138095i
\(134\) 0 0
\(135\) −22.3505 + 38.7122i −1.92363 + 3.33182i
\(136\) 0 0
\(137\) −2.10766 3.65057i −0.180069 0.311889i 0.761835 0.647771i \(-0.224299\pi\)
−0.941904 + 0.335882i \(0.890965\pi\)
\(138\) 0 0
\(139\) −3.44217 + 1.98734i −0.291961 + 0.168564i −0.638826 0.769351i \(-0.720580\pi\)
0.346865 + 0.937915i \(0.387246\pi\)
\(140\) 0 0
\(141\) 15.8951i 1.33861i
\(142\) 0 0
\(143\) 5.11566 + 8.86058i 0.427793 + 0.740959i
\(144\) 0 0
\(145\) 18.2004i 1.51146i
\(146\) 0 0
\(147\) 9.34252 16.1817i 0.770558 1.33465i
\(148\) 0 0
\(149\) 3.31183 5.73625i 0.271316 0.469932i −0.697883 0.716211i \(-0.745875\pi\)
0.969199 + 0.246279i \(0.0792080\pi\)
\(150\) 0 0
\(151\) −7.22241 −0.587751 −0.293876 0.955844i \(-0.594945\pi\)
−0.293876 + 0.955844i \(0.594945\pi\)
\(152\) 0 0
\(153\) −2.35407 −0.190315
\(154\) 0 0
\(155\) −10.6463 + 18.4400i −0.855135 + 1.48114i
\(156\) 0 0
\(157\) −5.50800 + 9.54014i −0.439586 + 0.761386i −0.997657 0.0684073i \(-0.978208\pi\)
0.558071 + 0.829793i \(0.311542\pi\)
\(158\) 0 0
\(159\) 23.5029i 1.86390i
\(160\) 0 0
\(161\) −0.746000 1.29211i −0.0587930 0.101833i
\(162\) 0 0
\(163\) 2.61556i 0.204866i 0.994740 + 0.102433i \(0.0326628\pi\)
−0.994740 + 0.102433i \(0.967337\pi\)
\(164\) 0 0
\(165\) −20.7585 + 11.9849i −1.61604 + 0.933023i
\(166\) 0 0
\(167\) 6.29269 + 10.8993i 0.486943 + 0.843410i 0.999887 0.0150120i \(-0.00477865\pi\)
−0.512944 + 0.858422i \(0.671445\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 0 0
\(171\) 25.1001 27.3006i 1.91945 2.08773i
\(172\) 0 0
\(173\) −15.0000 8.66025i −1.14043 0.658427i −0.193892 0.981023i \(-0.562111\pi\)
−0.946537 + 0.322596i \(0.895445\pi\)
\(174\) 0 0
\(175\) 0.765139 0.441753i 0.0578391 0.0333934i
\(176\) 0 0
\(177\) −11.6770 20.2252i −0.877700 1.52022i
\(178\) 0 0
\(179\) 2.40834 0.180008 0.0900041 0.995941i \(-0.471312\pi\)
0.0900041 + 0.995941i \(0.471312\pi\)
\(180\) 0 0
\(181\) 15.9355 9.20036i 1.18448 0.683857i 0.227430 0.973795i \(-0.426968\pi\)
0.957046 + 0.289937i \(0.0936345\pi\)
\(182\) 0 0
\(183\) 21.6850 1.60300
\(184\) 0 0
\(185\) −15.7620 9.10020i −1.15885 0.669060i
\(186\) 0 0
\(187\) −0.707722 0.408603i −0.0517537 0.0298800i
\(188\) 0 0
\(189\) 22.8233i 1.66015i
\(190\) 0 0
\(191\) 2.04231i 0.147776i 0.997267 + 0.0738880i \(0.0235407\pi\)
−0.997267 + 0.0738880i \(0.976459\pi\)
\(192\) 0 0
\(193\) 9.41503 + 5.43577i 0.677709 + 0.391275i 0.798991 0.601343i \(-0.205367\pi\)
−0.121282 + 0.992618i \(0.538701\pi\)
\(194\) 0 0
\(195\) 24.3470 + 14.0567i 1.74352 + 1.00662i
\(196\) 0 0
\(197\) 4.16103 0.296461 0.148231 0.988953i \(-0.452642\pi\)
0.148231 + 0.988953i \(0.452642\pi\)
\(198\) 0 0
\(199\) 14.3541 8.28732i 1.01753 0.587473i 0.104144 0.994562i \(-0.466790\pi\)
0.913388 + 0.407089i \(0.133456\pi\)
\(200\) 0 0
\(201\) −26.0160 −1.83503
\(202\) 0 0
\(203\) 4.64634 + 8.04770i 0.326109 + 0.564838i
\(204\) 0 0
\(205\) 19.7655 11.4116i 1.38049 0.797024i
\(206\) 0 0
\(207\) 9.00000 + 5.19615i 0.625543 + 0.361158i
\(208\) 0 0
\(209\) 12.2847 3.85089i 0.849750 0.266372i
\(210\) 0 0
\(211\) −5.03869 + 8.72726i −0.346878 + 0.600810i −0.985693 0.168550i \(-0.946091\pi\)
0.638815 + 0.769360i \(0.279425\pi\)
\(212\) 0 0
\(213\) 10.1770 + 17.6271i 0.697319 + 1.20779i
\(214\) 0 0
\(215\) 7.17703 4.14366i 0.489470 0.282595i
\(216\) 0 0
\(217\) 10.8715i 0.738008i
\(218\) 0 0
\(219\) −5.95017 10.3060i −0.402075 0.696415i
\(220\) 0 0
\(221\) 0.958477i 0.0644742i
\(222\) 0 0
\(223\) 2.78114 4.81707i 0.186239 0.322575i −0.757754 0.652540i \(-0.773704\pi\)
0.943993 + 0.329965i \(0.107037\pi\)
\(224\) 0 0
\(225\) −3.07697 + 5.32946i −0.205131 + 0.355298i
\(226\) 0 0
\(227\) −16.1770 −1.07371 −0.536854 0.843675i \(-0.680387\pi\)
−0.536854 + 0.843675i \(0.680387\pi\)
\(228\) 0 0
\(229\) −6.78469 −0.448345 −0.224172 0.974549i \(-0.571968\pi\)
−0.224172 + 0.974549i \(0.571968\pi\)
\(230\) 0 0
\(231\) 6.11921 10.5988i 0.402614 0.697348i
\(232\) 0 0
\(233\) 5.53869 9.59329i 0.362852 0.628477i −0.625577 0.780162i \(-0.715137\pi\)
0.988429 + 0.151685i \(0.0484699\pi\)
\(234\) 0 0
\(235\) 11.2095i 0.731228i
\(236\) 0 0
\(237\) 1.33097 + 2.30530i 0.0864556 + 0.149746i
\(238\) 0 0
\(239\) 2.38027i 0.153967i −0.997032 0.0769835i \(-0.975471\pi\)
0.997032 0.0769835i \(-0.0245289\pi\)
\(240\) 0 0
\(241\) 18.4390 10.6458i 1.18776 0.685755i 0.229965 0.973199i \(-0.426139\pi\)
0.957797 + 0.287444i \(0.0928055\pi\)
\(242\) 0 0
\(243\) 36.1930 + 62.6882i 2.32178 + 4.02145i
\(244\) 0 0
\(245\) 6.58852 11.4116i 0.420925 0.729063i
\(246\) 0 0
\(247\) −11.1157 10.2197i −0.707272 0.650264i
\(248\) 0 0
\(249\) 24.4390 + 14.1099i 1.54876 + 0.894177i
\(250\) 0 0
\(251\) −3.85720 + 2.22696i −0.243465 + 0.140564i −0.616768 0.787145i \(-0.711558\pi\)
0.373303 + 0.927709i \(0.378225\pi\)
\(252\) 0 0
\(253\) 1.80383 + 3.12432i 0.113406 + 0.196424i
\(254\) 0 0
\(255\) −2.24551 −0.140619
\(256\) 0 0
\(257\) −4.08497 + 2.35846i −0.254813 + 0.147117i −0.621966 0.783044i \(-0.713666\pi\)
0.367153 + 0.930161i \(0.380333\pi\)
\(258\) 0 0
\(259\) 9.29269 0.577420
\(260\) 0 0
\(261\) −56.0551 32.3634i −3.46972 2.00325i
\(262\) 0 0
\(263\) 24.7589 + 14.2945i 1.52670 + 0.881439i 0.999498 + 0.0316971i \(0.0100912\pi\)
0.527199 + 0.849742i \(0.323242\pi\)
\(264\) 0 0
\(265\) 16.5746i 1.01817i
\(266\) 0 0
\(267\) 10.1257i 0.619682i
\(268\) 0 0
\(269\) 9.83007 + 5.67539i 0.599350 + 0.346035i 0.768786 0.639506i \(-0.220861\pi\)
−0.169436 + 0.985541i \(0.554195\pi\)
\(270\) 0 0
\(271\) 4.35052 + 2.51177i 0.264275 + 0.152579i 0.626283 0.779596i \(-0.284575\pi\)
−0.362008 + 0.932175i \(0.617909\pi\)
\(272\) 0 0
\(273\) −14.3541 −0.868748
\(274\) 0 0
\(275\) −1.85011 + 1.06816i −0.111566 + 0.0644124i
\(276\) 0 0
\(277\) −28.4243 −1.70785 −0.853927 0.520393i \(-0.825785\pi\)
−0.853927 + 0.520393i \(0.825785\pi\)
\(278\) 0 0
\(279\) 37.8621 + 65.5790i 2.26674 + 3.92611i
\(280\) 0 0
\(281\) −13.9150 + 8.03385i −0.830101 + 0.479259i −0.853887 0.520458i \(-0.825761\pi\)
0.0237861 + 0.999717i \(0.492428\pi\)
\(282\) 0 0
\(283\) −17.0885 9.86606i −1.01581 0.586476i −0.102920 0.994690i \(-0.532819\pi\)
−0.912887 + 0.408213i \(0.866152\pi\)
\(284\) 0 0
\(285\) 23.9426 26.0416i 1.41824 1.54257i
\(286\) 0 0
\(287\) −5.82652 + 10.0918i −0.343928 + 0.595701i
\(288\) 0 0
\(289\) 8.46172 + 14.6561i 0.497748 + 0.862125i
\(290\) 0 0
\(291\) −19.2585 + 11.1189i −1.12895 + 0.651800i
\(292\) 0 0
\(293\) 14.9366i 0.872606i 0.899800 + 0.436303i \(0.143712\pi\)
−0.899800 + 0.436303i \(0.856288\pi\)
\(294\) 0 0
\(295\) −8.23486 14.2632i −0.479452 0.830435i
\(296\) 0 0
\(297\) 55.1867i 3.20226i
\(298\) 0 0
\(299\) 2.11566 3.66442i 0.122352 0.211919i
\(300\) 0 0
\(301\) −2.11566 + 3.66442i −0.121944 + 0.211214i
\(302\) 0 0
\(303\) −54.9323 −3.15578
\(304\) 0 0
\(305\) 15.2927 0.875657
\(306\) 0 0
\(307\) 11.0658 19.1666i 0.631560 1.09389i −0.355673 0.934611i \(-0.615748\pi\)
0.987233 0.159284i \(-0.0509185\pi\)
\(308\) 0 0
\(309\) 4.33097 7.50146i 0.246380 0.426743i
\(310\) 0 0
\(311\) 26.8293i 1.52135i 0.649133 + 0.760675i \(0.275132\pi\)
−0.649133 + 0.760675i \(0.724868\pi\)
\(312\) 0 0
\(313\) 0.246000 + 0.426084i 0.0139047 + 0.0240837i 0.872894 0.487910i \(-0.162241\pi\)
−0.858989 + 0.511994i \(0.828907\pi\)
\(314\) 0 0
\(315\) 24.8620i 1.40081i
\(316\) 0 0
\(317\) 13.5240 7.80809i 0.759584 0.438546i −0.0695627 0.997578i \(-0.522160\pi\)
0.829146 + 0.559032i \(0.188827\pi\)
\(318\) 0 0
\(319\) −11.2349 19.4593i −0.629031 1.08951i
\(320\) 0 0
\(321\) −7.17703 + 12.4310i −0.400583 + 0.693830i
\(322\) 0 0
\(323\) 1.17703 + 0.262997i 0.0654919 + 0.0146336i
\(324\) 0 0
\(325\) 2.16993 + 1.25281i 0.120366 + 0.0694935i
\(326\) 0 0
\(327\) 24.3470 14.0567i 1.34639 0.777339i
\(328\) 0 0
\(329\) 2.86166 + 4.95653i 0.157768 + 0.273263i
\(330\) 0 0
\(331\) −27.1930 −1.49466 −0.747332 0.664451i \(-0.768666\pi\)
−0.747332 + 0.664451i \(0.768666\pi\)
\(332\) 0 0
\(333\) −56.0551 + 32.3634i −3.07180 + 1.77350i
\(334\) 0 0
\(335\) −18.3470 −1.00240
\(336\) 0 0
\(337\) 18.0240 + 10.4062i 0.981830 + 0.566860i 0.902822 0.430014i \(-0.141491\pi\)
0.0790078 + 0.996874i \(0.474825\pi\)
\(338\) 0 0
\(339\) 5.08852 + 2.93786i 0.276370 + 0.159562i
\(340\) 0 0
\(341\) 26.2874i 1.42354i
\(342\) 0 0
\(343\) 15.2782i 0.824945i
\(344\) 0 0
\(345\) 8.58497 + 4.95653i 0.462199 + 0.266851i
\(346\) 0 0
\(347\) 22.5649 + 13.0279i 1.21135 + 0.699373i 0.963053 0.269312i \(-0.0867962\pi\)
0.248296 + 0.968684i \(0.420130\pi\)
\(348\) 0 0
\(349\) 24.3541 1.30364 0.651822 0.758372i \(-0.274005\pi\)
0.651822 + 0.758372i \(0.274005\pi\)
\(350\) 0 0
\(351\) 56.0551 32.3634i 2.99200 1.72743i
\(352\) 0 0
\(353\) 18.0160 0.958895 0.479447 0.877571i \(-0.340837\pi\)
0.479447 + 0.877571i \(0.340837\pi\)
\(354\) 0 0
\(355\) 7.17703 + 12.4310i 0.380917 + 0.659768i
\(356\) 0 0
\(357\) 0.992901 0.573252i 0.0525499 0.0303397i
\(358\) 0 0
\(359\) −24.1192 13.9252i −1.27296 0.734946i −0.297418 0.954747i \(-0.596126\pi\)
−0.975545 + 0.219802i \(0.929459\pi\)
\(360\) 0 0
\(361\) −15.6001 + 10.8461i −0.821056 + 0.570848i
\(362\) 0 0
\(363\) 3.86166 6.68858i 0.202684 0.351060i
\(364\) 0 0
\(365\) −4.19617 7.26798i −0.219638 0.380424i
\(366\) 0 0
\(367\) 26.1806 15.1154i 1.36662 0.789016i 0.376121 0.926571i \(-0.377258\pi\)
0.990494 + 0.137555i \(0.0439243\pi\)
\(368\) 0 0
\(369\) 81.1675i 4.22541i
\(370\) 0 0
\(371\) 4.23131 + 7.32885i 0.219679 + 0.380495i
\(372\) 0 0
\(373\) 10.7929i 0.558838i 0.960169 + 0.279419i \(0.0901418\pi\)
−0.960169 + 0.279419i \(0.909858\pi\)
\(374\) 0 0
\(375\) 17.3541 30.0581i 0.896160 1.55219i
\(376\) 0 0
\(377\) −13.1770 + 22.8233i −0.678652 + 1.17546i
\(378\) 0 0
\(379\) 20.5080 1.05343 0.526713 0.850043i \(-0.323424\pi\)
0.526713 + 0.850043i \(0.323424\pi\)
\(380\) 0 0
\(381\) 29.0160 1.48653
\(382\) 0 0
\(383\) 7.05783 12.2245i 0.360638 0.624644i −0.627428 0.778675i \(-0.715892\pi\)
0.988066 + 0.154031i \(0.0492256\pi\)
\(384\) 0 0
\(385\) 4.31538 7.47445i 0.219932 0.380933i
\(386\) 0 0
\(387\) 29.4726i 1.49818i
\(388\) 0 0
\(389\) −3.27669 5.67539i −0.166135 0.287754i 0.770923 0.636928i \(-0.219795\pi\)
−0.937058 + 0.349175i \(0.886462\pi\)
\(390\) 0 0
\(391\) 0.337968i 0.0170918i
\(392\) 0 0
\(393\) −20.2620 + 11.6983i −1.02208 + 0.590100i
\(394\) 0 0
\(395\) 0.938623 + 1.62574i 0.0472272 + 0.0818000i
\(396\) 0 0
\(397\) 10.6045 18.3676i 0.532225 0.921842i −0.467067 0.884222i \(-0.654689\pi\)
0.999292 0.0376194i \(-0.0119775\pi\)
\(398\) 0 0
\(399\) −3.93862 + 17.6271i −0.197178 + 0.882461i
\(400\) 0 0
\(401\) 5.33007 + 3.07731i 0.266171 + 0.153674i 0.627146 0.778902i \(-0.284223\pi\)
−0.360975 + 0.932575i \(0.617556\pi\)
\(402\) 0 0
\(403\) 26.7010 15.4158i 1.33007 0.767918i
\(404\) 0 0
\(405\) 45.2896 + 78.4438i 2.25046 + 3.89790i
\(406\) 0 0
\(407\) −22.4697 −1.11378
\(408\) 0 0
\(409\) −9.09207 + 5.24931i −0.449574 + 0.259562i −0.707650 0.706563i \(-0.750245\pi\)
0.258076 + 0.966125i \(0.416911\pi\)
\(410\) 0 0
\(411\) −14.2998 −0.705356
\(412\) 0 0
\(413\) 7.28245 + 4.20453i 0.358346 + 0.206891i
\(414\) 0 0
\(415\) 17.2349 + 9.95055i 0.846026 + 0.488453i
\(416\) 0 0
\(417\) 13.4835i 0.660289i
\(418\) 0 0
\(419\) 36.3381i 1.77523i 0.460584 + 0.887616i \(0.347640\pi\)
−0.460584 + 0.887616i \(0.652360\pi\)
\(420\) 0 0
\(421\) −18.2896 10.5595i −0.891378 0.514637i −0.0169851 0.999856i \(-0.505407\pi\)
−0.874393 + 0.485218i \(0.838740\pi\)
\(422\) 0 0
\(423\) −34.5240 19.9324i −1.67861 0.969148i
\(424\) 0 0
\(425\) −0.200132 −0.00970783
\(426\) 0 0
\(427\) −6.76200 + 3.90404i −0.327236 + 0.188930i
\(428\) 0 0
\(429\) 34.7081 1.67572
\(430\) 0 0
\(431\) 7.23131 + 12.5250i 0.348320 + 0.603308i 0.985951 0.167034i \(-0.0534189\pi\)
−0.637631 + 0.770342i \(0.720086\pi\)
\(432\) 0 0
\(433\) −31.2931 + 18.0671i −1.50385 + 0.868248i −0.503860 + 0.863785i \(0.668087\pi\)
−0.999990 + 0.00446329i \(0.998579\pi\)
\(434\) 0 0
\(435\) −53.4701 30.8710i −2.56370 1.48015i
\(436\) 0 0
\(437\) −3.91948 3.60356i −0.187494 0.172382i
\(438\) 0 0
\(439\) 7.84252 13.5836i 0.374303 0.648312i −0.615920 0.787809i \(-0.711215\pi\)
0.990222 + 0.139497i \(0.0445487\pi\)
\(440\) 0 0
\(441\) −23.4310 40.5837i −1.11576 1.93256i
\(442\) 0 0
\(443\) 14.6739 8.47198i 0.697178 0.402516i −0.109118 0.994029i \(-0.534803\pi\)
0.806295 + 0.591513i \(0.201469\pi\)
\(444\) 0 0
\(445\) 7.14082i 0.338507i
\(446\) 0 0
\(447\) −11.2349 19.4593i −0.531391 0.920396i
\(448\) 0 0
\(449\) 17.8275i 0.841330i −0.907216 0.420665i \(-0.861797\pi\)
0.907216 0.420665i \(-0.138203\pi\)
\(450\) 0 0
\(451\) 14.0885 24.4020i 0.663402 1.14905i
\(452\) 0 0
\(453\) −12.2505 + 21.2184i −0.575576 + 0.996928i
\(454\) 0 0
\(455\) −10.1228 −0.474562
\(456\) 0 0
\(457\) 19.8301 0.927611 0.463806 0.885937i \(-0.346484\pi\)
0.463806 + 0.885937i \(0.346484\pi\)
\(458\) 0 0
\(459\) −2.58497 + 4.47729i −0.120656 + 0.208982i
\(460\) 0 0
\(461\) −16.4537 + 28.4987i −0.766326 + 1.32732i 0.173216 + 0.984884i \(0.444584\pi\)
−0.939543 + 0.342432i \(0.888749\pi\)
\(462\) 0 0
\(463\) 21.3979i 0.994443i 0.867624 + 0.497222i \(0.165646\pi\)
−0.867624 + 0.497222i \(0.834354\pi\)
\(464\) 0 0
\(465\) 36.1161 + 62.5549i 1.67484 + 2.90091i
\(466\) 0 0
\(467\) 8.79790i 0.407118i 0.979063 + 0.203559i \(0.0652509\pi\)
−0.979063 + 0.203559i \(0.934749\pi\)
\(468\) 0 0
\(469\) 8.11252 4.68376i 0.374601 0.216276i
\(470\) 0 0
\(471\) 18.6850 + 32.3634i 0.860961 + 1.49123i
\(472\) 0 0
\(473\) 5.11566 8.86058i 0.235218 0.407410i
\(474\) 0 0
\(475\) 2.13389 2.32097i 0.0979097 0.106493i
\(476\) 0 0
\(477\) −51.0480 29.4726i −2.33733 1.34946i
\(478\) 0 0
\(479\) −2.11566 + 1.22147i −0.0966668 + 0.0558106i −0.547554 0.836770i \(-0.684441\pi\)
0.450887 + 0.892581i \(0.351108\pi\)
\(480\) 0 0
\(481\) 13.1770 + 22.8233i 0.600821 + 1.04065i
\(482\) 0 0
\(483\) −5.06138 −0.230301
\(484\) 0 0
\(485\) −13.5814 + 7.84124i −0.616700 + 0.356052i
\(486\) 0 0
\(487\) −25.0231 −1.13390 −0.566952 0.823751i \(-0.691878\pi\)
−0.566952 + 0.823751i \(0.691878\pi\)
\(488\) 0 0
\(489\) 7.68413 + 4.43644i 0.347488 + 0.200623i
\(490\) 0 0
\(491\) 36.6397 + 21.1539i 1.65352 + 0.954663i 0.975607 + 0.219525i \(0.0704508\pi\)
0.677918 + 0.735138i \(0.262883\pi\)
\(492\) 0 0
\(493\) 2.10498i 0.0948036i
\(494\) 0 0
\(495\) 60.1162i 2.70202i
\(496\) 0 0
\(497\) −6.34697 3.66442i −0.284700 0.164372i
\(498\) 0 0
\(499\) 21.2113 + 12.2463i 0.949547 + 0.548221i 0.892940 0.450175i \(-0.148639\pi\)
0.0566067 + 0.998397i \(0.481972\pi\)
\(500\) 0 0
\(501\) 42.6939 1.90742
\(502\) 0 0
\(503\) −32.9288 + 19.0114i −1.46822 + 0.847679i −0.999366 0.0355959i \(-0.988667\pi\)
−0.468856 + 0.883275i \(0.655334\pi\)
\(504\) 0 0
\(505\) −38.7393 −1.72388
\(506\) 0 0
\(507\) 1.69617 + 2.93786i 0.0753297 + 0.130475i
\(508\) 0 0
\(509\) −9.34697 + 5.39647i −0.414297 + 0.239195i −0.692634 0.721289i \(-0.743550\pi\)
0.278337 + 0.960483i \(0.410217\pi\)
\(510\) 0 0
\(511\) 3.71086 + 2.14247i 0.164159 + 0.0947771i
\(512\) 0 0
\(513\) −24.3621 77.7172i −1.07561 3.43130i
\(514\) 0 0
\(515\) 3.05428 5.29017i 0.134588 0.233113i
\(516\) 0 0
\(517\) −6.91948 11.9849i −0.304319 0.527095i
\(518\) 0 0
\(519\) −50.8852 + 29.3786i −2.23361 + 1.28958i
\(520\) 0 0
\(521\) 13.4835i 0.590722i −0.955386 0.295361i \(-0.904560\pi\)
0.955386 0.295361i \(-0.0954399\pi\)
\(522\) 0 0
\(523\) −12.7393 22.0651i −0.557051 0.964841i −0.997741 0.0671814i \(-0.978599\pi\)
0.440690 0.897660i \(-0.354734\pi\)
\(524\) 0 0
\(525\) 2.99716i 0.130807i
\(526\) 0 0
\(527\) −1.23131 + 2.13269i −0.0536368 + 0.0929016i
\(528\) 0 0
\(529\) −10.7540 + 18.6265i −0.467565 + 0.809847i
\(530\) 0 0
\(531\) −58.5720 −2.54181
\(532\) 0 0
\(533\) −33.0480 −1.43147
\(534\) 0 0
\(535\) −5.06138 + 8.76656i −0.218822 + 0.379012i
\(536\) 0 0
\(537\) 4.08497 7.07537i 0.176279 0.305325i
\(538\) 0 0
\(539\) 16.2680i 0.700713i
\(540\) 0 0
\(541\) 15.5080 + 26.8606i 0.666741 + 1.15483i 0.978810 + 0.204770i \(0.0656446\pi\)
−0.312069 + 0.950059i \(0.601022\pi\)
\(542\) 0 0
\(543\) 62.4216i 2.67877i
\(544\) 0 0
\(545\) 17.1699 9.91307i 0.735479 0.424629i
\(546\) 0 0
\(547\) −9.83897 17.0416i −0.420684 0.728646i 0.575323 0.817927i \(-0.304877\pi\)
−0.996007 + 0.0892807i \(0.971543\pi\)
\(548\) 0 0
\(549\) 27.1930 47.0997i 1.16057 2.01017i
\(550\) 0 0
\(551\) 24.4119 + 22.4442i 1.03998 + 0.956156i
\(552\) 0 0
\(553\) −0.830066 0.479239i −0.0352980 0.0203793i
\(554\) 0 0
\(555\) −53.4701 + 30.8710i −2.26968 + 1.31040i
\(556\) 0 0
\(557\) −9.56938 16.5746i −0.405468 0.702290i 0.588908 0.808200i \(-0.299558\pi\)
−0.994376 + 0.105910i \(0.966225\pi\)
\(558\) 0 0
\(559\) −12.0000 −0.507546
\(560\) 0 0
\(561\) −2.40084 + 1.38612i −0.101363 + 0.0585222i
\(562\) 0 0
\(563\) −38.4083 −1.61872 −0.809359 0.587314i \(-0.800185\pi\)
−0.809359 + 0.587314i \(0.800185\pi\)
\(564\) 0 0
\(565\) 3.58852 + 2.07183i 0.150970 + 0.0871626i
\(566\) 0 0
\(567\) −40.0516 23.1238i −1.68201 0.971107i
\(568\) 0 0
\(569\) 34.7750i 1.45785i −0.684596 0.728923i \(-0.740021\pi\)
0.684596 0.728923i \(-0.259979\pi\)
\(570\) 0 0
\(571\) 30.9257i 1.29420i 0.762405 + 0.647100i \(0.224019\pi\)
−0.762405 + 0.647100i \(0.775981\pi\)
\(572\) 0 0
\(573\) 6.00000 + 3.46410i 0.250654 + 0.144715i
\(574\) 0 0
\(575\) 0.765139 + 0.441753i 0.0319085 + 0.0184224i
\(576\) 0 0
\(577\) −27.7847 −1.15669 −0.578346 0.815792i \(-0.696302\pi\)
−0.578346 + 0.815792i \(0.696302\pi\)
\(578\) 0 0
\(579\) 31.9390 18.4400i 1.32734 0.766341i
\(580\) 0 0
\(581\) −10.1610 −0.421551
\(582\) 0 0
\(583\) −10.2313 17.7212i −0.423738 0.733935i
\(584\) 0 0
\(585\) 61.0622 35.2543i 2.52461 1.45758i
\(586\) 0 0
\(587\) 14.0614 + 8.11834i 0.580375 + 0.335080i 0.761282 0.648420i \(-0.224570\pi\)
−0.180907 + 0.983500i \(0.557903\pi\)
\(588\) 0 0
\(589\) −11.6045 37.0195i −0.478156 1.52536i
\(590\) 0 0
\(591\) 7.05783 12.2245i 0.290320 0.502849i
\(592\) 0 0
\(593\) 5.57697 + 9.65959i 0.229019 + 0.396672i 0.957518 0.288375i \(-0.0931150\pi\)
−0.728499 + 0.685047i \(0.759782\pi\)
\(594\) 0 0
\(595\) 0.700213 0.404268i 0.0287059 0.0165734i
\(596\) 0 0
\(597\) 56.2269i 2.30121i
\(598\) 0 0
\(599\) 7.00355 + 12.1305i 0.286157 + 0.495639i 0.972889 0.231272i \(-0.0742887\pi\)
−0.686732 + 0.726911i \(0.740955\pi\)
\(600\) 0 0
\(601\) 35.5486i 1.45006i 0.688718 + 0.725029i \(0.258174\pi\)
−0.688718 + 0.725029i \(0.741826\pi\)
\(602\) 0 0
\(603\) −32.6241 + 56.5065i −1.32855 + 2.30112i
\(604\) 0 0
\(605\) 2.72331 4.71691i 0.110718 0.191770i
\(606\) 0 0
\(607\) −7.13166 −0.289465 −0.144732 0.989471i \(-0.546232\pi\)
−0.144732 + 0.989471i \(0.546232\pi\)
\(608\) 0 0
\(609\) 31.5240 1.27742
\(610\) 0 0
\(611\) −8.11566 + 14.0567i −0.328324 + 0.568674i
\(612\) 0 0
\(613\) 8.90034 15.4158i 0.359482 0.622640i −0.628393 0.777896i \(-0.716287\pi\)
0.987874 + 0.155256i \(0.0496202\pi\)
\(614\) 0 0
\(615\) 77.4245i 3.12206i
\(616\) 0 0
\(617\) −12.2847 21.2777i −0.494563 0.856608i 0.505417 0.862875i \(-0.331339\pi\)
−0.999980 + 0.00626683i \(0.998005\pi\)
\(618\) 0 0
\(619\) 21.6804i 0.871409i −0.900090 0.435705i \(-0.856499\pi\)
0.900090 0.435705i \(-0.143501\pi\)
\(620\) 0 0
\(621\) 19.7655 11.4116i 0.793164 0.457934i
\(622\) 0 0
\(623\) −1.82297 3.15747i −0.0730356 0.126501i
\(624\) 0 0
\(625\) 14.0467 24.3296i 0.561868 0.973183i
\(626\) 0 0
\(627\) 9.52359 42.6224i 0.380336 1.70218i
\(628\) 0 0
\(629\) −1.82297 1.05249i −0.0726865 0.0419655i
\(630\) 0 0
\(631\) 36.7589 21.2227i 1.46335 0.844864i 0.464183 0.885739i \(-0.346348\pi\)
0.999164 + 0.0408755i \(0.0130147\pi\)
\(632\) 0 0
\(633\) 17.0930 + 29.6059i 0.679384 + 1.17673i
\(634\) 0 0
\(635\) 20.4626 0.812034
\(636\) 0 0
\(637\) −16.5240 + 9.54014i −0.654705 + 0.377994i
\(638\) 0 0
\(639\) 51.0480 2.01943
\(640\) 0 0
\(641\) −11.7451 6.78104i −0.463903 0.267835i 0.249781 0.968302i \(-0.419641\pi\)
−0.713684 + 0.700468i \(0.752975\pi\)
\(642\) 0 0
\(643\) −26.4355 15.2625i −1.04251 0.601896i −0.121969 0.992534i \(-0.538921\pi\)
−0.920544 + 0.390638i \(0.872254\pi\)
\(644\) 0 0
\(645\) 28.1135i 1.10697i
\(646\) 0 0
\(647\) 20.7219i 0.814663i −0.913280 0.407332i \(-0.866459\pi\)
0.913280 0.407332i \(-0.133541\pi\)
\(648\) 0 0
\(649\) −17.6090 10.1665i −0.691212 0.399072i
\(650\) 0 0
\(651\) −31.9390 18.4400i −1.25179 0.722721i
\(652\) 0 0
\(653\) 35.9234 1.40579 0.702896 0.711292i \(-0.251890\pi\)
0.702896 + 0.711292i \(0.251890\pi\)
\(654\) 0 0
\(655\) −14.2891 + 8.24984i −0.558323 + 0.322348i
\(656\) 0 0
\(657\) −29.8461 −1.16441
\(658\) 0 0
\(659\) 18.5854 + 32.1908i 0.723984 + 1.25398i 0.959391 + 0.282079i \(0.0910242\pi\)
−0.235408 + 0.971897i \(0.575642\pi\)
\(660\) 0 0
\(661\) −12.1054 + 6.98907i −0.470846 + 0.271843i −0.716594 0.697491i \(-0.754300\pi\)
0.245748 + 0.969334i \(0.420967\pi\)
\(662\) 0 0
\(663\) 2.81587 + 1.62574i 0.109359 + 0.0631386i
\(664\) 0 0
\(665\) −2.77759 + 12.4310i −0.107710 + 0.482053i
\(666\) 0 0
\(667\) −4.64634 + 8.04770i −0.179907 + 0.311608i
\(668\) 0 0
\(669\) −9.43458 16.3412i −0.364762 0.631786i
\(670\) 0 0
\(671\) 16.3505 9.43998i 0.631205 0.364426i
\(672\) 0 0
\(673\) 1.62574i 0.0626678i −0.999509 0.0313339i \(-0.990024\pi\)
0.999509 0.0313339i \(-0.00997552\pi\)
\(674\) 0 0
\(675\) 6.75755 + 11.7044i 0.260098 + 0.450503i
\(676\) 0 0
\(677\) 44.6881i 1.71750i 0.512392 + 0.858752i \(0.328759\pi\)
−0.512392 + 0.858752i \(0.671241\pi\)
\(678\) 0 0
\(679\) 4.00355 6.93435i 0.153642 0.266116i
\(680\) 0 0
\(681\) −27.4390 + 47.5258i −1.05147 + 1.82119i
\(682\) 0 0
\(683\) −15.5374 −0.594521 −0.297261 0.954796i \(-0.596073\pi\)
−0.297261 + 0.954796i \(0.596073\pi\)
\(684\) 0 0
\(685\) −10.0845 −0.385308
\(686\) 0 0
\(687\) −11.5080 + 19.9324i −0.439058 + 0.760470i
\(688\) 0 0
\(689\) −12.0000 + 20.7846i −0.457164 + 0.791831i
\(690\) 0 0
\(691\) 6.18234i 0.235187i −0.993062 0.117594i \(-0.962482\pi\)
0.993062 0.117594i \(-0.0375180\pi\)
\(692\) 0 0
\(693\) −15.3470 26.5817i −0.582983 1.00976i
\(694\) 0 0
\(695\) 9.50880i 0.360689i
\(696\) 0 0
\(697\) 2.28600 1.31982i 0.0865885 0.0499919i
\(698\) 0 0
\(699\) −18.7891 32.5437i −0.710671 1.23092i
\(700\) 0 0
\(701\) −6.60452 + 11.4394i −0.249449 + 0.432059i −0.963373 0.268165i \(-0.913583\pi\)
0.713924 + 0.700223i \(0.246916\pi\)
\(702\) 0 0
\(703\) 31.6432 9.91921i 1.19345 0.374110i
\(704\) 0 0
\(705\) −32.9319 19.0133i −1.24029 0.716081i
\(706\) 0 0
\(707\) 17.1294 9.88969i 0.644219 0.371940i
\(708\) 0 0
\(709\) −6.42748 11.1327i −0.241389 0.418098i 0.719721 0.694263i \(-0.244270\pi\)
−0.961110 + 0.276165i \(0.910936\pi\)
\(710\) 0 0
\(711\) 6.67613 0.250374
\(712\) 0 0
\(713\) 9.41503 5.43577i 0.352596 0.203571i
\(714\) 0 0
\(715\) 24.4768 0.915381
\(716\) 0 0
\(717\) −6.99290 4.03735i −0.261155 0.150778i
\(718\) 0 0
\(719\) −38.2998 22.1124i −1.42834 0.824653i −0.431351 0.902184i \(-0.641963\pi\)
−0.996990 + 0.0775310i \(0.975296\pi\)
\(720\) 0 0
\(721\) 3.11888i 0.116153i
\(722\) 0 0
\(723\) 72.2283i 2.68620i
\(724\) 0 0
\(725\) −4.76555 2.75139i −0.176988 0.102184i
\(726\) 0 0
\(727\) 7.47600 + 4.31627i 0.277269 + 0.160082i 0.632187 0.774816i \(-0.282158\pi\)
−0.354917 + 0.934898i \(0.615491\pi\)
\(728\) 0 0
\(729\) 131.972 4.88786
\(730\) 0 0
\(731\) 0.830066 0.479239i 0.0307011 0.0177253i
\(732\) 0 0
\(733\) −33.8532 −1.25040 −0.625198 0.780467i \(-0.714982\pi\)
−0.625198 + 0.780467i \(0.714982\pi\)
\(734\) 0 0
\(735\) −22.3505 38.7122i −0.824411 1.42792i
\(736\) 0 0
\(737\) −19.6161 + 11.3253i −0.722567 + 0.417174i
\(738\) 0 0
\(739\) 2.26514 + 1.30778i 0.0833245 + 0.0481074i 0.541083 0.840969i \(-0.318014\pi\)
−0.457759 + 0.889076i \(0.651348\pi\)
\(740\) 0 0
\(741\) −48.8781 + 15.3218i −1.79558 + 0.562862i
\(742\) 0 0
\(743\) −18.4119 + 31.8903i −0.675467 + 1.16994i 0.300865 + 0.953667i \(0.402725\pi\)
−0.976332 + 0.216276i \(0.930609\pi\)
\(744\) 0 0
\(745\) −7.92303 13.7231i −0.290277 0.502775i
\(746\) 0 0
\(747\) 61.2931 35.3876i 2.24260 1.29476i
\(748\) 0 0
\(749\) 5.16844i 0.188851i
\(750\) 0 0
\(751\) −15.3923 26.6603i −0.561675 0.972849i −0.997351 0.0727454i \(-0.976824\pi\)
0.435676 0.900104i \(-0.356509\pi\)
\(752\) 0 0
\(753\) 15.1092i 0.550611i
\(754\) 0 0
\(755\) −8.63925 + 14.9636i −0.314414 + 0.544582i
\(756\) 0 0
\(757\) −7.37634 + 12.7762i −0.268098 + 0.464359i −0.968371 0.249516i \(-0.919728\pi\)
0.700273 + 0.713875i \(0.253062\pi\)
\(758\) 0 0
\(759\) 12.2384 0.444226
\(760\) 0 0
\(761\) −4.80069 −0.174025 −0.0870124 0.996207i \(-0.527732\pi\)
−0.0870124 + 0.996207i \(0.527732\pi\)
\(762\) 0 0
\(763\) −5.06138 + 8.76656i −0.183234 + 0.317371i
\(764\) 0 0
\(765\) −2.81587 + 4.87723i −0.101808 + 0.176337i
\(766\) 0 0
\(767\) 23.8481i 0.861104i
\(768\) 0 0
\(769\) 3.86166 + 6.68858i 0.139255 + 0.241197i 0.927215 0.374530i \(-0.122196\pi\)
−0.787960 + 0.615727i \(0.788863\pi\)
\(770\) 0 0
\(771\) 16.0014i 0.576276i
\(772\) 0 0
\(773\) −44.2966 + 25.5747i −1.59324 + 0.919857i −0.600493 + 0.799630i \(0.705029\pi\)
−0.992746 + 0.120228i \(0.961638\pi\)
\(774\) 0 0
\(775\) 3.21886 + 5.57523i 0.115625 + 0.200268i
\(776\) 0 0
\(777\) 15.7620 27.3006i 0.565459 0.979403i
\(778\) 0 0
\(779\) −9.06807 + 40.5837i −0.324897 + 1.45406i
\(780\) 0 0
\(781\) 15.3470 + 8.86058i 0.549158 + 0.317056i
\(782\) 0 0
\(783\) −123.107 + 71.0757i −4.39947 + 2.54004i
\(784\) 0 0
\(785\) 13.1770 + 22.8233i 0.470308 + 0.814598i
\(786\) 0 0
\(787\) −32.2090 −1.14813 −0.574064 0.818810i \(-0.694634\pi\)
−0.574064 + 0.818810i \(0.694634\pi\)
\(788\) 0 0
\(789\) 83.9906 48.4920i 2.99014 1.72636i
\(790\) 0 0
\(791\) −2.11566 −0.0752241
\(792\) 0 0
\(793\) −19.1770 11.0719i −0.680996 0.393173i
\(794\) 0 0
\(795\) −48.6939 28.1135i −1.72700 0.997082i
\(796\) 0 0
\(797\) 46.5142i 1.64762i 0.566869 + 0.823808i \(0.308155\pi\)
−0.566869 + 0.823808i \(0.691845\pi\)
\(798\) 0 0
\(799\) 1.29645i 0.0458649i
\(800\) 0 0
\(801\) 21.9929 + 12.6976i 0.777081 + 0.448648i
\(802\) 0 0
\(803\) −8.97286 5.18048i −0.316645 0.182815i
\(804\) 0 0
\(805\) −3.56938 −0.125804
\(806\) 0 0
\(807\) 33.3470 19.2529i 1.17387 0.677733i
\(808\) 0 0
\(809\) 6.36925 0.223931 0.111965 0.993712i \(-0.464285\pi\)
0.111965 + 0.993712i \(0.464285\pi\)
\(810\) 0 0
\(811\) −26.3087 45.5680i −0.923823 1.60011i −0.793443 0.608644i \(-0.791714\pi\)
−0.130380 0.991464i \(-0.541620\pi\)
\(812\) 0 0
\(813\) 14.7585 8.52080i 0.517601 0.298837i
\(814\) 0 0
\(815\) 5.41899 + 3.12866i 0.189819 + 0.109592i
\(816\) 0 0
\(817\) −3.29269 + 14.7363i −0.115197 + 0.515557i
\(818\) 0 0
\(819\) −18.0000 + 31.1769i −0.628971 + 1.08941i
\(820\) 0 0
\(821\) 2.73931 + 4.74463i 0.0956026 + 0.165589i 0.909860 0.414915i \(-0.136189\pi\)
−0.814257 + 0.580504i \(0.802856\pi\)
\(822\) 0 0
\(823\) 29.7553 17.1792i 1.03720 0.598831i 0.118165 0.992994i \(-0.462299\pi\)
0.919040 + 0.394163i \(0.128966\pi\)
\(824\) 0 0
\(825\) 7.24713i 0.252313i
\(826\) 0 0
\(827\) −20.3812 35.3013i −0.708724 1.22755i −0.965331 0.261030i \(-0.915938\pi\)
0.256607 0.966516i \(-0.417395\pi\)
\(828\) 0 0
\(829\) 12.3093i 0.427518i 0.976886 + 0.213759i \(0.0685708\pi\)
−0.976886 + 0.213759i \(0.931429\pi\)
\(830\) 0 0
\(831\) −48.2126 + 83.5066i −1.67248 + 2.89681i
\(832\) 0 0
\(833\) 0.762000 1.31982i 0.0264017 0.0457292i
\(834\) 0 0
\(835\) 30.1086 1.04195
\(836\) 0 0
\(837\) 166.303 5.74828
\(838\) 0 0
\(839\) −2.28914 + 3.96491i −0.0790299 + 0.136884i −0.902832 0.429994i \(-0.858516\pi\)
0.823802 + 0.566878i \(0.191849\pi\)
\(840\) 0 0
\(841\) 14.4390 25.0091i 0.497898 0.862384i
\(842\) 0 0
\(843\) 54.5072i 1.87733i
\(844\) 0 0
\(845\) 1.19617 + 2.07183i 0.0411496 + 0.0712732i
\(846\) 0 0
\(847\) 2.78092i 0.0955534i
\(848\) 0 0
\(849\) −57.9701 + 33.4691i −1.98953 + 1.14866i
\(850\) 0 0
\(851\) 4.64634 + 8.04770i 0.159275 + 0.275872i
\(852\) 0 0
\(853\) −15.5080 + 26.8606i −0.530984 + 0.919691i 0.468362 + 0.883536i \(0.344844\pi\)
−0.999346 + 0.0361545i \(0.988489\pi\)
\(854\) 0 0
\(855\) −26.5382 84.6593i −0.907587 2.89529i
\(856\) 0 0
\(857\) −33.8541 19.5457i −1.15643 0.667667i −0.205986 0.978555i \(-0.566040\pi\)
−0.950447 + 0.310888i \(0.899374\pi\)
\(858\) 0 0
\(859\) −32.3269 + 18.6640i −1.10298 + 0.636806i −0.937002 0.349323i \(-0.886411\pi\)
−0.165978 + 0.986129i \(0.553078\pi\)
\(860\) 0 0
\(861\) 19.7655 + 34.2349i 0.673608 + 1.16672i
\(862\) 0 0
\(863\) 2.70103 0.0919443 0.0459721 0.998943i \(-0.485361\pi\)
0.0459721 + 0.998943i \(0.485361\pi\)
\(864\) 0 0
\(865\) −35.8852 + 20.7183i −1.22013 + 0.704444i
\(866\) 0 0
\(867\) 57.4101 1.94975
\(868\) 0 0
\(869\) 2.00710 + 1.15880i 0.0680862 + 0.0393096i
\(870\) 0 0
\(871\) 23.0071 + 13.2832i 0.779566 + 0.450083i
\(872\) 0 0
\(873\) 55.7723i 1.88761i
\(874\) 0 0
\(875\) 12.4973i 0.422485i
\(876\) 0 0
\(877\) −14.5956 8.42678i −0.492859 0.284552i 0.232901 0.972500i \(-0.425178\pi\)
−0.725760 + 0.687948i \(0.758512\pi\)
\(878\) 0 0
\(879\) 43.8816 + 25.3351i 1.48009 + 0.854530i
\(880\) 0 0
\(881\) 23.0454 0.776418 0.388209 0.921571i \(-0.373094\pi\)
0.388209 + 0.921571i \(0.373094\pi\)
\(882\) 0 0
\(883\) −18.5582 + 10.7146i −0.624534 + 0.360575i −0.778632 0.627480i \(-0.784086\pi\)
0.154098 + 0.988056i \(0.450753\pi\)
\(884\) 0 0
\(885\) −55.8710 −1.87808
\(886\) 0 0
\(887\) 3.29269 + 5.70310i 0.110558 + 0.191492i 0.915995 0.401189i \(-0.131403\pi\)
−0.805438 + 0.592681i \(0.798070\pi\)
\(888\) 0 0
\(889\) −9.04800 + 5.22387i −0.303460 + 0.175203i
\(890\) 0 0
\(891\) 96.8446 + 55.9133i 3.24442 + 1.87317i
\(892\) 0 0
\(893\) 15.0351 + 13.8233i 0.503132 + 0.462578i
\(894\) 0 0
\(895\) 2.88079 4.98968i 0.0962944 0.166787i
\(896\) 0 0
\(897\) −7.17703 12.4310i −0.239634 0.415059i
\(898\) 0 0
\(899\) −58.6401 + 33.8559i −1.95576 + 1.12916i
\(900\) 0 0
\(901\) 1.91695i 0.0638630i
\(902\) 0 0
\(903\) 7.17703 + 12.4310i 0.238837 + 0.413677i
\(904\) 0 0
\(905\) 44.0208i 1.46330i
\(906\) 0 0
\(907\) 0.342517 0.593256i 0.0113731 0.0196987i −0.860283 0.509817i \(-0.829713\pi\)
0.871656 + 0.490118i \(0.163046\pi\)
\(908\) 0 0
\(909\) −68.8852 + 119.313i −2.28478 + 3.95735i
\(910\) 0 0
\(911\) 36.3470 1.20423 0.602114 0.798410i \(-0.294325\pi\)
0.602114 + 0.798410i \(0.294325\pi\)
\(912\) 0 0
\(913\) 24.5694 0.813128
\(914\) 0 0
\(915\) 25.9390 44.9277i 0.857518 1.48526i
\(916\) 0 0
\(917\) 4.21217 7.29570i 0.139098 0.240925i
\(918\) 0 0
\(919\) 1.97963i 0.0653020i −0.999467 0.0326510i \(-0.989605\pi\)
0.999467 0.0326510i \(-0.0103950\pi\)
\(920\) 0 0
\(921\) −37.5391 65.0196i −1.23696 2.14247i
\(922\) 0 0
\(923\) 20.7846i 0.684134i
\(924\) 0 0
\(925\) −4.76555 + 2.75139i −0.156690 + 0.0904652i
\(926\) 0 0
\(927\) −10.8621 18.8137i −0.356757 0.617921i
\(928\) 0 0
\(929\) −12.3390 + 21.3717i −0.404828 + 0.701183i −0.994301 0.106605i \(-0.966002\pi\)
0.589473 + 0.807788i \(0.299335\pi\)
\(930\) 0 0
\(931\) 7.18148 + 22.9096i 0.235364 + 0.750832i
\(932\) 0 0
\(933\) 78.8206 + 45.5071i 2.58047 + 1.48984i
\(934\) 0 0
\(935\) −1.69311 + 0.977520i −0.0553707 + 0.0319683i
\(936\) 0 0
\(937\) 20.0921 + 34.8005i 0.656379 + 1.13688i 0.981546 + 0.191225i \(0.0612462\pi\)
−0.325167 + 0.945657i \(0.605421\pi\)
\(938\) 0 0
\(939\) 1.66903 0.0544668
\(940\) 0 0
\(941\) −2.65303 + 1.53173i −0.0864864 + 0.0499329i −0.542619 0.839979i \(-0.682567\pi\)
0.456133 + 0.889912i \(0.349234\pi\)
\(942\) 0 0
\(943\) −11.6530 −0.379475
\(944\) 0 0
\(945\) −47.2860 27.3006i −1.53821 0.888088i
\(946\) 0 0
\(947\) 9.93862 + 5.73807i 0.322962 + 0.186462i 0.652712 0.757606i \(-0.273631\pi\)
−0.329750 + 0.944068i \(0.606965\pi\)
\(948\) 0 0
\(949\) 12.1521i 0.394473i
\(950\) 0 0
\(951\) 52.9754i 1.71785i
\(952\) 0 0
\(953\) 1.91503 + 1.10564i 0.0620340 + 0.0358153i 0.530696 0.847562i \(-0.321931\pi\)
−0.468662 + 0.883377i \(0.655264\pi\)
\(954\) 0 0
\(955\) 4.23131 + 2.44295i 0.136922 + 0.0790520i
\(956\) 0 0
\(957\) −76.2250 −2.46401
\(958\) 0 0
\(959\) 4.45907 2.57445i 0.143991 0.0831332i
\(960\) 0 0
\(961\) 48.2161 1.55536
\(962\) 0 0
\(963\) 18.0000 + 31.1769i 0.580042 + 1.00466i
\(964\) 0 0
\(965\) 22.5240 13.0042i 0.725073 0.418621i
\(966\) 0 0
\(967\) −25.7624 14.8739i −0.828463 0.478313i 0.0248629 0.999691i \(-0.492085\pi\)
−0.853326 + 0.521377i \(0.825418\pi\)
\(968\) 0 0
\(969\) 2.76910 3.01187i 0.0889563 0.0967551i
\(970\) 0 0
\(971\) 5.85052 10.1334i 0.187752 0.325196i −0.756748 0.653706i \(-0.773213\pi\)
0.944500 + 0.328510i \(0.106547\pi\)
\(972\) 0 0
\(973\) −2.42748 4.20453i −0.0778216 0.134791i
\(974\) 0 0
\(975\) 7.36116 4.24997i 0.235746 0.136108i
\(976\) 0 0
\(977\) 30.4588i 0.974462i 0.873273 + 0.487231i \(0.161993\pi\)
−0.873273 + 0.487231i \(0.838007\pi\)
\(978\) 0 0
\(979\) 4.40793 + 7.63477i 0.140878 + 0.244008i
\(980\) 0 0
\(981\) 70.5086i 2.25116i
\(982\) 0 0
\(983\) 15.3470 26.5817i 0.489492 0.847825i −0.510435 0.859917i \(-0.670515\pi\)
0.999927 + 0.0120911i \(0.00384881\pi\)
\(984\) 0 0
\(985\) 4.97731 8.62096i 0.158590 0.274687i
\(986\) 0 0
\(987\) 19.4154 0.618000
\(988\) 0 0
\(989\) −4.23131 −0.134548
\(990\) 0 0
\(991\) −22.6690 + 39.2639i −0.720106 + 1.24726i 0.240852 + 0.970562i \(0.422573\pi\)
−0.960957 + 0.276697i \(0.910760\pi\)
\(992\) 0 0
\(993\) −46.1241 + 79.8892i −1.46370 + 2.53521i
\(994\) 0 0
\(995\) 39.6523i 1.25706i
\(996\) 0 0
\(997\) 29.8972 + 51.7835i 0.946854 + 1.64000i 0.751996 + 0.659168i \(0.229091\pi\)
0.194858 + 0.980831i \(0.437575\pi\)
\(998\) 0 0
\(999\) 142.151i 4.49747i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.2.n.e.255.3 6
4.3 odd 2 1216.2.n.d.255.1 6
8.3 odd 2 304.2.n.e.255.3 yes 6
8.5 even 2 304.2.n.d.255.1 yes 6
19.12 odd 6 1216.2.n.d.639.1 6
24.5 odd 2 2736.2.bm.l.559.3 6
24.11 even 2 2736.2.bm.m.559.3 6
76.31 even 6 inner 1216.2.n.e.639.3 6
152.69 odd 6 304.2.n.e.31.3 yes 6
152.107 even 6 304.2.n.d.31.1 6
456.107 odd 6 2736.2.bm.l.1855.3 6
456.221 even 6 2736.2.bm.m.1855.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
304.2.n.d.31.1 6 152.107 even 6
304.2.n.d.255.1 yes 6 8.5 even 2
304.2.n.e.31.3 yes 6 152.69 odd 6
304.2.n.e.255.3 yes 6 8.3 odd 2
1216.2.n.d.255.1 6 4.3 odd 2
1216.2.n.d.639.1 6 19.12 odd 6
1216.2.n.e.255.3 6 1.1 even 1 trivial
1216.2.n.e.639.3 6 76.31 even 6 inner
2736.2.bm.l.559.3 6 24.5 odd 2
2736.2.bm.l.1855.3 6 456.107 odd 6
2736.2.bm.m.559.3 6 24.11 even 2
2736.2.bm.m.1855.3 6 456.221 even 6