Properties

Label 2736.2.bm.l.1855.3
Level $2736$
Weight $2$
Character 2736.1855
Analytic conductor $21.847$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2736,2,Mod(559,2736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2736, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2736.559");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.bm (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.8470699930\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.31726512.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 10x^{4} + 3x^{3} + 84x^{2} - 27x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 304)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1855.3
Root \(1.69617 + 2.93786i\) of defining polynomial
Character \(\chi\) \(=\) 2736.1855
Dual form 2736.2.bm.l.559.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.19617 + 2.07183i) q^{5} -1.22147i q^{7} +2.95353i q^{11} +(3.00000 + 1.73205i) q^{13} +(-0.138344 - 0.239619i) q^{17} +(-1.30383 + 4.15933i) q^{19} +(1.05783 + 0.610737i) q^{23} +(-0.361656 + 0.626406i) q^{25} +(6.58852 + 3.80388i) q^{29} -8.90034 q^{31} +(2.53069 - 1.46109i) q^{35} -7.60776i q^{37} +(-8.26200 + 4.77007i) q^{41} +(-3.00000 + 1.73205i) q^{43} +(-4.05783 - 2.34279i) q^{47} +5.50800 q^{49} +(6.00000 + 3.46410i) q^{53} +(-6.11921 + 3.53292i) q^{55} +(3.44217 + 5.96202i) q^{59} +(-3.19617 + 5.53593i) q^{61} +8.28732i q^{65} +(3.83452 - 6.64158i) q^{67} +(3.00000 + 5.19615i) q^{71} +(1.75400 + 3.03802i) q^{73} +3.60766 q^{77} +(-0.392344 - 0.679560i) q^{79} -8.31866i q^{83} +(0.330967 - 0.573252i) q^{85} +(2.58497 + 1.49243i) q^{89} +(2.11566 - 3.66442i) q^{91} +(-10.1770 + 2.27396i) q^{95} +(-5.67703 + 3.27764i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{5} + 18 q^{13} + 2 q^{17} - 17 q^{19} - 5 q^{25} + 12 q^{29} - 4 q^{31} - 6 q^{35} - 3 q^{41} - 18 q^{43} - 18 q^{47} + 2 q^{49} + 36 q^{53} + 12 q^{55} + 27 q^{59} - 10 q^{61} + 11 q^{67} + 18 q^{71}+ \cdots + 21 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.19617 + 2.07183i 0.534944 + 0.926551i 0.999166 + 0.0408319i \(0.0130008\pi\)
−0.464222 + 0.885719i \(0.653666\pi\)
\(6\) 0 0
\(7\) 1.22147i 0.461674i −0.972992 0.230837i \(-0.925854\pi\)
0.972992 0.230837i \(-0.0741464\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.95353i 0.890521i 0.895401 + 0.445261i \(0.146889\pi\)
−0.895401 + 0.445261i \(0.853111\pi\)
\(12\) 0 0
\(13\) 3.00000 + 1.73205i 0.832050 + 0.480384i 0.854554 0.519362i \(-0.173830\pi\)
−0.0225039 + 0.999747i \(0.507164\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.138344 0.239619i −0.0335534 0.0581162i 0.848761 0.528777i \(-0.177349\pi\)
−0.882314 + 0.470660i \(0.844016\pi\)
\(18\) 0 0
\(19\) −1.30383 + 4.15933i −0.299119 + 0.954216i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.05783 + 0.610737i 0.220572 + 0.127348i 0.606215 0.795301i \(-0.292687\pi\)
−0.385643 + 0.922648i \(0.626020\pi\)
\(24\) 0 0
\(25\) −0.361656 + 0.626406i −0.0723311 + 0.125281i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.58852 + 3.80388i 1.22346 + 0.706363i 0.965653 0.259834i \(-0.0836679\pi\)
0.257804 + 0.966197i \(0.417001\pi\)
\(30\) 0 0
\(31\) −8.90034 −1.59855 −0.799275 0.600966i \(-0.794783\pi\)
−0.799275 + 0.600966i \(0.794783\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.53069 1.46109i 0.427764 0.246970i
\(36\) 0 0
\(37\) 7.60776i 1.25071i −0.780341 0.625354i \(-0.784954\pi\)
0.780341 0.625354i \(-0.215046\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.26200 + 4.77007i −1.29031 + 0.744959i −0.978709 0.205254i \(-0.934198\pi\)
−0.311599 + 0.950214i \(0.600865\pi\)
\(42\) 0 0
\(43\) −3.00000 + 1.73205i −0.457496 + 0.264135i −0.710991 0.703201i \(-0.751753\pi\)
0.253495 + 0.967337i \(0.418420\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.05783 2.34279i −0.591895 0.341731i 0.173951 0.984754i \(-0.444346\pi\)
−0.765846 + 0.643023i \(0.777680\pi\)
\(48\) 0 0
\(49\) 5.50800 0.786857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 + 3.46410i 0.824163 + 0.475831i 0.851850 0.523786i \(-0.175481\pi\)
−0.0276867 + 0.999617i \(0.508814\pi\)
\(54\) 0 0
\(55\) −6.11921 + 3.53292i −0.825113 + 0.476379i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.44217 + 5.96202i 0.448133 + 0.776188i 0.998265 0.0588893i \(-0.0187559\pi\)
−0.550132 + 0.835078i \(0.685423\pi\)
\(60\) 0 0
\(61\) −3.19617 + 5.53593i −0.409228 + 0.708804i −0.994803 0.101814i \(-0.967535\pi\)
0.585576 + 0.810618i \(0.300869\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.28732i 1.02792i
\(66\) 0 0
\(67\) 3.83452 6.64158i 0.468461 0.811398i −0.530889 0.847441i \(-0.678142\pi\)
0.999350 + 0.0360433i \(0.0114754\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.00000 + 5.19615i 0.356034 + 0.616670i 0.987294 0.158901i \(-0.0507952\pi\)
−0.631260 + 0.775571i \(0.717462\pi\)
\(72\) 0 0
\(73\) 1.75400 + 3.03802i 0.205290 + 0.355573i 0.950225 0.311564i \(-0.100853\pi\)
−0.744935 + 0.667137i \(0.767520\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.60766 0.411131
\(78\) 0 0
\(79\) −0.392344 0.679560i −0.0441422 0.0764565i 0.843110 0.537741i \(-0.180722\pi\)
−0.887252 + 0.461284i \(0.847389\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.31866i 0.913092i −0.889700 0.456546i \(-0.849086\pi\)
0.889700 0.456546i \(-0.150914\pi\)
\(84\) 0 0
\(85\) 0.330967 0.573252i 0.0358984 0.0621779i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.58497 + 1.49243i 0.274006 + 0.158197i 0.630707 0.776021i \(-0.282765\pi\)
−0.356701 + 0.934219i \(0.616098\pi\)
\(90\) 0 0
\(91\) 2.11566 3.66442i 0.221781 0.384136i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −10.1770 + 2.27396i −1.04414 + 0.233304i
\(96\) 0 0
\(97\) −5.67703 + 3.27764i −0.576415 + 0.332794i −0.759708 0.650265i \(-0.774658\pi\)
0.183292 + 0.983058i \(0.441325\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.09652 + 14.0236i −0.805634 + 1.39540i 0.110229 + 0.993906i \(0.464842\pi\)
−0.915863 + 0.401492i \(0.868492\pi\)
\(102\) 0 0
\(103\) 2.55338 0.251592 0.125796 0.992056i \(-0.459852\pi\)
0.125796 + 0.992056i \(0.459852\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.23131 −0.409056 −0.204528 0.978861i \(-0.565566\pi\)
−0.204528 + 0.978861i \(0.565566\pi\)
\(108\) 0 0
\(109\) −7.17703 + 4.14366i −0.687435 + 0.396891i −0.802650 0.596450i \(-0.796578\pi\)
0.115215 + 0.993341i \(0.463244\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.73205i 0.162938i 0.996676 + 0.0814688i \(0.0259611\pi\)
−0.996676 + 0.0814688i \(0.974039\pi\)
\(114\) 0 0
\(115\) 2.92219i 0.272495i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.292689 + 0.168984i −0.0268307 + 0.0154907i
\(120\) 0 0
\(121\) 2.27669 0.206972
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.2313 0.915116
\(126\) 0 0
\(127\) 4.27669 7.40744i 0.379495 0.657304i −0.611494 0.791249i \(-0.709431\pi\)
0.990989 + 0.133945i \(0.0427645\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.97286 + 3.44843i −0.521851 + 0.301291i −0.737692 0.675138i \(-0.764084\pi\)
0.215840 + 0.976429i \(0.430751\pi\)
\(132\) 0 0
\(133\) 5.08052 + 1.59259i 0.440537 + 0.138095i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.10766 3.65057i 0.180069 0.311889i −0.761835 0.647771i \(-0.775701\pi\)
0.941904 + 0.335882i \(0.109035\pi\)
\(138\) 0 0
\(139\) 3.44217 + 1.98734i 0.291961 + 0.168564i 0.638826 0.769351i \(-0.279420\pi\)
−0.346865 + 0.937915i \(0.612754\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.11566 + 8.86058i −0.427793 + 0.740959i
\(144\) 0 0
\(145\) 18.2004i 1.51146i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.31183 + 5.73625i 0.271316 + 0.469932i 0.969199 0.246279i \(-0.0792080\pi\)
−0.697883 + 0.716211i \(0.745875\pi\)
\(150\) 0 0
\(151\) −7.22241 −0.587751 −0.293876 0.955844i \(-0.594945\pi\)
−0.293876 + 0.955844i \(0.594945\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.6463 18.4400i −0.855135 1.48114i
\(156\) 0 0
\(157\) 5.50800 + 9.54014i 0.439586 + 0.761386i 0.997657 0.0684073i \(-0.0217917\pi\)
−0.558071 + 0.829793i \(0.688458\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.746000 1.29211i 0.0587930 0.101833i
\(162\) 0 0
\(163\) 2.61556i 0.204866i 0.994740 + 0.102433i \(0.0326628\pi\)
−0.994740 + 0.102433i \(0.967337\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.29269 + 10.8993i −0.486943 + 0.843410i −0.999887 0.0150120i \(-0.995221\pi\)
0.512944 + 0.858422i \(0.328555\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −15.0000 + 8.66025i −1.14043 + 0.658427i −0.946537 0.322596i \(-0.895445\pi\)
−0.193892 + 0.981023i \(0.562111\pi\)
\(174\) 0 0
\(175\) 0.765139 + 0.441753i 0.0578391 + 0.0333934i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.40834 0.180008 0.0900041 0.995941i \(-0.471312\pi\)
0.0900041 + 0.995941i \(0.471312\pi\)
\(180\) 0 0
\(181\) −15.9355 9.20036i −1.18448 0.683857i −0.227430 0.973795i \(-0.573032\pi\)
−0.957046 + 0.289937i \(0.906365\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 15.7620 9.10020i 1.15885 0.669060i
\(186\) 0 0
\(187\) 0.707722 0.408603i 0.0517537 0.0298800i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.04231i 0.147776i 0.997267 + 0.0738880i \(0.0235407\pi\)
−0.997267 + 0.0738880i \(0.976459\pi\)
\(192\) 0 0
\(193\) 9.41503 5.43577i 0.677709 0.391275i −0.121282 0.992618i \(-0.538701\pi\)
0.798991 + 0.601343i \(0.205367\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.16103 0.296461 0.148231 0.988953i \(-0.452642\pi\)
0.148231 + 0.988953i \(0.452642\pi\)
\(198\) 0 0
\(199\) 14.3541 + 8.28732i 1.01753 + 0.587473i 0.913388 0.407089i \(-0.133456\pi\)
0.104144 + 0.994562i \(0.466790\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.64634 8.04770i 0.326109 0.564838i
\(204\) 0 0
\(205\) −19.7655 11.4116i −1.38049 0.797024i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −12.2847 3.85089i −0.849750 0.266372i
\(210\) 0 0
\(211\) 5.03869 + 8.72726i 0.346878 + 0.600810i 0.985693 0.168550i \(-0.0539086\pi\)
−0.638815 + 0.769360i \(0.720575\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −7.17703 4.14366i −0.489470 0.282595i
\(216\) 0 0
\(217\) 10.8715i 0.738008i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.958477i 0.0644742i
\(222\) 0 0
\(223\) 2.78114 + 4.81707i 0.186239 + 0.322575i 0.943993 0.329965i \(-0.107037\pi\)
−0.757754 + 0.652540i \(0.773704\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −16.1770 −1.07371 −0.536854 0.843675i \(-0.680387\pi\)
−0.536854 + 0.843675i \(0.680387\pi\)
\(228\) 0 0
\(229\) 6.78469 0.448345 0.224172 0.974549i \(-0.428032\pi\)
0.224172 + 0.974549i \(0.428032\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5.53869 9.59329i −0.362852 0.628477i 0.625577 0.780162i \(-0.284863\pi\)
−0.988429 + 0.151685i \(0.951530\pi\)
\(234\) 0 0
\(235\) 11.2095i 0.731228i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.38027i 0.153967i −0.997032 0.0769835i \(-0.975471\pi\)
0.997032 0.0769835i \(-0.0245289\pi\)
\(240\) 0 0
\(241\) 18.4390 + 10.6458i 1.18776 + 0.685755i 0.957797 0.287444i \(-0.0928055\pi\)
0.229965 + 0.973199i \(0.426139\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.58852 + 11.4116i 0.420925 + 0.729063i
\(246\) 0 0
\(247\) −11.1157 + 10.2197i −0.707272 + 0.650264i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.85720 2.22696i −0.243465 0.140564i 0.373303 0.927709i \(-0.378225\pi\)
−0.616768 + 0.787145i \(0.711558\pi\)
\(252\) 0 0
\(253\) −1.80383 + 3.12432i −0.113406 + 0.196424i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.08497 + 2.35846i 0.254813 + 0.147117i 0.621966 0.783044i \(-0.286334\pi\)
−0.367153 + 0.930161i \(0.619667\pi\)
\(258\) 0 0
\(259\) −9.29269 −0.577420
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −24.7589 + 14.2945i −1.52670 + 0.881439i −0.527199 + 0.849742i \(0.676758\pi\)
−0.999498 + 0.0316971i \(0.989909\pi\)
\(264\) 0 0
\(265\) 16.5746i 1.01817i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.83007 5.67539i 0.599350 0.346035i −0.169436 0.985541i \(-0.554195\pi\)
0.768786 + 0.639506i \(0.220861\pi\)
\(270\) 0 0
\(271\) 4.35052 2.51177i 0.264275 0.152579i −0.362008 0.932175i \(-0.617909\pi\)
0.626283 + 0.779596i \(0.284575\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.85011 1.06816i −0.111566 0.0644124i
\(276\) 0 0
\(277\) 28.4243 1.70785 0.853927 0.520393i \(-0.174215\pi\)
0.853927 + 0.520393i \(0.174215\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 13.9150 + 8.03385i 0.830101 + 0.479259i 0.853887 0.520458i \(-0.174239\pi\)
−0.0237861 + 0.999717i \(0.507572\pi\)
\(282\) 0 0
\(283\) 17.0885 9.86606i 1.01581 0.586476i 0.102920 0.994690i \(-0.467181\pi\)
0.912887 + 0.408213i \(0.133848\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.82652 + 10.0918i 0.343928 + 0.595701i
\(288\) 0 0
\(289\) 8.46172 14.6561i 0.497748 0.862125i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.9366i 0.872606i −0.899800 0.436303i \(-0.856288\pi\)
0.899800 0.436303i \(-0.143712\pi\)
\(294\) 0 0
\(295\) −8.23486 + 14.2632i −0.479452 + 0.830435i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.11566 + 3.66442i 0.122352 + 0.211919i
\(300\) 0 0
\(301\) 2.11566 + 3.66442i 0.121944 + 0.211214i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −15.2927 −0.875657
\(306\) 0 0
\(307\) −11.0658 19.1666i −0.631560 1.09389i −0.987233 0.159284i \(-0.949082\pi\)
0.355673 0.934611i \(-0.384252\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 26.8293i 1.52135i 0.649133 + 0.760675i \(0.275132\pi\)
−0.649133 + 0.760675i \(0.724868\pi\)
\(312\) 0 0
\(313\) 0.246000 0.426084i 0.0139047 0.0240837i −0.858989 0.511994i \(-0.828907\pi\)
0.872894 + 0.487910i \(0.162241\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.5240 + 7.80809i 0.759584 + 0.438546i 0.829146 0.559032i \(-0.188827\pi\)
−0.0695627 + 0.997578i \(0.522160\pi\)
\(318\) 0 0
\(319\) −11.2349 + 19.4593i −0.629031 + 1.08951i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.17703 0.262997i 0.0654919 0.0146336i
\(324\) 0 0
\(325\) −2.16993 + 1.25281i −0.120366 + 0.0694935i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.86166 + 4.95653i −0.157768 + 0.273263i
\(330\) 0 0
\(331\) 27.1930 1.49466 0.747332 0.664451i \(-0.231334\pi\)
0.747332 + 0.664451i \(0.231334\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 18.3470 1.00240
\(336\) 0 0
\(337\) 18.0240 10.4062i 0.981830 0.566860i 0.0790078 0.996874i \(-0.474825\pi\)
0.902822 + 0.430014i \(0.141491\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 26.2874i 1.42354i
\(342\) 0 0
\(343\) 15.2782i 0.824945i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 22.5649 13.0279i 1.21135 0.699373i 0.248296 0.968684i \(-0.420130\pi\)
0.963053 + 0.269312i \(0.0867962\pi\)
\(348\) 0 0
\(349\) −24.3541 −1.30364 −0.651822 0.758372i \(-0.725995\pi\)
−0.651822 + 0.758372i \(0.725995\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −18.0160 −0.958895 −0.479447 0.877571i \(-0.659163\pi\)
−0.479447 + 0.877571i \(0.659163\pi\)
\(354\) 0 0
\(355\) −7.17703 + 12.4310i −0.380917 + 0.659768i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.1192 13.9252i 1.27296 0.734946i 0.297418 0.954747i \(-0.403874\pi\)
0.975545 + 0.219802i \(0.0705410\pi\)
\(360\) 0 0
\(361\) −15.6001 10.8461i −0.821056 0.570848i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.19617 + 7.26798i −0.219638 + 0.380424i
\(366\) 0 0
\(367\) 26.1806 + 15.1154i 1.36662 + 0.789016i 0.990494 0.137555i \(-0.0439243\pi\)
0.376121 + 0.926571i \(0.377258\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.23131 7.32885i 0.219679 0.380495i
\(372\) 0 0
\(373\) 10.7929i 0.558838i 0.960169 + 0.279419i \(0.0901418\pi\)
−0.960169 + 0.279419i \(0.909858\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 13.1770 + 22.8233i 0.678652 + 1.17546i
\(378\) 0 0
\(379\) −20.5080 −1.05343 −0.526713 0.850043i \(-0.676576\pi\)
−0.526713 + 0.850043i \(0.676576\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −7.05783 12.2245i −0.360638 0.624644i 0.627428 0.778675i \(-0.284108\pi\)
−0.988066 + 0.154031i \(0.950774\pi\)
\(384\) 0 0
\(385\) 4.31538 + 7.47445i 0.219932 + 0.380933i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.27669 + 5.67539i −0.166135 + 0.287754i −0.937058 0.349175i \(-0.886462\pi\)
0.770923 + 0.636928i \(0.219795\pi\)
\(390\) 0 0
\(391\) 0.337968i 0.0170918i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.938623 1.62574i 0.0472272 0.0818000i
\(396\) 0 0
\(397\) −10.6045 18.3676i −0.532225 0.921842i −0.999292 0.0376194i \(-0.988023\pi\)
0.467067 0.884222i \(-0.345311\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.33007 + 3.07731i −0.266171 + 0.153674i −0.627146 0.778902i \(-0.715777\pi\)
0.360975 + 0.932575i \(0.382444\pi\)
\(402\) 0 0
\(403\) −26.7010 15.4158i −1.33007 0.767918i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 22.4697 1.11378
\(408\) 0 0
\(409\) −9.09207 5.24931i −0.449574 0.259562i 0.258076 0.966125i \(-0.416911\pi\)
−0.707650 + 0.706563i \(0.750245\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.28245 4.20453i 0.358346 0.206891i
\(414\) 0 0
\(415\) 17.2349 9.95055i 0.846026 0.488453i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 36.3381i 1.77523i −0.460584 0.887616i \(-0.652360\pi\)
0.460584 0.887616i \(-0.347640\pi\)
\(420\) 0 0
\(421\) 18.2896 10.5595i 0.891378 0.514637i 0.0169851 0.999856i \(-0.494593\pi\)
0.874393 + 0.485218i \(0.161260\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.200132 0.00970783
\(426\) 0 0
\(427\) 6.76200 + 3.90404i 0.327236 + 0.188930i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7.23131 + 12.5250i −0.348320 + 0.603308i −0.985951 0.167034i \(-0.946581\pi\)
0.637631 + 0.770342i \(0.279914\pi\)
\(432\) 0 0
\(433\) −31.2931 18.0671i −1.50385 0.868248i −0.999990 0.00446329i \(-0.998579\pi\)
−0.503860 0.863785i \(-0.668087\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.91948 + 3.60356i −0.187494 + 0.172382i
\(438\) 0 0
\(439\) 7.84252 + 13.5836i 0.374303 + 0.648312i 0.990222 0.139497i \(-0.0445487\pi\)
−0.615920 + 0.787809i \(0.711215\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 14.6739 + 8.47198i 0.697178 + 0.402516i 0.806295 0.591513i \(-0.201469\pi\)
−0.109118 + 0.994029i \(0.534803\pi\)
\(444\) 0 0
\(445\) 7.14082i 0.338507i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 17.8275i 0.841330i −0.907216 0.420665i \(-0.861797\pi\)
0.907216 0.420665i \(-0.138203\pi\)
\(450\) 0 0
\(451\) −14.0885 24.4020i −0.663402 1.14905i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 10.1228 0.474562
\(456\) 0 0
\(457\) 19.8301 0.927611 0.463806 0.885937i \(-0.346484\pi\)
0.463806 + 0.885937i \(0.346484\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16.4537 28.4987i −0.766326 1.32732i −0.939543 0.342432i \(-0.888749\pi\)
0.173216 0.984884i \(-0.444584\pi\)
\(462\) 0 0
\(463\) 21.3979i 0.994443i −0.867624 0.497222i \(-0.834354\pi\)
0.867624 0.497222i \(-0.165646\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.79790i 0.407118i −0.979063 0.203559i \(-0.934749\pi\)
0.979063 0.203559i \(-0.0652509\pi\)
\(468\) 0 0
\(469\) −8.11252 4.68376i −0.374601 0.216276i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5.11566 8.86058i −0.235218 0.407410i
\(474\) 0 0
\(475\) −2.13389 2.32097i −0.0979097 0.106493i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.11566 + 1.22147i 0.0966668 + 0.0558106i 0.547554 0.836770i \(-0.315559\pi\)
−0.450887 + 0.892581i \(0.648892\pi\)
\(480\) 0 0
\(481\) 13.1770 22.8233i 0.600821 1.04065i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −13.5814 7.84124i −0.616700 0.356052i
\(486\) 0 0
\(487\) −25.0231 −1.13390 −0.566952 0.823751i \(-0.691878\pi\)
−0.566952 + 0.823751i \(0.691878\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 36.6397 21.1539i 1.65352 0.954663i 0.677918 0.735138i \(-0.262883\pi\)
0.975607 0.219525i \(-0.0704508\pi\)
\(492\) 0 0
\(493\) 2.10498i 0.0948036i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.34697 3.66442i 0.284700 0.164372i
\(498\) 0 0
\(499\) −21.2113 + 12.2463i −0.949547 + 0.548221i −0.892940 0.450175i \(-0.851361\pi\)
−0.0566067 + 0.998397i \(0.518028\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 32.9288 + 19.0114i 1.46822 + 0.847679i 0.999366 0.0355959i \(-0.0113329\pi\)
0.468856 + 0.883275i \(0.344666\pi\)
\(504\) 0 0
\(505\) −38.7393 −1.72388
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −9.34697 5.39647i −0.414297 0.239195i 0.278337 0.960483i \(-0.410217\pi\)
−0.692634 + 0.721289i \(0.743550\pi\)
\(510\) 0 0
\(511\) 3.71086 2.14247i 0.164159 0.0947771i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.05428 + 5.29017i 0.134588 + 0.233113i
\(516\) 0 0
\(517\) 6.91948 11.9849i 0.304319 0.527095i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13.4835i 0.590722i −0.955386 0.295361i \(-0.904560\pi\)
0.955386 0.295361i \(-0.0954399\pi\)
\(522\) 0 0
\(523\) 12.7393 22.0651i 0.557051 0.964841i −0.440690 0.897660i \(-0.645266\pi\)
0.997741 0.0671814i \(-0.0214006\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.23131 + 2.13269i 0.0536368 + 0.0929016i
\(528\) 0 0
\(529\) −10.7540 18.6265i −0.467565 0.809847i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −33.0480 −1.43147
\(534\) 0 0
\(535\) −5.06138 8.76656i −0.218822 0.379012i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 16.2680i 0.700713i
\(540\) 0 0
\(541\) −15.5080 + 26.8606i −0.666741 + 1.15483i 0.312069 + 0.950059i \(0.398978\pi\)
−0.978810 + 0.204770i \(0.934355\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −17.1699 9.91307i −0.735479 0.424629i
\(546\) 0 0
\(547\) 9.83897 17.0416i 0.420684 0.728646i −0.575323 0.817927i \(-0.695123\pi\)
0.996007 + 0.0892807i \(0.0284568\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −24.4119 + 22.4442i −1.03998 + 0.956156i
\(552\) 0 0
\(553\) −0.830066 + 0.479239i −0.0352980 + 0.0203793i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.56938 + 16.5746i −0.405468 + 0.702290i −0.994376 0.105910i \(-0.966225\pi\)
0.588908 + 0.808200i \(0.299558\pi\)
\(558\) 0 0
\(559\) −12.0000 −0.507546
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −38.4083 −1.61872 −0.809359 0.587314i \(-0.800185\pi\)
−0.809359 + 0.587314i \(0.800185\pi\)
\(564\) 0 0
\(565\) −3.58852 + 2.07183i −0.150970 + 0.0871626i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 34.7750i 1.45785i −0.684596 0.728923i \(-0.740021\pi\)
0.684596 0.728923i \(-0.259979\pi\)
\(570\) 0 0
\(571\) 30.9257i 1.29420i 0.762405 + 0.647100i \(0.224019\pi\)
−0.762405 + 0.647100i \(0.775981\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.765139 + 0.441753i −0.0319085 + 0.0184224i
\(576\) 0 0
\(577\) −27.7847 −1.15669 −0.578346 0.815792i \(-0.696302\pi\)
−0.578346 + 0.815792i \(0.696302\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −10.1610 −0.421551
\(582\) 0 0
\(583\) −10.2313 + 17.7212i −0.423738 + 0.733935i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.0614 8.11834i 0.580375 0.335080i −0.180907 0.983500i \(-0.557903\pi\)
0.761282 + 0.648420i \(0.224570\pi\)
\(588\) 0 0
\(589\) 11.6045 37.0195i 0.478156 1.52536i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −5.57697 + 9.65959i −0.229019 + 0.396672i −0.957518 0.288375i \(-0.906885\pi\)
0.728499 + 0.685047i \(0.240218\pi\)
\(594\) 0 0
\(595\) −0.700213 0.404268i −0.0287059 0.0165734i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −7.00355 + 12.1305i −0.286157 + 0.495639i −0.972889 0.231272i \(-0.925711\pi\)
0.686732 + 0.726911i \(0.259045\pi\)
\(600\) 0 0
\(601\) 35.5486i 1.45006i −0.688718 0.725029i \(-0.741826\pi\)
0.688718 0.725029i \(-0.258174\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.72331 + 4.71691i 0.110718 + 0.191770i
\(606\) 0 0
\(607\) −7.13166 −0.289465 −0.144732 0.989471i \(-0.546232\pi\)
−0.144732 + 0.989471i \(0.546232\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8.11566 14.0567i −0.328324 0.568674i
\(612\) 0 0
\(613\) −8.90034 15.4158i −0.359482 0.622640i 0.628393 0.777896i \(-0.283713\pi\)
−0.987874 + 0.155256i \(0.950380\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.2847 21.2777i 0.494563 0.856608i −0.505417 0.862875i \(-0.668661\pi\)
0.999980 + 0.00626683i \(0.00199481\pi\)
\(618\) 0 0
\(619\) 21.6804i 0.871409i −0.900090 0.435705i \(-0.856499\pi\)
0.900090 0.435705i \(-0.143501\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.82297 3.15747i 0.0730356 0.126501i
\(624\) 0 0
\(625\) 14.0467 + 24.3296i 0.561868 + 0.973183i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.82297 + 1.05249i −0.0726865 + 0.0419655i
\(630\) 0 0
\(631\) 36.7589 + 21.2227i 1.46335 + 0.844864i 0.999164 0.0408755i \(-0.0130147\pi\)
0.464183 + 0.885739i \(0.346348\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 20.4626 0.812034
\(636\) 0 0
\(637\) 16.5240 + 9.54014i 0.654705 + 0.377994i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 11.7451 6.78104i 0.463903 0.267835i −0.249781 0.968302i \(-0.580359\pi\)
0.713684 + 0.700468i \(0.247025\pi\)
\(642\) 0 0
\(643\) 26.4355 15.2625i 1.04251 0.601896i 0.121969 0.992534i \(-0.461079\pi\)
0.920544 + 0.390638i \(0.127746\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20.7219i 0.814663i −0.913280 0.407332i \(-0.866459\pi\)
0.913280 0.407332i \(-0.133541\pi\)
\(648\) 0 0
\(649\) −17.6090 + 10.1665i −0.691212 + 0.399072i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 35.9234 1.40579 0.702896 0.711292i \(-0.251890\pi\)
0.702896 + 0.711292i \(0.251890\pi\)
\(654\) 0 0
\(655\) −14.2891 8.24984i −0.558323 0.322348i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 18.5854 32.1908i 0.723984 1.25398i −0.235408 0.971897i \(-0.575642\pi\)
0.959391 0.282079i \(-0.0910242\pi\)
\(660\) 0 0
\(661\) 12.1054 + 6.98907i 0.470846 + 0.271843i 0.716594 0.697491i \(-0.245700\pi\)
−0.245748 + 0.969334i \(0.579033\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.77759 + 12.4310i 0.107710 + 0.482053i
\(666\) 0 0
\(667\) 4.64634 + 8.04770i 0.179907 + 0.311608i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −16.3505 9.43998i −0.631205 0.364426i
\(672\) 0 0
\(673\) 1.62574i 0.0626678i 0.999509 + 0.0313339i \(0.00997552\pi\)
−0.999509 + 0.0313339i \(0.990024\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 44.6881i 1.71750i −0.512392 0.858752i \(-0.671241\pi\)
0.512392 0.858752i \(-0.328759\pi\)
\(678\) 0 0
\(679\) 4.00355 + 6.93435i 0.153642 + 0.266116i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −15.5374 −0.594521 −0.297261 0.954796i \(-0.596073\pi\)
−0.297261 + 0.954796i \(0.596073\pi\)
\(684\) 0 0
\(685\) 10.0845 0.385308
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.0000 + 20.7846i 0.457164 + 0.791831i
\(690\) 0 0
\(691\) 6.18234i 0.235187i −0.993062 0.117594i \(-0.962482\pi\)
0.993062 0.117594i \(-0.0375180\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.50880i 0.360689i
\(696\) 0 0
\(697\) 2.28600 + 1.31982i 0.0865885 + 0.0499919i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6.60452 11.4394i −0.249449 0.432059i 0.713924 0.700223i \(-0.246916\pi\)
−0.963373 + 0.268165i \(0.913583\pi\)
\(702\) 0 0
\(703\) 31.6432 + 9.91921i 1.19345 + 0.374110i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17.1294 + 9.88969i 0.644219 + 0.371940i
\(708\) 0 0
\(709\) 6.42748 11.1327i 0.241389 0.418098i −0.719721 0.694263i \(-0.755730\pi\)
0.961110 + 0.276165i \(0.0890636\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.41503 5.43577i −0.352596 0.203571i
\(714\) 0 0
\(715\) −24.4768 −0.915381
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 38.2998 22.1124i 1.42834 0.824653i 0.431351 0.902184i \(-0.358037\pi\)
0.996990 + 0.0775310i \(0.0247037\pi\)
\(720\) 0 0
\(721\) 3.11888i 0.116153i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.76555 + 2.75139i −0.176988 + 0.102184i
\(726\) 0 0
\(727\) 7.47600 4.31627i 0.277269 0.160082i −0.354917 0.934898i \(-0.615491\pi\)
0.632187 + 0.774816i \(0.282158\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.830066 + 0.479239i 0.0307011 + 0.0177253i
\(732\) 0 0
\(733\) 33.8532 1.25040 0.625198 0.780467i \(-0.285018\pi\)
0.625198 + 0.780467i \(0.285018\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 19.6161 + 11.3253i 0.722567 + 0.417174i
\(738\) 0 0
\(739\) −2.26514 + 1.30778i −0.0833245 + 0.0481074i −0.541083 0.840969i \(-0.681986\pi\)
0.457759 + 0.889076i \(0.348652\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.4119 + 31.8903i 0.675467 + 1.16994i 0.976332 + 0.216276i \(0.0693912\pi\)
−0.300865 + 0.953667i \(0.597275\pi\)
\(744\) 0 0
\(745\) −7.92303 + 13.7231i −0.290277 + 0.502775i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 5.16844i 0.188851i
\(750\) 0 0
\(751\) −15.3923 + 26.6603i −0.561675 + 0.972849i 0.435676 + 0.900104i \(0.356509\pi\)
−0.997351 + 0.0727454i \(0.976824\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8.63925 14.9636i −0.314414 0.544582i
\(756\) 0 0
\(757\) 7.37634 + 12.7762i 0.268098 + 0.464359i 0.968371 0.249516i \(-0.0802716\pi\)
−0.700273 + 0.713875i \(0.746938\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.80069 0.174025 0.0870124 0.996207i \(-0.472268\pi\)
0.0870124 + 0.996207i \(0.472268\pi\)
\(762\) 0 0
\(763\) 5.06138 + 8.76656i 0.183234 + 0.317371i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 23.8481i 0.861104i
\(768\) 0 0
\(769\) 3.86166 6.68858i 0.139255 0.241197i −0.787960 0.615727i \(-0.788863\pi\)
0.927215 + 0.374530i \(0.122196\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −44.2966 25.5747i −1.59324 0.919857i −0.992746 0.120228i \(-0.961638\pi\)
−0.600493 0.799630i \(-0.705029\pi\)
\(774\) 0 0
\(775\) 3.21886 5.57523i 0.115625 0.200268i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.06807 40.5837i −0.324897 1.45406i
\(780\) 0 0
\(781\) −15.3470 + 8.86058i −0.549158 + 0.317056i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −13.1770 + 22.8233i −0.470308 + 0.814598i
\(786\) 0 0
\(787\) 32.2090 1.14813 0.574064 0.818810i \(-0.305366\pi\)
0.574064 + 0.818810i \(0.305366\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.11566 0.0752241
\(792\) 0 0
\(793\) −19.1770 + 11.0719i −0.680996 + 0.393173i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 46.5142i 1.64762i −0.566869 0.823808i \(-0.691845\pi\)
0.566869 0.823808i \(-0.308155\pi\)
\(798\) 0 0
\(799\) 1.29645i 0.0458649i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −8.97286 + 5.18048i −0.316645 + 0.182815i
\(804\) 0 0
\(805\) 3.56938 0.125804
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −6.36925 −0.223931 −0.111965 0.993712i \(-0.535715\pi\)
−0.111965 + 0.993712i \(0.535715\pi\)
\(810\) 0 0
\(811\) 26.3087 45.5680i 0.923823 1.60011i 0.130380 0.991464i \(-0.458380\pi\)
0.793443 0.608644i \(-0.208286\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.41899 + 3.12866i −0.189819 + 0.109592i
\(816\) 0 0
\(817\) −3.29269 14.7363i −0.115197 0.515557i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.73931 4.74463i 0.0956026 0.165589i −0.814257 0.580504i \(-0.802856\pi\)
0.909860 + 0.414915i \(0.136189\pi\)
\(822\) 0 0
\(823\) 29.7553 + 17.1792i 1.03720 + 0.598831i 0.919040 0.394163i \(-0.128966\pi\)
0.118165 + 0.992994i \(0.462299\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −20.3812 + 35.3013i −0.708724 + 1.22755i 0.256607 + 0.966516i \(0.417395\pi\)
−0.965331 + 0.261030i \(0.915938\pi\)
\(828\) 0 0
\(829\) 12.3093i 0.427518i 0.976886 + 0.213759i \(0.0685708\pi\)
−0.976886 + 0.213759i \(0.931429\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.762000 1.31982i −0.0264017 0.0457292i
\(834\) 0 0
\(835\) −30.1086 −1.04195
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.28914 + 3.96491i 0.0790299 + 0.136884i 0.902832 0.429994i \(-0.141484\pi\)
−0.823802 + 0.566878i \(0.808151\pi\)
\(840\) 0 0
\(841\) 14.4390 + 25.0091i 0.497898 + 0.862384i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.19617 2.07183i 0.0411496 0.0712732i
\(846\) 0 0
\(847\) 2.78092i 0.0955534i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.64634 8.04770i 0.159275 0.275872i
\(852\) 0 0
\(853\) 15.5080 + 26.8606i 0.530984 + 0.919691i 0.999346 + 0.0361545i \(0.0115108\pi\)
−0.468362 + 0.883536i \(0.655156\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 33.8541 19.5457i 1.15643 0.667667i 0.205986 0.978555i \(-0.433960\pi\)
0.950447 + 0.310888i \(0.100626\pi\)
\(858\) 0 0
\(859\) 32.3269 + 18.6640i 1.10298 + 0.636806i 0.937002 0.349323i \(-0.113589\pi\)
0.165978 + 0.986129i \(0.446922\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −2.70103 −0.0919443 −0.0459721 0.998943i \(-0.514639\pi\)
−0.0459721 + 0.998943i \(0.514639\pi\)
\(864\) 0 0
\(865\) −35.8852 20.7183i −1.22013 0.704444i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.00710 1.15880i 0.0680862 0.0393096i
\(870\) 0 0
\(871\) 23.0071 13.2832i 0.779566 0.450083i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 12.4973i 0.422485i
\(876\) 0 0
\(877\) 14.5956 8.42678i 0.492859 0.284552i −0.232901 0.972500i \(-0.574822\pi\)
0.725760 + 0.687948i \(0.241488\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −23.0454 −0.776418 −0.388209 0.921571i \(-0.626906\pi\)
−0.388209 + 0.921571i \(0.626906\pi\)
\(882\) 0 0
\(883\) 18.5582 + 10.7146i 0.624534 + 0.360575i 0.778632 0.627480i \(-0.215914\pi\)
−0.154098 + 0.988056i \(0.549247\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.29269 + 5.70310i −0.110558 + 0.191492i −0.915995 0.401189i \(-0.868597\pi\)
0.805438 + 0.592681i \(0.201930\pi\)
\(888\) 0 0
\(889\) −9.04800 5.22387i −0.303460 0.175203i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 15.0351 13.8233i 0.503132 0.462578i
\(894\) 0 0
\(895\) 2.88079 + 4.98968i 0.0962944 + 0.166787i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −58.6401 33.8559i −1.95576 1.12916i
\(900\) 0 0
\(901\) 1.91695i 0.0638630i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 44.0208i 1.46330i
\(906\) 0 0
\(907\) −0.342517 0.593256i −0.0113731 0.0196987i 0.860283 0.509817i \(-0.170287\pi\)
−0.871656 + 0.490118i \(0.836954\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −36.3470 −1.20423 −0.602114 0.798410i \(-0.705675\pi\)
−0.602114 + 0.798410i \(0.705675\pi\)
\(912\) 0 0
\(913\) 24.5694 0.813128
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.21217 + 7.29570i 0.139098 + 0.240925i
\(918\) 0 0
\(919\) 1.97963i 0.0653020i 0.999467 + 0.0326510i \(0.0103950\pi\)
−0.999467 + 0.0326510i \(0.989605\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 20.7846i 0.684134i
\(924\) 0 0
\(925\) 4.76555 + 2.75139i 0.156690 + 0.0904652i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.3390 + 21.3717i 0.404828 + 0.701183i 0.994301 0.106605i \(-0.0339979\pi\)
−0.589473 + 0.807788i \(0.700665\pi\)
\(930\) 0 0
\(931\) −7.18148 + 22.9096i −0.235364 + 0.750832i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.69311 + 0.977520i 0.0553707 + 0.0319683i
\(936\) 0 0
\(937\) 20.0921 34.8005i 0.656379 1.13688i −0.325167 0.945657i \(-0.605421\pi\)
0.981546 0.191225i \(-0.0612462\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −2.65303 1.53173i −0.0864864 0.0499329i 0.456133 0.889912i \(-0.349234\pi\)
−0.542619 + 0.839979i \(0.682567\pi\)
\(942\) 0 0
\(943\) −11.6530 −0.379475
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9.93862 5.73807i 0.322962 0.186462i −0.329750 0.944068i \(-0.606965\pi\)
0.652712 + 0.757606i \(0.273631\pi\)
\(948\) 0 0
\(949\) 12.1521i 0.394473i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.91503 + 1.10564i −0.0620340 + 0.0358153i −0.530696 0.847562i \(-0.678069\pi\)
0.468662 + 0.883377i \(0.344736\pi\)
\(954\) 0 0
\(955\) −4.23131 + 2.44295i −0.136922 + 0.0790520i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.45907 2.57445i −0.143991 0.0831332i
\(960\) 0 0
\(961\) 48.2161 1.55536
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 22.5240 + 13.0042i 0.725073 + 0.418621i
\(966\) 0 0
\(967\) −25.7624 + 14.8739i −0.828463 + 0.478313i −0.853326 0.521377i \(-0.825418\pi\)
0.0248629 + 0.999691i \(0.492085\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.85052 + 10.1334i 0.187752 + 0.325196i 0.944500 0.328510i \(-0.106547\pi\)
−0.756748 + 0.653706i \(0.773213\pi\)
\(972\) 0 0
\(973\) 2.42748 4.20453i 0.0778216 0.134791i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 30.4588i 0.974462i 0.873273 + 0.487231i \(0.161993\pi\)
−0.873273 + 0.487231i \(0.838007\pi\)
\(978\) 0 0
\(979\) −4.40793 + 7.63477i −0.140878 + 0.244008i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −15.3470 26.5817i −0.489492 0.847825i 0.510435 0.859917i \(-0.329485\pi\)
−0.999927 + 0.0120911i \(0.996151\pi\)
\(984\) 0 0
\(985\) 4.97731 + 8.62096i 0.158590 + 0.274687i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.23131 −0.134548
\(990\) 0 0
\(991\) −22.6690 39.2639i −0.720106 1.24726i −0.960957 0.276697i \(-0.910760\pi\)
0.240852 0.970562i \(-0.422573\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 39.6523i 1.25706i
\(996\) 0 0
\(997\) −29.8972 + 51.7835i −0.946854 + 1.64000i −0.194858 + 0.980831i \(0.562425\pi\)
−0.751996 + 0.659168i \(0.770909\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2736.2.bm.l.1855.3 6
3.2 odd 2 304.2.n.d.31.1 6
4.3 odd 2 2736.2.bm.m.1855.3 6
12.11 even 2 304.2.n.e.31.3 yes 6
19.8 odd 6 2736.2.bm.m.559.3 6
24.5 odd 2 1216.2.n.e.639.3 6
24.11 even 2 1216.2.n.d.639.1 6
57.8 even 6 304.2.n.e.255.3 yes 6
76.27 even 6 inner 2736.2.bm.l.559.3 6
228.179 odd 6 304.2.n.d.255.1 yes 6
456.179 odd 6 1216.2.n.e.255.3 6
456.293 even 6 1216.2.n.d.255.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
304.2.n.d.31.1 6 3.2 odd 2
304.2.n.d.255.1 yes 6 228.179 odd 6
304.2.n.e.31.3 yes 6 12.11 even 2
304.2.n.e.255.3 yes 6 57.8 even 6
1216.2.n.d.255.1 6 456.293 even 6
1216.2.n.d.639.1 6 24.11 even 2
1216.2.n.e.255.3 6 456.179 odd 6
1216.2.n.e.639.3 6 24.5 odd 2
2736.2.bm.l.559.3 6 76.27 even 6 inner
2736.2.bm.l.1855.3 6 1.1 even 1 trivial
2736.2.bm.m.559.3 6 19.8 odd 6
2736.2.bm.m.1855.3 6 4.3 odd 2