Properties

Label 304.2.n.e.31.3
Level $304$
Weight $2$
Character 304.31
Analytic conductor $2.427$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [304,2,Mod(31,304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(304, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("304.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 304 = 2^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 304.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.42745222145\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.31726512.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 10x^{4} + 3x^{3} + 84x^{2} - 27x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.3
Root \(1.69617 + 2.93786i\) of defining polynomial
Character \(\chi\) \(=\) 304.31
Dual form 304.2.n.e.255.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.69617 + 2.93786i) q^{3} +(-1.19617 - 2.07183i) q^{5} +1.22147i q^{7} +(-4.25400 + 7.36814i) q^{9} +2.95353i q^{11} +(3.00000 + 1.73205i) q^{13} +(4.05783 - 7.02836i) q^{15} +(0.138344 + 0.239619i) q^{17} +(1.30383 - 4.15933i) q^{19} +(-3.58852 + 2.07183i) q^{21} +(1.05783 + 0.610737i) q^{23} +(-0.361656 + 0.626406i) q^{25} -18.6850 q^{27} +(-6.58852 - 3.80388i) q^{29} +8.90034 q^{31} +(-8.67703 + 5.00969i) q^{33} +(2.53069 - 1.46109i) q^{35} -7.60776i q^{37} +11.7514i q^{39} +(8.26200 - 4.77007i) q^{41} +(3.00000 - 1.73205i) q^{43} +20.3541 q^{45} +(-4.05783 - 2.34279i) q^{47} +5.50800 q^{49} +(-0.469311 + 0.812871i) q^{51} +(-6.00000 - 3.46410i) q^{53} +(6.11921 - 3.53292i) q^{55} +(14.4310 - 3.22448i) q^{57} +(3.44217 + 5.96202i) q^{59} +(-3.19617 + 5.53593i) q^{61} +(-9.00000 - 5.19615i) q^{63} -8.28732i q^{65} +(-3.83452 + 6.64158i) q^{67} +4.14366i q^{69} +(3.00000 + 5.19615i) q^{71} +(1.75400 + 3.03802i) q^{73} -2.45372 q^{75} -3.60766 q^{77} +(0.392344 + 0.679560i) q^{79} +(-18.9310 - 32.7895i) q^{81} -8.31866i q^{83} +(0.330967 - 0.573252i) q^{85} -25.8082i q^{87} +(-2.58497 - 1.49243i) q^{89} +(-2.11566 + 3.66442i) q^{91} +(15.0965 + 26.1479i) q^{93} +(-10.1770 + 2.27396i) q^{95} +(-5.67703 + 3.27764i) q^{97} +(-21.7620 - 12.5643i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{3} + 2 q^{5} - 10 q^{9} + 18 q^{13} + 18 q^{15} - 2 q^{17} + 17 q^{19} + 6 q^{21} - 5 q^{25} - 26 q^{27} - 12 q^{29} + 4 q^{31} + 3 q^{33} - 6 q^{35} + 3 q^{41} + 18 q^{43} + 12 q^{45} - 18 q^{47}+ \cdots - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/304\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.69617 + 2.93786i 0.979285 + 1.69617i 0.664999 + 0.746844i \(0.268432\pi\)
0.314286 + 0.949328i \(0.398235\pi\)
\(4\) 0 0
\(5\) −1.19617 2.07183i −0.534944 0.926551i −0.999166 0.0408319i \(-0.986999\pi\)
0.464222 0.885719i \(-0.346334\pi\)
\(6\) 0 0
\(7\) 1.22147i 0.461674i 0.972992 + 0.230837i \(0.0741464\pi\)
−0.972992 + 0.230837i \(0.925854\pi\)
\(8\) 0 0
\(9\) −4.25400 + 7.36814i −1.41800 + 2.45605i
\(10\) 0 0
\(11\) 2.95353i 0.890521i 0.895401 + 0.445261i \(0.146889\pi\)
−0.895401 + 0.445261i \(0.853111\pi\)
\(12\) 0 0
\(13\) 3.00000 + 1.73205i 0.832050 + 0.480384i 0.854554 0.519362i \(-0.173830\pi\)
−0.0225039 + 0.999747i \(0.507164\pi\)
\(14\) 0 0
\(15\) 4.05783 7.02836i 1.04773 1.81472i
\(16\) 0 0
\(17\) 0.138344 + 0.239619i 0.0335534 + 0.0581162i 0.882314 0.470660i \(-0.155984\pi\)
−0.848761 + 0.528777i \(0.822651\pi\)
\(18\) 0 0
\(19\) 1.30383 4.15933i 0.299119 0.954216i
\(20\) 0 0
\(21\) −3.58852 + 2.07183i −0.783079 + 0.452111i
\(22\) 0 0
\(23\) 1.05783 + 0.610737i 0.220572 + 0.127348i 0.606215 0.795301i \(-0.292687\pi\)
−0.385643 + 0.922648i \(0.626020\pi\)
\(24\) 0 0
\(25\) −0.361656 + 0.626406i −0.0723311 + 0.125281i
\(26\) 0 0
\(27\) −18.6850 −3.59594
\(28\) 0 0
\(29\) −6.58852 3.80388i −1.22346 0.706363i −0.257804 0.966197i \(-0.582999\pi\)
−0.965653 + 0.259834i \(0.916332\pi\)
\(30\) 0 0
\(31\) 8.90034 1.59855 0.799275 0.600966i \(-0.205217\pi\)
0.799275 + 0.600966i \(0.205217\pi\)
\(32\) 0 0
\(33\) −8.67703 + 5.00969i −1.51048 + 0.872075i
\(34\) 0 0
\(35\) 2.53069 1.46109i 0.427764 0.246970i
\(36\) 0 0
\(37\) 7.60776i 1.25071i −0.780341 0.625354i \(-0.784954\pi\)
0.780341 0.625354i \(-0.215046\pi\)
\(38\) 0 0
\(39\) 11.7514i 1.88173i
\(40\) 0 0
\(41\) 8.26200 4.77007i 1.29031 0.744959i 0.311599 0.950214i \(-0.399135\pi\)
0.978709 + 0.205254i \(0.0658021\pi\)
\(42\) 0 0
\(43\) 3.00000 1.73205i 0.457496 0.264135i −0.253495 0.967337i \(-0.581580\pi\)
0.710991 + 0.703201i \(0.248247\pi\)
\(44\) 0 0
\(45\) 20.3541 3.03421
\(46\) 0 0
\(47\) −4.05783 2.34279i −0.591895 0.341731i 0.173951 0.984754i \(-0.444346\pi\)
−0.765846 + 0.643023i \(0.777680\pi\)
\(48\) 0 0
\(49\) 5.50800 0.786857
\(50\) 0 0
\(51\) −0.469311 + 0.812871i −0.0657167 + 0.113825i
\(52\) 0 0
\(53\) −6.00000 3.46410i −0.824163 0.475831i 0.0276867 0.999617i \(-0.491186\pi\)
−0.851850 + 0.523786i \(0.824519\pi\)
\(54\) 0 0
\(55\) 6.11921 3.53292i 0.825113 0.476379i
\(56\) 0 0
\(57\) 14.4310 3.22448i 1.91144 0.427093i
\(58\) 0 0
\(59\) 3.44217 + 5.96202i 0.448133 + 0.776188i 0.998265 0.0588893i \(-0.0187559\pi\)
−0.550132 + 0.835078i \(0.685423\pi\)
\(60\) 0 0
\(61\) −3.19617 + 5.53593i −0.409228 + 0.708804i −0.994803 0.101814i \(-0.967535\pi\)
0.585576 + 0.810618i \(0.300869\pi\)
\(62\) 0 0
\(63\) −9.00000 5.19615i −1.13389 0.654654i
\(64\) 0 0
\(65\) 8.28732i 1.02792i
\(66\) 0 0
\(67\) −3.83452 + 6.64158i −0.468461 + 0.811398i −0.999350 0.0360433i \(-0.988525\pi\)
0.530889 + 0.847441i \(0.321858\pi\)
\(68\) 0 0
\(69\) 4.14366i 0.498838i
\(70\) 0 0
\(71\) 3.00000 + 5.19615i 0.356034 + 0.616670i 0.987294 0.158901i \(-0.0507952\pi\)
−0.631260 + 0.775571i \(0.717462\pi\)
\(72\) 0 0
\(73\) 1.75400 + 3.03802i 0.205290 + 0.355573i 0.950225 0.311564i \(-0.100853\pi\)
−0.744935 + 0.667137i \(0.767520\pi\)
\(74\) 0 0
\(75\) −2.45372 −0.283331
\(76\) 0 0
\(77\) −3.60766 −0.411131
\(78\) 0 0
\(79\) 0.392344 + 0.679560i 0.0441422 + 0.0764565i 0.887252 0.461284i \(-0.152611\pi\)
−0.843110 + 0.537741i \(0.819278\pi\)
\(80\) 0 0
\(81\) −18.9310 32.7895i −2.10345 3.64328i
\(82\) 0 0
\(83\) 8.31866i 0.913092i −0.889700 0.456546i \(-0.849086\pi\)
0.889700 0.456546i \(-0.150914\pi\)
\(84\) 0 0
\(85\) 0.330967 0.573252i 0.0358984 0.0621779i
\(86\) 0 0
\(87\) 25.8082i 2.76692i
\(88\) 0 0
\(89\) −2.58497 1.49243i −0.274006 0.158197i 0.356701 0.934219i \(-0.383902\pi\)
−0.630707 + 0.776021i \(0.717235\pi\)
\(90\) 0 0
\(91\) −2.11566 + 3.66442i −0.221781 + 0.384136i
\(92\) 0 0
\(93\) 15.0965 + 26.1479i 1.56544 + 2.71141i
\(94\) 0 0
\(95\) −10.1770 + 2.27396i −1.04414 + 0.233304i
\(96\) 0 0
\(97\) −5.67703 + 3.27764i −0.576415 + 0.332794i −0.759708 0.650265i \(-0.774658\pi\)
0.183292 + 0.983058i \(0.441325\pi\)
\(98\) 0 0
\(99\) −21.7620 12.5643i −2.18716 1.26276i
\(100\) 0 0
\(101\) 8.09652 14.0236i 0.805634 1.39540i −0.110229 0.993906i \(-0.535158\pi\)
0.915863 0.401492i \(-0.131508\pi\)
\(102\) 0 0
\(103\) −2.55338 −0.251592 −0.125796 0.992056i \(-0.540148\pi\)
−0.125796 + 0.992056i \(0.540148\pi\)
\(104\) 0 0
\(105\) 8.58497 + 4.95653i 0.837807 + 0.483708i
\(106\) 0 0
\(107\) −4.23131 −0.409056 −0.204528 0.978861i \(-0.565566\pi\)
−0.204528 + 0.978861i \(0.565566\pi\)
\(108\) 0 0
\(109\) −7.17703 + 4.14366i −0.687435 + 0.396891i −0.802650 0.596450i \(-0.796578\pi\)
0.115215 + 0.993341i \(0.463244\pi\)
\(110\) 0 0
\(111\) 22.3505 12.9041i 2.12142 1.22480i
\(112\) 0 0
\(113\) 1.73205i 0.162938i −0.996676 0.0814688i \(-0.974039\pi\)
0.996676 0.0814688i \(-0.0259611\pi\)
\(114\) 0 0
\(115\) 2.92219i 0.272495i
\(116\) 0 0
\(117\) −25.5240 + 14.7363i −2.35969 + 1.36237i
\(118\) 0 0
\(119\) −0.292689 + 0.168984i −0.0268307 + 0.0154907i
\(120\) 0 0
\(121\) 2.27669 0.206972
\(122\) 0 0
\(123\) 28.0275 + 16.1817i 2.52716 + 1.45906i
\(124\) 0 0
\(125\) −10.2313 −0.915116
\(126\) 0 0
\(127\) −4.27669 + 7.40744i −0.379495 + 0.657304i −0.990989 0.133945i \(-0.957235\pi\)
0.611494 + 0.791249i \(0.290569\pi\)
\(128\) 0 0
\(129\) 10.1770 + 5.87571i 0.896038 + 0.517328i
\(130\) 0 0
\(131\) −5.97286 + 3.44843i −0.521851 + 0.301291i −0.737692 0.675138i \(-0.764084\pi\)
0.215840 + 0.976429i \(0.430751\pi\)
\(132\) 0 0
\(133\) 5.08052 + 1.59259i 0.440537 + 0.138095i
\(134\) 0 0
\(135\) 22.3505 + 38.7122i 1.92363 + 3.33182i
\(136\) 0 0
\(137\) −2.10766 + 3.65057i −0.180069 + 0.311889i −0.941904 0.335882i \(-0.890965\pi\)
0.761835 + 0.647771i \(0.224299\pi\)
\(138\) 0 0
\(139\) −3.44217 1.98734i −0.291961 0.168564i 0.346865 0.937915i \(-0.387246\pi\)
−0.638826 + 0.769351i \(0.720580\pi\)
\(140\) 0 0
\(141\) 15.8951i 1.33861i
\(142\) 0 0
\(143\) −5.11566 + 8.86058i −0.427793 + 0.740959i
\(144\) 0 0
\(145\) 18.2004i 1.51146i
\(146\) 0 0
\(147\) 9.34252 + 16.1817i 0.770558 + 1.33465i
\(148\) 0 0
\(149\) −3.31183 5.73625i −0.271316 0.469932i 0.697883 0.716211i \(-0.254125\pi\)
−0.969199 + 0.246279i \(0.920792\pi\)
\(150\) 0 0
\(151\) 7.22241 0.587751 0.293876 0.955844i \(-0.405055\pi\)
0.293876 + 0.955844i \(0.405055\pi\)
\(152\) 0 0
\(153\) −2.35407 −0.190315
\(154\) 0 0
\(155\) −10.6463 18.4400i −0.855135 1.48114i
\(156\) 0 0
\(157\) 5.50800 + 9.54014i 0.439586 + 0.761386i 0.997657 0.0684073i \(-0.0217917\pi\)
−0.558071 + 0.829793i \(0.688458\pi\)
\(158\) 0 0
\(159\) 23.5029i 1.86390i
\(160\) 0 0
\(161\) −0.746000 + 1.29211i −0.0587930 + 0.101833i
\(162\) 0 0
\(163\) 2.61556i 0.204866i −0.994740 0.102433i \(-0.967337\pi\)
0.994740 0.102433i \(-0.0326628\pi\)
\(164\) 0 0
\(165\) 20.7585 + 11.9849i 1.61604 + 0.933023i
\(166\) 0 0
\(167\) −6.29269 + 10.8993i −0.486943 + 0.843410i −0.999887 0.0150120i \(-0.995221\pi\)
0.512944 + 0.858422i \(0.328555\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 0 0
\(171\) 25.1001 + 27.3006i 1.91945 + 2.08773i
\(172\) 0 0
\(173\) 15.0000 8.66025i 1.14043 0.658427i 0.193892 0.981023i \(-0.437889\pi\)
0.946537 + 0.322596i \(0.104555\pi\)
\(174\) 0 0
\(175\) −0.765139 0.441753i −0.0578391 0.0333934i
\(176\) 0 0
\(177\) −11.6770 + 20.2252i −0.877700 + 1.52022i
\(178\) 0 0
\(179\) 2.40834 0.180008 0.0900041 0.995941i \(-0.471312\pi\)
0.0900041 + 0.995941i \(0.471312\pi\)
\(180\) 0 0
\(181\) −15.9355 9.20036i −1.18448 0.683857i −0.227430 0.973795i \(-0.573032\pi\)
−0.957046 + 0.289937i \(0.906365\pi\)
\(182\) 0 0
\(183\) −21.6850 −1.60300
\(184\) 0 0
\(185\) −15.7620 + 9.10020i −1.15885 + 0.669060i
\(186\) 0 0
\(187\) −0.707722 + 0.408603i −0.0517537 + 0.0298800i
\(188\) 0 0
\(189\) 22.8233i 1.66015i
\(190\) 0 0
\(191\) 2.04231i 0.147776i 0.997267 + 0.0738880i \(0.0235407\pi\)
−0.997267 + 0.0738880i \(0.976459\pi\)
\(192\) 0 0
\(193\) 9.41503 5.43577i 0.677709 0.391275i −0.121282 0.992618i \(-0.538701\pi\)
0.798991 + 0.601343i \(0.205367\pi\)
\(194\) 0 0
\(195\) 24.3470 14.0567i 1.74352 1.00662i
\(196\) 0 0
\(197\) −4.16103 −0.296461 −0.148231 0.988953i \(-0.547358\pi\)
−0.148231 + 0.988953i \(0.547358\pi\)
\(198\) 0 0
\(199\) −14.3541 8.28732i −1.01753 0.587473i −0.104144 0.994562i \(-0.533210\pi\)
−0.913388 + 0.407089i \(0.866544\pi\)
\(200\) 0 0
\(201\) −26.0160 −1.83503
\(202\) 0 0
\(203\) 4.64634 8.04770i 0.326109 0.564838i
\(204\) 0 0
\(205\) −19.7655 11.4116i −1.38049 0.797024i
\(206\) 0 0
\(207\) −9.00000 + 5.19615i −0.625543 + 0.361158i
\(208\) 0 0
\(209\) 12.2847 + 3.85089i 0.849750 + 0.266372i
\(210\) 0 0
\(211\) −5.03869 8.72726i −0.346878 0.600810i 0.638815 0.769360i \(-0.279425\pi\)
−0.985693 + 0.168550i \(0.946091\pi\)
\(212\) 0 0
\(213\) −10.1770 + 17.6271i −0.697319 + 1.20779i
\(214\) 0 0
\(215\) −7.17703 4.14366i −0.489470 0.282595i
\(216\) 0 0
\(217\) 10.8715i 0.738008i
\(218\) 0 0
\(219\) −5.95017 + 10.3060i −0.402075 + 0.696415i
\(220\) 0 0
\(221\) 0.958477i 0.0644742i
\(222\) 0 0
\(223\) −2.78114 4.81707i −0.186239 0.322575i 0.757754 0.652540i \(-0.226296\pi\)
−0.943993 + 0.329965i \(0.892963\pi\)
\(224\) 0 0
\(225\) −3.07697 5.32946i −0.205131 0.355298i
\(226\) 0 0
\(227\) −16.1770 −1.07371 −0.536854 0.843675i \(-0.680387\pi\)
−0.536854 + 0.843675i \(0.680387\pi\)
\(228\) 0 0
\(229\) 6.78469 0.448345 0.224172 0.974549i \(-0.428032\pi\)
0.224172 + 0.974549i \(0.428032\pi\)
\(230\) 0 0
\(231\) −6.11921 10.5988i −0.402614 0.697348i
\(232\) 0 0
\(233\) 5.53869 + 9.59329i 0.362852 + 0.628477i 0.988429 0.151685i \(-0.0484699\pi\)
−0.625577 + 0.780162i \(0.715137\pi\)
\(234\) 0 0
\(235\) 11.2095i 0.731228i
\(236\) 0 0
\(237\) −1.33097 + 2.30530i −0.0864556 + 0.149746i
\(238\) 0 0
\(239\) 2.38027i 0.153967i −0.997032 0.0769835i \(-0.975471\pi\)
0.997032 0.0769835i \(-0.0245289\pi\)
\(240\) 0 0
\(241\) 18.4390 + 10.6458i 1.18776 + 0.685755i 0.957797 0.287444i \(-0.0928055\pi\)
0.229965 + 0.973199i \(0.426139\pi\)
\(242\) 0 0
\(243\) 36.1930 62.6882i 2.32178 4.02145i
\(244\) 0 0
\(245\) −6.58852 11.4116i −0.420925 0.729063i
\(246\) 0 0
\(247\) 11.1157 10.2197i 0.707272 0.650264i
\(248\) 0 0
\(249\) 24.4390 14.1099i 1.54876 0.894177i
\(250\) 0 0
\(251\) −3.85720 2.22696i −0.243465 0.140564i 0.373303 0.927709i \(-0.378225\pi\)
−0.616768 + 0.787145i \(0.711558\pi\)
\(252\) 0 0
\(253\) −1.80383 + 3.12432i −0.113406 + 0.196424i
\(254\) 0 0
\(255\) 2.24551 0.140619
\(256\) 0 0
\(257\) −4.08497 2.35846i −0.254813 0.147117i 0.367153 0.930161i \(-0.380333\pi\)
−0.621966 + 0.783044i \(0.713666\pi\)
\(258\) 0 0
\(259\) 9.29269 0.577420
\(260\) 0 0
\(261\) 56.0551 32.3634i 3.46972 2.00325i
\(262\) 0 0
\(263\) −24.7589 + 14.2945i −1.52670 + 0.881439i −0.527199 + 0.849742i \(0.676758\pi\)
−0.999498 + 0.0316971i \(0.989909\pi\)
\(264\) 0 0
\(265\) 16.5746i 1.01817i
\(266\) 0 0
\(267\) 10.1257i 0.619682i
\(268\) 0 0
\(269\) −9.83007 + 5.67539i −0.599350 + 0.346035i −0.768786 0.639506i \(-0.779139\pi\)
0.169436 + 0.985541i \(0.445805\pi\)
\(270\) 0 0
\(271\) −4.35052 + 2.51177i −0.264275 + 0.152579i −0.626283 0.779596i \(-0.715425\pi\)
0.362008 + 0.932175i \(0.382091\pi\)
\(272\) 0 0
\(273\) −14.3541 −0.868748
\(274\) 0 0
\(275\) −1.85011 1.06816i −0.111566 0.0644124i
\(276\) 0 0
\(277\) 28.4243 1.70785 0.853927 0.520393i \(-0.174215\pi\)
0.853927 + 0.520393i \(0.174215\pi\)
\(278\) 0 0
\(279\) −37.8621 + 65.5790i −2.26674 + 3.92611i
\(280\) 0 0
\(281\) −13.9150 8.03385i −0.830101 0.479259i 0.0237861 0.999717i \(-0.492428\pi\)
−0.853887 + 0.520458i \(0.825761\pi\)
\(282\) 0 0
\(283\) −17.0885 + 9.86606i −1.01581 + 0.586476i −0.912887 0.408213i \(-0.866152\pi\)
−0.102920 + 0.994690i \(0.532819\pi\)
\(284\) 0 0
\(285\) −23.9426 26.0416i −1.41824 1.54257i
\(286\) 0 0
\(287\) 5.82652 + 10.0918i 0.343928 + 0.595701i
\(288\) 0 0
\(289\) 8.46172 14.6561i 0.497748 0.862125i
\(290\) 0 0
\(291\) −19.2585 11.1189i −1.12895 0.651800i
\(292\) 0 0
\(293\) 14.9366i 0.872606i 0.899800 + 0.436303i \(0.143712\pi\)
−0.899800 + 0.436303i \(0.856288\pi\)
\(294\) 0 0
\(295\) 8.23486 14.2632i 0.479452 0.830435i
\(296\) 0 0
\(297\) 55.1867i 3.20226i
\(298\) 0 0
\(299\) 2.11566 + 3.66442i 0.122352 + 0.211919i
\(300\) 0 0
\(301\) 2.11566 + 3.66442i 0.121944 + 0.211214i
\(302\) 0 0
\(303\) 54.9323 3.15578
\(304\) 0 0
\(305\) 15.2927 0.875657
\(306\) 0 0
\(307\) 11.0658 + 19.1666i 0.631560 + 1.09389i 0.987233 + 0.159284i \(0.0509185\pi\)
−0.355673 + 0.934611i \(0.615748\pi\)
\(308\) 0 0
\(309\) −4.33097 7.50146i −0.246380 0.426743i
\(310\) 0 0
\(311\) 26.8293i 1.52135i 0.649133 + 0.760675i \(0.275132\pi\)
−0.649133 + 0.760675i \(0.724868\pi\)
\(312\) 0 0
\(313\) 0.246000 0.426084i 0.0139047 0.0240837i −0.858989 0.511994i \(-0.828907\pi\)
0.872894 + 0.487910i \(0.162241\pi\)
\(314\) 0 0
\(315\) 24.8620i 1.40081i
\(316\) 0 0
\(317\) −13.5240 7.80809i −0.759584 0.438546i 0.0695627 0.997578i \(-0.477840\pi\)
−0.829146 + 0.559032i \(0.811173\pi\)
\(318\) 0 0
\(319\) 11.2349 19.4593i 0.629031 1.08951i
\(320\) 0 0
\(321\) −7.17703 12.4310i −0.400583 0.693830i
\(322\) 0 0
\(323\) 1.17703 0.262997i 0.0654919 0.0146336i
\(324\) 0 0
\(325\) −2.16993 + 1.25281i −0.120366 + 0.0694935i
\(326\) 0 0
\(327\) −24.3470 14.0567i −1.34639 0.777339i
\(328\) 0 0
\(329\) 2.86166 4.95653i 0.157768 0.273263i
\(330\) 0 0
\(331\) −27.1930 −1.49466 −0.747332 0.664451i \(-0.768666\pi\)
−0.747332 + 0.664451i \(0.768666\pi\)
\(332\) 0 0
\(333\) 56.0551 + 32.3634i 3.07180 + 1.77350i
\(334\) 0 0
\(335\) 18.3470 1.00240
\(336\) 0 0
\(337\) 18.0240 10.4062i 0.981830 0.566860i 0.0790078 0.996874i \(-0.474825\pi\)
0.902822 + 0.430014i \(0.141491\pi\)
\(338\) 0 0
\(339\) 5.08852 2.93786i 0.276370 0.159562i
\(340\) 0 0
\(341\) 26.2874i 1.42354i
\(342\) 0 0
\(343\) 15.2782i 0.824945i
\(344\) 0 0
\(345\) 8.58497 4.95653i 0.462199 0.266851i
\(346\) 0 0
\(347\) 22.5649 13.0279i 1.21135 0.699373i 0.248296 0.968684i \(-0.420130\pi\)
0.963053 + 0.269312i \(0.0867962\pi\)
\(348\) 0 0
\(349\) −24.3541 −1.30364 −0.651822 0.758372i \(-0.725995\pi\)
−0.651822 + 0.758372i \(0.725995\pi\)
\(350\) 0 0
\(351\) −56.0551 32.3634i −2.99200 1.72743i
\(352\) 0 0
\(353\) 18.0160 0.958895 0.479447 0.877571i \(-0.340837\pi\)
0.479447 + 0.877571i \(0.340837\pi\)
\(354\) 0 0
\(355\) 7.17703 12.4310i 0.380917 0.659768i
\(356\) 0 0
\(357\) −0.992901 0.573252i −0.0525499 0.0303397i
\(358\) 0 0
\(359\) 24.1192 13.9252i 1.27296 0.734946i 0.297418 0.954747i \(-0.403874\pi\)
0.975545 + 0.219802i \(0.0705410\pi\)
\(360\) 0 0
\(361\) −15.6001 10.8461i −0.821056 0.570848i
\(362\) 0 0
\(363\) 3.86166 + 6.68858i 0.202684 + 0.351060i
\(364\) 0 0
\(365\) 4.19617 7.26798i 0.219638 0.380424i
\(366\) 0 0
\(367\) −26.1806 15.1154i −1.36662 0.789016i −0.376121 0.926571i \(-0.622742\pi\)
−0.990494 + 0.137555i \(0.956076\pi\)
\(368\) 0 0
\(369\) 81.1675i 4.22541i
\(370\) 0 0
\(371\) 4.23131 7.32885i 0.219679 0.380495i
\(372\) 0 0
\(373\) 10.7929i 0.558838i 0.960169 + 0.279419i \(0.0901418\pi\)
−0.960169 + 0.279419i \(0.909858\pi\)
\(374\) 0 0
\(375\) −17.3541 30.0581i −0.896160 1.55219i
\(376\) 0 0
\(377\) −13.1770 22.8233i −0.678652 1.17546i
\(378\) 0 0
\(379\) 20.5080 1.05343 0.526713 0.850043i \(-0.323424\pi\)
0.526713 + 0.850043i \(0.323424\pi\)
\(380\) 0 0
\(381\) −29.0160 −1.48653
\(382\) 0 0
\(383\) −7.05783 12.2245i −0.360638 0.624644i 0.627428 0.778675i \(-0.284108\pi\)
−0.988066 + 0.154031i \(0.950774\pi\)
\(384\) 0 0
\(385\) 4.31538 + 7.47445i 0.219932 + 0.380933i
\(386\) 0 0
\(387\) 29.4726i 1.49818i
\(388\) 0 0
\(389\) 3.27669 5.67539i 0.166135 0.287754i −0.770923 0.636928i \(-0.780205\pi\)
0.937058 + 0.349175i \(0.113538\pi\)
\(390\) 0 0
\(391\) 0.337968i 0.0170918i
\(392\) 0 0
\(393\) −20.2620 11.6983i −1.02208 0.590100i
\(394\) 0 0
\(395\) 0.938623 1.62574i 0.0472272 0.0818000i
\(396\) 0 0
\(397\) −10.6045 18.3676i −0.532225 0.921842i −0.999292 0.0376194i \(-0.988023\pi\)
0.467067 0.884222i \(-0.345311\pi\)
\(398\) 0 0
\(399\) 3.93862 + 17.6271i 0.197178 + 0.882461i
\(400\) 0 0
\(401\) 5.33007 3.07731i 0.266171 0.153674i −0.360975 0.932575i \(-0.617556\pi\)
0.627146 + 0.778902i \(0.284223\pi\)
\(402\) 0 0
\(403\) 26.7010 + 15.4158i 1.33007 + 0.767918i
\(404\) 0 0
\(405\) −45.2896 + 78.4438i −2.25046 + 3.89790i
\(406\) 0 0
\(407\) 22.4697 1.11378
\(408\) 0 0
\(409\) −9.09207 5.24931i −0.449574 0.259562i 0.258076 0.966125i \(-0.416911\pi\)
−0.707650 + 0.706563i \(0.750245\pi\)
\(410\) 0 0
\(411\) −14.2998 −0.705356
\(412\) 0 0
\(413\) −7.28245 + 4.20453i −0.358346 + 0.206891i
\(414\) 0 0
\(415\) −17.2349 + 9.95055i −0.846026 + 0.488453i
\(416\) 0 0
\(417\) 13.4835i 0.660289i
\(418\) 0 0
\(419\) 36.3381i 1.77523i −0.460584 0.887616i \(-0.652360\pi\)
0.460584 0.887616i \(-0.347640\pi\)
\(420\) 0 0
\(421\) 18.2896 10.5595i 0.891378 0.514637i 0.0169851 0.999856i \(-0.494593\pi\)
0.874393 + 0.485218i \(0.161260\pi\)
\(422\) 0 0
\(423\) 34.5240 19.9324i 1.67861 0.969148i
\(424\) 0 0
\(425\) −0.200132 −0.00970783
\(426\) 0 0
\(427\) −6.76200 3.90404i −0.327236 0.188930i
\(428\) 0 0
\(429\) −34.7081 −1.67572
\(430\) 0 0
\(431\) −7.23131 + 12.5250i −0.348320 + 0.603308i −0.985951 0.167034i \(-0.946581\pi\)
0.637631 + 0.770342i \(0.279914\pi\)
\(432\) 0 0
\(433\) −31.2931 18.0671i −1.50385 0.868248i −0.999990 0.00446329i \(-0.998579\pi\)
−0.503860 0.863785i \(-0.668087\pi\)
\(434\) 0 0
\(435\) −53.4701 + 30.8710i −2.56370 + 1.48015i
\(436\) 0 0
\(437\) 3.91948 3.60356i 0.187494 0.172382i
\(438\) 0 0
\(439\) −7.84252 13.5836i −0.374303 0.648312i 0.615920 0.787809i \(-0.288785\pi\)
−0.990222 + 0.139497i \(0.955451\pi\)
\(440\) 0 0
\(441\) −23.4310 + 40.5837i −1.11576 + 1.93256i
\(442\) 0 0
\(443\) 14.6739 + 8.47198i 0.697178 + 0.402516i 0.806295 0.591513i \(-0.201469\pi\)
−0.109118 + 0.994029i \(0.534803\pi\)
\(444\) 0 0
\(445\) 7.14082i 0.338507i
\(446\) 0 0
\(447\) 11.2349 19.4593i 0.531391 0.920396i
\(448\) 0 0
\(449\) 17.8275i 0.841330i 0.907216 + 0.420665i \(0.138203\pi\)
−0.907216 + 0.420665i \(0.861797\pi\)
\(450\) 0 0
\(451\) 14.0885 + 24.4020i 0.663402 + 1.14905i
\(452\) 0 0
\(453\) 12.2505 + 21.2184i 0.575576 + 0.996928i
\(454\) 0 0
\(455\) 10.1228 0.474562
\(456\) 0 0
\(457\) 19.8301 0.927611 0.463806 0.885937i \(-0.346484\pi\)
0.463806 + 0.885937i \(0.346484\pi\)
\(458\) 0 0
\(459\) −2.58497 4.47729i −0.120656 0.208982i
\(460\) 0 0
\(461\) 16.4537 + 28.4987i 0.766326 + 1.32732i 0.939543 + 0.342432i \(0.111251\pi\)
−0.173216 + 0.984884i \(0.555416\pi\)
\(462\) 0 0
\(463\) 21.3979i 0.994443i 0.867624 + 0.497222i \(0.165646\pi\)
−0.867624 + 0.497222i \(0.834354\pi\)
\(464\) 0 0
\(465\) 36.1161 62.5549i 1.67484 2.90091i
\(466\) 0 0
\(467\) 8.79790i 0.407118i −0.979063 0.203559i \(-0.934749\pi\)
0.979063 0.203559i \(-0.0652509\pi\)
\(468\) 0 0
\(469\) −8.11252 4.68376i −0.374601 0.216276i
\(470\) 0 0
\(471\) −18.6850 + 32.3634i −0.860961 + 1.49123i
\(472\) 0 0
\(473\) 5.11566 + 8.86058i 0.235218 + 0.407410i
\(474\) 0 0
\(475\) 2.13389 + 2.32097i 0.0979097 + 0.106493i
\(476\) 0 0
\(477\) 51.0480 29.4726i 2.33733 1.34946i
\(478\) 0 0
\(479\) 2.11566 + 1.22147i 0.0966668 + 0.0558106i 0.547554 0.836770i \(-0.315559\pi\)
−0.450887 + 0.892581i \(0.648892\pi\)
\(480\) 0 0
\(481\) 13.1770 22.8233i 0.600821 1.04065i
\(482\) 0 0
\(483\) −5.06138 −0.230301
\(484\) 0 0
\(485\) 13.5814 + 7.84124i 0.616700 + 0.356052i
\(486\) 0 0
\(487\) 25.0231 1.13390 0.566952 0.823751i \(-0.308122\pi\)
0.566952 + 0.823751i \(0.308122\pi\)
\(488\) 0 0
\(489\) 7.68413 4.43644i 0.347488 0.200623i
\(490\) 0 0
\(491\) 36.6397 21.1539i 1.65352 0.954663i 0.677918 0.735138i \(-0.262883\pi\)
0.975607 0.219525i \(-0.0704508\pi\)
\(492\) 0 0
\(493\) 2.10498i 0.0948036i
\(494\) 0 0
\(495\) 60.1162i 2.70202i
\(496\) 0 0
\(497\) −6.34697 + 3.66442i −0.284700 + 0.164372i
\(498\) 0 0
\(499\) 21.2113 12.2463i 0.949547 0.548221i 0.0566067 0.998397i \(-0.481972\pi\)
0.892940 + 0.450175i \(0.148639\pi\)
\(500\) 0 0
\(501\) −42.6939 −1.90742
\(502\) 0 0
\(503\) 32.9288 + 19.0114i 1.46822 + 0.847679i 0.999366 0.0355959i \(-0.0113329\pi\)
0.468856 + 0.883275i \(0.344666\pi\)
\(504\) 0 0
\(505\) −38.7393 −1.72388
\(506\) 0 0
\(507\) 1.69617 2.93786i 0.0753297 0.130475i
\(508\) 0 0
\(509\) 9.34697 + 5.39647i 0.414297 + 0.239195i 0.692634 0.721289i \(-0.256450\pi\)
−0.278337 + 0.960483i \(0.589783\pi\)
\(510\) 0 0
\(511\) −3.71086 + 2.14247i −0.164159 + 0.0947771i
\(512\) 0 0
\(513\) −24.3621 + 77.7172i −1.07561 + 3.43130i
\(514\) 0 0
\(515\) 3.05428 + 5.29017i 0.134588 + 0.233113i
\(516\) 0 0
\(517\) 6.91948 11.9849i 0.304319 0.527095i
\(518\) 0 0
\(519\) 50.8852 + 29.3786i 2.23361 + 1.28958i
\(520\) 0 0
\(521\) 13.4835i 0.590722i 0.955386 + 0.295361i \(0.0954399\pi\)
−0.955386 + 0.295361i \(0.904560\pi\)
\(522\) 0 0
\(523\) −12.7393 + 22.0651i −0.557051 + 0.964841i 0.440690 + 0.897660i \(0.354734\pi\)
−0.997741 + 0.0671814i \(0.978599\pi\)
\(524\) 0 0
\(525\) 2.99716i 0.130807i
\(526\) 0 0
\(527\) 1.23131 + 2.13269i 0.0536368 + 0.0929016i
\(528\) 0 0
\(529\) −10.7540 18.6265i −0.467565 0.809847i
\(530\) 0 0
\(531\) −58.5720 −2.54181
\(532\) 0 0
\(533\) 33.0480 1.43147
\(534\) 0 0
\(535\) 5.06138 + 8.76656i 0.218822 + 0.379012i
\(536\) 0 0
\(537\) 4.08497 + 7.07537i 0.176279 + 0.305325i
\(538\) 0 0
\(539\) 16.2680i 0.700713i
\(540\) 0 0
\(541\) −15.5080 + 26.8606i −0.666741 + 1.15483i 0.312069 + 0.950059i \(0.398978\pi\)
−0.978810 + 0.204770i \(0.934355\pi\)
\(542\) 0 0
\(543\) 62.4216i 2.67877i
\(544\) 0 0
\(545\) 17.1699 + 9.91307i 0.735479 + 0.424629i
\(546\) 0 0
\(547\) −9.83897 + 17.0416i −0.420684 + 0.728646i −0.996007 0.0892807i \(-0.971543\pi\)
0.575323 + 0.817927i \(0.304877\pi\)
\(548\) 0 0
\(549\) −27.1930 47.0997i −1.16057 2.01017i
\(550\) 0 0
\(551\) −24.4119 + 22.4442i −1.03998 + 0.956156i
\(552\) 0 0
\(553\) −0.830066 + 0.479239i −0.0352980 + 0.0203793i
\(554\) 0 0
\(555\) −53.4701 30.8710i −2.26968 1.31040i
\(556\) 0 0
\(557\) 9.56938 16.5746i 0.405468 0.702290i −0.588908 0.808200i \(-0.700442\pi\)
0.994376 + 0.105910i \(0.0337754\pi\)
\(558\) 0 0
\(559\) 12.0000 0.507546
\(560\) 0 0
\(561\) −2.40084 1.38612i −0.101363 0.0585222i
\(562\) 0 0
\(563\) −38.4083 −1.61872 −0.809359 0.587314i \(-0.800185\pi\)
−0.809359 + 0.587314i \(0.800185\pi\)
\(564\) 0 0
\(565\) −3.58852 + 2.07183i −0.150970 + 0.0871626i
\(566\) 0 0
\(567\) 40.0516 23.1238i 1.68201 0.971107i
\(568\) 0 0
\(569\) 34.7750i 1.45785i 0.684596 + 0.728923i \(0.259979\pi\)
−0.684596 + 0.728923i \(0.740021\pi\)
\(570\) 0 0
\(571\) 30.9257i 1.29420i −0.762405 0.647100i \(-0.775981\pi\)
0.762405 0.647100i \(-0.224019\pi\)
\(572\) 0 0
\(573\) −6.00000 + 3.46410i −0.250654 + 0.144715i
\(574\) 0 0
\(575\) −0.765139 + 0.441753i −0.0319085 + 0.0184224i
\(576\) 0 0
\(577\) −27.7847 −1.15669 −0.578346 0.815792i \(-0.696302\pi\)
−0.578346 + 0.815792i \(0.696302\pi\)
\(578\) 0 0
\(579\) 31.9390 + 18.4400i 1.32734 + 0.766341i
\(580\) 0 0
\(581\) 10.1610 0.421551
\(582\) 0 0
\(583\) 10.2313 17.7212i 0.423738 0.733935i
\(584\) 0 0
\(585\) 61.0622 + 35.2543i 2.52461 + 1.45758i
\(586\) 0 0
\(587\) 14.0614 8.11834i 0.580375 0.335080i −0.180907 0.983500i \(-0.557903\pi\)
0.761282 + 0.648420i \(0.224570\pi\)
\(588\) 0 0
\(589\) 11.6045 37.0195i 0.478156 1.52536i
\(590\) 0 0
\(591\) −7.05783 12.2245i −0.290320 0.502849i
\(592\) 0 0
\(593\) 5.57697 9.65959i 0.229019 0.396672i −0.728499 0.685047i \(-0.759782\pi\)
0.957518 + 0.288375i \(0.0931150\pi\)
\(594\) 0 0
\(595\) 0.700213 + 0.404268i 0.0287059 + 0.0165734i
\(596\) 0 0
\(597\) 56.2269i 2.30121i
\(598\) 0 0
\(599\) −7.00355 + 12.1305i −0.286157 + 0.495639i −0.972889 0.231272i \(-0.925711\pi\)
0.686732 + 0.726911i \(0.259045\pi\)
\(600\) 0 0
\(601\) 35.5486i 1.45006i −0.688718 0.725029i \(-0.741826\pi\)
0.688718 0.725029i \(-0.258174\pi\)
\(602\) 0 0
\(603\) −32.6241 56.5065i −1.32855 2.30112i
\(604\) 0 0
\(605\) −2.72331 4.71691i −0.110718 0.191770i
\(606\) 0 0
\(607\) 7.13166 0.289465 0.144732 0.989471i \(-0.453768\pi\)
0.144732 + 0.989471i \(0.453768\pi\)
\(608\) 0 0
\(609\) 31.5240 1.27742
\(610\) 0 0
\(611\) −8.11566 14.0567i −0.328324 0.568674i
\(612\) 0 0
\(613\) −8.90034 15.4158i −0.359482 0.622640i 0.628393 0.777896i \(-0.283713\pi\)
−0.987874 + 0.155256i \(0.950380\pi\)
\(614\) 0 0
\(615\) 77.4245i 3.12206i
\(616\) 0 0
\(617\) −12.2847 + 21.2777i −0.494563 + 0.856608i −0.999980 0.00626683i \(-0.998005\pi\)
0.505417 + 0.862875i \(0.331339\pi\)
\(618\) 0 0
\(619\) 21.6804i 0.871409i 0.900090 + 0.435705i \(0.143501\pi\)
−0.900090 + 0.435705i \(0.856499\pi\)
\(620\) 0 0
\(621\) −19.7655 11.4116i −0.793164 0.457934i
\(622\) 0 0
\(623\) 1.82297 3.15747i 0.0730356 0.126501i
\(624\) 0 0
\(625\) 14.0467 + 24.3296i 0.561868 + 0.973183i
\(626\) 0 0
\(627\) 9.52359 + 42.6224i 0.380336 + 1.70218i
\(628\) 0 0
\(629\) 1.82297 1.05249i 0.0726865 0.0419655i
\(630\) 0 0
\(631\) −36.7589 21.2227i −1.46335 0.844864i −0.464183 0.885739i \(-0.653652\pi\)
−0.999164 + 0.0408755i \(0.986985\pi\)
\(632\) 0 0
\(633\) 17.0930 29.6059i 0.679384 1.17673i
\(634\) 0 0
\(635\) 20.4626 0.812034
\(636\) 0 0
\(637\) 16.5240 + 9.54014i 0.654705 + 0.377994i
\(638\) 0 0
\(639\) −51.0480 −2.01943
\(640\) 0 0
\(641\) −11.7451 + 6.78104i −0.463903 + 0.267835i −0.713684 0.700468i \(-0.752975\pi\)
0.249781 + 0.968302i \(0.419641\pi\)
\(642\) 0 0
\(643\) −26.4355 + 15.2625i −1.04251 + 0.601896i −0.920544 0.390638i \(-0.872254\pi\)
−0.121969 + 0.992534i \(0.538921\pi\)
\(644\) 0 0
\(645\) 28.1135i 1.10697i
\(646\) 0 0
\(647\) 20.7219i 0.814663i −0.913280 0.407332i \(-0.866459\pi\)
0.913280 0.407332i \(-0.133541\pi\)
\(648\) 0 0
\(649\) −17.6090 + 10.1665i −0.691212 + 0.399072i
\(650\) 0 0
\(651\) −31.9390 + 18.4400i −1.25179 + 0.722721i
\(652\) 0 0
\(653\) −35.9234 −1.40579 −0.702896 0.711292i \(-0.748110\pi\)
−0.702896 + 0.711292i \(0.748110\pi\)
\(654\) 0 0
\(655\) 14.2891 + 8.24984i 0.558323 + 0.322348i
\(656\) 0 0
\(657\) −29.8461 −1.16441
\(658\) 0 0
\(659\) 18.5854 32.1908i 0.723984 1.25398i −0.235408 0.971897i \(-0.575642\pi\)
0.959391 0.282079i \(-0.0910242\pi\)
\(660\) 0 0
\(661\) 12.1054 + 6.98907i 0.470846 + 0.271843i 0.716594 0.697491i \(-0.245700\pi\)
−0.245748 + 0.969334i \(0.579033\pi\)
\(662\) 0 0
\(663\) −2.81587 + 1.62574i −0.109359 + 0.0631386i
\(664\) 0 0
\(665\) −2.77759 12.4310i −0.107710 0.482053i
\(666\) 0 0
\(667\) −4.64634 8.04770i −0.179907 0.311608i
\(668\) 0 0
\(669\) 9.43458 16.3412i 0.364762 0.631786i
\(670\) 0 0
\(671\) −16.3505 9.43998i −0.631205 0.364426i
\(672\) 0 0
\(673\) 1.62574i 0.0626678i 0.999509 + 0.0313339i \(0.00997552\pi\)
−0.999509 + 0.0313339i \(0.990024\pi\)
\(674\) 0 0
\(675\) 6.75755 11.7044i 0.260098 0.450503i
\(676\) 0 0
\(677\) 44.6881i 1.71750i 0.512392 + 0.858752i \(0.328759\pi\)
−0.512392 + 0.858752i \(0.671241\pi\)
\(678\) 0 0
\(679\) −4.00355 6.93435i −0.153642 0.266116i
\(680\) 0 0
\(681\) −27.4390 47.5258i −1.05147 1.82119i
\(682\) 0 0
\(683\) −15.5374 −0.594521 −0.297261 0.954796i \(-0.596073\pi\)
−0.297261 + 0.954796i \(0.596073\pi\)
\(684\) 0 0
\(685\) 10.0845 0.385308
\(686\) 0 0
\(687\) 11.5080 + 19.9324i 0.439058 + 0.760470i
\(688\) 0 0
\(689\) −12.0000 20.7846i −0.457164 0.791831i
\(690\) 0 0
\(691\) 6.18234i 0.235187i 0.993062 + 0.117594i \(0.0375180\pi\)
−0.993062 + 0.117594i \(0.962482\pi\)
\(692\) 0 0
\(693\) 15.3470 26.5817i 0.582983 1.00976i
\(694\) 0 0
\(695\) 9.50880i 0.360689i
\(696\) 0 0
\(697\) 2.28600 + 1.31982i 0.0865885 + 0.0499919i
\(698\) 0 0
\(699\) −18.7891 + 32.5437i −0.710671 + 1.23092i
\(700\) 0 0
\(701\) 6.60452 + 11.4394i 0.249449 + 0.432059i 0.963373 0.268165i \(-0.0864171\pi\)
−0.713924 + 0.700223i \(0.753084\pi\)
\(702\) 0 0
\(703\) −31.6432 9.91921i −1.19345 0.374110i
\(704\) 0 0
\(705\) −32.9319 + 19.0133i −1.24029 + 0.716081i
\(706\) 0 0
\(707\) 17.1294 + 9.88969i 0.644219 + 0.371940i
\(708\) 0 0
\(709\) 6.42748 11.1327i 0.241389 0.418098i −0.719721 0.694263i \(-0.755730\pi\)
0.961110 + 0.276165i \(0.0890636\pi\)
\(710\) 0 0
\(711\) −6.67613 −0.250374
\(712\) 0 0
\(713\) 9.41503 + 5.43577i 0.352596 + 0.203571i
\(714\) 0 0
\(715\) 24.4768 0.915381
\(716\) 0 0
\(717\) 6.99290 4.03735i 0.261155 0.150778i
\(718\) 0 0
\(719\) 38.2998 22.1124i 1.42834 0.824653i 0.431351 0.902184i \(-0.358037\pi\)
0.996990 + 0.0775310i \(0.0247037\pi\)
\(720\) 0 0
\(721\) 3.11888i 0.116153i
\(722\) 0 0
\(723\) 72.2283i 2.68620i
\(724\) 0 0
\(725\) 4.76555 2.75139i 0.176988 0.102184i
\(726\) 0 0
\(727\) −7.47600 + 4.31627i −0.277269 + 0.160082i −0.632187 0.774816i \(-0.717842\pi\)
0.354917 + 0.934898i \(0.384509\pi\)
\(728\) 0 0
\(729\) 131.972 4.88786
\(730\) 0 0
\(731\) 0.830066 + 0.479239i 0.0307011 + 0.0177253i
\(732\) 0 0
\(733\) 33.8532 1.25040 0.625198 0.780467i \(-0.285018\pi\)
0.625198 + 0.780467i \(0.285018\pi\)
\(734\) 0 0
\(735\) 22.3505 38.7122i 0.824411 1.42792i
\(736\) 0 0
\(737\) −19.6161 11.3253i −0.722567 0.417174i
\(738\) 0 0
\(739\) 2.26514 1.30778i 0.0833245 0.0481074i −0.457759 0.889076i \(-0.651348\pi\)
0.541083 + 0.840969i \(0.318014\pi\)
\(740\) 0 0
\(741\) 48.8781 + 15.3218i 1.79558 + 0.562862i
\(742\) 0 0
\(743\) 18.4119 + 31.8903i 0.675467 + 1.16994i 0.976332 + 0.216276i \(0.0693912\pi\)
−0.300865 + 0.953667i \(0.597275\pi\)
\(744\) 0 0
\(745\) −7.92303 + 13.7231i −0.290277 + 0.502775i
\(746\) 0 0
\(747\) 61.2931 + 35.3876i 2.24260 + 1.29476i
\(748\) 0 0
\(749\) 5.16844i 0.188851i
\(750\) 0 0
\(751\) 15.3923 26.6603i 0.561675 0.972849i −0.435676 0.900104i \(-0.643491\pi\)
0.997351 0.0727454i \(-0.0231760\pi\)
\(752\) 0 0
\(753\) 15.1092i 0.550611i
\(754\) 0 0
\(755\) −8.63925 14.9636i −0.314414 0.544582i
\(756\) 0 0
\(757\) 7.37634 + 12.7762i 0.268098 + 0.464359i 0.968371 0.249516i \(-0.0802716\pi\)
−0.700273 + 0.713875i \(0.746938\pi\)
\(758\) 0 0
\(759\) −12.2384 −0.444226
\(760\) 0 0
\(761\) −4.80069 −0.174025 −0.0870124 0.996207i \(-0.527732\pi\)
−0.0870124 + 0.996207i \(0.527732\pi\)
\(762\) 0 0
\(763\) −5.06138 8.76656i −0.183234 0.317371i
\(764\) 0 0
\(765\) 2.81587 + 4.87723i 0.101808 + 0.176337i
\(766\) 0 0
\(767\) 23.8481i 0.861104i
\(768\) 0 0
\(769\) 3.86166 6.68858i 0.139255 0.241197i −0.787960 0.615727i \(-0.788863\pi\)
0.927215 + 0.374530i \(0.122196\pi\)
\(770\) 0 0
\(771\) 16.0014i 0.576276i
\(772\) 0 0
\(773\) 44.2966 + 25.5747i 1.59324 + 0.919857i 0.992746 + 0.120228i \(0.0383624\pi\)
0.600493 + 0.799630i \(0.294971\pi\)
\(774\) 0 0
\(775\) −3.21886 + 5.57523i −0.115625 + 0.200268i
\(776\) 0 0
\(777\) 15.7620 + 27.3006i 0.565459 + 0.979403i
\(778\) 0 0
\(779\) −9.06807 40.5837i −0.324897 1.45406i
\(780\) 0 0
\(781\) −15.3470 + 8.86058i −0.549158 + 0.317056i
\(782\) 0 0
\(783\) 123.107 + 71.0757i 4.39947 + 2.54004i
\(784\) 0 0
\(785\) 13.1770 22.8233i 0.470308 0.814598i
\(786\) 0 0
\(787\) −32.2090 −1.14813 −0.574064 0.818810i \(-0.694634\pi\)
−0.574064 + 0.818810i \(0.694634\pi\)
\(788\) 0 0
\(789\) −83.9906 48.4920i −2.99014 1.72636i
\(790\) 0 0
\(791\) 2.11566 0.0752241
\(792\) 0 0
\(793\) −19.1770 + 11.0719i −0.680996 + 0.393173i
\(794\) 0 0
\(795\) −48.6939 + 28.1135i −1.72700 + 0.997082i
\(796\) 0 0
\(797\) 46.5142i 1.64762i 0.566869 + 0.823808i \(0.308155\pi\)
−0.566869 + 0.823808i \(0.691845\pi\)
\(798\) 0 0
\(799\) 1.29645i 0.0458649i
\(800\) 0 0
\(801\) 21.9929 12.6976i 0.777081 0.448648i
\(802\) 0 0
\(803\) −8.97286 + 5.18048i −0.316645 + 0.182815i
\(804\) 0 0
\(805\) 3.56938 0.125804
\(806\) 0 0
\(807\) −33.3470 19.2529i −1.17387 0.677733i
\(808\) 0 0
\(809\) 6.36925 0.223931 0.111965 0.993712i \(-0.464285\pi\)
0.111965 + 0.993712i \(0.464285\pi\)
\(810\) 0 0
\(811\) −26.3087 + 45.5680i −0.923823 + 1.60011i −0.130380 + 0.991464i \(0.541620\pi\)
−0.793443 + 0.608644i \(0.791714\pi\)
\(812\) 0 0
\(813\) −14.7585 8.52080i −0.517601 0.298837i
\(814\) 0 0
\(815\) −5.41899 + 3.12866i −0.189819 + 0.109592i
\(816\) 0 0
\(817\) −3.29269 14.7363i −0.115197 0.515557i
\(818\) 0 0
\(819\) −18.0000 31.1769i −0.628971 1.08941i
\(820\) 0 0
\(821\) −2.73931 + 4.74463i −0.0956026 + 0.165589i −0.909860 0.414915i \(-0.863811\pi\)
0.814257 + 0.580504i \(0.197144\pi\)
\(822\) 0 0
\(823\) −29.7553 17.1792i −1.03720 0.598831i −0.118165 0.992994i \(-0.537701\pi\)
−0.919040 + 0.394163i \(0.871034\pi\)
\(824\) 0 0
\(825\) 7.24713i 0.252313i
\(826\) 0 0
\(827\) −20.3812 + 35.3013i −0.708724 + 1.22755i 0.256607 + 0.966516i \(0.417395\pi\)
−0.965331 + 0.261030i \(0.915938\pi\)
\(828\) 0 0
\(829\) 12.3093i 0.427518i 0.976886 + 0.213759i \(0.0685708\pi\)
−0.976886 + 0.213759i \(0.931429\pi\)
\(830\) 0 0
\(831\) 48.2126 + 83.5066i 1.67248 + 2.89681i
\(832\) 0 0
\(833\) 0.762000 + 1.31982i 0.0264017 + 0.0457292i
\(834\) 0 0
\(835\) 30.1086 1.04195
\(836\) 0 0
\(837\) −166.303 −5.74828
\(838\) 0 0
\(839\) 2.28914 + 3.96491i 0.0790299 + 0.136884i 0.902832 0.429994i \(-0.141484\pi\)
−0.823802 + 0.566878i \(0.808151\pi\)
\(840\) 0 0
\(841\) 14.4390 + 25.0091i 0.497898 + 0.862384i
\(842\) 0 0
\(843\) 54.5072i 1.87733i
\(844\) 0 0
\(845\) −1.19617 + 2.07183i −0.0411496 + 0.0712732i
\(846\) 0 0
\(847\) 2.78092i 0.0955534i
\(848\) 0 0
\(849\) −57.9701 33.4691i −1.98953 1.14866i
\(850\) 0 0
\(851\) 4.64634 8.04770i 0.159275 0.275872i
\(852\) 0 0
\(853\) 15.5080 + 26.8606i 0.530984 + 0.919691i 0.999346 + 0.0361545i \(0.0115108\pi\)
−0.468362 + 0.883536i \(0.655156\pi\)
\(854\) 0 0
\(855\) 26.5382 84.6593i 0.907587 2.89529i
\(856\) 0 0
\(857\) −33.8541 + 19.5457i −1.15643 + 0.667667i −0.950447 0.310888i \(-0.899374\pi\)
−0.205986 + 0.978555i \(0.566040\pi\)
\(858\) 0 0
\(859\) −32.3269 18.6640i −1.10298 0.636806i −0.165978 0.986129i \(-0.553078\pi\)
−0.937002 + 0.349323i \(0.886411\pi\)
\(860\) 0 0
\(861\) −19.7655 + 34.2349i −0.673608 + 1.16672i
\(862\) 0 0
\(863\) −2.70103 −0.0919443 −0.0459721 0.998943i \(-0.514639\pi\)
−0.0459721 + 0.998943i \(0.514639\pi\)
\(864\) 0 0
\(865\) −35.8852 20.7183i −1.22013 0.704444i
\(866\) 0 0
\(867\) 57.4101 1.94975
\(868\) 0 0
\(869\) −2.00710 + 1.15880i −0.0680862 + 0.0393096i
\(870\) 0 0
\(871\) −23.0071 + 13.2832i −0.779566 + 0.450083i
\(872\) 0 0
\(873\) 55.7723i 1.88761i
\(874\) 0 0
\(875\) 12.4973i 0.422485i
\(876\) 0 0
\(877\) 14.5956 8.42678i 0.492859 0.284552i −0.232901 0.972500i \(-0.574822\pi\)
0.725760 + 0.687948i \(0.241488\pi\)
\(878\) 0 0
\(879\) −43.8816 + 25.3351i −1.48009 + 0.854530i
\(880\) 0 0
\(881\) 23.0454 0.776418 0.388209 0.921571i \(-0.373094\pi\)
0.388209 + 0.921571i \(0.373094\pi\)
\(882\) 0 0
\(883\) −18.5582 10.7146i −0.624534 0.360575i 0.154098 0.988056i \(-0.450753\pi\)
−0.778632 + 0.627480i \(0.784086\pi\)
\(884\) 0 0
\(885\) 55.8710 1.87808
\(886\) 0 0
\(887\) −3.29269 + 5.70310i −0.110558 + 0.191492i −0.915995 0.401189i \(-0.868597\pi\)
0.805438 + 0.592681i \(0.201930\pi\)
\(888\) 0 0
\(889\) −9.04800 5.22387i −0.303460 0.175203i
\(890\) 0 0
\(891\) 96.8446 55.9133i 3.24442 1.87317i
\(892\) 0 0
\(893\) −15.0351 + 13.8233i −0.503132 + 0.462578i
\(894\) 0 0
\(895\) −2.88079 4.98968i −0.0962944 0.166787i
\(896\) 0 0
\(897\) −7.17703 + 12.4310i −0.239634 + 0.415059i
\(898\) 0 0
\(899\) −58.6401 33.8559i −1.95576 1.12916i
\(900\) 0 0
\(901\) 1.91695i 0.0638630i
\(902\) 0 0
\(903\) −7.17703 + 12.4310i −0.238837 + 0.413677i
\(904\) 0 0
\(905\) 44.0208i 1.46330i
\(906\) 0 0
\(907\) 0.342517 + 0.593256i 0.0113731 + 0.0196987i 0.871656 0.490118i \(-0.163046\pi\)
−0.860283 + 0.509817i \(0.829713\pi\)
\(908\) 0 0
\(909\) 68.8852 + 119.313i 2.28478 + 3.95735i
\(910\) 0 0
\(911\) −36.3470 −1.20423 −0.602114 0.798410i \(-0.705675\pi\)
−0.602114 + 0.798410i \(0.705675\pi\)
\(912\) 0 0
\(913\) 24.5694 0.813128
\(914\) 0 0
\(915\) 25.9390 + 44.9277i 0.857518 + 1.48526i
\(916\) 0 0
\(917\) −4.21217 7.29570i −0.139098 0.240925i
\(918\) 0 0
\(919\) 1.97963i 0.0653020i −0.999467 0.0326510i \(-0.989605\pi\)
0.999467 0.0326510i \(-0.0103950\pi\)
\(920\) 0 0
\(921\) −37.5391 + 65.0196i −1.23696 + 2.14247i
\(922\) 0 0
\(923\) 20.7846i 0.684134i
\(924\) 0 0
\(925\) 4.76555 + 2.75139i 0.156690 + 0.0904652i
\(926\) 0 0
\(927\) 10.8621 18.8137i 0.356757 0.617921i
\(928\) 0 0
\(929\) −12.3390 21.3717i −0.404828 0.701183i 0.589473 0.807788i \(-0.299335\pi\)
−0.994301 + 0.106605i \(0.966002\pi\)
\(930\) 0 0
\(931\) 7.18148 22.9096i 0.235364 0.750832i
\(932\) 0 0
\(933\) −78.8206 + 45.5071i −2.58047 + 1.48984i
\(934\) 0 0
\(935\) 1.69311 + 0.977520i 0.0553707 + 0.0319683i
\(936\) 0 0
\(937\) 20.0921 34.8005i 0.656379 1.13688i −0.325167 0.945657i \(-0.605421\pi\)
0.981546 0.191225i \(-0.0612462\pi\)
\(938\) 0 0
\(939\) 1.66903 0.0544668
\(940\) 0 0
\(941\) 2.65303 + 1.53173i 0.0864864 + 0.0499329i 0.542619 0.839979i \(-0.317433\pi\)
−0.456133 + 0.889912i \(0.650766\pi\)
\(942\) 0 0
\(943\) 11.6530 0.379475
\(944\) 0 0
\(945\) −47.2860 + 27.3006i −1.53821 + 0.888088i
\(946\) 0 0
\(947\) 9.93862 5.73807i 0.322962 0.186462i −0.329750 0.944068i \(-0.606965\pi\)
0.652712 + 0.757606i \(0.273631\pi\)
\(948\) 0 0
\(949\) 12.1521i 0.394473i
\(950\) 0 0
\(951\) 52.9754i 1.71785i
\(952\) 0 0
\(953\) 1.91503 1.10564i 0.0620340 0.0358153i −0.468662 0.883377i \(-0.655264\pi\)
0.530696 + 0.847562i \(0.321931\pi\)
\(954\) 0 0
\(955\) 4.23131 2.44295i 0.136922 0.0790520i
\(956\) 0 0
\(957\) 76.2250 2.46401
\(958\) 0 0
\(959\) −4.45907 2.57445i −0.143991 0.0831332i
\(960\) 0 0
\(961\) 48.2161 1.55536
\(962\) 0 0
\(963\) 18.0000 31.1769i 0.580042 1.00466i
\(964\) 0 0
\(965\) −22.5240 13.0042i −0.725073 0.418621i
\(966\) 0 0
\(967\) 25.7624 14.8739i 0.828463 0.478313i −0.0248629 0.999691i \(-0.507915\pi\)
0.853326 + 0.521377i \(0.174582\pi\)
\(968\) 0 0
\(969\) 2.76910 + 3.01187i 0.0889563 + 0.0967551i
\(970\) 0 0
\(971\) 5.85052 + 10.1334i 0.187752 + 0.325196i 0.944500 0.328510i \(-0.106547\pi\)
−0.756748 + 0.653706i \(0.773213\pi\)
\(972\) 0 0
\(973\) 2.42748 4.20453i 0.0778216 0.134791i
\(974\) 0 0
\(975\) −7.36116 4.24997i −0.235746 0.136108i
\(976\) 0 0
\(977\) 30.4588i 0.974462i −0.873273 0.487231i \(-0.838007\pi\)
0.873273 0.487231i \(-0.161993\pi\)
\(978\) 0 0
\(979\) 4.40793 7.63477i 0.140878 0.244008i
\(980\) 0 0
\(981\) 70.5086i 2.25116i
\(982\) 0 0
\(983\) −15.3470 26.5817i −0.489492 0.847825i 0.510435 0.859917i \(-0.329485\pi\)
−0.999927 + 0.0120911i \(0.996151\pi\)
\(984\) 0 0
\(985\) 4.97731 + 8.62096i 0.158590 + 0.274687i
\(986\) 0 0
\(987\) 19.4154 0.618000
\(988\) 0 0
\(989\) 4.23131 0.134548
\(990\) 0 0
\(991\) 22.6690 + 39.2639i 0.720106 + 1.24726i 0.960957 + 0.276697i \(0.0892400\pi\)
−0.240852 + 0.970562i \(0.577427\pi\)
\(992\) 0 0
\(993\) −46.1241 79.8892i −1.46370 2.53521i
\(994\) 0 0
\(995\) 39.6523i 1.25706i
\(996\) 0 0
\(997\) −29.8972 + 51.7835i −0.946854 + 1.64000i −0.194858 + 0.980831i \(0.562425\pi\)
−0.751996 + 0.659168i \(0.770909\pi\)
\(998\) 0 0
\(999\) 142.151i 4.49747i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 304.2.n.e.31.3 yes 6
3.2 odd 2 2736.2.bm.m.1855.3 6
4.3 odd 2 304.2.n.d.31.1 6
8.3 odd 2 1216.2.n.e.639.3 6
8.5 even 2 1216.2.n.d.639.1 6
12.11 even 2 2736.2.bm.l.1855.3 6
19.8 odd 6 304.2.n.d.255.1 yes 6
57.8 even 6 2736.2.bm.l.559.3 6
76.27 even 6 inner 304.2.n.e.255.3 yes 6
152.27 even 6 1216.2.n.d.255.1 6
152.141 odd 6 1216.2.n.e.255.3 6
228.179 odd 6 2736.2.bm.m.559.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
304.2.n.d.31.1 6 4.3 odd 2
304.2.n.d.255.1 yes 6 19.8 odd 6
304.2.n.e.31.3 yes 6 1.1 even 1 trivial
304.2.n.e.255.3 yes 6 76.27 even 6 inner
1216.2.n.d.255.1 6 152.27 even 6
1216.2.n.d.639.1 6 8.5 even 2
1216.2.n.e.255.3 6 152.141 odd 6
1216.2.n.e.639.3 6 8.3 odd 2
2736.2.bm.l.559.3 6 57.8 even 6
2736.2.bm.l.1855.3 6 12.11 even 2
2736.2.bm.m.559.3 6 228.179 odd 6
2736.2.bm.m.1855.3 6 3.2 odd 2