Properties

Label 1224.2.l.d.1189.12
Level $1224$
Weight $2$
Character 1224.1189
Analytic conductor $9.774$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(1189,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.1189");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.l (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{16} - 2x^{14} + 2x^{12} - 4x^{11} + 4x^{10} + 8x^{8} - 16x^{7} + 16x^{6} - 64x^{4} - 128x^{2} + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1189.12
Root \(0.480188 - 1.33020i\) of defining polynomial
Character \(\chi\) \(=\) 1224.1189
Dual form 1224.2.l.d.1189.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.480188 + 1.33020i) q^{2} +(-1.53884 + 1.27749i) q^{4} +1.12134 q^{5} +0.430012i q^{7} +(-2.43824 - 1.43352i) q^{8} +(0.538452 + 1.49159i) q^{10} -5.39665 q^{11} -6.00518i q^{13} +(-0.572000 + 0.206487i) q^{14} +(0.736050 - 3.93170i) q^{16} +(-2.88488 - 2.94575i) q^{17} -3.84246i q^{19} +(-1.72555 + 1.43249i) q^{20} +(-2.59141 - 7.17860i) q^{22} +4.07163i q^{23} -3.74261 q^{25} +(7.98806 - 2.88361i) q^{26} +(-0.549335 - 0.661719i) q^{28} -8.82509 q^{29} +4.48705i q^{31} +(5.58337 - 0.908863i) q^{32} +(2.53314 - 5.25197i) q^{34} +0.482188i q^{35} +0.669738 q^{37} +(5.11123 - 1.84510i) q^{38} +(-2.73408 - 1.60746i) q^{40} -5.53535i q^{41} +2.67318i q^{43} +(8.30458 - 6.89415i) q^{44} +(-5.41606 + 1.95515i) q^{46} +5.24991 q^{47} +6.81509 q^{49} +(-1.79716 - 4.97840i) q^{50} +(7.67154 + 9.24100i) q^{52} -5.51013i q^{53} -6.05145 q^{55} +(0.616432 - 1.04847i) q^{56} +(-4.23770 - 11.7391i) q^{58} +12.9148i q^{59} -15.3735 q^{61} +(-5.96865 + 2.15463i) q^{62} +(3.89003 + 6.99054i) q^{64} -6.73381i q^{65} -8.01924i q^{67} +(8.20253 + 0.847642i) q^{68} +(-0.641404 + 0.231541i) q^{70} -2.86065i q^{71} +7.42698i q^{73} +(0.321600 + 0.890882i) q^{74} +(4.90870 + 5.91293i) q^{76} -2.32062i q^{77} -9.20928i q^{79} +(0.825359 - 4.40875i) q^{80} +(7.36310 - 2.65801i) q^{82} -9.97903i q^{83} +(-3.23492 - 3.30318i) q^{85} +(-3.55585 + 1.28363i) q^{86} +(13.1583 + 7.73622i) q^{88} -5.26826 q^{89} +2.58230 q^{91} +(-5.20145 - 6.26558i) q^{92} +(2.52094 + 6.98341i) q^{94} -4.30869i q^{95} +14.5674i q^{97} +(3.27252 + 9.06540i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{4} + 4 q^{5} - 8 q^{10} + 6 q^{14} + 10 q^{16} + 2 q^{17} + 2 q^{20} + 2 q^{22} + 22 q^{25} - 2 q^{26} - 10 q^{28} - 12 q^{29} + 6 q^{34} - 16 q^{37} + 34 q^{38} - 10 q^{40} - 12 q^{44} + 32 q^{46}+ \cdots + 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.480188 + 1.33020i 0.339544 + 0.940590i
\(3\) 0 0
\(4\) −1.53884 + 1.27749i −0.769419 + 0.638744i
\(5\) 1.12134 0.501476 0.250738 0.968055i \(-0.419327\pi\)
0.250738 + 0.968055i \(0.419327\pi\)
\(6\) 0 0
\(7\) 0.430012i 0.162529i 0.996693 + 0.0812646i \(0.0258959\pi\)
−0.996693 + 0.0812646i \(0.974104\pi\)
\(8\) −2.43824 1.43352i −0.862048 0.506827i
\(9\) 0 0
\(10\) 0.538452 + 1.49159i 0.170273 + 0.471684i
\(11\) −5.39665 −1.62715 −0.813576 0.581459i \(-0.802482\pi\)
−0.813576 + 0.581459i \(0.802482\pi\)
\(12\) 0 0
\(13\) 6.00518i 1.66554i −0.553622 0.832768i \(-0.686755\pi\)
0.553622 0.832768i \(-0.313245\pi\)
\(14\) −0.572000 + 0.206487i −0.152873 + 0.0551859i
\(15\) 0 0
\(16\) 0.736050 3.93170i 0.184013 0.982924i
\(17\) −2.88488 2.94575i −0.699686 0.714450i
\(18\) 0 0
\(19\) 3.84246i 0.881521i −0.897625 0.440761i \(-0.854709\pi\)
0.897625 0.440761i \(-0.145291\pi\)
\(20\) −1.72555 + 1.43249i −0.385846 + 0.320315i
\(21\) 0 0
\(22\) −2.59141 7.17860i −0.552490 1.53048i
\(23\) 4.07163i 0.848993i 0.905430 + 0.424496i \(0.139549\pi\)
−0.905430 + 0.424496i \(0.860451\pi\)
\(24\) 0 0
\(25\) −3.74261 −0.748522
\(26\) 7.98806 2.88361i 1.56659 0.565523i
\(27\) 0 0
\(28\) −0.549335 0.661719i −0.103815 0.125053i
\(29\) −8.82509 −1.63878 −0.819389 0.573237i \(-0.805687\pi\)
−0.819389 + 0.573237i \(0.805687\pi\)
\(30\) 0 0
\(31\) 4.48705i 0.805898i 0.915223 + 0.402949i \(0.132015\pi\)
−0.915223 + 0.402949i \(0.867985\pi\)
\(32\) 5.58337 0.908863i 0.987009 0.160666i
\(33\) 0 0
\(34\) 2.53314 5.25197i 0.434430 0.900705i
\(35\) 0.482188i 0.0815046i
\(36\) 0 0
\(37\) 0.669738 0.110104 0.0550521 0.998483i \(-0.482468\pi\)
0.0550521 + 0.998483i \(0.482468\pi\)
\(38\) 5.11123 1.84510i 0.829150 0.299316i
\(39\) 0 0
\(40\) −2.73408 1.60746i −0.432297 0.254161i
\(41\) 5.53535i 0.864477i −0.901759 0.432239i \(-0.857724\pi\)
0.901759 0.432239i \(-0.142276\pi\)
\(42\) 0 0
\(43\) 2.67318i 0.407656i 0.979007 + 0.203828i \(0.0653384\pi\)
−0.979007 + 0.203828i \(0.934662\pi\)
\(44\) 8.30458 6.89415i 1.25196 1.03933i
\(45\) 0 0
\(46\) −5.41606 + 1.95515i −0.798554 + 0.288271i
\(47\) 5.24991 0.765778 0.382889 0.923794i \(-0.374929\pi\)
0.382889 + 0.923794i \(0.374929\pi\)
\(48\) 0 0
\(49\) 6.81509 0.973584
\(50\) −1.79716 4.97840i −0.254156 0.704052i
\(51\) 0 0
\(52\) 7.67154 + 9.24100i 1.06385 + 1.28150i
\(53\) 5.51013i 0.756875i −0.925627 0.378438i \(-0.876461\pi\)
0.925627 0.378438i \(-0.123539\pi\)
\(54\) 0 0
\(55\) −6.05145 −0.815978
\(56\) 0.616432 1.04847i 0.0823741 0.140108i
\(57\) 0 0
\(58\) −4.23770 11.7391i −0.556438 1.54142i
\(59\) 12.9148i 1.68136i 0.541533 + 0.840680i \(0.317844\pi\)
−0.541533 + 0.840680i \(0.682156\pi\)
\(60\) 0 0
\(61\) −15.3735 −1.96837 −0.984186 0.177139i \(-0.943316\pi\)
−0.984186 + 0.177139i \(0.943316\pi\)
\(62\) −5.96865 + 2.15463i −0.758019 + 0.273638i
\(63\) 0 0
\(64\) 3.89003 + 6.99054i 0.486254 + 0.873818i
\(65\) 6.73381i 0.835227i
\(66\) 0 0
\(67\) 8.01924i 0.979706i −0.871805 0.489853i \(-0.837050\pi\)
0.871805 0.489853i \(-0.162950\pi\)
\(68\) 8.20253 + 0.847642i 0.994703 + 0.102792i
\(69\) 0 0
\(70\) −0.641404 + 0.231541i −0.0766624 + 0.0276744i
\(71\) 2.86065i 0.339497i −0.985487 0.169749i \(-0.945704\pi\)
0.985487 0.169749i \(-0.0542956\pi\)
\(72\) 0 0
\(73\) 7.42698i 0.869262i 0.900609 + 0.434631i \(0.143121\pi\)
−0.900609 + 0.434631i \(0.856879\pi\)
\(74\) 0.321600 + 0.890882i 0.0373852 + 0.103563i
\(75\) 0 0
\(76\) 4.90870 + 5.91293i 0.563066 + 0.678260i
\(77\) 2.32062i 0.264460i
\(78\) 0 0
\(79\) 9.20928i 1.03612i −0.855343 0.518062i \(-0.826654\pi\)
0.855343 0.518062i \(-0.173346\pi\)
\(80\) 0.825359 4.40875i 0.0922779 0.492913i
\(81\) 0 0
\(82\) 7.36310 2.65801i 0.813119 0.293528i
\(83\) 9.97903i 1.09534i −0.836694 0.547670i \(-0.815515\pi\)
0.836694 0.547670i \(-0.184485\pi\)
\(84\) 0 0
\(85\) −3.23492 3.30318i −0.350876 0.358280i
\(86\) −3.55585 + 1.28363i −0.383438 + 0.138417i
\(87\) 0 0
\(88\) 13.1583 + 7.73622i 1.40268 + 0.824683i
\(89\) −5.26826 −0.558434 −0.279217 0.960228i \(-0.590075\pi\)
−0.279217 + 0.960228i \(0.590075\pi\)
\(90\) 0 0
\(91\) 2.58230 0.270698
\(92\) −5.20145 6.26558i −0.542289 0.653231i
\(93\) 0 0
\(94\) 2.52094 + 6.98341i 0.260016 + 0.720283i
\(95\) 4.30869i 0.442062i
\(96\) 0 0
\(97\) 14.5674i 1.47909i 0.673105 + 0.739547i \(0.264960\pi\)
−0.673105 + 0.739547i \(0.735040\pi\)
\(98\) 3.27252 + 9.06540i 0.330575 + 0.915744i
\(99\) 0 0
\(100\) 5.75927 4.78114i 0.575927 0.478114i
\(101\) 16.7076i 1.66247i −0.555924 0.831233i \(-0.687635\pi\)
0.555924 0.831233i \(-0.312365\pi\)
\(102\) 0 0
\(103\) −3.41351 −0.336343 −0.168171 0.985758i \(-0.553786\pi\)
−0.168171 + 0.985758i \(0.553786\pi\)
\(104\) −8.60855 + 14.6421i −0.844138 + 1.43577i
\(105\) 0 0
\(106\) 7.32955 2.64590i 0.711909 0.256993i
\(107\) 15.8511 1.53239 0.766194 0.642610i \(-0.222148\pi\)
0.766194 + 0.642610i \(0.222148\pi\)
\(108\) 0 0
\(109\) 8.41308 0.805827 0.402914 0.915238i \(-0.367998\pi\)
0.402914 + 0.915238i \(0.367998\pi\)
\(110\) −2.90584 8.04961i −0.277061 0.767501i
\(111\) 0 0
\(112\) 1.69068 + 0.316510i 0.159754 + 0.0299074i
\(113\) 8.21141i 0.772465i 0.922402 + 0.386232i \(0.126224\pi\)
−0.922402 + 0.386232i \(0.873776\pi\)
\(114\) 0 0
\(115\) 4.56566i 0.425750i
\(116\) 13.5804 11.2739i 1.26091 1.04676i
\(117\) 0 0
\(118\) −17.1792 + 6.20152i −1.58147 + 0.570896i
\(119\) 1.26671 1.24053i 0.116119 0.113719i
\(120\) 0 0
\(121\) 18.1238 1.64762
\(122\) −7.38216 20.4497i −0.668349 1.85143i
\(123\) 0 0
\(124\) −5.73215 6.90484i −0.514762 0.620073i
\(125\) −9.80339 −0.876842
\(126\) 0 0
\(127\) −6.50879 −0.577562 −0.288781 0.957395i \(-0.593250\pi\)
−0.288781 + 0.957395i \(0.593250\pi\)
\(128\) −7.43084 + 8.53127i −0.656800 + 0.754065i
\(129\) 0 0
\(130\) 8.95729 3.23350i 0.785606 0.283596i
\(131\) 6.75159 0.589889 0.294944 0.955514i \(-0.404699\pi\)
0.294944 + 0.955514i \(0.404699\pi\)
\(132\) 0 0
\(133\) 1.65231 0.143273
\(134\) 10.6672 3.85074i 0.921502 0.332654i
\(135\) 0 0
\(136\) 2.81123 + 11.3180i 0.241061 + 0.970510i
\(137\) 7.11420 0.607807 0.303903 0.952703i \(-0.401710\pi\)
0.303903 + 0.952703i \(0.401710\pi\)
\(138\) 0 0
\(139\) −0.583527 −0.0494941 −0.0247471 0.999694i \(-0.507878\pi\)
−0.0247471 + 0.999694i \(0.507878\pi\)
\(140\) −0.615989 0.742009i −0.0520605 0.0627112i
\(141\) 0 0
\(142\) 3.80523 1.37365i 0.319328 0.115274i
\(143\) 32.4078i 2.71008i
\(144\) 0 0
\(145\) −9.89589 −0.821809
\(146\) −9.87933 + 3.56635i −0.817619 + 0.295153i
\(147\) 0 0
\(148\) −1.03062 + 0.855582i −0.0847163 + 0.0703284i
\(149\) 9.11649i 0.746852i −0.927660 0.373426i \(-0.878183\pi\)
0.927660 0.373426i \(-0.121817\pi\)
\(150\) 0 0
\(151\) −6.07456 −0.494341 −0.247170 0.968972i \(-0.579501\pi\)
−0.247170 + 0.968972i \(0.579501\pi\)
\(152\) −5.50825 + 9.36885i −0.446778 + 0.759914i
\(153\) 0 0
\(154\) 3.08688 1.11434i 0.248748 0.0897958i
\(155\) 5.03148i 0.404139i
\(156\) 0 0
\(157\) 10.6193i 0.847510i 0.905777 + 0.423755i \(0.139288\pi\)
−0.905777 + 0.423755i \(0.860712\pi\)
\(158\) 12.2501 4.42218i 0.974568 0.351810i
\(159\) 0 0
\(160\) 6.26082 1.01914i 0.494962 0.0805701i
\(161\) −1.75085 −0.137986
\(162\) 0 0
\(163\) −13.6656 −1.07038 −0.535188 0.844733i \(-0.679759\pi\)
−0.535188 + 0.844733i \(0.679759\pi\)
\(164\) 7.07135 + 8.51802i 0.552179 + 0.665145i
\(165\) 0 0
\(166\) 13.2741 4.79181i 1.03027 0.371916i
\(167\) 2.20168i 0.170371i 0.996365 + 0.0851857i \(0.0271484\pi\)
−0.996365 + 0.0851857i \(0.972852\pi\)
\(168\) 0 0
\(169\) −23.0621 −1.77401
\(170\) 2.84050 5.88922i 0.217857 0.451682i
\(171\) 0 0
\(172\) −3.41496 4.11360i −0.260388 0.313659i
\(173\) −1.76714 −0.134353 −0.0671767 0.997741i \(-0.521399\pi\)
−0.0671767 + 0.997741i \(0.521399\pi\)
\(174\) 0 0
\(175\) 1.60937i 0.121657i
\(176\) −3.97221 + 21.2180i −0.299416 + 1.59937i
\(177\) 0 0
\(178\) −2.52975 7.00781i −0.189613 0.525258i
\(179\) 13.1303i 0.981408i 0.871326 + 0.490704i \(0.163260\pi\)
−0.871326 + 0.490704i \(0.836740\pi\)
\(180\) 0 0
\(181\) −17.8616 −1.32764 −0.663820 0.747893i \(-0.731066\pi\)
−0.663820 + 0.747893i \(0.731066\pi\)
\(182\) 1.23999 + 3.43496i 0.0919141 + 0.254616i
\(183\) 0 0
\(184\) 5.83676 9.92760i 0.430292 0.731872i
\(185\) 0.751000 0.0552146
\(186\) 0 0
\(187\) 15.5687 + 15.8972i 1.13850 + 1.16252i
\(188\) −8.07877 + 6.70670i −0.589205 + 0.489136i
\(189\) 0 0
\(190\) 5.73140 2.06898i 0.415799 0.150100i
\(191\) −22.4316 −1.62310 −0.811548 0.584286i \(-0.801374\pi\)
−0.811548 + 0.584286i \(0.801374\pi\)
\(192\) 0 0
\(193\) 24.1361i 1.73735i −0.495380 0.868676i \(-0.664971\pi\)
0.495380 0.868676i \(-0.335029\pi\)
\(194\) −19.3775 + 6.99509i −1.39122 + 0.502218i
\(195\) 0 0
\(196\) −10.4873 + 8.70619i −0.749095 + 0.621871i
\(197\) 10.7417 0.765311 0.382655 0.923891i \(-0.375010\pi\)
0.382655 + 0.923891i \(0.375010\pi\)
\(198\) 0 0
\(199\) 19.2404i 1.36392i 0.731391 + 0.681958i \(0.238871\pi\)
−0.731391 + 0.681958i \(0.761129\pi\)
\(200\) 9.12538 + 5.36511i 0.645262 + 0.379371i
\(201\) 0 0
\(202\) 22.2243 8.02278i 1.56370 0.564481i
\(203\) 3.79490i 0.266349i
\(204\) 0 0
\(205\) 6.20699i 0.433515i
\(206\) −1.63913 4.54063i −0.114203 0.316361i
\(207\) 0 0
\(208\) −23.6105 4.42011i −1.63710 0.306480i
\(209\) 20.7364i 1.43437i
\(210\) 0 0
\(211\) 5.19644 0.357738 0.178869 0.983873i \(-0.442756\pi\)
0.178869 + 0.983873i \(0.442756\pi\)
\(212\) 7.03913 + 8.47921i 0.483449 + 0.582354i
\(213\) 0 0
\(214\) 7.61153 + 21.0851i 0.520313 + 1.44135i
\(215\) 2.99753i 0.204430i
\(216\) 0 0
\(217\) −1.92948 −0.130982
\(218\) 4.03986 + 11.1910i 0.273614 + 0.757953i
\(219\) 0 0
\(220\) 9.31221 7.73066i 0.627829 0.521201i
\(221\) −17.6898 + 17.3242i −1.18994 + 1.16535i
\(222\) 0 0
\(223\) −7.53829 −0.504801 −0.252401 0.967623i \(-0.581220\pi\)
−0.252401 + 0.967623i \(0.581220\pi\)
\(224\) 0.390822 + 2.40091i 0.0261129 + 0.160418i
\(225\) 0 0
\(226\) −10.9228 + 3.94302i −0.726572 + 0.262286i
\(227\) −4.47282 −0.296872 −0.148436 0.988922i \(-0.547424\pi\)
−0.148436 + 0.988922i \(0.547424\pi\)
\(228\) 0 0
\(229\) 3.32290i 0.219583i −0.993955 0.109792i \(-0.964982\pi\)
0.993955 0.109792i \(-0.0350184\pi\)
\(230\) −6.07321 + 2.19237i −0.400456 + 0.144561i
\(231\) 0 0
\(232\) 21.5177 + 12.6510i 1.41271 + 0.830576i
\(233\) 18.9254i 1.23984i −0.784664 0.619922i \(-0.787164\pi\)
0.784664 0.619922i \(-0.212836\pi\)
\(234\) 0 0
\(235\) 5.88691 0.384020
\(236\) −16.4985 19.8737i −1.07396 1.29367i
\(237\) 0 0
\(238\) 2.25841 + 1.08928i 0.146391 + 0.0706077i
\(239\) 2.31610 0.149816 0.0749081 0.997190i \(-0.476134\pi\)
0.0749081 + 0.997190i \(0.476134\pi\)
\(240\) 0 0
\(241\) 4.26774i 0.274909i −0.990508 0.137455i \(-0.956108\pi\)
0.990508 0.137455i \(-0.0438921\pi\)
\(242\) 8.70285 + 24.1082i 0.559440 + 1.54974i
\(243\) 0 0
\(244\) 23.6573 19.6394i 1.51450 1.25729i
\(245\) 7.64200 0.488229
\(246\) 0 0
\(247\) −23.0747 −1.46821
\(248\) 6.43228 10.9405i 0.408450 0.694723i
\(249\) 0 0
\(250\) −4.70747 13.0404i −0.297727 0.824749i
\(251\) 7.72635i 0.487683i 0.969815 + 0.243841i \(0.0784076\pi\)
−0.969815 + 0.243841i \(0.921592\pi\)
\(252\) 0 0
\(253\) 21.9731i 1.38144i
\(254\) −3.12544 8.65797i −0.196108 0.543249i
\(255\) 0 0
\(256\) −14.9165 5.78785i −0.932279 0.361741i
\(257\) 28.3167 1.76634 0.883172 0.469049i \(-0.155403\pi\)
0.883172 + 0.469049i \(0.155403\pi\)
\(258\) 0 0
\(259\) 0.287995i 0.0178952i
\(260\) 8.60237 + 10.3623i 0.533496 + 0.642640i
\(261\) 0 0
\(262\) 3.24203 + 8.98093i 0.200293 + 0.554844i
\(263\) −8.87100 −0.547009 −0.273505 0.961871i \(-0.588183\pi\)
−0.273505 + 0.961871i \(0.588183\pi\)
\(264\) 0 0
\(265\) 6.17871i 0.379555i
\(266\) 0.793417 + 2.19789i 0.0486475 + 0.134761i
\(267\) 0 0
\(268\) 10.2445 + 12.3403i 0.625781 + 0.753805i
\(269\) −10.3713 −0.632351 −0.316176 0.948701i \(-0.602399\pi\)
−0.316176 + 0.948701i \(0.602399\pi\)
\(270\) 0 0
\(271\) 14.0483 0.853374 0.426687 0.904399i \(-0.359681\pi\)
0.426687 + 0.904399i \(0.359681\pi\)
\(272\) −13.7052 + 9.17425i −0.831001 + 0.556270i
\(273\) 0 0
\(274\) 3.41615 + 9.46327i 0.206377 + 0.571697i
\(275\) 20.1975 1.21796
\(276\) 0 0
\(277\) −5.84445 −0.351159 −0.175579 0.984465i \(-0.556180\pi\)
−0.175579 + 0.984465i \(0.556180\pi\)
\(278\) −0.280203 0.776205i −0.0168054 0.0465537i
\(279\) 0 0
\(280\) 0.691226 1.17569i 0.0413087 0.0702609i
\(281\) −2.55711 −0.152545 −0.0762723 0.997087i \(-0.524302\pi\)
−0.0762723 + 0.997087i \(0.524302\pi\)
\(282\) 0 0
\(283\) −16.0967 −0.956848 −0.478424 0.878129i \(-0.658792\pi\)
−0.478424 + 0.878129i \(0.658792\pi\)
\(284\) 3.65445 + 4.40209i 0.216852 + 0.261216i
\(285\) 0 0
\(286\) −43.1088 + 15.5619i −2.54907 + 0.920192i
\(287\) 2.38027 0.140503
\(288\) 0 0
\(289\) −0.354935 + 16.9963i −0.0208785 + 0.999782i
\(290\) −4.75189 13.1635i −0.279040 0.772985i
\(291\) 0 0
\(292\) −9.48787 11.4289i −0.555236 0.668827i
\(293\) 6.66413i 0.389323i −0.980871 0.194661i \(-0.937639\pi\)
0.980871 0.194661i \(-0.0623608\pi\)
\(294\) 0 0
\(295\) 14.4818i 0.843162i
\(296\) −1.63298 0.960084i −0.0949151 0.0558037i
\(297\) 0 0
\(298\) 12.1267 4.37763i 0.702481 0.253589i
\(299\) 24.4508 1.41403
\(300\) 0 0
\(301\) −1.14950 −0.0662561
\(302\) −2.91693 8.08035i −0.167850 0.464972i
\(303\) 0 0
\(304\) −15.1074 2.82825i −0.866469 0.162211i
\(305\) −17.2388 −0.987092
\(306\) 0 0
\(307\) 0.758629i 0.0432972i −0.999766 0.0216486i \(-0.993108\pi\)
0.999766 0.0216486i \(-0.00689151\pi\)
\(308\) 2.96457 + 3.57107i 0.168922 + 0.203480i
\(309\) 0 0
\(310\) −6.69286 + 2.41606i −0.380129 + 0.137223i
\(311\) 20.9587i 1.18846i −0.804295 0.594231i \(-0.797457\pi\)
0.804295 0.594231i \(-0.202543\pi\)
\(312\) 0 0
\(313\) 4.04868i 0.228845i −0.993432 0.114423i \(-0.963498\pi\)
0.993432 0.114423i \(-0.0365018\pi\)
\(314\) −14.1257 + 5.09925i −0.797160 + 0.287767i
\(315\) 0 0
\(316\) 11.7647 + 14.1716i 0.661818 + 0.797214i
\(317\) −14.6008 −0.820063 −0.410032 0.912071i \(-0.634482\pi\)
−0.410032 + 0.912071i \(0.634482\pi\)
\(318\) 0 0
\(319\) 47.6259 2.66654
\(320\) 4.36203 + 7.83874i 0.243845 + 0.438199i
\(321\) 0 0
\(322\) −0.840736 2.32897i −0.0468524 0.129788i
\(323\) −11.3190 + 11.0850i −0.629803 + 0.616788i
\(324\) 0 0
\(325\) 22.4750i 1.24669i
\(326\) −6.56208 18.1780i −0.363440 1.00679i
\(327\) 0 0
\(328\) −7.93505 + 13.4965i −0.438140 + 0.745221i
\(329\) 2.25752i 0.124461i
\(330\) 0 0
\(331\) 9.20497i 0.505951i 0.967473 + 0.252975i \(0.0814092\pi\)
−0.967473 + 0.252975i \(0.918591\pi\)
\(332\) 12.7481 + 15.3561i 0.699642 + 0.842776i
\(333\) 0 0
\(334\) −2.92867 + 1.05722i −0.160250 + 0.0578486i
\(335\) 8.99226i 0.491299i
\(336\) 0 0
\(337\) 4.74226i 0.258328i −0.991623 0.129164i \(-0.958771\pi\)
0.991623 0.129164i \(-0.0412293\pi\)
\(338\) −11.0742 30.6772i −0.602355 1.66862i
\(339\) 0 0
\(340\) 9.19778 + 0.950491i 0.498820 + 0.0515476i
\(341\) 24.2150i 1.31132i
\(342\) 0 0
\(343\) 5.94065i 0.320765i
\(344\) 3.83206 6.51786i 0.206611 0.351419i
\(345\) 0 0
\(346\) −0.848562 2.35065i −0.0456189 0.126372i
\(347\) −13.0862 −0.702504 −0.351252 0.936281i \(-0.614244\pi\)
−0.351252 + 0.936281i \(0.614244\pi\)
\(348\) 0 0
\(349\) 26.8162i 1.43544i −0.696333 0.717719i \(-0.745186\pi\)
0.696333 0.717719i \(-0.254814\pi\)
\(350\) 2.14077 0.772798i 0.114429 0.0413078i
\(351\) 0 0
\(352\) −30.1315 + 4.90481i −1.60601 + 0.261428i
\(353\) −2.05561 −0.109409 −0.0547046 0.998503i \(-0.517422\pi\)
−0.0547046 + 0.998503i \(0.517422\pi\)
\(354\) 0 0
\(355\) 3.20775i 0.170250i
\(356\) 8.10700 6.73014i 0.429670 0.356696i
\(357\) 0 0
\(358\) −17.4659 + 6.30504i −0.923103 + 0.333231i
\(359\) −9.53525 −0.503251 −0.251626 0.967825i \(-0.580965\pi\)
−0.251626 + 0.967825i \(0.580965\pi\)
\(360\) 0 0
\(361\) 4.23548 0.222920
\(362\) −8.57691 23.7594i −0.450792 1.24876i
\(363\) 0 0
\(364\) −3.97374 + 3.29885i −0.208281 + 0.172907i
\(365\) 8.32813i 0.435914i
\(366\) 0 0
\(367\) 4.51146i 0.235497i −0.993043 0.117748i \(-0.962432\pi\)
0.993043 0.117748i \(-0.0375676\pi\)
\(368\) 16.0084 + 2.99692i 0.834495 + 0.156225i
\(369\) 0 0
\(370\) 0.360621 + 0.998977i 0.0187478 + 0.0519344i
\(371\) 2.36942 0.123014
\(372\) 0 0
\(373\) 6.52623i 0.337915i −0.985623 0.168958i \(-0.945960\pi\)
0.985623 0.168958i \(-0.0540401\pi\)
\(374\) −13.6705 + 28.3430i −0.706884 + 1.46558i
\(375\) 0 0
\(376\) −12.8005 7.52586i −0.660138 0.388117i
\(377\) 52.9962i 2.72945i
\(378\) 0 0
\(379\) 4.45304 0.228738 0.114369 0.993438i \(-0.463515\pi\)
0.114369 + 0.993438i \(0.463515\pi\)
\(380\) 5.50430 + 6.63038i 0.282364 + 0.340131i
\(381\) 0 0
\(382\) −10.7714 29.8384i −0.551113 1.52667i
\(383\) −20.5625 −1.05069 −0.525346 0.850889i \(-0.676064\pi\)
−0.525346 + 0.850889i \(0.676064\pi\)
\(384\) 0 0
\(385\) 2.60220i 0.132620i
\(386\) 32.1057 11.5899i 1.63414 0.589908i
\(387\) 0 0
\(388\) −18.6097 22.4169i −0.944762 1.13804i
\(389\) 6.79829i 0.344687i −0.985037 0.172343i \(-0.944866\pi\)
0.985037 0.172343i \(-0.0551339\pi\)
\(390\) 0 0
\(391\) 11.9940 11.7462i 0.606563 0.594028i
\(392\) −16.6168 9.76958i −0.839276 0.493438i
\(393\) 0 0
\(394\) 5.15801 + 14.2885i 0.259857 + 0.719844i
\(395\) 10.3267i 0.519592i
\(396\) 0 0
\(397\) 30.3053 1.52098 0.760489 0.649351i \(-0.224960\pi\)
0.760489 + 0.649351i \(0.224960\pi\)
\(398\) −25.5935 + 9.23901i −1.28289 + 0.463110i
\(399\) 0 0
\(400\) −2.75475 + 14.7148i −0.137737 + 0.735740i
\(401\) 18.4318i 0.920438i −0.887805 0.460219i \(-0.847771\pi\)
0.887805 0.460219i \(-0.152229\pi\)
\(402\) 0 0
\(403\) 26.9455 1.34225
\(404\) 21.3437 + 25.7103i 1.06189 + 1.27913i
\(405\) 0 0
\(406\) 5.04795 1.82226i 0.250526 0.0904374i
\(407\) −3.61434 −0.179156
\(408\) 0 0
\(409\) −17.9406 −0.887104 −0.443552 0.896249i \(-0.646282\pi\)
−0.443552 + 0.896249i \(0.646282\pi\)
\(410\) 8.25650 2.98052i 0.407760 0.147197i
\(411\) 0 0
\(412\) 5.25284 4.36071i 0.258789 0.214837i
\(413\) −5.55350 −0.273270
\(414\) 0 0
\(415\) 11.1898i 0.549287i
\(416\) −5.45788 33.5291i −0.267595 1.64390i
\(417\) 0 0
\(418\) −27.5835 + 9.95739i −1.34915 + 0.487032i
\(419\) 28.9251 1.41308 0.706541 0.707672i \(-0.250255\pi\)
0.706541 + 0.707672i \(0.250255\pi\)
\(420\) 0 0
\(421\) 5.93424i 0.289217i 0.989489 + 0.144609i \(0.0461923\pi\)
−0.989489 + 0.144609i \(0.953808\pi\)
\(422\) 2.49527 + 6.91228i 0.121468 + 0.336484i
\(423\) 0 0
\(424\) −7.89890 + 13.4350i −0.383604 + 0.652463i
\(425\) 10.7970 + 11.0248i 0.523730 + 0.534781i
\(426\) 0 0
\(427\) 6.61078i 0.319918i
\(428\) −24.3924 + 20.2496i −1.17905 + 0.978803i
\(429\) 0 0
\(430\) −3.98730 + 1.43938i −0.192285 + 0.0694130i
\(431\) 28.4152i 1.36871i −0.729149 0.684355i \(-0.760084\pi\)
0.729149 0.684355i \(-0.239916\pi\)
\(432\) 0 0
\(433\) 3.71311 0.178441 0.0892204 0.996012i \(-0.471562\pi\)
0.0892204 + 0.996012i \(0.471562\pi\)
\(434\) −0.926515 2.56659i −0.0444742 0.123200i
\(435\) 0 0
\(436\) −12.9464 + 10.7476i −0.620019 + 0.514717i
\(437\) 15.6451 0.748405
\(438\) 0 0
\(439\) 40.2651i 1.92175i 0.276988 + 0.960873i \(0.410664\pi\)
−0.276988 + 0.960873i \(0.589336\pi\)
\(440\) 14.7549 + 8.67489i 0.703412 + 0.413559i
\(441\) 0 0
\(442\) −31.5390 15.2120i −1.50016 0.723560i
\(443\) 30.4325i 1.44589i 0.690904 + 0.722947i \(0.257213\pi\)
−0.690904 + 0.722947i \(0.742787\pi\)
\(444\) 0 0
\(445\) −5.90748 −0.280042
\(446\) −3.61980 10.0274i −0.171402 0.474811i
\(447\) 0 0
\(448\) −3.00602 + 1.67276i −0.142021 + 0.0790305i
\(449\) 22.5604i 1.06469i −0.846527 0.532345i \(-0.821311\pi\)
0.846527 0.532345i \(-0.178689\pi\)
\(450\) 0 0
\(451\) 29.8724i 1.40664i
\(452\) −10.4900 12.6360i −0.493407 0.594349i
\(453\) 0 0
\(454\) −2.14780 5.94973i −0.100801 0.279234i
\(455\) 2.89562 0.135749
\(456\) 0 0
\(457\) 32.8689 1.53754 0.768770 0.639525i \(-0.220869\pi\)
0.768770 + 0.639525i \(0.220869\pi\)
\(458\) 4.42010 1.59562i 0.206538 0.0745583i
\(459\) 0 0
\(460\) −5.83257 7.02581i −0.271945 0.327580i
\(461\) 22.9549i 1.06911i 0.845132 + 0.534557i \(0.179522\pi\)
−0.845132 + 0.534557i \(0.820478\pi\)
\(462\) 0 0
\(463\) −10.8137 −0.502554 −0.251277 0.967915i \(-0.580851\pi\)
−0.251277 + 0.967915i \(0.580851\pi\)
\(464\) −6.49571 + 34.6976i −0.301556 + 1.61079i
\(465\) 0 0
\(466\) 25.1745 9.08774i 1.16618 0.420982i
\(467\) 16.2589i 0.752372i −0.926544 0.376186i \(-0.877235\pi\)
0.926544 0.376186i \(-0.122765\pi\)
\(468\) 0 0
\(469\) 3.44837 0.159231
\(470\) 2.82682 + 7.83074i 0.130392 + 0.361205i
\(471\) 0 0
\(472\) 18.5136 31.4893i 0.852157 1.44941i
\(473\) 14.4262i 0.663319i
\(474\) 0 0
\(475\) 14.3808i 0.659838i
\(476\) −0.364496 + 3.52719i −0.0167067 + 0.161668i
\(477\) 0 0
\(478\) 1.11216 + 3.08087i 0.0508692 + 0.140916i
\(479\) 17.6947i 0.808491i −0.914651 0.404245i \(-0.867534\pi\)
0.914651 0.404245i \(-0.132466\pi\)
\(480\) 0 0
\(481\) 4.02189i 0.183383i
\(482\) 5.67692 2.04932i 0.258577 0.0933438i
\(483\) 0 0
\(484\) −27.8897 + 23.1530i −1.26771 + 1.05241i
\(485\) 16.3349i 0.741731i
\(486\) 0 0
\(487\) 37.5879i 1.70327i −0.524136 0.851635i \(-0.675612\pi\)
0.524136 0.851635i \(-0.324388\pi\)
\(488\) 37.4842 + 22.0382i 1.69683 + 0.997623i
\(489\) 0 0
\(490\) 3.66960 + 10.1654i 0.165775 + 0.459224i
\(491\) 5.12711i 0.231383i −0.993285 0.115692i \(-0.963092\pi\)
0.993285 0.115692i \(-0.0369085\pi\)
\(492\) 0 0
\(493\) 25.4593 + 25.9966i 1.14663 + 1.17083i
\(494\) −11.0802 30.6938i −0.498521 1.38098i
\(495\) 0 0
\(496\) 17.6417 + 3.30269i 0.792136 + 0.148295i
\(497\) 1.23012 0.0551782
\(498\) 0 0
\(499\) 14.1030 0.631336 0.315668 0.948870i \(-0.397771\pi\)
0.315668 + 0.948870i \(0.397771\pi\)
\(500\) 15.0858 12.5237i 0.674659 0.560077i
\(501\) 0 0
\(502\) −10.2776 + 3.71010i −0.458710 + 0.165590i
\(503\) 28.4331i 1.26777i 0.773428 + 0.633884i \(0.218540\pi\)
−0.773428 + 0.633884i \(0.781460\pi\)
\(504\) 0 0
\(505\) 18.7348i 0.833687i
\(506\) 29.2286 10.5512i 1.29937 0.469060i
\(507\) 0 0
\(508\) 10.0160 8.31490i 0.444387 0.368914i
\(509\) 5.52807i 0.245027i 0.992467 + 0.122514i \(0.0390956\pi\)
−0.992467 + 0.122514i \(0.960904\pi\)
\(510\) 0 0
\(511\) −3.19369 −0.141281
\(512\) 0.536265 22.6211i 0.0236998 0.999719i
\(513\) 0 0
\(514\) 13.5973 + 37.6667i 0.599752 + 1.66141i
\(515\) −3.82769 −0.168668
\(516\) 0 0
\(517\) −28.3319 −1.24604
\(518\) −0.383090 + 0.138292i −0.0168320 + 0.00607620i
\(519\) 0 0
\(520\) −9.65307 + 16.4187i −0.423315 + 0.720006i
\(521\) 12.6317i 0.553404i −0.960956 0.276702i \(-0.910759\pi\)
0.960956 0.276702i \(-0.0892415\pi\)
\(522\) 0 0
\(523\) 28.9269i 1.26489i −0.774607 0.632443i \(-0.782052\pi\)
0.774607 0.632443i \(-0.217948\pi\)
\(524\) −10.3896 + 8.62507i −0.453872 + 0.376788i
\(525\) 0 0
\(526\) −4.25975 11.8002i −0.185734 0.514511i
\(527\) 13.2177 12.9446i 0.575774 0.563875i
\(528\) 0 0
\(529\) 6.42186 0.279211
\(530\) 8.21889 2.96694i 0.357006 0.128876i
\(531\) 0 0
\(532\) −2.54263 + 2.11080i −0.110237 + 0.0915148i
\(533\) −33.2408 −1.43982
\(534\) 0 0
\(535\) 17.7744 0.768456
\(536\) −11.4958 + 19.5528i −0.496541 + 0.844554i
\(537\) 0 0
\(538\) −4.98019 13.7959i −0.214711 0.594783i
\(539\) −36.7787 −1.58417
\(540\) 0 0
\(541\) 23.5358 1.01188 0.505942 0.862568i \(-0.331145\pi\)
0.505942 + 0.862568i \(0.331145\pi\)
\(542\) 6.74583 + 18.6870i 0.289758 + 0.802675i
\(543\) 0 0
\(544\) −18.7846 13.8253i −0.805384 0.592753i
\(545\) 9.43388 0.404103
\(546\) 0 0
\(547\) −13.9646 −0.597083 −0.298542 0.954397i \(-0.596500\pi\)
−0.298542 + 0.954397i \(0.596500\pi\)
\(548\) −10.9476 + 9.08830i −0.467658 + 0.388233i
\(549\) 0 0
\(550\) 9.69862 + 26.8667i 0.413551 + 1.14560i
\(551\) 33.9101i 1.44462i
\(552\) 0 0
\(553\) 3.96010 0.168401
\(554\) −2.80643 7.77426i −0.119234 0.330297i
\(555\) 0 0
\(556\) 0.897954 0.745449i 0.0380817 0.0316141i
\(557\) 8.46728i 0.358770i −0.983779 0.179385i \(-0.942589\pi\)
0.983779 0.179385i \(-0.0574108\pi\)
\(558\) 0 0
\(559\) 16.0529 0.678967
\(560\) 1.89581 + 0.354914i 0.0801128 + 0.0149979i
\(561\) 0 0
\(562\) −1.22789 3.40146i −0.0517956 0.143482i
\(563\) 44.6126i 1.88020i 0.340904 + 0.940098i \(0.389267\pi\)
−0.340904 + 0.940098i \(0.610733\pi\)
\(564\) 0 0
\(565\) 9.20774i 0.387373i
\(566\) −7.72943 21.4117i −0.324892 0.900002i
\(567\) 0 0
\(568\) −4.10081 + 6.97496i −0.172066 + 0.292663i
\(569\) 26.7831 1.12281 0.561403 0.827542i \(-0.310262\pi\)
0.561403 + 0.827542i \(0.310262\pi\)
\(570\) 0 0
\(571\) −23.0894 −0.966260 −0.483130 0.875549i \(-0.660500\pi\)
−0.483130 + 0.875549i \(0.660500\pi\)
\(572\) −41.4006 49.8704i −1.73105 2.08519i
\(573\) 0 0
\(574\) 1.14298 + 3.16622i 0.0477069 + 0.132156i
\(575\) 15.2385i 0.635489i
\(576\) 0 0
\(577\) 3.58583 0.149280 0.0746401 0.997211i \(-0.476219\pi\)
0.0746401 + 0.997211i \(0.476219\pi\)
\(578\) −22.7788 + 7.68928i −0.947474 + 0.319832i
\(579\) 0 0
\(580\) 15.2282 12.6419i 0.632316 0.524925i
\(581\) 4.29110 0.178025
\(582\) 0 0
\(583\) 29.7363i 1.23155i
\(584\) 10.6467 18.1088i 0.440565 0.749346i
\(585\) 0 0
\(586\) 8.86459 3.20004i 0.366193 0.132192i
\(587\) 14.1022i 0.582060i −0.956714 0.291030i \(-0.906002\pi\)
0.956714 0.291030i \(-0.0939980\pi\)
\(588\) 0 0
\(589\) 17.2413 0.710416
\(590\) −19.2636 + 6.95398i −0.793070 + 0.286291i
\(591\) 0 0
\(592\) 0.492961 2.63321i 0.0202606 0.108224i
\(593\) 25.0512 1.02873 0.514364 0.857572i \(-0.328028\pi\)
0.514364 + 0.857572i \(0.328028\pi\)
\(594\) 0 0
\(595\) 1.42041 1.39105i 0.0582310 0.0570276i
\(596\) 11.6462 + 14.0288i 0.477047 + 0.574642i
\(597\) 0 0
\(598\) 11.7410 + 32.5244i 0.480125 + 1.33002i
\(599\) 18.0576 0.737813 0.368906 0.929467i \(-0.379732\pi\)
0.368906 + 0.929467i \(0.379732\pi\)
\(600\) 0 0
\(601\) 3.41581i 0.139334i 0.997570 + 0.0696669i \(0.0221937\pi\)
−0.997570 + 0.0696669i \(0.977806\pi\)
\(602\) −0.551976 1.52906i −0.0224969 0.0623198i
\(603\) 0 0
\(604\) 9.34777 7.76017i 0.380355 0.315757i
\(605\) 20.3229 0.826243
\(606\) 0 0
\(607\) 34.7517i 1.41053i −0.708944 0.705265i \(-0.750828\pi\)
0.708944 0.705265i \(-0.249172\pi\)
\(608\) −3.49227 21.4539i −0.141630 0.870069i
\(609\) 0 0
\(610\) −8.27787 22.9310i −0.335161 0.928449i
\(611\) 31.5266i 1.27543i
\(612\) 0 0
\(613\) 25.3171i 1.02255i 0.859417 + 0.511275i \(0.170827\pi\)
−0.859417 + 0.511275i \(0.829173\pi\)
\(614\) 1.00912 0.364285i 0.0407250 0.0147013i
\(615\) 0 0
\(616\) −3.32667 + 5.65824i −0.134035 + 0.227977i
\(617\) 36.3715i 1.46426i −0.681164 0.732131i \(-0.738526\pi\)
0.681164 0.732131i \(-0.261474\pi\)
\(618\) 0 0
\(619\) 11.8607 0.476723 0.238362 0.971176i \(-0.423390\pi\)
0.238362 + 0.971176i \(0.423390\pi\)
\(620\) −6.42766 7.74264i −0.258141 0.310952i
\(621\) 0 0
\(622\) 27.8792 10.0641i 1.11785 0.403535i
\(623\) 2.26541i 0.0907619i
\(624\) 0 0
\(625\) 7.72015 0.308806
\(626\) 5.38554 1.94413i 0.215249 0.0777030i
\(627\) 0 0
\(628\) −13.5660 16.3413i −0.541342 0.652091i
\(629\) −1.93211 1.97288i −0.0770384 0.0786640i
\(630\) 0 0
\(631\) 32.5807 1.29702 0.648509 0.761207i \(-0.275393\pi\)
0.648509 + 0.761207i \(0.275393\pi\)
\(632\) −13.2017 + 22.4544i −0.525135 + 0.893189i
\(633\) 0 0
\(634\) −7.01113 19.4219i −0.278448 0.771343i
\(635\) −7.29854 −0.289634
\(636\) 0 0
\(637\) 40.9258i 1.62154i
\(638\) 22.8694 + 63.3518i 0.905409 + 2.50812i
\(639\) 0 0
\(640\) −8.33246 + 9.56642i −0.329369 + 0.378146i
\(641\) 41.4702i 1.63797i −0.573812 0.818987i \(-0.694536\pi\)
0.573812 0.818987i \(-0.305464\pi\)
\(642\) 0 0
\(643\) −2.52348 −0.0995164 −0.0497582 0.998761i \(-0.515845\pi\)
−0.0497582 + 0.998761i \(0.515845\pi\)
\(644\) 2.69427 2.23669i 0.106169 0.0881378i
\(645\) 0 0
\(646\) −20.1805 9.73351i −0.793991 0.382960i
\(647\) −24.8614 −0.977403 −0.488702 0.872451i \(-0.662529\pi\)
−0.488702 + 0.872451i \(0.662529\pi\)
\(648\) 0 0
\(649\) 69.6965i 2.73583i
\(650\) −29.8962 + 10.7922i −1.17262 + 0.423306i
\(651\) 0 0
\(652\) 21.0292 17.4577i 0.823568 0.683696i
\(653\) 27.1912 1.06408 0.532038 0.846721i \(-0.321426\pi\)
0.532038 + 0.846721i \(0.321426\pi\)
\(654\) 0 0
\(655\) 7.57079 0.295815
\(656\) −21.7633 4.07430i −0.849715 0.159075i
\(657\) 0 0
\(658\) −3.00295 + 1.08404i −0.117067 + 0.0422601i
\(659\) 1.37987i 0.0537522i 0.999639 + 0.0268761i \(0.00855596\pi\)
−0.999639 + 0.0268761i \(0.991444\pi\)
\(660\) 0 0
\(661\) 4.51858i 0.175753i −0.996131 0.0878763i \(-0.971992\pi\)
0.996131 0.0878763i \(-0.0280080\pi\)
\(662\) −12.2444 + 4.42012i −0.475892 + 0.171793i
\(663\) 0 0
\(664\) −14.3052 + 24.3313i −0.555147 + 0.944236i
\(665\) 1.85279 0.0718480
\(666\) 0 0
\(667\) 35.9325i 1.39131i
\(668\) −2.81262 3.38804i −0.108824 0.131087i
\(669\) 0 0
\(670\) 11.9615 4.31797i 0.462111 0.166818i
\(671\) 82.9653 3.20284
\(672\) 0 0
\(673\) 12.8841i 0.496644i −0.968678 0.248322i \(-0.920121\pi\)
0.968678 0.248322i \(-0.0798791\pi\)
\(674\) 6.30814 2.27718i 0.242980 0.0877136i
\(675\) 0 0
\(676\) 35.4889 29.4616i 1.36496 1.13314i
\(677\) −4.05563 −0.155870 −0.0779352 0.996958i \(-0.524833\pi\)
−0.0779352 + 0.996958i \(0.524833\pi\)
\(678\) 0 0
\(679\) −6.26415 −0.240396
\(680\) 3.15233 + 12.6913i 0.120886 + 0.486688i
\(681\) 0 0
\(682\) 32.2107 11.6278i 1.23341 0.445250i
\(683\) 18.7934 0.719111 0.359555 0.933124i \(-0.382928\pi\)
0.359555 + 0.933124i \(0.382928\pi\)
\(684\) 0 0
\(685\) 7.97740 0.304801
\(686\) −7.90223 + 2.85263i −0.301709 + 0.108914i
\(687\) 0 0
\(688\) 10.5101 + 1.96760i 0.400695 + 0.0750139i
\(689\) −33.0893 −1.26060
\(690\) 0 0
\(691\) 47.9864 1.82549 0.912744 0.408532i \(-0.133959\pi\)
0.912744 + 0.408532i \(0.133959\pi\)
\(692\) 2.71935 2.25750i 0.103374 0.0858175i
\(693\) 0 0
\(694\) −6.28384 17.4072i −0.238531 0.660768i
\(695\) −0.654329 −0.0248201
\(696\) 0 0
\(697\) −16.3058 + 15.9688i −0.617626 + 0.604863i
\(698\) 35.6708 12.8768i 1.35016 0.487395i
\(699\) 0 0
\(700\) 2.05595 + 2.47656i 0.0777074 + 0.0936050i
\(701\) 4.82240i 0.182140i 0.995845 + 0.0910698i \(0.0290286\pi\)
−0.995845 + 0.0910698i \(0.970971\pi\)
\(702\) 0 0
\(703\) 2.57344i 0.0970592i
\(704\) −20.9931 37.7255i −0.791208 1.42183i
\(705\) 0 0
\(706\) −0.987080 2.73436i −0.0371492 0.102909i
\(707\) 7.18446 0.270199
\(708\) 0 0
\(709\) −4.48466 −0.168425 −0.0842125 0.996448i \(-0.526837\pi\)
−0.0842125 + 0.996448i \(0.526837\pi\)
\(710\) 4.26694 1.54032i 0.160135 0.0578073i
\(711\) 0 0
\(712\) 12.8453 + 7.55216i 0.481397 + 0.283029i
\(713\) −18.2696 −0.684201
\(714\) 0 0
\(715\) 36.3400i 1.35904i
\(716\) −16.7739 20.2055i −0.626868 0.755115i
\(717\) 0 0
\(718\) −4.57871 12.6837i −0.170876 0.473353i
\(719\) 9.47496i 0.353356i −0.984269 0.176678i \(-0.943465\pi\)
0.984269 0.176678i \(-0.0565352\pi\)
\(720\) 0 0
\(721\) 1.46785i 0.0546656i
\(722\) 2.03383 + 5.63401i 0.0756912 + 0.209676i
\(723\) 0 0
\(724\) 27.4861 22.8179i 1.02151 0.848022i
\(725\) 33.0289 1.22666
\(726\) 0 0
\(727\) −36.9867 −1.37176 −0.685881 0.727714i \(-0.740583\pi\)
−0.685881 + 0.727714i \(0.740583\pi\)
\(728\) −6.29626 3.70178i −0.233355 0.137197i
\(729\) 0 0
\(730\) −11.0780 + 3.99907i −0.410017 + 0.148012i
\(731\) 7.87454 7.71181i 0.291250 0.285232i
\(732\) 0 0
\(733\) 17.6843i 0.653183i 0.945166 + 0.326591i \(0.105900\pi\)
−0.945166 + 0.326591i \(0.894100\pi\)
\(734\) 6.00113 2.16635i 0.221506 0.0799615i
\(735\) 0 0
\(736\) 3.70055 + 22.7334i 0.136404 + 0.837963i
\(737\) 43.2770i 1.59413i
\(738\) 0 0
\(739\) 38.7609i 1.42584i 0.701245 + 0.712921i \(0.252628\pi\)
−0.701245 + 0.712921i \(0.747372\pi\)
\(740\) −1.15567 + 0.959394i −0.0424832 + 0.0352680i
\(741\) 0 0
\(742\) 1.13777 + 3.15180i 0.0417688 + 0.115706i
\(743\) 20.7522i 0.761325i 0.924714 + 0.380663i \(0.124304\pi\)
−0.924714 + 0.380663i \(0.875696\pi\)
\(744\) 0 0
\(745\) 10.2226i 0.374528i
\(746\) 8.68116 3.13382i 0.317840 0.114737i
\(747\) 0 0
\(748\) −44.2662 4.57443i −1.61853 0.167258i
\(749\) 6.81618i 0.249058i
\(750\) 0 0
\(751\) 31.4975i 1.14936i −0.818379 0.574679i \(-0.805127\pi\)
0.818379 0.574679i \(-0.194873\pi\)
\(752\) 3.86420 20.6410i 0.140913 0.752702i
\(753\) 0 0
\(754\) −70.4954 + 25.4482i −2.56729 + 0.926767i
\(755\) −6.81162 −0.247900
\(756\) 0 0
\(757\) 39.5780i 1.43849i 0.694758 + 0.719243i \(0.255511\pi\)
−0.694758 + 0.719243i \(0.744489\pi\)
\(758\) 2.13830 + 5.92342i 0.0776665 + 0.215148i
\(759\) 0 0
\(760\) −6.17660 + 10.5056i −0.224049 + 0.381079i
\(761\) −8.78157 −0.318332 −0.159166 0.987252i \(-0.550880\pi\)
−0.159166 + 0.987252i \(0.550880\pi\)
\(762\) 0 0
\(763\) 3.61773i 0.130971i
\(764\) 34.5187 28.6561i 1.24884 1.03674i
\(765\) 0 0
\(766\) −9.87384 27.3521i −0.356756 0.988271i
\(767\) 77.5554 2.80036
\(768\) 0 0
\(769\) −27.4565 −0.990106 −0.495053 0.868863i \(-0.664851\pi\)
−0.495053 + 0.868863i \(0.664851\pi\)
\(770\) 3.46143 1.24954i 0.124741 0.0450304i
\(771\) 0 0
\(772\) 30.8335 + 37.1415i 1.10972 + 1.33675i
\(773\) 3.38405i 0.121716i −0.998146 0.0608579i \(-0.980616\pi\)
0.998146 0.0608579i \(-0.0193837\pi\)
\(774\) 0 0
\(775\) 16.7933i 0.603232i
\(776\) 20.8827 35.5188i 0.749644 1.27505i
\(777\) 0 0
\(778\) 9.04305 3.26446i 0.324209 0.117036i
\(779\) −21.2694 −0.762055
\(780\) 0 0
\(781\) 15.4379i 0.552413i
\(782\) 21.3841 + 10.3140i 0.764692 + 0.368828i
\(783\) 0 0
\(784\) 5.01625 26.7949i 0.179152 0.956959i
\(785\) 11.9078i 0.425006i
\(786\) 0 0
\(787\) −27.3267 −0.974093 −0.487047 0.873376i \(-0.661926\pi\)
−0.487047 + 0.873376i \(0.661926\pi\)
\(788\) −16.5297 + 13.7223i −0.588845 + 0.488838i
\(789\) 0 0
\(790\) 13.7365 4.95875i 0.488723 0.176424i
\(791\) −3.53101 −0.125548
\(792\) 0 0
\(793\) 92.3204i 3.27839i
\(794\) 14.5522 + 40.3119i 0.516439 + 1.43062i
\(795\) 0 0
\(796\) −24.5794 29.6079i −0.871193 1.04942i
\(797\) 25.8482i 0.915589i −0.889058 0.457794i \(-0.848640\pi\)
0.889058 0.457794i \(-0.151360\pi\)
\(798\) 0 0
\(799\) −15.1454 15.4649i −0.535804 0.547110i
\(800\) −20.8963 + 3.40152i −0.738797 + 0.120262i
\(801\) 0 0
\(802\) 24.5178 8.85071i 0.865755 0.312529i
\(803\) 40.0808i 1.41442i
\(804\) 0 0
\(805\) −1.96329 −0.0691968
\(806\) 12.9389 + 35.8428i 0.455754 + 1.26251i
\(807\) 0 0
\(808\) −23.9507 + 40.7371i −0.842582 + 1.43313i
\(809\) 38.7127i 1.36107i 0.732718 + 0.680533i \(0.238251\pi\)
−0.732718 + 0.680533i \(0.761749\pi\)
\(810\) 0 0
\(811\) −35.1040 −1.23267 −0.616335 0.787484i \(-0.711383\pi\)
−0.616335 + 0.787484i \(0.711383\pi\)
\(812\) 4.84793 + 5.83973i 0.170129 + 0.204934i
\(813\) 0 0
\(814\) −1.73556 4.80778i −0.0608315 0.168513i
\(815\) −15.3238 −0.536768
\(816\) 0 0
\(817\) 10.2716 0.359358
\(818\) −8.61485 23.8645i −0.301211 0.834401i
\(819\) 0 0
\(820\) 7.92935 + 9.55155i 0.276905 + 0.333555i
\(821\) 32.7883 1.14432 0.572160 0.820142i \(-0.306105\pi\)
0.572160 + 0.820142i \(0.306105\pi\)
\(822\) 0 0
\(823\) 43.1571i 1.50436i −0.658957 0.752181i \(-0.729002\pi\)
0.658957 0.752181i \(-0.270998\pi\)
\(824\) 8.32295 + 4.89334i 0.289944 + 0.170468i
\(825\) 0 0
\(826\) −2.66673 7.38725i −0.0927873 0.257035i
\(827\) −32.5472 −1.13178 −0.565889 0.824481i \(-0.691467\pi\)
−0.565889 + 0.824481i \(0.691467\pi\)
\(828\) 0 0
\(829\) 10.6856i 0.371128i −0.982632 0.185564i \(-0.940589\pi\)
0.982632 0.185564i \(-0.0594112\pi\)
\(830\) 14.8847 5.37322i 0.516654 0.186507i
\(831\) 0 0
\(832\) 41.9794 23.3603i 1.45537 0.809873i
\(833\) −19.6607 20.0756i −0.681203 0.695578i
\(834\) 0 0
\(835\) 2.46883i 0.0854372i
\(836\) −26.4905 31.9100i −0.916194 1.10363i
\(837\) 0 0
\(838\) 13.8895 + 38.4760i 0.479804 + 1.32913i
\(839\) 42.7547i 1.47606i −0.674770 0.738028i \(-0.735757\pi\)
0.674770 0.738028i \(-0.264243\pi\)
\(840\) 0 0
\(841\) 48.8823 1.68560
\(842\) −7.89369 + 2.84955i −0.272035 + 0.0982020i
\(843\) 0 0
\(844\) −7.99648 + 6.63839i −0.275250 + 0.228503i
\(845\) −25.8604 −0.889624
\(846\) 0 0
\(847\) 7.79347i 0.267787i
\(848\) −21.6642 4.05573i −0.743951 0.139275i
\(849\) 0 0
\(850\) −9.48056 + 19.6561i −0.325181 + 0.674197i
\(851\) 2.72692i 0.0934777i
\(852\) 0 0
\(853\) −52.4844 −1.79703 −0.898516 0.438941i \(-0.855354\pi\)
−0.898516 + 0.438941i \(0.855354\pi\)
\(854\) 8.79363 3.17442i 0.300912 0.108626i
\(855\) 0 0
\(856\) −38.6489 22.7230i −1.32099 0.776655i
\(857\) 31.5551i 1.07790i −0.842337 0.538952i \(-0.818821\pi\)
0.842337 0.538952i \(-0.181179\pi\)
\(858\) 0 0
\(859\) 6.11248i 0.208555i −0.994548 0.104278i \(-0.966747\pi\)
0.994548 0.104278i \(-0.0332530\pi\)
\(860\) −3.82931 4.61272i −0.130578 0.157292i
\(861\) 0 0
\(862\) 37.7977 13.6446i 1.28740 0.464738i
\(863\) −44.8687 −1.52735 −0.763675 0.645601i \(-0.776607\pi\)
−0.763675 + 0.645601i \(0.776607\pi\)
\(864\) 0 0
\(865\) −1.98156 −0.0673751
\(866\) 1.78299 + 4.93916i 0.0605885 + 0.167840i
\(867\) 0 0
\(868\) 2.96917 2.46489i 0.100780 0.0836639i
\(869\) 49.6992i 1.68593i
\(870\) 0 0
\(871\) −48.1570 −1.63174
\(872\) −20.5131 12.0603i −0.694662 0.408415i
\(873\) 0 0
\(874\) 7.51258 + 20.8110i 0.254117 + 0.703943i
\(875\) 4.21558i 0.142512i
\(876\) 0 0
\(877\) −34.6654 −1.17057 −0.585283 0.810829i \(-0.699017\pi\)
−0.585283 + 0.810829i \(0.699017\pi\)
\(878\) −53.5604 + 19.3348i −1.80758 + 0.652518i
\(879\) 0 0
\(880\) −4.45417 + 23.7925i −0.150150 + 0.802044i
\(881\) 39.0374i 1.31520i 0.753365 + 0.657602i \(0.228429\pi\)
−0.753365 + 0.657602i \(0.771571\pi\)
\(882\) 0 0
\(883\) 56.0176i 1.88514i −0.334006 0.942571i \(-0.608401\pi\)
0.334006 0.942571i \(-0.391599\pi\)
\(884\) 5.09024 49.2576i 0.171203 1.65671i
\(885\) 0 0
\(886\) −40.4812 + 14.6133i −1.35999 + 0.490945i
\(887\) 13.9005i 0.466734i 0.972389 + 0.233367i \(0.0749744\pi\)
−0.972389 + 0.233367i \(0.925026\pi\)
\(888\) 0 0
\(889\) 2.79886i 0.0938707i
\(890\) −2.83670 7.85811i −0.0950865 0.263404i
\(891\) 0 0
\(892\) 11.6002 9.63007i 0.388404 0.322439i
\(893\) 20.1726i 0.675050i
\(894\) 0 0
\(895\) 14.7235i 0.492153i
\(896\) −3.66855 3.19535i −0.122558 0.106749i
\(897\) 0 0
\(898\) 30.0097 10.8332i 1.00144 0.361509i
\(899\) 39.5986i 1.32069i
\(900\) 0 0
\(901\) −16.2315 + 15.8961i −0.540750 + 0.529575i
\(902\) −39.7361 + 14.3444i −1.32307 + 0.477615i
\(903\) 0 0
\(904\) 11.7712 20.0214i 0.391505 0.665902i
\(905\) −20.0288 −0.665780
\(906\) 0 0
\(907\) −43.8898 −1.45734 −0.728668 0.684867i \(-0.759860\pi\)
−0.728668 + 0.684867i \(0.759860\pi\)
\(908\) 6.88295 5.71397i 0.228419 0.189625i
\(909\) 0 0
\(910\) 1.39044 + 3.85174i 0.0460927 + 0.127684i
\(911\) 15.3016i 0.506964i 0.967340 + 0.253482i \(0.0815758\pi\)
−0.967340 + 0.253482i \(0.918424\pi\)
\(912\) 0 0
\(913\) 53.8533i 1.78228i
\(914\) 15.7832 + 43.7220i 0.522063 + 1.44619i
\(915\) 0 0
\(916\) 4.24496 + 5.11341i 0.140258 + 0.168952i
\(917\) 2.90326i 0.0958742i
\(918\) 0 0
\(919\) −42.3778 −1.39792 −0.698958 0.715163i \(-0.746353\pi\)
−0.698958 + 0.715163i \(0.746353\pi\)
\(920\) 6.54497 11.1322i 0.215781 0.367017i
\(921\) 0 0
\(922\) −30.5345 + 11.0227i −1.00560 + 0.363012i
\(923\) −17.1787 −0.565445
\(924\) 0 0
\(925\) −2.50657 −0.0824154
\(926\) −5.19260 14.3843i −0.170639 0.472697i
\(927\) 0 0
\(928\) −49.2737 + 8.02080i −1.61749 + 0.263296i
\(929\) 10.6062i 0.347979i −0.984747 0.173990i \(-0.944334\pi\)
0.984747 0.173990i \(-0.0556660\pi\)
\(930\) 0 0
\(931\) 26.1867i 0.858235i
\(932\) 24.1770 + 29.1231i 0.791942 + 0.953960i
\(933\) 0 0
\(934\) 21.6275 7.80733i 0.707674 0.255464i
\(935\) 17.4577 + 17.8261i 0.570928 + 0.582976i
\(936\) 0 0
\(937\) −8.71851 −0.284821 −0.142411 0.989808i \(-0.545485\pi\)
−0.142411 + 0.989808i \(0.545485\pi\)
\(938\) 1.65587 + 4.58701i 0.0540660 + 0.149771i
\(939\) 0 0
\(940\) −9.05900 + 7.52045i −0.295472 + 0.245290i
\(941\) 32.1897 1.04936 0.524678 0.851301i \(-0.324186\pi\)
0.524678 + 0.851301i \(0.324186\pi\)
\(942\) 0 0
\(943\) 22.5379 0.733935
\(944\) 50.7769 + 9.50592i 1.65265 + 0.309391i
\(945\) 0 0
\(946\) 19.1897 6.92730i 0.623911 0.225226i
\(947\) −36.5026 −1.18618 −0.593088 0.805137i \(-0.702091\pi\)
−0.593088 + 0.805137i \(0.702091\pi\)
\(948\) 0 0
\(949\) 44.6003 1.44779
\(950\) −19.1293 + 6.90550i −0.620637 + 0.224044i
\(951\) 0 0
\(952\) −4.86687 + 1.20886i −0.157736 + 0.0391794i
\(953\) −42.1408 −1.36507 −0.682537 0.730851i \(-0.739123\pi\)
−0.682537 + 0.730851i \(0.739123\pi\)
\(954\) 0 0
\(955\) −25.1534 −0.813944
\(956\) −3.56411 + 2.95879i −0.115271 + 0.0956942i
\(957\) 0 0
\(958\) 23.5374 8.49678i 0.760458 0.274518i
\(959\) 3.05919i 0.0987864i
\(960\) 0 0
\(961\) 10.8664 0.350529
\(962\) 5.34990 1.93127i 0.172488 0.0622665i
\(963\) 0 0
\(964\) 5.45198 + 6.56736i 0.175597 + 0.211520i
\(965\) 27.0646i 0.871241i
\(966\) 0 0
\(967\) 11.8445 0.380893 0.190447 0.981698i \(-0.439006\pi\)
0.190447 + 0.981698i \(0.439006\pi\)
\(968\) −44.1903 25.9809i −1.42033 0.835058i
\(969\) 0 0
\(970\) −21.7286 + 7.84383i −0.697664 + 0.251850i
\(971\) 20.6928i 0.664062i −0.943268 0.332031i \(-0.892266\pi\)
0.943268 0.332031i \(-0.107734\pi\)
\(972\) 0 0
\(973\) 0.250924i 0.00804424i
\(974\) 49.9992 18.0492i 1.60208 0.578335i
\(975\) 0 0
\(976\) −11.3156 + 60.4438i −0.362205 + 1.93476i
\(977\) 12.1171 0.387662 0.193831 0.981035i \(-0.437909\pi\)
0.193831 + 0.981035i \(0.437909\pi\)
\(978\) 0 0
\(979\) 28.4309 0.908657
\(980\) −11.7598 + 9.76256i −0.375653 + 0.311854i
\(981\) 0 0
\(982\) 6.82006 2.46198i 0.217637 0.0785649i
\(983\) 26.6673i 0.850556i −0.905063 0.425278i \(-0.860176\pi\)
0.905063 0.425278i \(-0.139824\pi\)
\(984\) 0 0
\(985\) 12.0450 0.383785
\(986\) −22.3552 + 46.3491i −0.711935 + 1.47606i
\(987\) 0 0
\(988\) 35.5082 29.4776i 1.12967 0.937808i
\(989\) −10.8842 −0.346097
\(990\) 0 0
\(991\) 12.1539i 0.386082i −0.981191 0.193041i \(-0.938165\pi\)
0.981191 0.193041i \(-0.0618350\pi\)
\(992\) 4.07811 + 25.0528i 0.129480 + 0.795428i
\(993\) 0 0
\(994\) 0.590687 + 1.63629i 0.0187354 + 0.0519001i
\(995\) 21.5749i 0.683972i
\(996\) 0 0
\(997\) −20.0983 −0.636520 −0.318260 0.948004i \(-0.603098\pi\)
−0.318260 + 0.948004i \(0.603098\pi\)
\(998\) 6.77208 + 18.7597i 0.214367 + 0.593828i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.2.l.d.1189.12 18
3.2 odd 2 408.2.l.b.373.7 yes 18
4.3 odd 2 4896.2.l.d.3025.11 18
8.3 odd 2 4896.2.l.c.3025.7 18
8.5 even 2 1224.2.l.c.1189.11 18
12.11 even 2 1632.2.l.a.1393.7 18
17.16 even 2 1224.2.l.c.1189.12 18
24.5 odd 2 408.2.l.a.373.8 yes 18
24.11 even 2 1632.2.l.b.1393.11 18
51.50 odd 2 408.2.l.a.373.7 18
68.67 odd 2 4896.2.l.c.3025.8 18
136.67 odd 2 4896.2.l.d.3025.12 18
136.101 even 2 inner 1224.2.l.d.1189.11 18
204.203 even 2 1632.2.l.b.1393.12 18
408.101 odd 2 408.2.l.b.373.8 yes 18
408.203 even 2 1632.2.l.a.1393.8 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.l.a.373.7 18 51.50 odd 2
408.2.l.a.373.8 yes 18 24.5 odd 2
408.2.l.b.373.7 yes 18 3.2 odd 2
408.2.l.b.373.8 yes 18 408.101 odd 2
1224.2.l.c.1189.11 18 8.5 even 2
1224.2.l.c.1189.12 18 17.16 even 2
1224.2.l.d.1189.11 18 136.101 even 2 inner
1224.2.l.d.1189.12 18 1.1 even 1 trivial
1632.2.l.a.1393.7 18 12.11 even 2
1632.2.l.a.1393.8 18 408.203 even 2
1632.2.l.b.1393.11 18 24.11 even 2
1632.2.l.b.1393.12 18 204.203 even 2
4896.2.l.c.3025.7 18 8.3 odd 2
4896.2.l.c.3025.8 18 68.67 odd 2
4896.2.l.d.3025.11 18 4.3 odd 2
4896.2.l.d.3025.12 18 136.67 odd 2