Properties

Label 1224.2.l.d.1189.8
Level $1224$
Weight $2$
Character 1224.1189
Analytic conductor $9.774$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(1189,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.1189");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.l (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{16} - 2x^{14} + 2x^{12} - 4x^{11} + 4x^{10} + 8x^{8} - 16x^{7} + 16x^{6} - 64x^{4} - 128x^{2} + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1189.8
Root \(-0.410541 - 1.35331i\) of defining polynomial
Character \(\chi\) \(=\) 1224.1189
Dual form 1224.2.l.d.1189.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.410541 + 1.35331i) q^{2} +(-1.66291 - 1.11118i) q^{4} -1.09133 q^{5} -4.50716i q^{7} +(2.18647 - 1.79426i) q^{8} +(0.448036 - 1.47691i) q^{10} +2.15194 q^{11} +0.937317i q^{13} +(6.09960 + 1.85037i) q^{14} +(1.53056 + 3.69559i) q^{16} +(-3.95062 + 1.18007i) q^{17} +0.902826i q^{19} +(1.81479 + 1.21267i) q^{20} +(-0.883460 + 2.91225i) q^{22} +2.09199i q^{23} -3.80899 q^{25} +(-1.26848 - 0.384807i) q^{26} +(-5.00826 + 7.49501i) q^{28} -5.32633 q^{29} -6.09729i q^{31} +(-5.62965 + 0.554135i) q^{32} +(0.0248832 - 5.83090i) q^{34} +4.91881i q^{35} -3.32532 q^{37} +(-1.22181 - 0.370647i) q^{38} +(-2.38616 + 1.95813i) q^{40} -4.72595i q^{41} +10.1644i q^{43} +(-3.57849 - 2.39120i) q^{44} +(-2.83111 - 0.858845i) q^{46} -11.3283 q^{47} -13.3145 q^{49} +(1.56375 - 5.15476i) q^{50} +(1.04153 - 1.55868i) q^{52} -9.56417i q^{53} -2.34849 q^{55} +(-8.08700 - 9.85475i) q^{56} +(2.18668 - 7.20820i) q^{58} -5.57204i q^{59} +12.3069 q^{61} +(8.25154 + 2.50318i) q^{62} +(1.56128 - 7.84617i) q^{64} -1.02292i q^{65} -1.17928i q^{67} +(7.88082 + 2.42750i) q^{68} +(-6.65669 - 2.01937i) q^{70} +1.79316i q^{71} +12.8058i q^{73} +(1.36518 - 4.50020i) q^{74} +(1.00320 - 1.50132i) q^{76} -9.69915i q^{77} -2.60982i q^{79} +(-1.67035 - 4.03312i) q^{80} +(6.39569 + 1.94019i) q^{82} +12.8147i q^{83} +(4.31145 - 1.28785i) q^{85} +(-13.7557 - 4.17291i) q^{86} +(4.70515 - 3.86114i) q^{88} -10.1783 q^{89} +4.22464 q^{91} +(2.32457 - 3.47879i) q^{92} +(4.65074 - 15.3308i) q^{94} -0.985283i q^{95} -2.93381i q^{97} +(5.46613 - 18.0186i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{4} + 4 q^{5} - 8 q^{10} + 6 q^{14} + 10 q^{16} + 2 q^{17} + 2 q^{20} + 2 q^{22} + 22 q^{25} - 2 q^{26} - 10 q^{28} - 12 q^{29} + 6 q^{34} - 16 q^{37} + 34 q^{38} - 10 q^{40} - 12 q^{44} + 32 q^{46}+ \cdots + 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.410541 + 1.35331i −0.290296 + 0.956937i
\(3\) 0 0
\(4\) −1.66291 1.11118i −0.831456 0.555590i
\(5\) −1.09133 −0.488059 −0.244029 0.969768i \(-0.578469\pi\)
−0.244029 + 0.969768i \(0.578469\pi\)
\(6\) 0 0
\(7\) 4.50716i 1.70355i −0.523911 0.851773i \(-0.675528\pi\)
0.523911 0.851773i \(-0.324472\pi\)
\(8\) 2.18647 1.79426i 0.773033 0.634366i
\(9\) 0 0
\(10\) 0.448036 1.47691i 0.141682 0.467042i
\(11\) 2.15194 0.648835 0.324418 0.945914i \(-0.394832\pi\)
0.324418 + 0.945914i \(0.394832\pi\)
\(12\) 0 0
\(13\) 0.937317i 0.259965i 0.991516 + 0.129982i \(0.0414921\pi\)
−0.991516 + 0.129982i \(0.958508\pi\)
\(14\) 6.09960 + 1.85037i 1.63019 + 0.494532i
\(15\) 0 0
\(16\) 1.53056 + 3.69559i 0.382640 + 0.923898i
\(17\) −3.95062 + 1.18007i −0.958167 + 0.286210i
\(18\) 0 0
\(19\) 0.902826i 0.207122i 0.994623 + 0.103561i \(0.0330238\pi\)
−0.994623 + 0.103561i \(0.966976\pi\)
\(20\) 1.81479 + 1.21267i 0.405800 + 0.271161i
\(21\) 0 0
\(22\) −0.883460 + 2.91225i −0.188354 + 0.620895i
\(23\) 2.09199i 0.436209i 0.975925 + 0.218105i \(0.0699874\pi\)
−0.975925 + 0.218105i \(0.930013\pi\)
\(24\) 0 0
\(25\) −3.80899 −0.761799
\(26\) −1.26848 0.384807i −0.248770 0.0754668i
\(27\) 0 0
\(28\) −5.00826 + 7.49501i −0.946473 + 1.41642i
\(29\) −5.32633 −0.989075 −0.494538 0.869156i \(-0.664663\pi\)
−0.494538 + 0.869156i \(0.664663\pi\)
\(30\) 0 0
\(31\) 6.09729i 1.09511i −0.836771 0.547553i \(-0.815560\pi\)
0.836771 0.547553i \(-0.184440\pi\)
\(32\) −5.62965 + 0.554135i −0.995191 + 0.0979582i
\(33\) 0 0
\(34\) 0.0248832 5.83090i 0.00426744 0.999991i
\(35\) 4.91881i 0.831430i
\(36\) 0 0
\(37\) −3.32532 −0.546679 −0.273340 0.961918i \(-0.588128\pi\)
−0.273340 + 0.961918i \(0.588128\pi\)
\(38\) −1.22181 0.370647i −0.198203 0.0601268i
\(39\) 0 0
\(40\) −2.38616 + 1.95813i −0.377286 + 0.309608i
\(41\) 4.72595i 0.738069i −0.929416 0.369035i \(-0.879688\pi\)
0.929416 0.369035i \(-0.120312\pi\)
\(42\) 0 0
\(43\) 10.1644i 1.55006i 0.631924 + 0.775030i \(0.282266\pi\)
−0.631924 + 0.775030i \(0.717734\pi\)
\(44\) −3.57849 2.39120i −0.539478 0.360486i
\(45\) 0 0
\(46\) −2.83111 0.858845i −0.417425 0.126630i
\(47\) −11.3283 −1.65241 −0.826204 0.563371i \(-0.809504\pi\)
−0.826204 + 0.563371i \(0.809504\pi\)
\(48\) 0 0
\(49\) −13.3145 −1.90207
\(50\) 1.56375 5.15476i 0.221147 0.728993i
\(51\) 0 0
\(52\) 1.04153 1.55868i 0.144434 0.216150i
\(53\) 9.56417i 1.31374i −0.754004 0.656870i \(-0.771880\pi\)
0.754004 0.656870i \(-0.228120\pi\)
\(54\) 0 0
\(55\) −2.34849 −0.316670
\(56\) −8.08700 9.85475i −1.08067 1.31690i
\(57\) 0 0
\(58\) 2.18668 7.20820i 0.287125 0.946482i
\(59\) 5.57204i 0.725418i −0.931903 0.362709i \(-0.881852\pi\)
0.931903 0.362709i \(-0.118148\pi\)
\(60\) 0 0
\(61\) 12.3069 1.57574 0.787869 0.615843i \(-0.211184\pi\)
0.787869 + 0.615843i \(0.211184\pi\)
\(62\) 8.25154 + 2.50318i 1.04795 + 0.317905i
\(63\) 0 0
\(64\) 1.56128 7.84617i 0.195160 0.980771i
\(65\) 1.02292i 0.126878i
\(66\) 0 0
\(67\) 1.17928i 0.144072i −0.997402 0.0720359i \(-0.977050\pi\)
0.997402 0.0720359i \(-0.0229496\pi\)
\(68\) 7.88082 + 2.42750i 0.955689 + 0.294377i
\(69\) 0 0
\(70\) −6.65669 2.01937i −0.795626 0.241361i
\(71\) 1.79316i 0.212809i 0.994323 + 0.106405i \(0.0339339\pi\)
−0.994323 + 0.106405i \(0.966066\pi\)
\(72\) 0 0
\(73\) 12.8058i 1.49881i 0.662114 + 0.749403i \(0.269659\pi\)
−0.662114 + 0.749403i \(0.730341\pi\)
\(74\) 1.36518 4.50020i 0.158699 0.523137i
\(75\) 0 0
\(76\) 1.00320 1.50132i 0.115075 0.172213i
\(77\) 9.69915i 1.10532i
\(78\) 0 0
\(79\) 2.60982i 0.293628i −0.989164 0.146814i \(-0.953098\pi\)
0.989164 0.146814i \(-0.0469019\pi\)
\(80\) −1.67035 4.03312i −0.186751 0.450916i
\(81\) 0 0
\(82\) 6.39569 + 1.94019i 0.706286 + 0.214259i
\(83\) 12.8147i 1.40660i 0.710895 + 0.703298i \(0.248290\pi\)
−0.710895 + 0.703298i \(0.751710\pi\)
\(84\) 0 0
\(85\) 4.31145 1.28785i 0.467642 0.139687i
\(86\) −13.7557 4.17291i −1.48331 0.449977i
\(87\) 0 0
\(88\) 4.70515 3.86114i 0.501571 0.411599i
\(89\) −10.1783 −1.07890 −0.539448 0.842019i \(-0.681367\pi\)
−0.539448 + 0.842019i \(0.681367\pi\)
\(90\) 0 0
\(91\) 4.22464 0.442862
\(92\) 2.32457 3.47879i 0.242353 0.362689i
\(93\) 0 0
\(94\) 4.65074 15.3308i 0.479688 1.58125i
\(95\) 0.985283i 0.101088i
\(96\) 0 0
\(97\) 2.93381i 0.297884i −0.988846 0.148942i \(-0.952413\pi\)
0.988846 0.148942i \(-0.0475867\pi\)
\(98\) 5.46613 18.0186i 0.552162 1.82016i
\(99\) 0 0
\(100\) 6.33402 + 4.23248i 0.633402 + 0.423248i
\(101\) 7.76557i 0.772704i 0.922352 + 0.386352i \(0.126265\pi\)
−0.922352 + 0.386352i \(0.873735\pi\)
\(102\) 0 0
\(103\) −15.3040 −1.50795 −0.753975 0.656903i \(-0.771866\pi\)
−0.753975 + 0.656903i \(0.771866\pi\)
\(104\) 1.68179 + 2.04941i 0.164913 + 0.200962i
\(105\) 0 0
\(106\) 12.9433 + 3.92648i 1.25717 + 0.381374i
\(107\) −2.59291 −0.250666 −0.125333 0.992115i \(-0.540000\pi\)
−0.125333 + 0.992115i \(0.540000\pi\)
\(108\) 0 0
\(109\) −6.45422 −0.618202 −0.309101 0.951029i \(-0.600028\pi\)
−0.309101 + 0.951029i \(0.600028\pi\)
\(110\) 0.964149 3.17824i 0.0919280 0.303033i
\(111\) 0 0
\(112\) 16.6566 6.89847i 1.57390 0.651844i
\(113\) 17.8899i 1.68294i −0.540306 0.841468i \(-0.681692\pi\)
0.540306 0.841468i \(-0.318308\pi\)
\(114\) 0 0
\(115\) 2.28305i 0.212896i
\(116\) 8.85723 + 5.91851i 0.822373 + 0.549520i
\(117\) 0 0
\(118\) 7.54071 + 2.28755i 0.694179 + 0.210586i
\(119\) 5.31877 + 17.8061i 0.487571 + 1.63228i
\(120\) 0 0
\(121\) −6.36914 −0.579013
\(122\) −5.05249 + 16.6551i −0.457431 + 1.50788i
\(123\) 0 0
\(124\) −6.77518 + 10.1393i −0.608429 + 0.910532i
\(125\) 9.61354 0.859861
\(126\) 0 0
\(127\) 8.08668 0.717577 0.358788 0.933419i \(-0.383190\pi\)
0.358788 + 0.933419i \(0.383190\pi\)
\(128\) 9.97736 + 5.33407i 0.881882 + 0.471470i
\(129\) 0 0
\(130\) 1.38434 + 0.419952i 0.121414 + 0.0368322i
\(131\) −15.3668 −1.34260 −0.671302 0.741184i \(-0.734265\pi\)
−0.671302 + 0.741184i \(0.734265\pi\)
\(132\) 0 0
\(133\) 4.06918 0.352843
\(134\) 1.59593 + 0.484141i 0.137868 + 0.0418234i
\(135\) 0 0
\(136\) −6.52056 + 9.66863i −0.559133 + 0.829078i
\(137\) −6.06055 −0.517788 −0.258894 0.965906i \(-0.583358\pi\)
−0.258894 + 0.965906i \(0.583358\pi\)
\(138\) 0 0
\(139\) −18.5205 −1.57089 −0.785444 0.618933i \(-0.787565\pi\)
−0.785444 + 0.618933i \(0.787565\pi\)
\(140\) 5.46568 8.17955i 0.461934 0.691298i
\(141\) 0 0
\(142\) −2.42671 0.736166i −0.203645 0.0617777i
\(143\) 2.01705i 0.168674i
\(144\) 0 0
\(145\) 5.81280 0.482727
\(146\) −17.3303 5.25730i −1.43426 0.435097i
\(147\) 0 0
\(148\) 5.52972 + 3.69503i 0.454540 + 0.303729i
\(149\) 13.2018i 1.08153i −0.841173 0.540766i \(-0.818134\pi\)
0.841173 0.540766i \(-0.181866\pi\)
\(150\) 0 0
\(151\) −2.14998 −0.174963 −0.0874816 0.996166i \(-0.527882\pi\)
−0.0874816 + 0.996166i \(0.527882\pi\)
\(152\) 1.61990 + 1.97400i 0.131391 + 0.160112i
\(153\) 0 0
\(154\) 13.1260 + 3.98189i 1.05772 + 0.320870i
\(155\) 6.65417i 0.534476i
\(156\) 0 0
\(157\) 1.15615i 0.0922710i −0.998935 0.0461355i \(-0.985309\pi\)
0.998935 0.0461355i \(-0.0146906\pi\)
\(158\) 3.53191 + 1.07144i 0.280983 + 0.0852390i
\(159\) 0 0
\(160\) 6.14382 0.604746i 0.485712 0.0478094i
\(161\) 9.42891 0.743102
\(162\) 0 0
\(163\) −0.0884470 −0.00692770 −0.00346385 0.999994i \(-0.501103\pi\)
−0.00346385 + 0.999994i \(0.501103\pi\)
\(164\) −5.25138 + 7.85884i −0.410064 + 0.613672i
\(165\) 0 0
\(166\) −17.3423 5.26095i −1.34602 0.408329i
\(167\) 12.8349i 0.993194i −0.867981 0.496597i \(-0.834583\pi\)
0.867981 0.496597i \(-0.165417\pi\)
\(168\) 0 0
\(169\) 12.1214 0.932418
\(170\) −0.0271559 + 6.36345i −0.00208276 + 0.488054i
\(171\) 0 0
\(172\) 11.2945 16.9026i 0.861198 1.28881i
\(173\) 11.4693 0.871994 0.435997 0.899948i \(-0.356396\pi\)
0.435997 + 0.899948i \(0.356396\pi\)
\(174\) 0 0
\(175\) 17.1677i 1.29776i
\(176\) 3.29368 + 7.95270i 0.248270 + 0.599458i
\(177\) 0 0
\(178\) 4.17860 13.7744i 0.313199 1.03243i
\(179\) 5.52123i 0.412676i 0.978481 + 0.206338i \(0.0661547\pi\)
−0.978481 + 0.206338i \(0.933845\pi\)
\(180\) 0 0
\(181\) −20.5464 −1.52720 −0.763599 0.645691i \(-0.776570\pi\)
−0.763599 + 0.645691i \(0.776570\pi\)
\(182\) −1.73438 + 5.71725i −0.128561 + 0.423791i
\(183\) 0 0
\(184\) 3.75356 + 4.57406i 0.276716 + 0.337204i
\(185\) 3.62903 0.266812
\(186\) 0 0
\(187\) −8.50152 + 2.53945i −0.621693 + 0.185703i
\(188\) 18.8380 + 12.5878i 1.37391 + 0.918062i
\(189\) 0 0
\(190\) 1.33340 + 0.404499i 0.0967348 + 0.0293454i
\(191\) 5.54627 0.401314 0.200657 0.979662i \(-0.435692\pi\)
0.200657 + 0.979662i \(0.435692\pi\)
\(192\) 0 0
\(193\) 11.5593i 0.832057i −0.909352 0.416028i \(-0.863422\pi\)
0.909352 0.416028i \(-0.136578\pi\)
\(194\) 3.97037 + 1.20445i 0.285056 + 0.0864744i
\(195\) 0 0
\(196\) 22.1408 + 14.7948i 1.58149 + 1.05677i
\(197\) 17.2128 1.22636 0.613182 0.789942i \(-0.289889\pi\)
0.613182 + 0.789942i \(0.289889\pi\)
\(198\) 0 0
\(199\) 10.1130i 0.716890i −0.933551 0.358445i \(-0.883307\pi\)
0.933551 0.358445i \(-0.116693\pi\)
\(200\) −8.32824 + 6.83431i −0.588895 + 0.483259i
\(201\) 0 0
\(202\) −10.5093 3.18808i −0.739429 0.224313i
\(203\) 24.0066i 1.68493i
\(204\) 0 0
\(205\) 5.15758i 0.360221i
\(206\) 6.28292 20.7111i 0.437752 1.44301i
\(207\) 0 0
\(208\) −3.46394 + 1.43462i −0.240181 + 0.0994729i
\(209\) 1.94283i 0.134388i
\(210\) 0 0
\(211\) −16.4992 −1.13585 −0.567925 0.823080i \(-0.692254\pi\)
−0.567925 + 0.823080i \(0.692254\pi\)
\(212\) −10.6275 + 15.9044i −0.729901 + 1.09232i
\(213\) 0 0
\(214\) 1.06450 3.50902i 0.0727675 0.239872i
\(215\) 11.0928i 0.756521i
\(216\) 0 0
\(217\) −27.4814 −1.86556
\(218\) 2.64972 8.73458i 0.179462 0.591580i
\(219\) 0 0
\(220\) 3.90533 + 2.60959i 0.263297 + 0.175939i
\(221\) −1.10610 3.70299i −0.0744045 0.249090i
\(222\) 0 0
\(223\) 12.3236 0.825248 0.412624 0.910901i \(-0.364612\pi\)
0.412624 + 0.910901i \(0.364612\pi\)
\(224\) 2.49757 + 25.3737i 0.166876 + 1.69535i
\(225\) 0 0
\(226\) 24.2106 + 7.34451i 1.61046 + 0.488550i
\(227\) 16.6910 1.10782 0.553910 0.832576i \(-0.313135\pi\)
0.553910 + 0.832576i \(0.313135\pi\)
\(228\) 0 0
\(229\) 22.4230i 1.48175i −0.671641 0.740876i \(-0.734410\pi\)
0.671641 0.740876i \(-0.265590\pi\)
\(230\) 3.08969 + 0.937286i 0.203728 + 0.0618028i
\(231\) 0 0
\(232\) −11.6459 + 9.55681i −0.764588 + 0.627435i
\(233\) 3.16889i 0.207601i 0.994598 + 0.103800i \(0.0331003\pi\)
−0.994598 + 0.103800i \(0.966900\pi\)
\(234\) 0 0
\(235\) 12.3630 0.806473
\(236\) −6.19154 + 9.26582i −0.403035 + 0.603153i
\(237\) 0 0
\(238\) −26.2808 0.112153i −1.70353 0.00726977i
\(239\) 23.4480 1.51672 0.758362 0.651833i \(-0.226000\pi\)
0.758362 + 0.651833i \(0.226000\pi\)
\(240\) 0 0
\(241\) 18.4921i 1.19118i −0.803287 0.595592i \(-0.796918\pi\)
0.803287 0.595592i \(-0.203082\pi\)
\(242\) 2.61479 8.61944i 0.168085 0.554079i
\(243\) 0 0
\(244\) −20.4653 13.6752i −1.31016 0.875464i
\(245\) 14.5305 0.928321
\(246\) 0 0
\(247\) −0.846234 −0.0538446
\(248\) −10.9401 13.3315i −0.694697 0.846552i
\(249\) 0 0
\(250\) −3.94675 + 13.0101i −0.249614 + 0.822833i
\(251\) 9.97157i 0.629400i 0.949191 + 0.314700i \(0.101904\pi\)
−0.949191 + 0.314700i \(0.898096\pi\)
\(252\) 0 0
\(253\) 4.50184i 0.283028i
\(254\) −3.31991 + 10.9438i −0.208310 + 0.686676i
\(255\) 0 0
\(256\) −11.3148 + 11.3126i −0.707174 + 0.707040i
\(257\) 11.4103 0.711756 0.355878 0.934533i \(-0.384182\pi\)
0.355878 + 0.934533i \(0.384182\pi\)
\(258\) 0 0
\(259\) 14.9877i 0.931293i
\(260\) −1.13665 + 1.70103i −0.0704923 + 0.105494i
\(261\) 0 0
\(262\) 6.30869 20.7961i 0.389752 1.28479i
\(263\) 3.52123 0.217128 0.108564 0.994089i \(-0.465375\pi\)
0.108564 + 0.994089i \(0.465375\pi\)
\(264\) 0 0
\(265\) 10.4377i 0.641182i
\(266\) −1.67056 + 5.50687i −0.102429 + 0.337648i
\(267\) 0 0
\(268\) −1.31039 + 1.96104i −0.0800448 + 0.119789i
\(269\) −16.1868 −0.986927 −0.493464 0.869766i \(-0.664269\pi\)
−0.493464 + 0.869766i \(0.664269\pi\)
\(270\) 0 0
\(271\) 3.71581 0.225720 0.112860 0.993611i \(-0.463999\pi\)
0.112860 + 0.993611i \(0.463999\pi\)
\(272\) −10.4077 12.7937i −0.631061 0.775733i
\(273\) 0 0
\(274\) 2.48810 8.20182i 0.150312 0.495490i
\(275\) −8.19674 −0.494282
\(276\) 0 0
\(277\) −23.2136 −1.39477 −0.697384 0.716698i \(-0.745653\pi\)
−0.697384 + 0.716698i \(0.745653\pi\)
\(278\) 7.60342 25.0640i 0.456023 1.50324i
\(279\) 0 0
\(280\) 8.82561 + 10.7548i 0.527431 + 0.642723i
\(281\) −7.49035 −0.446837 −0.223419 0.974723i \(-0.571722\pi\)
−0.223419 + 0.974723i \(0.571722\pi\)
\(282\) 0 0
\(283\) 10.4614 0.621865 0.310933 0.950432i \(-0.399359\pi\)
0.310933 + 0.950432i \(0.399359\pi\)
\(284\) 1.99253 2.98187i 0.118235 0.176942i
\(285\) 0 0
\(286\) −2.72970 0.828082i −0.161411 0.0489655i
\(287\) −21.3006 −1.25733
\(288\) 0 0
\(289\) 14.2149 9.32405i 0.836168 0.548473i
\(290\) −2.38639 + 7.86654i −0.140134 + 0.461939i
\(291\) 0 0
\(292\) 14.2296 21.2949i 0.832722 1.24619i
\(293\) 18.5453i 1.08343i 0.840563 + 0.541714i \(0.182224\pi\)
−0.840563 + 0.541714i \(0.817776\pi\)
\(294\) 0 0
\(295\) 6.08095i 0.354047i
\(296\) −7.27070 + 5.96648i −0.422601 + 0.346795i
\(297\) 0 0
\(298\) 17.8661 + 5.41987i 1.03496 + 0.313964i
\(299\) −1.96085 −0.113399
\(300\) 0 0
\(301\) 45.8127 2.64060
\(302\) 0.882655 2.90960i 0.0507911 0.167429i
\(303\) 0 0
\(304\) −3.33647 + 1.38183i −0.191360 + 0.0792533i
\(305\) −13.4309 −0.769053
\(306\) 0 0
\(307\) 26.1750i 1.49389i 0.664888 + 0.746943i \(0.268479\pi\)
−0.664888 + 0.746943i \(0.731521\pi\)
\(308\) −10.7775 + 16.1288i −0.614105 + 0.919026i
\(309\) 0 0
\(310\) −9.00517 2.73181i −0.511460 0.155156i
\(311\) 6.77320i 0.384073i −0.981388 0.192037i \(-0.938491\pi\)
0.981388 0.192037i \(-0.0615092\pi\)
\(312\) 0 0
\(313\) 19.5423i 1.10460i 0.833647 + 0.552298i \(0.186249\pi\)
−0.833647 + 0.552298i \(0.813751\pi\)
\(314\) 1.56464 + 0.474647i 0.0882975 + 0.0267859i
\(315\) 0 0
\(316\) −2.89998 + 4.33991i −0.163137 + 0.244139i
\(317\) −25.1958 −1.41514 −0.707569 0.706644i \(-0.750208\pi\)
−0.707569 + 0.706644i \(0.750208\pi\)
\(318\) 0 0
\(319\) −11.4620 −0.641747
\(320\) −1.70388 + 8.56278i −0.0952496 + 0.478674i
\(321\) 0 0
\(322\) −3.87095 + 12.7603i −0.215720 + 0.711102i
\(323\) −1.06540 3.56673i −0.0592805 0.198458i
\(324\) 0 0
\(325\) 3.57023i 0.198041i
\(326\) 0.0363111 0.119696i 0.00201108 0.00662937i
\(327\) 0 0
\(328\) −8.47957 10.3331i −0.468206 0.570552i
\(329\) 51.0586i 2.81495i
\(330\) 0 0
\(331\) 31.3229i 1.72166i 0.508892 + 0.860830i \(0.330055\pi\)
−0.508892 + 0.860830i \(0.669945\pi\)
\(332\) 14.2394 21.3097i 0.781491 1.16952i
\(333\) 0 0
\(334\) 17.3696 + 5.26925i 0.950424 + 0.288320i
\(335\) 1.28698i 0.0703155i
\(336\) 0 0
\(337\) 26.9846i 1.46995i −0.678096 0.734973i \(-0.737195\pi\)
0.678096 0.734973i \(-0.262805\pi\)
\(338\) −4.97634 + 16.4041i −0.270677 + 0.892265i
\(339\) 0 0
\(340\) −8.60059 2.64921i −0.466433 0.143673i
\(341\) 13.1210i 0.710543i
\(342\) 0 0
\(343\) 28.4603i 1.53671i
\(344\) 18.2376 + 22.2242i 0.983306 + 1.19825i
\(345\) 0 0
\(346\) −4.70861 + 15.5215i −0.253136 + 0.834443i
\(347\) 21.7482 1.16750 0.583752 0.811932i \(-0.301584\pi\)
0.583752 + 0.811932i \(0.301584\pi\)
\(348\) 0 0
\(349\) 10.6762i 0.571484i −0.958307 0.285742i \(-0.907760\pi\)
0.958307 0.285742i \(-0.0922400\pi\)
\(350\) −23.2333 7.04805i −1.24187 0.376734i
\(351\) 0 0
\(352\) −12.1147 + 1.19247i −0.645715 + 0.0635587i
\(353\) −9.76739 −0.519866 −0.259933 0.965627i \(-0.583700\pi\)
−0.259933 + 0.965627i \(0.583700\pi\)
\(354\) 0 0
\(355\) 1.95694i 0.103863i
\(356\) 16.9256 + 11.3099i 0.897055 + 0.599424i
\(357\) 0 0
\(358\) −7.47195 2.26669i −0.394905 0.119798i
\(359\) 16.3621 0.863558 0.431779 0.901979i \(-0.357886\pi\)
0.431779 + 0.901979i \(0.357886\pi\)
\(360\) 0 0
\(361\) 18.1849 0.957100
\(362\) 8.43511 27.8057i 0.443340 1.46143i
\(363\) 0 0
\(364\) −7.02520 4.69433i −0.368221 0.246050i
\(365\) 13.9754i 0.731506i
\(366\) 0 0
\(367\) 27.3487i 1.42759i 0.700354 + 0.713795i \(0.253025\pi\)
−0.700354 + 0.713795i \(0.746975\pi\)
\(368\) −7.73112 + 3.20191i −0.403013 + 0.166911i
\(369\) 0 0
\(370\) −1.48986 + 4.91121i −0.0774543 + 0.255322i
\(371\) −43.1072 −2.23802
\(372\) 0 0
\(373\) 28.5136i 1.47638i 0.674595 + 0.738188i \(0.264318\pi\)
−0.674595 + 0.738188i \(0.735682\pi\)
\(374\) 0.0535473 12.5478i 0.00276886 0.648830i
\(375\) 0 0
\(376\) −24.7691 + 20.3260i −1.27737 + 1.04823i
\(377\) 4.99246i 0.257125i
\(378\) 0 0
\(379\) 38.4761 1.97638 0.988191 0.153225i \(-0.0489658\pi\)
0.988191 + 0.153225i \(0.0489658\pi\)
\(380\) −1.09483 + 1.63844i −0.0561634 + 0.0840502i
\(381\) 0 0
\(382\) −2.27697 + 7.50584i −0.116500 + 0.384032i
\(383\) 29.0247 1.48309 0.741546 0.670902i \(-0.234093\pi\)
0.741546 + 0.670902i \(0.234093\pi\)
\(384\) 0 0
\(385\) 10.5850i 0.539461i
\(386\) 15.6434 + 4.74556i 0.796226 + 0.241543i
\(387\) 0 0
\(388\) −3.25999 + 4.87868i −0.165501 + 0.247677i
\(389\) 1.95561i 0.0991536i −0.998770 0.0495768i \(-0.984213\pi\)
0.998770 0.0495768i \(-0.0157873\pi\)
\(390\) 0 0
\(391\) −2.46870 8.26465i −0.124847 0.417961i
\(392\) −29.1117 + 23.8896i −1.47036 + 1.20661i
\(393\) 0 0
\(394\) −7.06657 + 23.2943i −0.356008 + 1.17355i
\(395\) 2.84818i 0.143308i
\(396\) 0 0
\(397\) −19.8933 −0.998415 −0.499208 0.866482i \(-0.666375\pi\)
−0.499208 + 0.866482i \(0.666375\pi\)
\(398\) 13.6860 + 4.15179i 0.686019 + 0.208110i
\(399\) 0 0
\(400\) −5.82989 14.0765i −0.291494 0.703824i
\(401\) 5.41196i 0.270261i −0.990828 0.135130i \(-0.956855\pi\)
0.990828 0.135130i \(-0.0431453\pi\)
\(402\) 0 0
\(403\) 5.71509 0.284689
\(404\) 8.62895 12.9135i 0.429306 0.642469i
\(405\) 0 0
\(406\) −32.4885 9.85569i −1.61238 0.489130i
\(407\) −7.15590 −0.354705
\(408\) 0 0
\(409\) 12.7442 0.630160 0.315080 0.949065i \(-0.397969\pi\)
0.315080 + 0.949065i \(0.397969\pi\)
\(410\) −6.97982 2.11740i −0.344709 0.104571i
\(411\) 0 0
\(412\) 25.4493 + 17.0055i 1.25380 + 0.837802i
\(413\) −25.1141 −1.23578
\(414\) 0 0
\(415\) 13.9851i 0.686502i
\(416\) −0.519400 5.27676i −0.0254657 0.258715i
\(417\) 0 0
\(418\) −2.62926 0.797611i −0.128601 0.0390124i
\(419\) 6.65318 0.325029 0.162514 0.986706i \(-0.448040\pi\)
0.162514 + 0.986706i \(0.448040\pi\)
\(420\) 0 0
\(421\) 32.3311i 1.57572i −0.615853 0.787861i \(-0.711188\pi\)
0.615853 0.787861i \(-0.288812\pi\)
\(422\) 6.77358 22.3286i 0.329733 1.08694i
\(423\) 0 0
\(424\) −17.1606 20.9118i −0.833392 1.01556i
\(425\) 15.0479 4.49489i 0.729930 0.218034i
\(426\) 0 0
\(427\) 55.4692i 2.68434i
\(428\) 4.31179 + 2.88119i 0.208418 + 0.139268i
\(429\) 0 0
\(430\) 15.0120 + 4.55403i 0.723943 + 0.219615i
\(431\) 1.48678i 0.0716157i −0.999359 0.0358079i \(-0.988600\pi\)
0.999359 0.0358079i \(-0.0114004\pi\)
\(432\) 0 0
\(433\) 9.04590 0.434718 0.217359 0.976092i \(-0.430256\pi\)
0.217359 + 0.976092i \(0.430256\pi\)
\(434\) 11.2822 37.1910i 0.541565 1.78522i
\(435\) 0 0
\(436\) 10.7328 + 7.17180i 0.514008 + 0.343467i
\(437\) −1.88870 −0.0903487
\(438\) 0 0
\(439\) 16.2737i 0.776704i 0.921511 + 0.388352i \(0.126955\pi\)
−0.921511 + 0.388352i \(0.873045\pi\)
\(440\) −5.13489 + 4.21379i −0.244796 + 0.200885i
\(441\) 0 0
\(442\) 5.46540 + 0.0233235i 0.259963 + 0.00110938i
\(443\) 25.0216i 1.18881i 0.804164 + 0.594407i \(0.202613\pi\)
−0.804164 + 0.594407i \(0.797387\pi\)
\(444\) 0 0
\(445\) 11.1079 0.526565
\(446\) −5.05933 + 16.6777i −0.239566 + 0.789711i
\(447\) 0 0
\(448\) −35.3639 7.03694i −1.67079 0.332464i
\(449\) 20.5388i 0.969288i 0.874712 + 0.484644i \(0.161051\pi\)
−0.874712 + 0.484644i \(0.838949\pi\)
\(450\) 0 0
\(451\) 10.1700i 0.478885i
\(452\) −19.8789 + 29.7493i −0.935023 + 1.39929i
\(453\) 0 0
\(454\) −6.85233 + 22.5882i −0.321596 + 1.06011i
\(455\) −4.61048 −0.216143
\(456\) 0 0
\(457\) −1.97960 −0.0926019 −0.0463010 0.998928i \(-0.514743\pi\)
−0.0463010 + 0.998928i \(0.514743\pi\)
\(458\) 30.3453 + 9.20555i 1.41794 + 0.430147i
\(459\) 0 0
\(460\) −2.53688 + 3.79652i −0.118283 + 0.177014i
\(461\) 30.0835i 1.40113i −0.713591 0.700563i \(-0.752932\pi\)
0.713591 0.700563i \(-0.247068\pi\)
\(462\) 0 0
\(463\) 14.7207 0.684129 0.342065 0.939676i \(-0.388874\pi\)
0.342065 + 0.939676i \(0.388874\pi\)
\(464\) −8.15226 19.6839i −0.378459 0.913804i
\(465\) 0 0
\(466\) −4.28850 1.30096i −0.198661 0.0602657i
\(467\) 2.03739i 0.0942793i 0.998888 + 0.0471396i \(0.0150106\pi\)
−0.998888 + 0.0471396i \(0.984989\pi\)
\(468\) 0 0
\(469\) −5.31519 −0.245433
\(470\) −5.07551 + 16.7310i −0.234116 + 0.771743i
\(471\) 0 0
\(472\) −9.99767 12.1831i −0.460180 0.560772i
\(473\) 21.8733i 1.00573i
\(474\) 0 0
\(475\) 3.43886i 0.157786i
\(476\) 10.9411 35.5201i 0.501485 1.62806i
\(477\) 0 0
\(478\) −9.62635 + 31.7325i −0.440299 + 1.45141i
\(479\) 36.4905i 1.66729i −0.552298 0.833647i \(-0.686249\pi\)
0.552298 0.833647i \(-0.313751\pi\)
\(480\) 0 0
\(481\) 3.11688i 0.142117i
\(482\) 25.0257 + 7.59177i 1.13989 + 0.345796i
\(483\) 0 0
\(484\) 10.5913 + 7.07726i 0.481424 + 0.321694i
\(485\) 3.20177i 0.145385i
\(486\) 0 0
\(487\) 30.8474i 1.39783i −0.715205 0.698914i \(-0.753667\pi\)
0.715205 0.698914i \(-0.246333\pi\)
\(488\) 26.9087 22.0818i 1.21810 0.999595i
\(489\) 0 0
\(490\) −5.96537 + 19.6643i −0.269488 + 0.888344i
\(491\) 25.3599i 1.14448i −0.820087 0.572239i \(-0.806075\pi\)
0.820087 0.572239i \(-0.193925\pi\)
\(492\) 0 0
\(493\) 21.0423 6.28546i 0.947699 0.283083i
\(494\) 0.347413 1.14522i 0.0156309 0.0515259i
\(495\) 0 0
\(496\) 22.5331 9.33226i 1.01177 0.419031i
\(497\) 8.08207 0.362530
\(498\) 0 0
\(499\) 42.5600 1.90525 0.952624 0.304151i \(-0.0983728\pi\)
0.952624 + 0.304151i \(0.0983728\pi\)
\(500\) −15.9865 10.6824i −0.714937 0.477730i
\(501\) 0 0
\(502\) −13.4947 4.09373i −0.602296 0.182712i
\(503\) 1.06763i 0.0476032i 0.999717 + 0.0238016i \(0.00757699\pi\)
−0.999717 + 0.0238016i \(0.992423\pi\)
\(504\) 0 0
\(505\) 8.47483i 0.377125i
\(506\) −6.09239 1.84819i −0.270840 0.0821619i
\(507\) 0 0
\(508\) −13.4474 8.98576i −0.596634 0.398679i
\(509\) 22.2695i 0.987078i −0.869724 0.493539i \(-0.835703\pi\)
0.869724 0.493539i \(-0.164297\pi\)
\(510\) 0 0
\(511\) 57.7178 2.55328
\(512\) −10.6644 19.9567i −0.471303 0.881972i
\(513\) 0 0
\(514\) −4.68439 + 15.4417i −0.206620 + 0.681105i
\(515\) 16.7018 0.735969
\(516\) 0 0
\(517\) −24.3780 −1.07214
\(518\) −20.2831 6.15307i −0.891188 0.270351i
\(519\) 0 0
\(520\) −1.83539 2.23659i −0.0804872 0.0980810i
\(521\) 34.2365i 1.49993i −0.661477 0.749965i \(-0.730070\pi\)
0.661477 0.749965i \(-0.269930\pi\)
\(522\) 0 0
\(523\) 13.3460i 0.583580i −0.956482 0.291790i \(-0.905749\pi\)
0.956482 0.291790i \(-0.0942508\pi\)
\(524\) 25.5536 + 17.0753i 1.11632 + 0.745937i
\(525\) 0 0
\(526\) −1.44561 + 4.76533i −0.0630315 + 0.207778i
\(527\) 7.19524 + 24.0881i 0.313430 + 1.04929i
\(528\) 0 0
\(529\) 18.6236 0.809722
\(530\) −14.1255 4.28510i −0.613571 0.186133i
\(531\) 0 0
\(532\) −6.76669 4.52159i −0.293373 0.196036i
\(533\) 4.42971 0.191872
\(534\) 0 0
\(535\) 2.82973 0.122340
\(536\) −2.11593 2.57845i −0.0913942 0.111372i
\(537\) 0 0
\(538\) 6.64534 21.9058i 0.286501 0.944427i
\(539\) −28.6520 −1.23413
\(540\) 0 0
\(541\) 7.80167 0.335420 0.167710 0.985836i \(-0.446363\pi\)
0.167710 + 0.985836i \(0.446363\pi\)
\(542\) −1.52549 + 5.02866i −0.0655255 + 0.215999i
\(543\) 0 0
\(544\) 21.5867 8.83257i 0.925522 0.378693i
\(545\) 7.04370 0.301719
\(546\) 0 0
\(547\) −41.8604 −1.78982 −0.894912 0.446243i \(-0.852762\pi\)
−0.894912 + 0.446243i \(0.852762\pi\)
\(548\) 10.0782 + 6.73436i 0.430518 + 0.287678i
\(549\) 0 0
\(550\) 3.36509 11.0928i 0.143488 0.472997i
\(551\) 4.80875i 0.204860i
\(552\) 0 0
\(553\) −11.7629 −0.500209
\(554\) 9.53011 31.4152i 0.404895 1.33470i
\(555\) 0 0
\(556\) 30.7980 + 20.5796i 1.30613 + 0.872770i
\(557\) 13.9855i 0.592585i 0.955097 + 0.296293i \(0.0957503\pi\)
−0.955097 + 0.296293i \(0.904250\pi\)
\(558\) 0 0
\(559\) −9.52729 −0.402962
\(560\) −18.1779 + 7.52852i −0.768157 + 0.318138i
\(561\) 0 0
\(562\) 3.07509 10.1368i 0.129715 0.427595i
\(563\) 41.3480i 1.74261i −0.490740 0.871306i \(-0.663274\pi\)
0.490740 0.871306i \(-0.336726\pi\)
\(564\) 0 0
\(565\) 19.5238i 0.821372i
\(566\) −4.29483 + 14.1575i −0.180525 + 0.595086i
\(567\) 0 0
\(568\) 3.21740 + 3.92069i 0.134999 + 0.164509i
\(569\) 10.7561 0.450918 0.225459 0.974253i \(-0.427612\pi\)
0.225459 + 0.974253i \(0.427612\pi\)
\(570\) 0 0
\(571\) −25.8339 −1.08111 −0.540557 0.841308i \(-0.681786\pi\)
−0.540557 + 0.841308i \(0.681786\pi\)
\(572\) 2.24131 3.35418i 0.0937138 0.140245i
\(573\) 0 0
\(574\) 8.74476 28.8264i 0.364999 1.20319i
\(575\) 7.96836i 0.332304i
\(576\) 0 0
\(577\) −2.24890 −0.0936230 −0.0468115 0.998904i \(-0.514906\pi\)
−0.0468115 + 0.998904i \(0.514906\pi\)
\(578\) 6.78258 + 23.0651i 0.282118 + 0.959380i
\(579\) 0 0
\(580\) −9.66618 6.45907i −0.401366 0.268198i
\(581\) 57.7579 2.39620
\(582\) 0 0
\(583\) 20.5816i 0.852401i
\(584\) 22.9769 + 27.9995i 0.950791 + 1.15863i
\(585\) 0 0
\(586\) −25.0976 7.61360i −1.03677 0.314515i
\(587\) 5.73170i 0.236573i 0.992980 + 0.118286i \(0.0377401\pi\)
−0.992980 + 0.118286i \(0.962260\pi\)
\(588\) 0 0
\(589\) 5.50479 0.226821
\(590\) −8.22943 2.49648i −0.338800 0.102778i
\(591\) 0 0
\(592\) −5.08960 12.2890i −0.209181 0.505076i
\(593\) −38.1021 −1.56467 −0.782333 0.622860i \(-0.785971\pi\)
−0.782333 + 0.622860i \(0.785971\pi\)
\(594\) 0 0
\(595\) −5.80455 19.4324i −0.237963 0.796649i
\(596\) −14.6696 + 21.9534i −0.600888 + 0.899247i
\(597\) 0 0
\(598\) 0.805010 2.65365i 0.0329193 0.108516i
\(599\) −35.5413 −1.45218 −0.726089 0.687601i \(-0.758664\pi\)
−0.726089 + 0.687601i \(0.758664\pi\)
\(600\) 0 0
\(601\) 23.1587i 0.944662i −0.881421 0.472331i \(-0.843413\pi\)
0.881421 0.472331i \(-0.156587\pi\)
\(602\) −18.8080 + 61.9989i −0.766555 + 2.52689i
\(603\) 0 0
\(604\) 3.57523 + 2.38902i 0.145474 + 0.0972078i
\(605\) 6.95085 0.282592
\(606\) 0 0
\(607\) 10.3420i 0.419769i −0.977726 0.209885i \(-0.932691\pi\)
0.977726 0.209885i \(-0.0673089\pi\)
\(608\) −0.500288 5.08259i −0.0202893 0.206126i
\(609\) 0 0
\(610\) 5.51394 18.1763i 0.223253 0.735935i
\(611\) 10.6182i 0.429568i
\(612\) 0 0
\(613\) 4.02328i 0.162499i −0.996694 0.0812494i \(-0.974109\pi\)
0.996694 0.0812494i \(-0.0258910\pi\)
\(614\) −35.4230 10.7459i −1.42955 0.433669i
\(615\) 0 0
\(616\) −17.4028 21.2069i −0.701178 0.854449i
\(617\) 12.5655i 0.505868i 0.967483 + 0.252934i \(0.0813956\pi\)
−0.967483 + 0.252934i \(0.918604\pi\)
\(618\) 0 0
\(619\) −10.5183 −0.422765 −0.211383 0.977403i \(-0.567797\pi\)
−0.211383 + 0.977403i \(0.567797\pi\)
\(620\) 7.39398 11.0653i 0.296949 0.444393i
\(621\) 0 0
\(622\) 9.16626 + 2.78067i 0.367534 + 0.111495i
\(623\) 45.8751i 1.83795i
\(624\) 0 0
\(625\) 8.55339 0.342136
\(626\) −26.4468 8.02291i −1.05703 0.320660i
\(627\) 0 0
\(628\) −1.28469 + 1.92258i −0.0512648 + 0.0767193i
\(629\) 13.1371 3.92412i 0.523810 0.156465i
\(630\) 0 0
\(631\) −21.0598 −0.838377 −0.419188 0.907899i \(-0.637685\pi\)
−0.419188 + 0.907899i \(0.637685\pi\)
\(632\) −4.68269 5.70629i −0.186268 0.226984i
\(633\) 0 0
\(634\) 10.3439 34.0978i 0.410809 1.35420i
\(635\) −8.82526 −0.350220
\(636\) 0 0
\(637\) 12.4799i 0.494471i
\(638\) 4.70560 15.5116i 0.186297 0.614111i
\(639\) 0 0
\(640\) −10.8886 5.82125i −0.430410 0.230105i
\(641\) 24.0196i 0.948716i −0.880332 0.474358i \(-0.842680\pi\)
0.880332 0.474358i \(-0.157320\pi\)
\(642\) 0 0
\(643\) −23.7076 −0.934937 −0.467469 0.884010i \(-0.654834\pi\)
−0.467469 + 0.884010i \(0.654834\pi\)
\(644\) −15.6795 10.4772i −0.617857 0.412860i
\(645\) 0 0
\(646\) 5.26429 + 0.0224652i 0.207121 + 0.000883882i
\(647\) −18.2996 −0.719430 −0.359715 0.933062i \(-0.617126\pi\)
−0.359715 + 0.933062i \(0.617126\pi\)
\(648\) 0 0
\(649\) 11.9907i 0.470677i
\(650\) 4.83164 + 1.46573i 0.189513 + 0.0574905i
\(651\) 0 0
\(652\) 0.147080 + 0.0982805i 0.00576008 + 0.00384896i
\(653\) −8.49676 −0.332504 −0.166252 0.986083i \(-0.553166\pi\)
−0.166252 + 0.986083i \(0.553166\pi\)
\(654\) 0 0
\(655\) 16.7703 0.655270
\(656\) 17.4652 7.23334i 0.681900 0.282415i
\(657\) 0 0
\(658\) −69.0983 20.9616i −2.69373 0.817170i
\(659\) 24.5353i 0.955760i −0.878425 0.477880i \(-0.841405\pi\)
0.878425 0.477880i \(-0.158595\pi\)
\(660\) 0 0
\(661\) 40.1736i 1.56257i −0.624172 0.781287i \(-0.714564\pi\)
0.624172 0.781287i \(-0.285436\pi\)
\(662\) −42.3896 12.8593i −1.64752 0.499791i
\(663\) 0 0
\(664\) 22.9929 + 28.0189i 0.892296 + 1.08735i
\(665\) −4.44083 −0.172208
\(666\) 0 0
\(667\) 11.1426i 0.431444i
\(668\) −14.2619 + 21.3433i −0.551809 + 0.825798i
\(669\) 0 0
\(670\) −1.74169 0.528359i −0.0672875 0.0204123i
\(671\) 26.4838 1.02239
\(672\) 0 0
\(673\) 28.1852i 1.08646i 0.839584 + 0.543230i \(0.182799\pi\)
−0.839584 + 0.543230i \(0.817201\pi\)
\(674\) 36.5186 + 11.0783i 1.40665 + 0.426719i
\(675\) 0 0
\(676\) −20.1569 13.4691i −0.775265 0.518042i
\(677\) −6.02100 −0.231406 −0.115703 0.993284i \(-0.536912\pi\)
−0.115703 + 0.993284i \(0.536912\pi\)
\(678\) 0 0
\(679\) −13.2232 −0.507458
\(680\) 7.11610 10.5517i 0.272890 0.404639i
\(681\) 0 0
\(682\) 17.7568 + 5.38671i 0.679945 + 0.206268i
\(683\) 13.1925 0.504797 0.252399 0.967623i \(-0.418781\pi\)
0.252399 + 0.967623i \(0.418781\pi\)
\(684\) 0 0
\(685\) 6.61408 0.252711
\(686\) −38.5157 11.6841i −1.47054 0.446101i
\(687\) 0 0
\(688\) −37.5636 + 15.5573i −1.43210 + 0.593115i
\(689\) 8.96466 0.341526
\(690\) 0 0
\(691\) 14.1826 0.539532 0.269766 0.962926i \(-0.413054\pi\)
0.269766 + 0.962926i \(0.413054\pi\)
\(692\) −19.0724 12.7444i −0.725025 0.484471i
\(693\) 0 0
\(694\) −8.92852 + 29.4321i −0.338922 + 1.11723i
\(695\) 20.2120 0.766686
\(696\) 0 0
\(697\) 5.57696 + 18.6704i 0.211243 + 0.707194i
\(698\) 14.4482 + 4.38301i 0.546874 + 0.165899i
\(699\) 0 0
\(700\) 19.0764 28.5484i 0.721022 1.07903i
\(701\) 34.7929i 1.31411i 0.753843 + 0.657054i \(0.228198\pi\)
−0.753843 + 0.657054i \(0.771802\pi\)
\(702\) 0 0
\(703\) 3.00218i 0.113230i
\(704\) 3.35979 16.8845i 0.126627 0.636359i
\(705\) 0 0
\(706\) 4.00991 13.2183i 0.150915 0.497479i
\(707\) 35.0007 1.31634
\(708\) 0 0
\(709\) 31.5333 1.18426 0.592129 0.805843i \(-0.298288\pi\)
0.592129 + 0.805843i \(0.298288\pi\)
\(710\) 2.64835 + 0.803402i 0.0993908 + 0.0301512i
\(711\) 0 0
\(712\) −22.2545 + 18.2625i −0.834022 + 0.684414i
\(713\) 12.7554 0.477695
\(714\) 0 0
\(715\) 2.20128i 0.0823231i
\(716\) 6.13508 9.18133i 0.229279 0.343122i
\(717\) 0 0
\(718\) −6.71730 + 22.1430i −0.250688 + 0.826371i
\(719\) 1.51558i 0.0565215i −0.999601 0.0282607i \(-0.991003\pi\)
0.999601 0.0282607i \(-0.00899687\pi\)
\(720\) 0 0
\(721\) 68.9777i 2.56886i
\(722\) −7.46564 + 24.6099i −0.277842 + 0.915885i
\(723\) 0 0
\(724\) 34.1668 + 22.8307i 1.26980 + 0.848496i
\(725\) 20.2880 0.753476
\(726\) 0 0
\(727\) −45.8675 −1.70113 −0.850566 0.525868i \(-0.823741\pi\)
−0.850566 + 0.525868i \(0.823741\pi\)
\(728\) 9.23703 7.58008i 0.342347 0.280937i
\(729\) 0 0
\(730\) 18.9131 + 5.73747i 0.700005 + 0.212353i
\(731\) −11.9948 40.1558i −0.443642 1.48522i
\(732\) 0 0
\(733\) 3.07515i 0.113583i −0.998386 0.0567916i \(-0.981913\pi\)
0.998386 0.0567916i \(-0.0180871\pi\)
\(734\) −37.0114 11.2278i −1.36611 0.414424i
\(735\) 0 0
\(736\) −1.15924 11.7771i −0.0427303 0.434111i
\(737\) 2.53774i 0.0934788i
\(738\) 0 0
\(739\) 45.3607i 1.66862i −0.551296 0.834309i \(-0.685867\pi\)
0.551296 0.834309i \(-0.314133\pi\)
\(740\) −6.03476 4.03251i −0.221842 0.148238i
\(741\) 0 0
\(742\) 17.6973 58.3376i 0.649687 2.14164i
\(743\) 25.7594i 0.945021i 0.881325 + 0.472511i \(0.156652\pi\)
−0.881325 + 0.472511i \(0.843348\pi\)
\(744\) 0 0
\(745\) 14.4075i 0.527851i
\(746\) −38.5878 11.7060i −1.41280 0.428586i
\(747\) 0 0
\(748\) 16.9591 + 5.22383i 0.620085 + 0.191002i
\(749\) 11.6867i 0.427022i
\(750\) 0 0
\(751\) 38.9213i 1.42026i 0.704072 + 0.710128i \(0.251363\pi\)
−0.704072 + 0.710128i \(0.748637\pi\)
\(752\) −17.3387 41.8649i −0.632277 1.52666i
\(753\) 0 0
\(754\) 6.75636 + 2.04961i 0.246052 + 0.0746423i
\(755\) 2.34635 0.0853923
\(756\) 0 0
\(757\) 0.841416i 0.0305818i 0.999883 + 0.0152909i \(0.00486743\pi\)
−0.999883 + 0.0152909i \(0.995133\pi\)
\(758\) −15.7960 + 52.0702i −0.573736 + 1.89127i
\(759\) 0 0
\(760\) −1.76785 2.15429i −0.0641267 0.0781443i
\(761\) −25.2293 −0.914562 −0.457281 0.889322i \(-0.651177\pi\)
−0.457281 + 0.889322i \(0.651177\pi\)
\(762\) 0 0
\(763\) 29.0902i 1.05313i
\(764\) −9.22297 6.16291i −0.333675 0.222966i
\(765\) 0 0
\(766\) −11.9158 + 39.2795i −0.430536 + 1.41923i
\(767\) 5.22277 0.188583
\(768\) 0 0
\(769\) −15.0970 −0.544413 −0.272207 0.962239i \(-0.587753\pi\)
−0.272207 + 0.962239i \(0.587753\pi\)
\(770\) −14.3248 4.34557i −0.516231 0.156604i
\(771\) 0 0
\(772\) −12.8445 + 19.2221i −0.462282 + 0.691819i
\(773\) 13.4587i 0.484077i 0.970267 + 0.242038i \(0.0778160\pi\)
−0.970267 + 0.242038i \(0.922184\pi\)
\(774\) 0 0
\(775\) 23.2245i 0.834250i
\(776\) −5.26402 6.41469i −0.188967 0.230274i
\(777\) 0 0
\(778\) 2.64656 + 0.802859i 0.0948837 + 0.0287839i
\(779\) 4.26671 0.152871
\(780\) 0 0
\(781\) 3.85879i 0.138078i
\(782\) 12.1982 + 0.0520553i 0.436205 + 0.00186150i
\(783\) 0 0
\(784\) −20.3786 49.2048i −0.727806 1.75732i
\(785\) 1.26175i 0.0450337i
\(786\) 0 0
\(787\) 35.0623 1.24984 0.624918 0.780690i \(-0.285132\pi\)
0.624918 + 0.780690i \(0.285132\pi\)
\(788\) −28.6234 19.1266i −1.01967 0.681355i
\(789\) 0 0
\(790\) −3.85449 1.16930i −0.137136 0.0416017i
\(791\) −80.6324 −2.86696
\(792\) 0 0
\(793\) 11.5355i 0.409637i
\(794\) 8.16700 26.9218i 0.289836 0.955420i
\(795\) 0 0
\(796\) −11.2373 + 16.8170i −0.398297 + 0.596063i
\(797\) 18.2020i 0.644746i 0.946613 + 0.322373i \(0.104481\pi\)
−0.946613 + 0.322373i \(0.895519\pi\)
\(798\) 0 0
\(799\) 44.7540 13.3683i 1.58328 0.472935i
\(800\) 21.4433 2.11070i 0.758135 0.0746244i
\(801\) 0 0
\(802\) 7.32408 + 2.22183i 0.258622 + 0.0784556i
\(803\) 27.5574i 0.972478i
\(804\) 0 0
\(805\) −10.2901 −0.362678
\(806\) −2.34628 + 7.73431i −0.0826441 + 0.272429i
\(807\) 0 0
\(808\) 13.9334 + 16.9792i 0.490177 + 0.597325i
\(809\) 54.0320i 1.89966i −0.312762 0.949831i \(-0.601254\pi\)
0.312762 0.949831i \(-0.398746\pi\)
\(810\) 0 0
\(811\) −22.5517 −0.791896 −0.395948 0.918273i \(-0.629584\pi\)
−0.395948 + 0.918273i \(0.629584\pi\)
\(812\) 26.6757 39.9209i 0.936133 1.40095i
\(813\) 0 0
\(814\) 2.93779 9.68417i 0.102969 0.339430i
\(815\) 0.0965251 0.00338113
\(816\) 0 0
\(817\) −9.17671 −0.321052
\(818\) −5.23201 + 17.2469i −0.182933 + 0.603023i
\(819\) 0 0
\(820\) 5.73100 8.57661i 0.200135 0.299508i
\(821\) −2.49637 −0.0871238 −0.0435619 0.999051i \(-0.513871\pi\)
−0.0435619 + 0.999051i \(0.513871\pi\)
\(822\) 0 0
\(823\) 46.3364i 1.61519i −0.589740 0.807593i \(-0.700770\pi\)
0.589740 0.807593i \(-0.299230\pi\)
\(824\) −33.4618 + 27.4594i −1.16570 + 0.956592i
\(825\) 0 0
\(826\) 10.3103 33.9872i 0.358743 1.18257i
\(827\) 56.3590 1.95979 0.979897 0.199506i \(-0.0639336\pi\)
0.979897 + 0.199506i \(0.0639336\pi\)
\(828\) 0 0
\(829\) 34.4237i 1.19558i 0.801651 + 0.597792i \(0.203955\pi\)
−0.801651 + 0.597792i \(0.796045\pi\)
\(830\) 18.9262 + 5.74145i 0.656939 + 0.199289i
\(831\) 0 0
\(832\) 7.35435 + 1.46341i 0.254966 + 0.0507348i
\(833\) 52.6005 15.7120i 1.82250 0.544390i
\(834\) 0 0
\(835\) 14.0071i 0.484737i
\(836\) 2.15883 3.23076i 0.0746648 0.111738i
\(837\) 0 0
\(838\) −2.73140 + 9.00383i −0.0943546 + 0.311032i
\(839\) 38.7295i 1.33709i −0.743672 0.668545i \(-0.766918\pi\)
0.743672 0.668545i \(-0.233082\pi\)
\(840\) 0 0
\(841\) −0.630187 −0.0217306
\(842\) 43.7541 + 13.2732i 1.50787 + 0.457426i
\(843\) 0 0
\(844\) 27.4367 + 18.3336i 0.944410 + 0.631067i
\(845\) −13.2285 −0.455075
\(846\) 0 0
\(847\) 28.7067i 0.986374i
\(848\) 35.3453 14.6385i 1.21376 0.502689i
\(849\) 0 0
\(850\) −0.0947800 + 22.2099i −0.00325093 + 0.761792i
\(851\) 6.95652i 0.238466i
\(852\) 0 0
\(853\) −21.7832 −0.745842 −0.372921 0.927863i \(-0.621644\pi\)
−0.372921 + 0.927863i \(0.621644\pi\)
\(854\) 75.0672 + 22.7724i 2.56875 + 0.779254i
\(855\) 0 0
\(856\) −5.66932 + 4.65236i −0.193773 + 0.159014i
\(857\) 57.2834i 1.95677i −0.206803 0.978383i \(-0.566306\pi\)
0.206803 0.978383i \(-0.433694\pi\)
\(858\) 0 0
\(859\) 26.9367i 0.919068i 0.888160 + 0.459534i \(0.151984\pi\)
−0.888160 + 0.459534i \(0.848016\pi\)
\(860\) −12.3261 + 18.4463i −0.420315 + 0.629014i
\(861\) 0 0
\(862\) 2.01208 + 0.610384i 0.0685317 + 0.0207898i
\(863\) −9.72421 −0.331016 −0.165508 0.986208i \(-0.552926\pi\)
−0.165508 + 0.986208i \(0.552926\pi\)
\(864\) 0 0
\(865\) −12.5168 −0.425584
\(866\) −3.71371 + 12.2419i −0.126197 + 0.415998i
\(867\) 0 0
\(868\) 45.6992 + 30.5368i 1.55113 + 1.03649i
\(869\) 5.61619i 0.190516i
\(870\) 0 0
\(871\) 1.10536 0.0374536
\(872\) −14.1119 + 11.5805i −0.477890 + 0.392166i
\(873\) 0 0
\(874\) 0.775388 2.55600i 0.0262279 0.0864580i
\(875\) 43.3297i 1.46481i
\(876\) 0 0
\(877\) −23.9282 −0.808000 −0.404000 0.914759i \(-0.632380\pi\)
−0.404000 + 0.914759i \(0.632380\pi\)
\(878\) −22.0235 6.68103i −0.743256 0.225474i
\(879\) 0 0
\(880\) −3.59450 8.67904i −0.121170 0.292571i
\(881\) 14.6254i 0.492741i 0.969176 + 0.246371i \(0.0792381\pi\)
−0.969176 + 0.246371i \(0.920762\pi\)
\(882\) 0 0
\(883\) 16.5291i 0.556248i −0.960545 0.278124i \(-0.910287\pi\)
0.960545 0.278124i \(-0.0897126\pi\)
\(884\) −2.27533 + 7.38682i −0.0765277 + 0.248446i
\(885\) 0 0
\(886\) −33.8621 10.2724i −1.13762 0.345108i
\(887\) 37.7524i 1.26760i −0.773496 0.633801i \(-0.781494\pi\)
0.773496 0.633801i \(-0.218506\pi\)
\(888\) 0 0
\(889\) 36.4479i 1.22242i
\(890\) −4.56024 + 15.0325i −0.152860 + 0.503889i
\(891\) 0 0
\(892\) −20.4931 13.6937i −0.686158 0.458500i
\(893\) 10.2275i 0.342251i
\(894\) 0 0
\(895\) 6.02550i 0.201410i
\(896\) 24.0415 44.9695i 0.803170 1.50233i
\(897\) 0 0
\(898\) −27.7955 8.43203i −0.927547 0.281380i
\(899\) 32.4762i 1.08314i
\(900\) 0 0
\(901\) 11.2864 + 37.7844i 0.376005 + 1.25878i
\(902\) 13.7632 + 4.17519i 0.458263 + 0.139019i
\(903\) 0 0
\(904\) −32.0990 39.1156i −1.06760 1.30097i
\(905\) 22.4229 0.745363
\(906\) 0 0
\(907\) 5.93020 0.196909 0.0984545 0.995142i \(-0.468610\pi\)
0.0984545 + 0.995142i \(0.468610\pi\)
\(908\) −27.7557 18.5467i −0.921105 0.615494i
\(909\) 0 0
\(910\) 1.89279 6.23943i 0.0627454 0.206835i
\(911\) 6.91945i 0.229252i 0.993409 + 0.114626i \(0.0365669\pi\)
−0.993409 + 0.114626i \(0.963433\pi\)
\(912\) 0 0
\(913\) 27.5765i 0.912649i
\(914\) 0.812707 2.67902i 0.0268820 0.0886142i
\(915\) 0 0
\(916\) −24.9160 + 37.2875i −0.823247 + 1.23201i
\(917\) 69.2606i 2.28719i
\(918\) 0 0
\(919\) 11.0028 0.362948 0.181474 0.983396i \(-0.441913\pi\)
0.181474 + 0.983396i \(0.441913\pi\)
\(920\) −4.09638 4.99182i −0.135054 0.164575i
\(921\) 0 0
\(922\) 40.7123 + 12.3505i 1.34079 + 0.406741i
\(923\) −1.68076 −0.0553230
\(924\) 0 0
\(925\) 12.6661 0.416459
\(926\) −6.04345 + 19.9217i −0.198600 + 0.654669i
\(927\) 0 0
\(928\) 29.9854 2.95151i 0.984318 0.0968880i
\(929\) 23.4763i 0.770234i 0.922868 + 0.385117i \(0.125839\pi\)
−0.922868 + 0.385117i \(0.874161\pi\)
\(930\) 0 0
\(931\) 12.0206i 0.393961i
\(932\) 3.52120 5.26958i 0.115341 0.172611i
\(933\) 0 0
\(934\) −2.75723 0.836432i −0.0902193 0.0273689i
\(935\) 9.27799 2.77139i 0.303423 0.0906340i
\(936\) 0 0
\(937\) 10.9870 0.358931 0.179466 0.983764i \(-0.442563\pi\)
0.179466 + 0.983764i \(0.442563\pi\)
\(938\) 2.18210 7.19312i 0.0712481 0.234864i
\(939\) 0 0
\(940\) −20.5586 13.7375i −0.670547 0.448068i
\(941\) −52.9233 −1.72525 −0.862625 0.505844i \(-0.831181\pi\)
−0.862625 + 0.505844i \(0.831181\pi\)
\(942\) 0 0
\(943\) 9.88662 0.321953
\(944\) 20.5920 8.52833i 0.670212 0.277574i
\(945\) 0 0
\(946\) −29.6014 8.97987i −0.962424 0.291961i
\(947\) 19.3112 0.627528 0.313764 0.949501i \(-0.398410\pi\)
0.313764 + 0.949501i \(0.398410\pi\)
\(948\) 0 0
\(949\) −12.0031 −0.389637
\(950\) 4.65385 + 1.41179i 0.150991 + 0.0458045i
\(951\) 0 0
\(952\) 43.5780 + 29.3892i 1.41237 + 0.952509i
\(953\) 42.6147 1.38043 0.690213 0.723606i \(-0.257517\pi\)
0.690213 + 0.723606i \(0.257517\pi\)
\(954\) 0 0
\(955\) −6.05283 −0.195865
\(956\) −38.9920 26.0549i −1.26109 0.842677i
\(957\) 0 0
\(958\) 49.3831 + 14.9808i 1.59549 + 0.484009i
\(959\) 27.3159i 0.882075i
\(960\) 0 0
\(961\) −6.17691 −0.199255
\(962\) 4.21811 + 1.27961i 0.135997 + 0.0412561i
\(963\) 0 0
\(964\) −20.5481 + 30.7508i −0.661809 + 0.990417i
\(965\) 12.6150i 0.406093i
\(966\) 0 0
\(967\) −34.0443 −1.09479 −0.547396 0.836874i \(-0.684381\pi\)
−0.547396 + 0.836874i \(0.684381\pi\)
\(968\) −13.9259 + 11.4279i −0.447596 + 0.367306i
\(969\) 0 0
\(970\) −4.33299 1.31445i −0.139124 0.0422046i
\(971\) 14.1122i 0.452881i −0.974025 0.226440i \(-0.927291\pi\)
0.974025 0.226440i \(-0.0727088\pi\)
\(972\) 0 0
\(973\) 83.4748i 2.67608i
\(974\) 41.7462 + 12.6641i 1.33763 + 0.405784i
\(975\) 0 0
\(976\) 18.8364 + 45.4813i 0.602940 + 1.45582i
\(977\) −13.3995 −0.428687 −0.214344 0.976758i \(-0.568761\pi\)
−0.214344 + 0.976758i \(0.568761\pi\)
\(978\) 0 0
\(979\) −21.9031 −0.700026
\(980\) −24.1630 16.1460i −0.771858 0.515766i
\(981\) 0 0
\(982\) 34.3199 + 10.4113i 1.09519 + 0.332237i
\(983\) 35.0579i 1.11817i 0.829110 + 0.559086i \(0.188848\pi\)
−0.829110 + 0.559086i \(0.811152\pi\)
\(984\) 0 0
\(985\) −18.7849 −0.598538
\(986\) −0.132536 + 31.0573i −0.00422082 + 0.989066i
\(987\) 0 0
\(988\) 1.40721 + 0.940318i 0.0447694 + 0.0299155i
\(989\) −21.2638 −0.676151
\(990\) 0 0
\(991\) 34.1550i 1.08497i −0.840066 0.542485i \(-0.817484\pi\)
0.840066 0.542485i \(-0.182516\pi\)
\(992\) 3.37872 + 34.3256i 0.107275 + 1.08984i
\(993\) 0 0
\(994\) −3.31802 + 10.9376i −0.105241 + 0.346919i
\(995\) 11.0366i 0.349885i
\(996\) 0 0
\(997\) −25.0001 −0.791762 −0.395881 0.918302i \(-0.629561\pi\)
−0.395881 + 0.918302i \(0.629561\pi\)
\(998\) −17.4726 + 57.5970i −0.553086 + 1.82320i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.2.l.d.1189.8 18
3.2 odd 2 408.2.l.b.373.11 yes 18
4.3 odd 2 4896.2.l.d.3025.8 18
8.3 odd 2 4896.2.l.c.3025.12 18
8.5 even 2 1224.2.l.c.1189.7 18
12.11 even 2 1632.2.l.a.1393.12 18
17.16 even 2 1224.2.l.c.1189.8 18
24.5 odd 2 408.2.l.a.373.12 yes 18
24.11 even 2 1632.2.l.b.1393.8 18
51.50 odd 2 408.2.l.a.373.11 18
68.67 odd 2 4896.2.l.c.3025.11 18
136.67 odd 2 4896.2.l.d.3025.7 18
136.101 even 2 inner 1224.2.l.d.1189.7 18
204.203 even 2 1632.2.l.b.1393.7 18
408.101 odd 2 408.2.l.b.373.12 yes 18
408.203 even 2 1632.2.l.a.1393.11 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.l.a.373.11 18 51.50 odd 2
408.2.l.a.373.12 yes 18 24.5 odd 2
408.2.l.b.373.11 yes 18 3.2 odd 2
408.2.l.b.373.12 yes 18 408.101 odd 2
1224.2.l.c.1189.7 18 8.5 even 2
1224.2.l.c.1189.8 18 17.16 even 2
1224.2.l.d.1189.7 18 136.101 even 2 inner
1224.2.l.d.1189.8 18 1.1 even 1 trivial
1632.2.l.a.1393.11 18 408.203 even 2
1632.2.l.a.1393.12 18 12.11 even 2
1632.2.l.b.1393.7 18 204.203 even 2
1632.2.l.b.1393.8 18 24.11 even 2
4896.2.l.c.3025.11 18 68.67 odd 2
4896.2.l.c.3025.12 18 8.3 odd 2
4896.2.l.d.3025.7 18 136.67 odd 2
4896.2.l.d.3025.8 18 4.3 odd 2