Properties

Label 1224.2.w.i.361.1
Level $1224$
Weight $2$
Character 1224.361
Analytic conductor $9.774$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(217,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.217");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.w (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.269485056.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 8x^{3} + 81x^{2} - 72x + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 361.1
Root \(-2.31594 - 2.31594i\) of defining polynomial
Character \(\chi\) \(=\) 1224.361
Dual form 1224.2.w.i.217.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.31594 + 2.31594i) q^{5} +(-1.00000 - 1.00000i) q^{7} +(-4.31594 - 4.31594i) q^{11} +4.72716 q^{13} +(3.41122 - 2.31594i) q^{17} +6.53660i q^{19} +(-1.41122 - 1.41122i) q^{23} -5.72716i q^{25} +(5.72716 - 5.72716i) q^{31} +4.63188 q^{35} +(6.72716 - 6.72716i) q^{37} +(8.04310 + 8.04310i) q^{41} +2.53660i q^{43} +1.80944 q^{47} -5.00000i q^{49} -1.80944i q^{53} +19.9909 q^{55} +8.63188i q^{59} +(6.53660 + 6.53660i) q^{61} +(-10.9478 + 10.9478i) q^{65} +5.45432 q^{67} +(6.35904 - 6.35904i) q^{71} +(-7.53660 + 7.53660i) q^{73} +8.63188i q^{77} +(-12.2638 - 12.2638i) q^{79} -13.2638i q^{83} +(-2.53660 + 13.2638i) q^{85} +7.36812 q^{89} +(-4.72716 - 4.72716i) q^{91} +(-15.1384 - 15.1384i) q^{95} +(12.9909 - 12.9909i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{7} - 12 q^{11} + 6 q^{17} + 6 q^{23} + 6 q^{31} + 12 q^{37} + 6 q^{41} + 12 q^{47} + 36 q^{55} + 12 q^{61} - 24 q^{65} - 24 q^{67} - 18 q^{71} - 18 q^{73} - 18 q^{79} + 12 q^{85} + 72 q^{89}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.31594 + 2.31594i −1.03572 + 1.03572i −0.0363821 + 0.999338i \(0.511583\pi\)
−0.999338 + 0.0363821i \(0.988417\pi\)
\(6\) 0 0
\(7\) −1.00000 1.00000i −0.377964 0.377964i 0.492403 0.870367i \(-0.336119\pi\)
−0.870367 + 0.492403i \(0.836119\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.31594 4.31594i −1.30131 1.30131i −0.927512 0.373793i \(-0.878057\pi\)
−0.373793 0.927512i \(-0.621943\pi\)
\(12\) 0 0
\(13\) 4.72716 1.31108 0.655539 0.755161i \(-0.272441\pi\)
0.655539 + 0.755161i \(0.272441\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.41122 2.31594i 0.827342 0.561698i
\(18\) 0 0
\(19\) 6.53660i 1.49960i 0.661665 + 0.749800i \(0.269850\pi\)
−0.661665 + 0.749800i \(0.730150\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.41122 1.41122i −0.294260 0.294260i 0.544501 0.838760i \(-0.316719\pi\)
−0.838760 + 0.544501i \(0.816719\pi\)
\(24\) 0 0
\(25\) 5.72716i 1.14543i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(30\) 0 0
\(31\) 5.72716 5.72716i 1.02863 1.02863i 0.0290504 0.999578i \(-0.490752\pi\)
0.999578 0.0290504i \(-0.00924832\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.63188 0.782931
\(36\) 0 0
\(37\) 6.72716 6.72716i 1.10594 1.10594i 0.112259 0.993679i \(-0.464191\pi\)
0.993679 0.112259i \(-0.0358088\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.04310 + 8.04310i 1.25612 + 1.25612i 0.952930 + 0.303192i \(0.0980522\pi\)
0.303192 + 0.952930i \(0.401948\pi\)
\(42\) 0 0
\(43\) 2.53660i 0.386828i 0.981117 + 0.193414i \(0.0619561\pi\)
−0.981117 + 0.193414i \(0.938044\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.80944 0.263934 0.131967 0.991254i \(-0.457871\pi\)
0.131967 + 0.991254i \(0.457871\pi\)
\(48\) 0 0
\(49\) 5.00000i 0.714286i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.80944i 0.248546i −0.992248 0.124273i \(-0.960340\pi\)
0.992248 0.124273i \(-0.0396598\pi\)
\(54\) 0 0
\(55\) 19.9909 2.69558
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.63188i 1.12378i 0.827214 + 0.561888i \(0.189925\pi\)
−0.827214 + 0.561888i \(0.810075\pi\)
\(60\) 0 0
\(61\) 6.53660 + 6.53660i 0.836926 + 0.836926i 0.988453 0.151527i \(-0.0484191\pi\)
−0.151527 + 0.988453i \(0.548419\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −10.9478 + 10.9478i −1.35791 + 1.35791i
\(66\) 0 0
\(67\) 5.45432 0.666351 0.333176 0.942865i \(-0.391880\pi\)
0.333176 + 0.942865i \(0.391880\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.35904 6.35904i 0.754679 0.754679i −0.220669 0.975349i \(-0.570824\pi\)
0.975349 + 0.220669i \(0.0708242\pi\)
\(72\) 0 0
\(73\) −7.53660 + 7.53660i −0.882092 + 0.882092i −0.993747 0.111655i \(-0.964385\pi\)
0.111655 + 0.993747i \(0.464385\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.63188i 0.983694i
\(78\) 0 0
\(79\) −12.2638 12.2638i −1.37978 1.37978i −0.844975 0.534806i \(-0.820385\pi\)
−0.534806 0.844975i \(-0.679615\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.2638i 1.45589i −0.685637 0.727943i \(-0.740476\pi\)
0.685637 0.727943i \(-0.259524\pi\)
\(84\) 0 0
\(85\) −2.53660 + 13.2638i −0.275133 + 1.43866i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.36812 0.781019 0.390510 0.920599i \(-0.372299\pi\)
0.390510 + 0.920599i \(0.372299\pi\)
\(90\) 0 0
\(91\) −4.72716 4.72716i −0.495541 0.495541i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −15.1384 15.1384i −1.55317 1.55317i
\(96\) 0 0
\(97\) 12.9909 12.9909i 1.31903 1.31903i 0.404483 0.914546i \(-0.367452\pi\)
0.914546 0.404483i \(-0.132548\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 11.4543 1.13975 0.569874 0.821732i \(-0.306992\pi\)
0.569874 + 0.821732i \(0.306992\pi\)
\(102\) 0 0
\(103\) 3.46340 0.341259 0.170629 0.985335i \(-0.445420\pi\)
0.170629 + 0.985335i \(0.445420\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.68406 3.68406i 0.356151 0.356151i −0.506241 0.862392i \(-0.668965\pi\)
0.862392 + 0.506241i \(0.168965\pi\)
\(108\) 0 0
\(109\) −6.00000 6.00000i −0.574696 0.574696i 0.358741 0.933437i \(-0.383206\pi\)
−0.933437 + 0.358741i \(0.883206\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.58878 4.58878i −0.431676 0.431676i 0.457522 0.889198i \(-0.348737\pi\)
−0.889198 + 0.457522i \(0.848737\pi\)
\(114\) 0 0
\(115\) 6.53660 0.609541
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −5.72716 1.09528i −0.525008 0.100404i
\(120\) 0 0
\(121\) 26.2547i 2.38679i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.68406 + 1.68406i 0.150627 + 0.150627i
\(126\) 0 0
\(127\) 6.53660i 0.580030i −0.957022 0.290015i \(-0.906340\pi\)
0.957022 0.290015i \(-0.0936602\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −4.31594 + 4.31594i −0.377085 + 0.377085i −0.870050 0.492964i \(-0.835913\pi\)
0.492964 + 0.870050i \(0.335913\pi\)
\(132\) 0 0
\(133\) 6.53660 6.53660i 0.566795 0.566795i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.44132 −0.550319 −0.275160 0.961399i \(-0.588731\pi\)
−0.275160 + 0.961399i \(0.588731\pi\)
\(138\) 0 0
\(139\) −4.72716 + 4.72716i −0.400952 + 0.400952i −0.878569 0.477616i \(-0.841501\pi\)
0.477616 + 0.878569i \(0.341501\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −20.4021 20.4021i −1.70611 1.70611i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.44132 −0.527694 −0.263847 0.964565i \(-0.584991\pi\)
−0.263847 + 0.964565i \(0.584991\pi\)
\(150\) 0 0
\(151\) 5.45432i 0.443866i −0.975062 0.221933i \(-0.928763\pi\)
0.975062 0.221933i \(-0.0712367\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 26.5275i 2.13074i
\(156\) 0 0
\(157\) −4.72716 −0.377268 −0.188634 0.982047i \(-0.560406\pi\)
−0.188634 + 0.982047i \(0.560406\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.82244i 0.222439i
\(162\) 0 0
\(163\) 5.45432 + 5.45432i 0.427215 + 0.427215i 0.887679 0.460463i \(-0.152317\pi\)
−0.460463 + 0.887679i \(0.652317\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.4844 12.4844i 0.966074 0.966074i −0.0333694 0.999443i \(-0.510624\pi\)
0.999443 + 0.0333694i \(0.0106238\pi\)
\(168\) 0 0
\(169\) 9.34604 0.718926
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.9478 + 10.9478i −0.832347 + 0.832347i −0.987837 0.155490i \(-0.950304\pi\)
0.155490 + 0.987837i \(0.450304\pi\)
\(174\) 0 0
\(175\) −5.72716 + 5.72716i −0.432933 + 0.432933i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.26376i 0.0944580i −0.998884 0.0472290i \(-0.984961\pi\)
0.998884 0.0472290i \(-0.0150390\pi\)
\(180\) 0 0
\(181\) −11.9909 11.9909i −0.891278 0.891278i 0.103365 0.994643i \(-0.467039\pi\)
−0.994643 + 0.103365i \(0.967039\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 31.1594i 2.29088i
\(186\) 0 0
\(187\) −24.7181 4.72716i −1.80757 0.345684i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.4413 0.755508 0.377754 0.925906i \(-0.376697\pi\)
0.377754 + 0.925906i \(0.376697\pi\)
\(192\) 0 0
\(193\) −3.34604 3.34604i −0.240853 0.240853i 0.576350 0.817203i \(-0.304477\pi\)
−0.817203 + 0.576350i \(0.804477\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.13838 + 1.13838i 0.0811062 + 0.0811062i 0.746496 0.665390i \(-0.231735\pi\)
−0.665390 + 0.746496i \(0.731735\pi\)
\(198\) 0 0
\(199\) 1.53660 1.53660i 0.108927 0.108927i −0.650543 0.759470i \(-0.725459\pi\)
0.759470 + 0.650543i \(0.225459\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −37.2547 −2.60198
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 28.2116 28.2116i 1.95144 1.95144i
\(210\) 0 0
\(211\) 6.00000 + 6.00000i 0.413057 + 0.413057i 0.882802 0.469745i \(-0.155654\pi\)
−0.469745 + 0.882802i \(0.655654\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.87462 5.87462i −0.400646 0.400646i
\(216\) 0 0
\(217\) −11.4543 −0.777570
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 16.1254 10.9478i 1.08471 0.736430i
\(222\) 0 0
\(223\) 17.9909i 1.20476i 0.798209 + 0.602381i \(0.205781\pi\)
−0.798209 + 0.602381i \(0.794219\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.1384 + 15.1384i 1.00477 + 1.00477i 0.999989 + 0.00478099i \(0.00152184\pi\)
0.00478099 + 0.999989i \(0.498478\pi\)
\(228\) 0 0
\(229\) 3.07320i 0.203083i −0.994831 0.101541i \(-0.967623\pi\)
0.994831 0.101541i \(-0.0323775\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.77934 + 2.77934i −0.182081 + 0.182081i −0.792262 0.610181i \(-0.791097\pi\)
0.610181 + 0.792262i \(0.291097\pi\)
\(234\) 0 0
\(235\) −4.19056 + 4.19056i −0.273362 + 0.273362i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.07320 0.198789 0.0993945 0.995048i \(-0.468309\pi\)
0.0993945 + 0.995048i \(0.468309\pi\)
\(240\) 0 0
\(241\) 0.809441 0.809441i 0.0521407 0.0521407i −0.680556 0.732696i \(-0.738262\pi\)
0.732696 + 0.680556i \(0.238262\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 11.5797 + 11.5797i 0.739800 + 0.739800i
\(246\) 0 0
\(247\) 30.8996i 1.96609i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 13.0130 0.821373 0.410687 0.911777i \(-0.365289\pi\)
0.410687 + 0.911777i \(0.365289\pi\)
\(252\) 0 0
\(253\) 12.1815i 0.765843i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 15.5405i 0.969391i −0.874683 0.484696i \(-0.838930\pi\)
0.874683 0.484696i \(-0.161070\pi\)
\(258\) 0 0
\(259\) −13.4543 −0.836011
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 21.3500i 1.31650i −0.752802 0.658248i \(-0.771298\pi\)
0.752802 0.658248i \(-0.228702\pi\)
\(264\) 0 0
\(265\) 4.19056 + 4.19056i 0.257424 + 0.257424i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −10.3159 + 10.3159i −0.628974 + 0.628974i −0.947810 0.318836i \(-0.896708\pi\)
0.318836 + 0.947810i \(0.396708\pi\)
\(270\) 0 0
\(271\) −20.3720 −1.23751 −0.618757 0.785583i \(-0.712363\pi\)
−0.618757 + 0.785583i \(0.712363\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −24.7181 + 24.7181i −1.49056 + 1.49056i
\(276\) 0 0
\(277\) 1.80944 1.80944i 0.108719 0.108719i −0.650655 0.759374i \(-0.725506\pi\)
0.759374 + 0.650655i \(0.225506\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7.36812i 0.439545i 0.975551 + 0.219773i \(0.0705315\pi\)
−0.975551 + 0.219773i \(0.929468\pi\)
\(282\) 0 0
\(283\) 8.91772 + 8.91772i 0.530103 + 0.530103i 0.920603 0.390500i \(-0.127698\pi\)
−0.390500 + 0.920603i \(0.627698\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 16.0862i 0.949538i
\(288\) 0 0
\(289\) 6.27284 15.8004i 0.368991 0.929433i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.5587 0.792106 0.396053 0.918228i \(-0.370380\pi\)
0.396053 + 0.918228i \(0.370380\pi\)
\(294\) 0 0
\(295\) −19.9909 19.9909i −1.16392 1.16392i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.67106 6.67106i −0.385797 0.385797i
\(300\) 0 0
\(301\) 2.53660 2.53660i 0.146207 0.146207i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −30.2768 −1.73364
\(306\) 0 0
\(307\) −19.9818 −1.14042 −0.570212 0.821498i \(-0.693139\pi\)
−0.570212 + 0.821498i \(0.693139\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.64096 5.64096i 0.319869 0.319869i −0.528847 0.848717i \(-0.677376\pi\)
0.848717 + 0.528847i \(0.177376\pi\)
\(312\) 0 0
\(313\) 7.53660 + 7.53660i 0.425994 + 0.425994i 0.887261 0.461267i \(-0.152605\pi\)
−0.461267 + 0.887261i \(0.652605\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.07320 + 3.07320i 0.172608 + 0.172608i 0.788124 0.615516i \(-0.211052\pi\)
−0.615516 + 0.788124i \(0.711052\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 15.1384 + 22.2978i 0.842322 + 1.24068i
\(324\) 0 0
\(325\) 27.0732i 1.50175i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.80944 1.80944i −0.0997577 0.0997577i
\(330\) 0 0
\(331\) 19.9909i 1.09880i −0.835559 0.549400i \(-0.814856\pi\)
0.835559 0.549400i \(-0.185144\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −12.6319 + 12.6319i −0.690153 + 0.690153i
\(336\) 0 0
\(337\) −12.2638 + 12.2638i −0.668050 + 0.668050i −0.957264 0.289215i \(-0.906606\pi\)
0.289215 + 0.957264i \(0.406606\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −49.4362 −2.67712
\(342\) 0 0
\(343\) −12.0000 + 12.0000i −0.647939 + 0.647939i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.25076 4.25076i −0.228193 0.228193i 0.583744 0.811937i \(-0.301587\pi\)
−0.811937 + 0.583744i \(0.801587\pi\)
\(348\) 0 0
\(349\) 33.8004i 1.80929i 0.426164 + 0.904646i \(0.359865\pi\)
−0.426164 + 0.904646i \(0.640135\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.17756 0.488472 0.244236 0.969716i \(-0.421463\pi\)
0.244236 + 0.969716i \(0.421463\pi\)
\(354\) 0 0
\(355\) 29.4543i 1.56327i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.2508i 0.646571i 0.946302 + 0.323285i \(0.104787\pi\)
−0.946302 + 0.323285i \(0.895213\pi\)
\(360\) 0 0
\(361\) −23.7272 −1.24880
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 34.9086i 1.82720i
\(366\) 0 0
\(367\) −14.6449 14.6449i −0.764456 0.764456i 0.212668 0.977125i \(-0.431785\pi\)
−0.977125 + 0.212668i \(0.931785\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.80944 + 1.80944i −0.0939415 + 0.0939415i
\(372\) 0 0
\(373\) 19.8354 1.02704 0.513520 0.858078i \(-0.328341\pi\)
0.513520 + 0.858078i \(0.328341\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 6.72716 6.72716i 0.345551 0.345551i −0.512898 0.858449i \(-0.671428\pi\)
0.858449 + 0.512898i \(0.171428\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 25.8094i 1.31880i 0.751792 + 0.659400i \(0.229190\pi\)
−0.751792 + 0.659400i \(0.770810\pi\)
\(384\) 0 0
\(385\) −19.9909 19.9909i −1.01883 1.01883i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.4413i 0.935012i −0.883990 0.467506i \(-0.845153\pi\)
0.883990 0.467506i \(-0.154847\pi\)
\(390\) 0 0
\(391\) −8.08228 1.54568i −0.408739 0.0781684i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 56.8043 2.85813
\(396\) 0 0
\(397\) 16.8826 + 16.8826i 0.847316 + 0.847316i 0.989797 0.142482i \(-0.0455082\pi\)
−0.142482 + 0.989797i \(0.545508\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13.6018 13.6018i −0.679240 0.679240i 0.280588 0.959828i \(-0.409471\pi\)
−0.959828 + 0.280588i \(0.909471\pi\)
\(402\) 0 0
\(403\) 27.0732 27.0732i 1.34861 1.34861i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −58.0680 −2.87833
\(408\) 0 0
\(409\) −13.2728 −0.656300 −0.328150 0.944626i \(-0.606425\pi\)
−0.328150 + 0.944626i \(0.606425\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.63188 8.63188i 0.424747 0.424747i
\(414\) 0 0
\(415\) 30.7181 + 30.7181i 1.50789 + 1.50789i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −17.5145 17.5145i −0.855641 0.855641i 0.135180 0.990821i \(-0.456839\pi\)
−0.990821 + 0.135180i \(0.956839\pi\)
\(420\) 0 0
\(421\) 9.80036 0.477640 0.238820 0.971064i \(-0.423239\pi\)
0.238820 + 0.971064i \(0.423239\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −13.2638 19.5366i −0.643387 0.947664i
\(426\) 0 0
\(427\) 13.0732i 0.632657i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.90472 + 6.90472i 0.332589 + 0.332589i 0.853569 0.520980i \(-0.174433\pi\)
−0.520980 + 0.853569i \(0.674433\pi\)
\(432\) 0 0
\(433\) 37.2547i 1.79035i 0.445719 + 0.895173i \(0.352948\pi\)
−0.445719 + 0.895173i \(0.647052\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9.22458 9.22458i 0.441272 0.441272i
\(438\) 0 0
\(439\) 5.72716 5.72716i 0.273342 0.273342i −0.557102 0.830444i \(-0.688087\pi\)
0.830444 + 0.557102i \(0.188087\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.64488 0.458242 0.229121 0.973398i \(-0.426415\pi\)
0.229121 + 0.973398i \(0.426415\pi\)
\(444\) 0 0
\(445\) −17.0641 + 17.0641i −0.808917 + 0.808917i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.52360 + 2.52360i 0.119096 + 0.119096i 0.764143 0.645047i \(-0.223162\pi\)
−0.645047 + 0.764143i \(0.723162\pi\)
\(450\) 0 0
\(451\) 69.4271i 3.26919i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 21.8956 1.02648
\(456\) 0 0
\(457\) 18.7272i 0.876020i −0.898970 0.438010i \(-0.855684\pi\)
0.898970 0.438010i \(-0.144316\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 35.8775i 1.67098i −0.549505 0.835491i \(-0.685184\pi\)
0.549505 0.835491i \(-0.314816\pi\)
\(462\) 0 0
\(463\) −12.1464 −0.564491 −0.282246 0.959342i \(-0.591079\pi\)
−0.282246 + 0.959342i \(0.591079\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 30.0680i 1.39138i 0.718341 + 0.695692i \(0.244902\pi\)
−0.718341 + 0.695692i \(0.755098\pi\)
\(468\) 0 0
\(469\) −5.45432 5.45432i −0.251857 0.251857i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10.9478 10.9478i 0.503381 0.503381i
\(474\) 0 0
\(475\) 37.4362 1.71769
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 27.5576 27.5576i 1.25914 1.25914i 0.307636 0.951504i \(-0.400462\pi\)
0.951504 0.307636i \(-0.0995379\pi\)
\(480\) 0 0
\(481\) 31.8004 31.8004i 1.44997 1.44997i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 60.1724i 2.73229i
\(486\) 0 0
\(487\) 21.8826 + 21.8826i 0.991597 + 0.991597i 0.999965 0.00836771i \(-0.00266356\pi\)
−0.00836771 + 0.999965i \(0.502664\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 34.9086i 1.57540i 0.616056 + 0.787702i \(0.288730\pi\)
−0.616056 + 0.787702i \(0.711270\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.7181 −0.570484
\(498\) 0 0
\(499\) 15.6449 + 15.6449i 0.700361 + 0.700361i 0.964488 0.264127i \(-0.0850838\pi\)
−0.264127 + 0.964488i \(0.585084\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 11.9387 + 11.9387i 0.532322 + 0.532322i 0.921263 0.388941i \(-0.127159\pi\)
−0.388941 + 0.921263i \(0.627159\pi\)
\(504\) 0 0
\(505\) −26.5275 + 26.5275i −1.18046 + 1.18046i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 17.6007 0.780138 0.390069 0.920786i \(-0.372451\pi\)
0.390069 + 0.920786i \(0.372451\pi\)
\(510\) 0 0
\(511\) 15.0732 0.666799
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.02102 + 8.02102i −0.353449 + 0.353449i
\(516\) 0 0
\(517\) −7.80944 7.80944i −0.343459 0.343459i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −21.8525 21.8525i −0.957377 0.957377i 0.0417508 0.999128i \(-0.486706\pi\)
−0.999128 + 0.0417508i \(0.986706\pi\)
\(522\) 0 0
\(523\) −12.6921 −0.554986 −0.277493 0.960728i \(-0.589504\pi\)
−0.277493 + 0.960728i \(0.589504\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.27284 32.8004i 0.273249 1.42881i
\(528\) 0 0
\(529\) 19.0169i 0.826823i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 38.0210 + 38.0210i 1.64687 + 1.64687i
\(534\) 0 0
\(535\) 17.0641i 0.737746i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −21.5797 + 21.5797i −0.929504 + 0.929504i
\(540\) 0 0
\(541\) 12.1815 12.1815i 0.523723 0.523723i −0.394971 0.918694i \(-0.629245\pi\)
0.918694 + 0.394971i \(0.129245\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 27.7913 1.19045
\(546\) 0 0
\(547\) 6.18148 6.18148i 0.264301 0.264301i −0.562498 0.826799i \(-0.690160\pi\)
0.826799 + 0.562498i \(0.190160\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 24.5275i 1.04302i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.0602 0.934721 0.467360 0.884067i \(-0.345205\pi\)
0.467360 + 0.884067i \(0.345205\pi\)
\(558\) 0 0
\(559\) 11.9909i 0.507162i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 18.0260i 0.759705i 0.925047 + 0.379853i \(0.124025\pi\)
−0.925047 + 0.379853i \(0.875975\pi\)
\(564\) 0 0
\(565\) 21.2547 0.894191
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 28.3370i 1.18795i 0.804484 + 0.593974i \(0.202442\pi\)
−0.804484 + 0.593974i \(0.797558\pi\)
\(570\) 0 0
\(571\) 1.26376 + 1.26376i 0.0528868 + 0.0528868i 0.733056 0.680169i \(-0.238094\pi\)
−0.680169 + 0.733056i \(0.738094\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −8.08228 + 8.08228i −0.337054 + 0.337054i
\(576\) 0 0
\(577\) 10.7272 0.446578 0.223289 0.974752i \(-0.428321\pi\)
0.223289 + 0.974752i \(0.428321\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −13.2638 + 13.2638i −0.550274 + 0.550274i
\(582\) 0 0
\(583\) −7.80944 + 7.80944i −0.323434 + 0.323434i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 45.6449i 1.88397i 0.335661 + 0.941983i \(0.391040\pi\)
−0.335661 + 0.941983i \(0.608960\pi\)
\(588\) 0 0
\(589\) 37.4362 + 37.4362i 1.54253 + 1.54253i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.545680i 0.0224084i 0.999937 + 0.0112042i \(0.00356648\pi\)
−0.999937 + 0.0112042i \(0.996434\pi\)
\(594\) 0 0
\(595\) 15.8004 10.7272i 0.647752 0.439771i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.10436 0.0859817 0.0429909 0.999075i \(-0.486311\pi\)
0.0429909 + 0.999075i \(0.486311\pi\)
\(600\) 0 0
\(601\) −29.1815 29.1815i −1.19034 1.19034i −0.976973 0.213365i \(-0.931558\pi\)
−0.213365 0.976973i \(-0.568442\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −60.8043 60.8043i −2.47205 2.47205i
\(606\) 0 0
\(607\) 12.8354 12.8354i 0.520974 0.520974i −0.396891 0.917866i \(-0.629911\pi\)
0.917866 + 0.396891i \(0.129911\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.55352 0.346038
\(612\) 0 0
\(613\) 15.6358 0.631524 0.315762 0.948838i \(-0.397740\pi\)
0.315762 + 0.948838i \(0.397740\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 29.7272 29.7272i 1.19677 1.19677i 0.221642 0.975128i \(-0.428858\pi\)
0.975128 0.221642i \(-0.0711418\pi\)
\(618\) 0 0
\(619\) −8.37204 8.37204i −0.336501 0.336501i 0.518548 0.855049i \(-0.326473\pi\)
−0.855049 + 0.518548i \(0.826473\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −7.36812 7.36812i −0.295197 0.295197i
\(624\) 0 0
\(625\) 20.8354 0.833417
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 7.36812 38.5275i 0.293786 1.53619i
\(630\) 0 0
\(631\) 40.8996i 1.62819i −0.580735 0.814093i \(-0.697235\pi\)
0.580735 0.814093i \(-0.302765\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 15.1384 + 15.1384i 0.600748 + 0.600748i
\(636\) 0 0
\(637\) 23.6358i 0.936485i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −13.6018 + 13.6018i −0.537238 + 0.537238i −0.922717 0.385479i \(-0.874036\pi\)
0.385479 + 0.922717i \(0.374036\pi\)
\(642\) 0 0
\(643\) −27.7913 + 27.7913i −1.09598 + 1.09598i −0.101106 + 0.994876i \(0.532238\pi\)
−0.994876 + 0.101106i \(0.967762\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.55868 −0.218534 −0.109267 0.994012i \(-0.534850\pi\)
−0.109267 + 0.994012i \(0.534850\pi\)
\(648\) 0 0
\(649\) 37.2547 37.2547i 1.46237 1.46237i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −26.9478 26.9478i −1.05455 1.05455i −0.998424 0.0561260i \(-0.982125\pi\)
−0.0561260 0.998424i \(-0.517875\pi\)
\(654\) 0 0
\(655\) 19.9909i 0.781110i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 18.1044 0.705246 0.352623 0.935766i \(-0.385290\pi\)
0.352623 + 0.935766i \(0.385290\pi\)
\(660\) 0 0
\(661\) 14.5626i 0.566419i −0.959058 0.283210i \(-0.908601\pi\)
0.959058 0.283210i \(-0.0913992\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 30.2768i 1.17408i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 56.4232i 2.17819i
\(672\) 0 0
\(673\) 21.9177 + 21.9177i 0.844866 + 0.844866i 0.989487 0.144621i \(-0.0461963\pi\)
−0.144621 + 0.989487i \(0.546196\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −0.125382 + 0.125382i −0.00481882 + 0.00481882i −0.709512 0.704693i \(-0.751085\pi\)
0.704693 + 0.709512i \(0.251085\pi\)
\(678\) 0 0
\(679\) −25.9818 −0.997092
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 15.5195 15.5195i 0.593837 0.593837i −0.344829 0.938666i \(-0.612063\pi\)
0.938666 + 0.344829i \(0.112063\pi\)
\(684\) 0 0
\(685\) 14.9177 14.9177i 0.569977 0.569977i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8.55352i 0.325863i
\(690\) 0 0
\(691\) −14.3811 14.3811i −0.547083 0.547083i 0.378513 0.925596i \(-0.376436\pi\)
−0.925596 + 0.378513i \(0.876436\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 21.8956i 0.830549i
\(696\) 0 0
\(697\) 46.0641 + 8.80944i 1.74480 + 0.333681i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −35.6267 −1.34560 −0.672801 0.739823i \(-0.734909\pi\)
−0.672801 + 0.739823i \(0.734909\pi\)
\(702\) 0 0
\(703\) 43.9728 + 43.9728i 1.65846 + 1.65846i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −11.4543 11.4543i −0.430784 0.430784i
\(708\) 0 0
\(709\) −7.26376 + 7.26376i −0.272796 + 0.272796i −0.830225 0.557429i \(-0.811788\pi\)
0.557429 + 0.830225i \(0.311788\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −16.1646 −0.605368
\(714\) 0 0
\(715\) 94.5003 3.53411
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 6.96990 6.96990i 0.259933 0.259933i −0.565094 0.825027i \(-0.691160\pi\)
0.825027 + 0.565094i \(0.191160\pi\)
\(720\) 0 0
\(721\) −3.46340 3.46340i −0.128984 0.128984i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −0.381117 −0.0141349 −0.00706743 0.999975i \(-0.502250\pi\)
−0.00706743 + 0.999975i \(0.502250\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.87462 + 8.65291i 0.217281 + 0.320039i
\(732\) 0 0
\(733\) 15.0732i 0.556741i −0.960474 0.278371i \(-0.910206\pi\)
0.960474 0.278371i \(-0.0897944\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −23.5405 23.5405i −0.867126 0.867126i
\(738\) 0 0
\(739\) 12.3902i 0.455781i −0.973687 0.227890i \(-0.926817\pi\)
0.973687 0.227890i \(-0.0731828\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −26.9909 + 26.9909i −0.990201 + 0.990201i −0.999952 0.00975157i \(-0.996896\pi\)
0.00975157 + 0.999952i \(0.496896\pi\)
\(744\) 0 0
\(745\) 14.9177 14.9177i 0.546543 0.546543i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −7.36812 −0.269225
\(750\) 0 0
\(751\) −6.27284 + 6.27284i −0.228899 + 0.228899i −0.812233 0.583334i \(-0.801748\pi\)
0.583334 + 0.812233i \(0.301748\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12.6319 + 12.6319i 0.459721 + 0.459721i
\(756\) 0 0
\(757\) 24.3279i 0.884212i −0.896963 0.442106i \(-0.854231\pi\)
0.896963 0.442106i \(-0.145769\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 36.7181 1.33103 0.665515 0.746385i \(-0.268212\pi\)
0.665515 + 0.746385i \(0.268212\pi\)
\(762\) 0 0
\(763\) 12.0000i 0.434429i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 40.8043i 1.47336i
\(768\) 0 0
\(769\) 7.10828 0.256331 0.128166 0.991753i \(-0.459091\pi\)
0.128166 + 0.991753i \(0.459091\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 4.16456i 0.149789i −0.997191 0.0748945i \(-0.976138\pi\)
0.997191 0.0748945i \(-0.0238620\pi\)
\(774\) 0 0
\(775\) −32.8004 32.8004i −1.17822 1.17822i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −52.5745 + 52.5745i −1.88368 + 1.88368i
\(780\) 0 0
\(781\) −54.8905 −1.96414
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 10.9478 10.9478i 0.390744 0.390744i
\(786\) 0 0
\(787\) −25.8094 + 25.8094i −0.920007 + 0.920007i −0.997029 0.0770222i \(-0.975459\pi\)
0.0770222 + 0.997029i \(0.475459\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9.17756i 0.326316i
\(792\) 0 0
\(793\) 30.8996 + 30.8996i 1.09728 + 1.09728i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 33.0992i 1.17243i −0.810154 0.586217i \(-0.800617\pi\)
0.810154 0.586217i \(-0.199383\pi\)
\(798\) 0 0
\(799\) 6.17240 4.19056i 0.218364 0.148251i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 65.0550 2.29574
\(804\) 0 0
\(805\) −6.53660 6.53660i −0.230385 0.230385i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −12.2077 12.2077i −0.429199 0.429199i 0.459157 0.888355i \(-0.348152\pi\)
−0.888355 + 0.459157i \(0.848152\pi\)
\(810\) 0 0
\(811\) −36.8645 + 36.8645i −1.29449 + 1.29449i −0.362506 + 0.931982i \(0.618079\pi\)
−0.931982 + 0.362506i \(0.881921\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −25.2638 −0.884951
\(816\) 0 0
\(817\) −16.5808 −0.580087
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 11.4935 11.4935i 0.401126 0.401126i −0.477504 0.878630i \(-0.658458\pi\)
0.878630 + 0.477504i \(0.158458\pi\)
\(822\) 0 0
\(823\) −3.88264 3.88264i −0.135340 0.135340i 0.636191 0.771532i \(-0.280509\pi\)
−0.771532 + 0.636191i \(0.780509\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −16.9478 16.9478i −0.589333 0.589333i 0.348117 0.937451i \(-0.386821\pi\)
−0.937451 + 0.348117i \(0.886821\pi\)
\(828\) 0 0
\(829\) −34.3630 −1.19347 −0.596737 0.802437i \(-0.703537\pi\)
−0.596737 + 0.802437i \(0.703537\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −11.5797 17.0561i −0.401213 0.590959i
\(834\) 0 0
\(835\) 57.8264i 2.00116i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −25.2025 25.2025i −0.870087 0.870087i 0.122394 0.992482i \(-0.460943\pi\)
−0.992482 + 0.122394i \(0.960943\pi\)
\(840\) 0 0
\(841\) 29.0000i 1.00000i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −21.6449 + 21.6449i −0.744606 + 0.744606i
\(846\) 0 0
\(847\) 26.2547 26.2547i 0.902122 0.902122i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −18.9870 −0.650866
\(852\) 0 0
\(853\) 23.2728 23.2728i 0.796847 0.796847i −0.185750 0.982597i \(-0.559472\pi\)
0.982597 + 0.185750i \(0.0594715\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 28.6358 + 28.6358i 0.978180 + 0.978180i 0.999767 0.0215867i \(-0.00687178\pi\)
−0.0215867 + 0.999767i \(0.506872\pi\)
\(858\) 0 0
\(859\) 2.92680i 0.0998610i −0.998753 0.0499305i \(-0.984100\pi\)
0.998753 0.0499305i \(-0.0159000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 4.63188 0.157671 0.0788355 0.996888i \(-0.474880\pi\)
0.0788355 + 0.996888i \(0.474880\pi\)
\(864\) 0 0
\(865\) 50.7090i 1.72416i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 105.859i 3.59103i
\(870\) 0 0
\(871\) 25.7834 0.873639
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.36812i 0.113863i
\(876\) 0 0
\(877\) 16.9177 + 16.9177i 0.571271 + 0.571271i 0.932483 0.361213i \(-0.117637\pi\)
−0.361213 + 0.932483i \(0.617637\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −5.47640 + 5.47640i −0.184504 + 0.184504i −0.793315 0.608811i \(-0.791647\pi\)
0.608811 + 0.793315i \(0.291647\pi\)
\(882\) 0 0
\(883\) −55.5916 −1.87081 −0.935404 0.353581i \(-0.884964\pi\)
−0.935404 + 0.353581i \(0.884964\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −13.9569 + 13.9569i −0.468627 + 0.468627i −0.901469 0.432843i \(-0.857511\pi\)
0.432843 + 0.901469i \(0.357511\pi\)
\(888\) 0 0
\(889\) −6.53660 + 6.53660i −0.219231 + 0.219231i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 11.8276i 0.395795i
\(894\) 0 0
\(895\) 2.92680 + 2.92680i 0.0978320 + 0.0978320i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −4.19056 6.17240i −0.139608 0.205633i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 55.5405 1.84623
\(906\) 0 0
\(907\) 20.3460 + 20.3460i 0.675579 + 0.675579i 0.958997 0.283417i \(-0.0914682\pi\)
−0.283417 + 0.958997i \(0.591468\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −10.3380 10.3380i −0.342514 0.342514i 0.514798 0.857312i \(-0.327867\pi\)
−0.857312 + 0.514798i \(0.827867\pi\)
\(912\) 0 0
\(913\) −57.2456 + 57.2456i −1.89455 + 1.89455i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.63188 0.285050
\(918\) 0 0
\(919\) 44.3720 1.46370 0.731849 0.681467i \(-0.238658\pi\)
0.731849 + 0.681467i \(0.238658\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 30.0602 30.0602i 0.989444 0.989444i
\(924\) 0 0
\(925\) −38.5275 38.5275i −1.26678 1.26678i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.293864 + 0.293864i 0.00964137 + 0.00964137i 0.711911 0.702270i \(-0.247830\pi\)
−0.702270 + 0.711911i \(0.747830\pi\)
\(930\) 0 0
\(931\) 32.6830 1.07114
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 68.1934 46.2978i 2.23016 1.51410i
\(936\) 0 0
\(937\) 5.23777i 0.171110i −0.996333 0.0855552i \(-0.972734\pi\)
0.996333 0.0855552i \(-0.0272664\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 13.8094 + 13.8094i 0.450175 + 0.450175i 0.895412 0.445238i \(-0.146881\pi\)
−0.445238 + 0.895412i \(0.646881\pi\)
\(942\) 0 0
\(943\) 22.7012i 0.739252i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 14.6137 14.6137i 0.474882 0.474882i −0.428608 0.903490i \(-0.640996\pi\)
0.903490 + 0.428608i \(0.140996\pi\)
\(948\) 0 0
\(949\) −35.6267 + 35.6267i −1.15649 + 1.15649i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −27.7913 −0.900248 −0.450124 0.892966i \(-0.648620\pi\)
−0.450124 + 0.892966i \(0.648620\pi\)
\(954\) 0 0
\(955\) −24.1815 + 24.1815i −0.782494 + 0.782494i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.44132 + 6.44132i 0.208001 + 0.208001i
\(960\) 0 0
\(961\) 34.6007i 1.11615i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 15.4985 0.498913
\(966\) 0 0
\(967\) 29.6098i 0.952187i −0.879395 0.476094i \(-0.842052\pi\)
0.879395 0.476094i \(-0.157948\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 47.0810i 1.51090i −0.655205 0.755451i \(-0.727418\pi\)
0.655205 0.755451i \(-0.272582\pi\)
\(972\) 0 0
\(973\) 9.45432 0.303092
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11.7051i 0.374479i 0.982314 + 0.187239i \(0.0599540\pi\)
−0.982314 + 0.187239i \(0.940046\pi\)
\(978\) 0 0
\(979\) −31.8004 31.8004i −1.01634 1.01634i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 8.10331 8.10331i 0.258455 0.258455i −0.565970 0.824426i \(-0.691498\pi\)
0.824426 + 0.565970i \(0.191498\pi\)
\(984\) 0 0
\(985\) −5.27284 −0.168007
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 3.57970 3.57970i 0.113828 0.113828i
\(990\) 0 0
\(991\) −6.84452 + 6.84452i −0.217423 + 0.217423i −0.807412 0.589988i \(-0.799132\pi\)
0.589988 + 0.807412i \(0.299132\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 7.11736i 0.225635i
\(996\) 0 0
\(997\) −15.1083 15.1083i −0.478484 0.478484i 0.426163 0.904647i \(-0.359865\pi\)
−0.904647 + 0.426163i \(0.859865\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.2.w.i.361.1 yes 6
3.2 odd 2 1224.2.w.j.361.3 yes 6
4.3 odd 2 2448.2.be.w.1585.1 6
12.11 even 2 2448.2.be.v.1585.3 6
17.13 even 4 inner 1224.2.w.i.217.1 6
51.47 odd 4 1224.2.w.j.217.3 yes 6
68.47 odd 4 2448.2.be.w.1441.1 6
204.47 even 4 2448.2.be.v.1441.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1224.2.w.i.217.1 6 17.13 even 4 inner
1224.2.w.i.361.1 yes 6 1.1 even 1 trivial
1224.2.w.j.217.3 yes 6 51.47 odd 4
1224.2.w.j.361.3 yes 6 3.2 odd 2
2448.2.be.v.1441.3 6 204.47 even 4
2448.2.be.v.1585.3 6 12.11 even 2
2448.2.be.w.1441.1 6 68.47 odd 4
2448.2.be.w.1585.1 6 4.3 odd 2