Properties

Label 1248.2.g.b.625.8
Level $1248$
Weight $2$
Character 1248.625
Analytic conductor $9.965$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1248,2,Mod(625,1248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1248.625");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.96533017226\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 4 x^{13} + 9 x^{12} - 10 x^{11} + 2 x^{10} - 8 x^{9} + 28 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{20} \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 625.8
Root \(-1.32561 + 0.492712i\) of defining polynomial
Character \(\chi\) \(=\) 1248.625
Dual form 1248.2.g.b.625.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +4.33571i q^{5} +2.30442 q^{7} -1.00000 q^{9} +0.582255i q^{11} -1.00000i q^{13} +4.33571 q^{15} +3.40894 q^{17} -0.0627418i q^{19} -2.30442i q^{21} +6.65973 q^{23} -13.7984 q^{25} +1.00000i q^{27} +2.41805i q^{29} -5.63600 q^{31} +0.582255 q^{33} +9.99131i q^{35} +9.27328i q^{37} -1.00000 q^{39} +4.75376 q^{41} +7.86434i q^{43} -4.33571i q^{45} +0.0312900 q^{47} -1.68964 q^{49} -3.40894i q^{51} +13.1656i q^{53} -2.52449 q^{55} -0.0627418 q^{57} -4.75759i q^{59} +3.29149i q^{61} -2.30442 q^{63} +4.33571 q^{65} -11.8777i q^{67} -6.65973i q^{69} -13.6251 q^{71} +0.437175 q^{73} +13.7984i q^{75} +1.34176i q^{77} +6.54503 q^{79} +1.00000 q^{81} -6.62844i q^{83} +14.7802i q^{85} +2.41805 q^{87} +8.23880 q^{89} -2.30442i q^{91} +5.63600i q^{93} +0.272031 q^{95} -0.664432 q^{97} -0.582255i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{7} - 16 q^{9} + 4 q^{15} + 16 q^{17} + 8 q^{23} - 32 q^{25} + 4 q^{31} - 16 q^{39} - 36 q^{41} - 24 q^{47} + 48 q^{49} - 24 q^{55} - 12 q^{57} + 4 q^{63} + 4 q^{65} - 32 q^{73} + 16 q^{81} - 8 q^{87}+ \cdots + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1248\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) 4.33571i 1.93899i 0.245112 + 0.969495i \(0.421175\pi\)
−0.245112 + 0.969495i \(0.578825\pi\)
\(6\) 0 0
\(7\) 2.30442 0.870990 0.435495 0.900191i \(-0.356573\pi\)
0.435495 + 0.900191i \(0.356573\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0.582255i 0.175557i 0.996140 + 0.0877783i \(0.0279767\pi\)
−0.996140 + 0.0877783i \(0.972023\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 0 0
\(15\) 4.33571 1.11948
\(16\) 0 0
\(17\) 3.40894 0.826790 0.413395 0.910552i \(-0.364343\pi\)
0.413395 + 0.910552i \(0.364343\pi\)
\(18\) 0 0
\(19\) − 0.0627418i − 0.0143940i −0.999974 0.00719698i \(-0.997709\pi\)
0.999974 0.00719698i \(-0.00229089\pi\)
\(20\) 0 0
\(21\) − 2.30442i − 0.502866i
\(22\) 0 0
\(23\) 6.65973 1.38865 0.694325 0.719662i \(-0.255703\pi\)
0.694325 + 0.719662i \(0.255703\pi\)
\(24\) 0 0
\(25\) −13.7984 −2.75968
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 2.41805i 0.449021i 0.974472 + 0.224510i \(0.0720783\pi\)
−0.974472 + 0.224510i \(0.927922\pi\)
\(30\) 0 0
\(31\) −5.63600 −1.01226 −0.506128 0.862458i \(-0.668924\pi\)
−0.506128 + 0.862458i \(0.668924\pi\)
\(32\) 0 0
\(33\) 0.582255 0.101358
\(34\) 0 0
\(35\) 9.99131i 1.68884i
\(36\) 0 0
\(37\) 9.27328i 1.52452i 0.647272 + 0.762259i \(0.275910\pi\)
−0.647272 + 0.762259i \(0.724090\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) 4.75376 0.742413 0.371207 0.928550i \(-0.378944\pi\)
0.371207 + 0.928550i \(0.378944\pi\)
\(42\) 0 0
\(43\) 7.86434i 1.19930i 0.800262 + 0.599650i \(0.204694\pi\)
−0.800262 + 0.599650i \(0.795306\pi\)
\(44\) 0 0
\(45\) − 4.33571i − 0.646330i
\(46\) 0 0
\(47\) 0.0312900 0.00456412 0.00228206 0.999997i \(-0.499274\pi\)
0.00228206 + 0.999997i \(0.499274\pi\)
\(48\) 0 0
\(49\) −1.68964 −0.241377
\(50\) 0 0
\(51\) − 3.40894i − 0.477347i
\(52\) 0 0
\(53\) 13.1656i 1.80843i 0.427078 + 0.904215i \(0.359543\pi\)
−0.427078 + 0.904215i \(0.640457\pi\)
\(54\) 0 0
\(55\) −2.52449 −0.340402
\(56\) 0 0
\(57\) −0.0627418 −0.00831036
\(58\) 0 0
\(59\) − 4.75759i − 0.619385i −0.950837 0.309693i \(-0.899774\pi\)
0.950837 0.309693i \(-0.100226\pi\)
\(60\) 0 0
\(61\) 3.29149i 0.421432i 0.977547 + 0.210716i \(0.0675795\pi\)
−0.977547 + 0.210716i \(0.932420\pi\)
\(62\) 0 0
\(63\) −2.30442 −0.290330
\(64\) 0 0
\(65\) 4.33571 0.537779
\(66\) 0 0
\(67\) − 11.8777i − 1.45109i −0.688175 0.725545i \(-0.741588\pi\)
0.688175 0.725545i \(-0.258412\pi\)
\(68\) 0 0
\(69\) − 6.65973i − 0.801737i
\(70\) 0 0
\(71\) −13.6251 −1.61700 −0.808500 0.588496i \(-0.799720\pi\)
−0.808500 + 0.588496i \(0.799720\pi\)
\(72\) 0 0
\(73\) 0.437175 0.0511675 0.0255837 0.999673i \(-0.491856\pi\)
0.0255837 + 0.999673i \(0.491856\pi\)
\(74\) 0 0
\(75\) 13.7984i 1.59330i
\(76\) 0 0
\(77\) 1.34176i 0.152908i
\(78\) 0 0
\(79\) 6.54503 0.736373 0.368187 0.929752i \(-0.379979\pi\)
0.368187 + 0.929752i \(0.379979\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 6.62844i − 0.727566i −0.931484 0.363783i \(-0.881485\pi\)
0.931484 0.363783i \(-0.118515\pi\)
\(84\) 0 0
\(85\) 14.7802i 1.60314i
\(86\) 0 0
\(87\) 2.41805 0.259242
\(88\) 0 0
\(89\) 8.23880 0.873311 0.436655 0.899629i \(-0.356163\pi\)
0.436655 + 0.899629i \(0.356163\pi\)
\(90\) 0 0
\(91\) − 2.30442i − 0.241569i
\(92\) 0 0
\(93\) 5.63600i 0.584426i
\(94\) 0 0
\(95\) 0.272031 0.0279097
\(96\) 0 0
\(97\) −0.664432 −0.0674629 −0.0337314 0.999431i \(-0.510739\pi\)
−0.0337314 + 0.999431i \(0.510739\pi\)
\(98\) 0 0
\(99\) − 0.582255i − 0.0585189i
\(100\) 0 0
\(101\) 11.3867i 1.13302i 0.824055 + 0.566510i \(0.191707\pi\)
−0.824055 + 0.566510i \(0.808293\pi\)
\(102\) 0 0
\(103\) 14.9131 1.46943 0.734716 0.678375i \(-0.237315\pi\)
0.734716 + 0.678375i \(0.237315\pi\)
\(104\) 0 0
\(105\) 9.99131 0.975052
\(106\) 0 0
\(107\) 7.39073i 0.714489i 0.934011 + 0.357244i \(0.116284\pi\)
−0.934011 + 0.357244i \(0.883716\pi\)
\(108\) 0 0
\(109\) − 17.4880i − 1.67505i −0.546399 0.837525i \(-0.684002\pi\)
0.546399 0.837525i \(-0.315998\pi\)
\(110\) 0 0
\(111\) 9.27328 0.880181
\(112\) 0 0
\(113\) 10.4662 0.984576 0.492288 0.870432i \(-0.336161\pi\)
0.492288 + 0.870432i \(0.336161\pi\)
\(114\) 0 0
\(115\) 28.8747i 2.69258i
\(116\) 0 0
\(117\) 1.00000i 0.0924500i
\(118\) 0 0
\(119\) 7.85564 0.720126
\(120\) 0 0
\(121\) 10.6610 0.969180
\(122\) 0 0
\(123\) − 4.75376i − 0.428632i
\(124\) 0 0
\(125\) − 38.1473i − 3.41200i
\(126\) 0 0
\(127\) −20.9445 −1.85852 −0.929262 0.369420i \(-0.879556\pi\)
−0.929262 + 0.369420i \(0.879556\pi\)
\(128\) 0 0
\(129\) 7.86434 0.692416
\(130\) 0 0
\(131\) − 3.39073i − 0.296249i −0.988969 0.148125i \(-0.952676\pi\)
0.988969 0.148125i \(-0.0473237\pi\)
\(132\) 0 0
\(133\) − 0.144584i − 0.0125370i
\(134\) 0 0
\(135\) −4.33571 −0.373159
\(136\) 0 0
\(137\) −5.78852 −0.494546 −0.247273 0.968946i \(-0.579534\pi\)
−0.247273 + 0.968946i \(0.579534\pi\)
\(138\) 0 0
\(139\) 18.0874i 1.53415i 0.641558 + 0.767075i \(0.278289\pi\)
−0.641558 + 0.767075i \(0.721711\pi\)
\(140\) 0 0
\(141\) − 0.0312900i − 0.00263509i
\(142\) 0 0
\(143\) 0.582255 0.0486906
\(144\) 0 0
\(145\) −10.4840 −0.870647
\(146\) 0 0
\(147\) 1.68964i 0.139359i
\(148\) 0 0
\(149\) − 9.21251i − 0.754719i −0.926067 0.377359i \(-0.876832\pi\)
0.926067 0.377359i \(-0.123168\pi\)
\(150\) 0 0
\(151\) 2.49249 0.202836 0.101418 0.994844i \(-0.467662\pi\)
0.101418 + 0.994844i \(0.467662\pi\)
\(152\) 0 0
\(153\) −3.40894 −0.275597
\(154\) 0 0
\(155\) − 24.4361i − 1.96275i
\(156\) 0 0
\(157\) − 4.18956i − 0.334363i −0.985926 0.167182i \(-0.946533\pi\)
0.985926 0.167182i \(-0.0534666\pi\)
\(158\) 0 0
\(159\) 13.1656 1.04410
\(160\) 0 0
\(161\) 15.3468 1.20950
\(162\) 0 0
\(163\) − 10.8387i − 0.848949i −0.905440 0.424475i \(-0.860459\pi\)
0.905440 0.424475i \(-0.139541\pi\)
\(164\) 0 0
\(165\) 2.52449i 0.196531i
\(166\) 0 0
\(167\) 13.5345 1.04733 0.523667 0.851923i \(-0.324564\pi\)
0.523667 + 0.851923i \(0.324564\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0.0627418i 0.00479799i
\(172\) 0 0
\(173\) 11.3922i 0.866134i 0.901362 + 0.433067i \(0.142569\pi\)
−0.901362 + 0.433067i \(0.857431\pi\)
\(174\) 0 0
\(175\) −31.7974 −2.40365
\(176\) 0 0
\(177\) −4.75759 −0.357602
\(178\) 0 0
\(179\) − 9.99131i − 0.746786i −0.927673 0.373393i \(-0.878194\pi\)
0.927673 0.373393i \(-0.121806\pi\)
\(180\) 0 0
\(181\) − 24.2251i − 1.80064i −0.435229 0.900320i \(-0.643332\pi\)
0.435229 0.900320i \(-0.356668\pi\)
\(182\) 0 0
\(183\) 3.29149 0.243314
\(184\) 0 0
\(185\) −40.2063 −2.95602
\(186\) 0 0
\(187\) 1.98487i 0.145148i
\(188\) 0 0
\(189\) 2.30442i 0.167622i
\(190\) 0 0
\(191\) 14.2745 1.03287 0.516434 0.856327i \(-0.327259\pi\)
0.516434 + 0.856327i \(0.327259\pi\)
\(192\) 0 0
\(193\) 4.98894 0.359112 0.179556 0.983748i \(-0.442534\pi\)
0.179556 + 0.983748i \(0.442534\pi\)
\(194\) 0 0
\(195\) − 4.33571i − 0.310487i
\(196\) 0 0
\(197\) − 10.9989i − 0.783637i −0.920042 0.391819i \(-0.871846\pi\)
0.920042 0.391819i \(-0.128154\pi\)
\(198\) 0 0
\(199\) −9.13566 −0.647609 −0.323805 0.946124i \(-0.604962\pi\)
−0.323805 + 0.946124i \(0.604962\pi\)
\(200\) 0 0
\(201\) −11.8777 −0.837787
\(202\) 0 0
\(203\) 5.57221i 0.391093i
\(204\) 0 0
\(205\) 20.6110i 1.43953i
\(206\) 0 0
\(207\) −6.65973 −0.462883
\(208\) 0 0
\(209\) 0.0365318 0.00252696
\(210\) 0 0
\(211\) 1.06551i 0.0733526i 0.999327 + 0.0366763i \(0.0116770\pi\)
−0.999327 + 0.0366763i \(0.988323\pi\)
\(212\) 0 0
\(213\) 13.6251i 0.933576i
\(214\) 0 0
\(215\) −34.0975 −2.32543
\(216\) 0 0
\(217\) −12.9877 −0.881665
\(218\) 0 0
\(219\) − 0.437175i − 0.0295416i
\(220\) 0 0
\(221\) − 3.40894i − 0.229310i
\(222\) 0 0
\(223\) −8.91055 −0.596695 −0.298347 0.954457i \(-0.596435\pi\)
−0.298347 + 0.954457i \(0.596435\pi\)
\(224\) 0 0
\(225\) 13.7984 0.919894
\(226\) 0 0
\(227\) − 17.1895i − 1.14091i −0.821330 0.570454i \(-0.806767\pi\)
0.821330 0.570454i \(-0.193233\pi\)
\(228\) 0 0
\(229\) − 10.3375i − 0.683122i −0.939860 0.341561i \(-0.889044\pi\)
0.939860 0.341561i \(-0.110956\pi\)
\(230\) 0 0
\(231\) 1.34176 0.0882815
\(232\) 0 0
\(233\) 0.475100 0.0311248 0.0155624 0.999879i \(-0.495046\pi\)
0.0155624 + 0.999879i \(0.495046\pi\)
\(234\) 0 0
\(235\) 0.135664i 0.00884977i
\(236\) 0 0
\(237\) − 6.54503i − 0.425145i
\(238\) 0 0
\(239\) −8.74191 −0.565467 −0.282734 0.959198i \(-0.591241\pi\)
−0.282734 + 0.959198i \(0.591241\pi\)
\(240\) 0 0
\(241\) 11.6534 0.750660 0.375330 0.926891i \(-0.377529\pi\)
0.375330 + 0.926891i \(0.377529\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) − 7.32578i − 0.468027i
\(246\) 0 0
\(247\) −0.0627418 −0.00399217
\(248\) 0 0
\(249\) −6.62844 −0.420060
\(250\) 0 0
\(251\) 5.41847i 0.342011i 0.985270 + 0.171005i \(0.0547015\pi\)
−0.985270 + 0.171005i \(0.945298\pi\)
\(252\) 0 0
\(253\) 3.87767i 0.243787i
\(254\) 0 0
\(255\) 14.7802 0.925571
\(256\) 0 0
\(257\) 1.09367 0.0682212 0.0341106 0.999418i \(-0.489140\pi\)
0.0341106 + 0.999418i \(0.489140\pi\)
\(258\) 0 0
\(259\) 21.3695i 1.32784i
\(260\) 0 0
\(261\) − 2.41805i − 0.149674i
\(262\) 0 0
\(263\) −8.89318 −0.548377 −0.274189 0.961676i \(-0.588409\pi\)
−0.274189 + 0.961676i \(0.588409\pi\)
\(264\) 0 0
\(265\) −57.0821 −3.50653
\(266\) 0 0
\(267\) − 8.23880i − 0.504206i
\(268\) 0 0
\(269\) 15.6451i 0.953901i 0.878930 + 0.476951i \(0.158258\pi\)
−0.878930 + 0.476951i \(0.841742\pi\)
\(270\) 0 0
\(271\) −17.2508 −1.04791 −0.523956 0.851746i \(-0.675544\pi\)
−0.523956 + 0.851746i \(0.675544\pi\)
\(272\) 0 0
\(273\) −2.30442 −0.139470
\(274\) 0 0
\(275\) − 8.03420i − 0.484480i
\(276\) 0 0
\(277\) − 5.22709i − 0.314065i −0.987593 0.157033i \(-0.949807\pi\)
0.987593 0.157033i \(-0.0501928\pi\)
\(278\) 0 0
\(279\) 5.63600 0.337419
\(280\) 0 0
\(281\) 23.5272 1.40351 0.701757 0.712416i \(-0.252399\pi\)
0.701757 + 0.712416i \(0.252399\pi\)
\(282\) 0 0
\(283\) − 6.22302i − 0.369920i −0.982746 0.184960i \(-0.940784\pi\)
0.982746 0.184960i \(-0.0592156\pi\)
\(284\) 0 0
\(285\) − 0.272031i − 0.0161137i
\(286\) 0 0
\(287\) 10.9547 0.646634
\(288\) 0 0
\(289\) −5.37912 −0.316419
\(290\) 0 0
\(291\) 0.664432i 0.0389497i
\(292\) 0 0
\(293\) 13.3240i 0.778396i 0.921154 + 0.389198i \(0.127248\pi\)
−0.921154 + 0.389198i \(0.872752\pi\)
\(294\) 0 0
\(295\) 20.6275 1.20098
\(296\) 0 0
\(297\) −0.582255 −0.0337859
\(298\) 0 0
\(299\) − 6.65973i − 0.385142i
\(300\) 0 0
\(301\) 18.1228i 1.04458i
\(302\) 0 0
\(303\) 11.3867 0.654149
\(304\) 0 0
\(305\) −14.2710 −0.817152
\(306\) 0 0
\(307\) − 28.7588i − 1.64135i −0.571396 0.820675i \(-0.693598\pi\)
0.571396 0.820675i \(-0.306402\pi\)
\(308\) 0 0
\(309\) − 14.9131i − 0.848377i
\(310\) 0 0
\(311\) −21.9394 −1.24407 −0.622034 0.782990i \(-0.713694\pi\)
−0.622034 + 0.782990i \(0.713694\pi\)
\(312\) 0 0
\(313\) −2.60950 −0.147498 −0.0737488 0.997277i \(-0.523496\pi\)
−0.0737488 + 0.997277i \(0.523496\pi\)
\(314\) 0 0
\(315\) − 9.99131i − 0.562947i
\(316\) 0 0
\(317\) − 16.0656i − 0.902334i −0.892439 0.451167i \(-0.851008\pi\)
0.892439 0.451167i \(-0.148992\pi\)
\(318\) 0 0
\(319\) −1.40792 −0.0788286
\(320\) 0 0
\(321\) 7.39073 0.412510
\(322\) 0 0
\(323\) − 0.213883i − 0.0119008i
\(324\) 0 0
\(325\) 13.7984i 0.765398i
\(326\) 0 0
\(327\) −17.4880 −0.967091
\(328\) 0 0
\(329\) 0.0721054 0.00397530
\(330\) 0 0
\(331\) − 4.12863i − 0.226930i −0.993542 0.113465i \(-0.963805\pi\)
0.993542 0.113465i \(-0.0361950\pi\)
\(332\) 0 0
\(333\) − 9.27328i − 0.508172i
\(334\) 0 0
\(335\) 51.4982 2.81365
\(336\) 0 0
\(337\) 6.01639 0.327734 0.163867 0.986482i \(-0.447603\pi\)
0.163867 + 0.986482i \(0.447603\pi\)
\(338\) 0 0
\(339\) − 10.4662i − 0.568445i
\(340\) 0 0
\(341\) − 3.28159i − 0.177708i
\(342\) 0 0
\(343\) −20.0246 −1.08123
\(344\) 0 0
\(345\) 28.8747 1.55456
\(346\) 0 0
\(347\) − 1.60019i − 0.0859029i −0.999077 0.0429514i \(-0.986324\pi\)
0.999077 0.0429514i \(-0.0136761\pi\)
\(348\) 0 0
\(349\) − 0.755303i − 0.0404305i −0.999796 0.0202152i \(-0.993565\pi\)
0.999796 0.0202152i \(-0.00643515\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 0 0
\(353\) 23.2960 1.23992 0.619962 0.784632i \(-0.287148\pi\)
0.619962 + 0.784632i \(0.287148\pi\)
\(354\) 0 0
\(355\) − 59.0745i − 3.13535i
\(356\) 0 0
\(357\) − 7.85564i − 0.415765i
\(358\) 0 0
\(359\) 32.9111 1.73698 0.868491 0.495706i \(-0.165090\pi\)
0.868491 + 0.495706i \(0.165090\pi\)
\(360\) 0 0
\(361\) 18.9961 0.999793
\(362\) 0 0
\(363\) − 10.6610i − 0.559556i
\(364\) 0 0
\(365\) 1.89547i 0.0992132i
\(366\) 0 0
\(367\) −2.51714 −0.131394 −0.0656969 0.997840i \(-0.520927\pi\)
−0.0656969 + 0.997840i \(0.520927\pi\)
\(368\) 0 0
\(369\) −4.75376 −0.247471
\(370\) 0 0
\(371\) 30.3390i 1.57512i
\(372\) 0 0
\(373\) − 25.9826i − 1.34533i −0.739947 0.672665i \(-0.765150\pi\)
0.739947 0.672665i \(-0.234850\pi\)
\(374\) 0 0
\(375\) −38.1473 −1.96992
\(376\) 0 0
\(377\) 2.41805 0.124536
\(378\) 0 0
\(379\) − 25.5104i − 1.31038i −0.755464 0.655190i \(-0.772589\pi\)
0.755464 0.655190i \(-0.227411\pi\)
\(380\) 0 0
\(381\) 20.9445i 1.07302i
\(382\) 0 0
\(383\) 25.1320 1.28419 0.642093 0.766627i \(-0.278066\pi\)
0.642093 + 0.766627i \(0.278066\pi\)
\(384\) 0 0
\(385\) −5.81750 −0.296487
\(386\) 0 0
\(387\) − 7.86434i − 0.399767i
\(388\) 0 0
\(389\) − 21.2888i − 1.07938i −0.841862 0.539692i \(-0.818541\pi\)
0.841862 0.539692i \(-0.181459\pi\)
\(390\) 0 0
\(391\) 22.7026 1.14812
\(392\) 0 0
\(393\) −3.39073 −0.171040
\(394\) 0 0
\(395\) 28.3774i 1.42782i
\(396\) 0 0
\(397\) − 12.1291i − 0.608741i −0.952554 0.304371i \(-0.901554\pi\)
0.952554 0.304371i \(-0.0984461\pi\)
\(398\) 0 0
\(399\) −0.144584 −0.00723824
\(400\) 0 0
\(401\) 10.4114 0.519919 0.259959 0.965620i \(-0.416291\pi\)
0.259959 + 0.965620i \(0.416291\pi\)
\(402\) 0 0
\(403\) 5.63600i 0.280749i
\(404\) 0 0
\(405\) 4.33571i 0.215443i
\(406\) 0 0
\(407\) −5.39942 −0.267639
\(408\) 0 0
\(409\) −2.94848 −0.145793 −0.0728965 0.997340i \(-0.523224\pi\)
−0.0728965 + 0.997340i \(0.523224\pi\)
\(410\) 0 0
\(411\) 5.78852i 0.285526i
\(412\) 0 0
\(413\) − 10.9635i − 0.539478i
\(414\) 0 0
\(415\) 28.7390 1.41074
\(416\) 0 0
\(417\) 18.0874 0.885742
\(418\) 0 0
\(419\) 26.3514i 1.28735i 0.765299 + 0.643675i \(0.222591\pi\)
−0.765299 + 0.643675i \(0.777409\pi\)
\(420\) 0 0
\(421\) 4.54054i 0.221292i 0.993860 + 0.110646i \(0.0352920\pi\)
−0.993860 + 0.110646i \(0.964708\pi\)
\(422\) 0 0
\(423\) −0.0312900 −0.00152137
\(424\) 0 0
\(425\) −47.0380 −2.28168
\(426\) 0 0
\(427\) 7.58498i 0.367063i
\(428\) 0 0
\(429\) − 0.582255i − 0.0281116i
\(430\) 0 0
\(431\) −15.3547 −0.739608 −0.369804 0.929110i \(-0.620575\pi\)
−0.369804 + 0.929110i \(0.620575\pi\)
\(432\) 0 0
\(433\) 27.9869 1.34497 0.672483 0.740113i \(-0.265228\pi\)
0.672483 + 0.740113i \(0.265228\pi\)
\(434\) 0 0
\(435\) 10.4840i 0.502668i
\(436\) 0 0
\(437\) − 0.417844i − 0.0199882i
\(438\) 0 0
\(439\) 6.64728 0.317257 0.158629 0.987338i \(-0.449293\pi\)
0.158629 + 0.987338i \(0.449293\pi\)
\(440\) 0 0
\(441\) 1.68964 0.0804589
\(442\) 0 0
\(443\) − 32.6534i − 1.55141i −0.631096 0.775705i \(-0.717395\pi\)
0.631096 0.775705i \(-0.282605\pi\)
\(444\) 0 0
\(445\) 35.7211i 1.69334i
\(446\) 0 0
\(447\) −9.21251 −0.435737
\(448\) 0 0
\(449\) −21.1274 −0.997063 −0.498531 0.866872i \(-0.666127\pi\)
−0.498531 + 0.866872i \(0.666127\pi\)
\(450\) 0 0
\(451\) 2.76790i 0.130336i
\(452\) 0 0
\(453\) − 2.49249i − 0.117107i
\(454\) 0 0
\(455\) 9.99131 0.468400
\(456\) 0 0
\(457\) 18.2163 0.852121 0.426060 0.904695i \(-0.359901\pi\)
0.426060 + 0.904695i \(0.359901\pi\)
\(458\) 0 0
\(459\) 3.40894i 0.159116i
\(460\) 0 0
\(461\) 20.4992i 0.954741i 0.878702 + 0.477371i \(0.158410\pi\)
−0.878702 + 0.477371i \(0.841590\pi\)
\(462\) 0 0
\(463\) 5.45645 0.253583 0.126791 0.991929i \(-0.459532\pi\)
0.126791 + 0.991929i \(0.459532\pi\)
\(464\) 0 0
\(465\) −24.4361 −1.13320
\(466\) 0 0
\(467\) 33.7488i 1.56171i 0.624714 + 0.780853i \(0.285215\pi\)
−0.624714 + 0.780853i \(0.714785\pi\)
\(468\) 0 0
\(469\) − 27.3712i − 1.26388i
\(470\) 0 0
\(471\) −4.18956 −0.193045
\(472\) 0 0
\(473\) −4.57905 −0.210545
\(474\) 0 0
\(475\) 0.865737i 0.0397227i
\(476\) 0 0
\(477\) − 13.1656i − 0.602810i
\(478\) 0 0
\(479\) 7.19006 0.328522 0.164261 0.986417i \(-0.447476\pi\)
0.164261 + 0.986417i \(0.447476\pi\)
\(480\) 0 0
\(481\) 9.27328 0.422825
\(482\) 0 0
\(483\) − 15.3468i − 0.698305i
\(484\) 0 0
\(485\) − 2.88079i − 0.130810i
\(486\) 0 0
\(487\) 9.72505 0.440684 0.220342 0.975423i \(-0.429283\pi\)
0.220342 + 0.975423i \(0.429283\pi\)
\(488\) 0 0
\(489\) −10.8387 −0.490141
\(490\) 0 0
\(491\) − 7.93742i − 0.358211i −0.983830 0.179105i \(-0.942680\pi\)
0.983830 0.179105i \(-0.0573203\pi\)
\(492\) 0 0
\(493\) 8.24300i 0.371246i
\(494\) 0 0
\(495\) 2.52449 0.113467
\(496\) 0 0
\(497\) −31.3980 −1.40839
\(498\) 0 0
\(499\) − 10.1702i − 0.455282i −0.973745 0.227641i \(-0.926899\pi\)
0.973745 0.227641i \(-0.0731013\pi\)
\(500\) 0 0
\(501\) − 13.5345i − 0.604679i
\(502\) 0 0
\(503\) 22.4670 1.00176 0.500878 0.865518i \(-0.333011\pi\)
0.500878 + 0.865518i \(0.333011\pi\)
\(504\) 0 0
\(505\) −49.3695 −2.19691
\(506\) 0 0
\(507\) 1.00000i 0.0444116i
\(508\) 0 0
\(509\) 2.95818i 0.131119i 0.997849 + 0.0655595i \(0.0208832\pi\)
−0.997849 + 0.0655595i \(0.979117\pi\)
\(510\) 0 0
\(511\) 1.00744 0.0445663
\(512\) 0 0
\(513\) 0.0627418 0.00277012
\(514\) 0 0
\(515\) 64.6589i 2.84921i
\(516\) 0 0
\(517\) 0.0182188i 0 0.000801261i
\(518\) 0 0
\(519\) 11.3922 0.500063
\(520\) 0 0
\(521\) −38.3759 −1.68128 −0.840640 0.541594i \(-0.817821\pi\)
−0.840640 + 0.541594i \(0.817821\pi\)
\(522\) 0 0
\(523\) 20.7001i 0.905153i 0.891726 + 0.452576i \(0.149495\pi\)
−0.891726 + 0.452576i \(0.850505\pi\)
\(524\) 0 0
\(525\) 31.7974i 1.38775i
\(526\) 0 0
\(527\) −19.2128 −0.836923
\(528\) 0 0
\(529\) 21.3520 0.928349
\(530\) 0 0
\(531\) 4.75759i 0.206462i
\(532\) 0 0
\(533\) − 4.75376i − 0.205908i
\(534\) 0 0
\(535\) −32.0441 −1.38539
\(536\) 0 0
\(537\) −9.99131 −0.431157
\(538\) 0 0
\(539\) − 0.983800i − 0.0423753i
\(540\) 0 0
\(541\) − 0.180587i − 0.00776404i −0.999992 0.00388202i \(-0.998764\pi\)
0.999992 0.00388202i \(-0.00123569\pi\)
\(542\) 0 0
\(543\) −24.2251 −1.03960
\(544\) 0 0
\(545\) 75.8231 3.24791
\(546\) 0 0
\(547\) − 11.6587i − 0.498489i −0.968441 0.249244i \(-0.919818\pi\)
0.968441 0.249244i \(-0.0801822\pi\)
\(548\) 0 0
\(549\) − 3.29149i − 0.140477i
\(550\) 0 0
\(551\) 0.151713 0.00646319
\(552\) 0 0
\(553\) 15.0825 0.641374
\(554\) 0 0
\(555\) 40.2063i 1.70666i
\(556\) 0 0
\(557\) 13.1212i 0.555961i 0.960587 + 0.277981i \(0.0896651\pi\)
−0.960587 + 0.277981i \(0.910335\pi\)
\(558\) 0 0
\(559\) 7.86434 0.332626
\(560\) 0 0
\(561\) 1.98487 0.0838015
\(562\) 0 0
\(563\) 22.1529i 0.933633i 0.884354 + 0.466817i \(0.154599\pi\)
−0.884354 + 0.466817i \(0.845401\pi\)
\(564\) 0 0
\(565\) 45.3784i 1.90908i
\(566\) 0 0
\(567\) 2.30442 0.0967766
\(568\) 0 0
\(569\) 32.0592 1.34399 0.671997 0.740554i \(-0.265437\pi\)
0.671997 + 0.740554i \(0.265437\pi\)
\(570\) 0 0
\(571\) 19.0642i 0.797812i 0.916992 + 0.398906i \(0.130610\pi\)
−0.916992 + 0.398906i \(0.869390\pi\)
\(572\) 0 0
\(573\) − 14.2745i − 0.596327i
\(574\) 0 0
\(575\) −91.8937 −3.83223
\(576\) 0 0
\(577\) 6.36039 0.264786 0.132393 0.991197i \(-0.457734\pi\)
0.132393 + 0.991197i \(0.457734\pi\)
\(578\) 0 0
\(579\) − 4.98894i − 0.207333i
\(580\) 0 0
\(581\) − 15.2747i − 0.633703i
\(582\) 0 0
\(583\) −7.66572 −0.317482
\(584\) 0 0
\(585\) −4.33571 −0.179260
\(586\) 0 0
\(587\) 16.8490i 0.695432i 0.937600 + 0.347716i \(0.113043\pi\)
−0.937600 + 0.347716i \(0.886957\pi\)
\(588\) 0 0
\(589\) 0.353613i 0.0145704i
\(590\) 0 0
\(591\) −10.9989 −0.452433
\(592\) 0 0
\(593\) −30.9202 −1.26974 −0.634871 0.772618i \(-0.718947\pi\)
−0.634871 + 0.772618i \(0.718947\pi\)
\(594\) 0 0
\(595\) 34.0598i 1.39632i
\(596\) 0 0
\(597\) 9.13566i 0.373897i
\(598\) 0 0
\(599\) 0.158853 0.00649057 0.00324528 0.999995i \(-0.498967\pi\)
0.00324528 + 0.999995i \(0.498967\pi\)
\(600\) 0 0
\(601\) −6.96910 −0.284276 −0.142138 0.989847i \(-0.545398\pi\)
−0.142138 + 0.989847i \(0.545398\pi\)
\(602\) 0 0
\(603\) 11.8777i 0.483697i
\(604\) 0 0
\(605\) 46.2229i 1.87923i
\(606\) 0 0
\(607\) −43.8942 −1.78161 −0.890805 0.454385i \(-0.849859\pi\)
−0.890805 + 0.454385i \(0.849859\pi\)
\(608\) 0 0
\(609\) 5.57221 0.225797
\(610\) 0 0
\(611\) − 0.0312900i − 0.00126586i
\(612\) 0 0
\(613\) 0.317515i 0.0128243i 0.999979 + 0.00641216i \(0.00204107\pi\)
−0.999979 + 0.00641216i \(0.997959\pi\)
\(614\) 0 0
\(615\) 20.6110 0.831114
\(616\) 0 0
\(617\) 2.54233 0.102350 0.0511752 0.998690i \(-0.483703\pi\)
0.0511752 + 0.998690i \(0.483703\pi\)
\(618\) 0 0
\(619\) 36.6748i 1.47409i 0.675846 + 0.737043i \(0.263778\pi\)
−0.675846 + 0.737043i \(0.736222\pi\)
\(620\) 0 0
\(621\) 6.65973i 0.267246i
\(622\) 0 0
\(623\) 18.9857 0.760645
\(624\) 0 0
\(625\) 96.4039 3.85616
\(626\) 0 0
\(627\) − 0.0365318i − 0.00145894i
\(628\) 0 0
\(629\) 31.6121i 1.26046i
\(630\) 0 0
\(631\) 32.5523 1.29589 0.647943 0.761689i \(-0.275630\pi\)
0.647943 + 0.761689i \(0.275630\pi\)
\(632\) 0 0
\(633\) 1.06551 0.0423501
\(634\) 0 0
\(635\) − 90.8094i − 3.60366i
\(636\) 0 0
\(637\) 1.68964i 0.0669458i
\(638\) 0 0
\(639\) 13.6251 0.539000
\(640\) 0 0
\(641\) 17.0435 0.673178 0.336589 0.941652i \(-0.390727\pi\)
0.336589 + 0.941652i \(0.390727\pi\)
\(642\) 0 0
\(643\) − 11.2883i − 0.445168i −0.974914 0.222584i \(-0.928551\pi\)
0.974914 0.222584i \(-0.0714492\pi\)
\(644\) 0 0
\(645\) 34.0975i 1.34259i
\(646\) 0 0
\(647\) −22.0458 −0.866711 −0.433355 0.901223i \(-0.642670\pi\)
−0.433355 + 0.901223i \(0.642670\pi\)
\(648\) 0 0
\(649\) 2.77013 0.108737
\(650\) 0 0
\(651\) 12.9877i 0.509029i
\(652\) 0 0
\(653\) − 28.8324i − 1.12830i −0.825673 0.564149i \(-0.809204\pi\)
0.825673 0.564149i \(-0.190796\pi\)
\(654\) 0 0
\(655\) 14.7012 0.574425
\(656\) 0 0
\(657\) −0.437175 −0.0170558
\(658\) 0 0
\(659\) − 44.5007i − 1.73350i −0.498742 0.866750i \(-0.666205\pi\)
0.498742 0.866750i \(-0.333795\pi\)
\(660\) 0 0
\(661\) − 11.2482i − 0.437503i −0.975781 0.218752i \(-0.929802\pi\)
0.975781 0.218752i \(-0.0701984\pi\)
\(662\) 0 0
\(663\) −3.40894 −0.132392
\(664\) 0 0
\(665\) 0.626873 0.0243091
\(666\) 0 0
\(667\) 16.1036i 0.623533i
\(668\) 0 0
\(669\) 8.91055i 0.344502i
\(670\) 0 0
\(671\) −1.91649 −0.0739852
\(672\) 0 0
\(673\) −45.9571 −1.77152 −0.885758 0.464147i \(-0.846361\pi\)
−0.885758 + 0.464147i \(0.846361\pi\)
\(674\) 0 0
\(675\) − 13.7984i − 0.531101i
\(676\) 0 0
\(677\) − 42.4795i − 1.63262i −0.577613 0.816310i \(-0.696016\pi\)
0.577613 0.816310i \(-0.303984\pi\)
\(678\) 0 0
\(679\) −1.53113 −0.0587595
\(680\) 0 0
\(681\) −17.1895 −0.658703
\(682\) 0 0
\(683\) − 11.8075i − 0.451800i −0.974150 0.225900i \(-0.927468\pi\)
0.974150 0.225900i \(-0.0725323\pi\)
\(684\) 0 0
\(685\) − 25.0973i − 0.958920i
\(686\) 0 0
\(687\) −10.3375 −0.394401
\(688\) 0 0
\(689\) 13.1656 0.501568
\(690\) 0 0
\(691\) 23.5462i 0.895739i 0.894099 + 0.447870i \(0.147817\pi\)
−0.894099 + 0.447870i \(0.852183\pi\)
\(692\) 0 0
\(693\) − 1.34176i − 0.0509693i
\(694\) 0 0
\(695\) −78.4216 −2.97470
\(696\) 0 0
\(697\) 16.2053 0.613820
\(698\) 0 0
\(699\) − 0.475100i − 0.0179699i
\(700\) 0 0
\(701\) 5.15813i 0.194820i 0.995244 + 0.0974099i \(0.0310558\pi\)
−0.995244 + 0.0974099i \(0.968944\pi\)
\(702\) 0 0
\(703\) 0.581822 0.0219438
\(704\) 0 0
\(705\) 0.135664 0.00510942
\(706\) 0 0
\(707\) 26.2398i 0.986849i
\(708\) 0 0
\(709\) − 20.1043i − 0.755032i −0.926003 0.377516i \(-0.876778\pi\)
0.926003 0.377516i \(-0.123222\pi\)
\(710\) 0 0
\(711\) −6.54503 −0.245458
\(712\) 0 0
\(713\) −37.5343 −1.40567
\(714\) 0 0
\(715\) 2.52449i 0.0944107i
\(716\) 0 0
\(717\) 8.74191i 0.326473i
\(718\) 0 0
\(719\) 10.5580 0.393745 0.196873 0.980429i \(-0.436921\pi\)
0.196873 + 0.980429i \(0.436921\pi\)
\(720\) 0 0
\(721\) 34.3661 1.27986
\(722\) 0 0
\(723\) − 11.6534i − 0.433394i
\(724\) 0 0
\(725\) − 33.3652i − 1.23915i
\(726\) 0 0
\(727\) 51.2972 1.90251 0.951255 0.308407i \(-0.0997958\pi\)
0.951255 + 0.308407i \(0.0997958\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 26.8091i 0.991569i
\(732\) 0 0
\(733\) 22.1820i 0.819313i 0.912240 + 0.409656i \(0.134351\pi\)
−0.912240 + 0.409656i \(0.865649\pi\)
\(734\) 0 0
\(735\) −7.32578 −0.270215
\(736\) 0 0
\(737\) 6.91585 0.254748
\(738\) 0 0
\(739\) − 19.5216i − 0.718115i −0.933315 0.359057i \(-0.883098\pi\)
0.933315 0.359057i \(-0.116902\pi\)
\(740\) 0 0
\(741\) 0.0627418i 0.00230488i
\(742\) 0 0
\(743\) 49.0478 1.79939 0.899695 0.436518i \(-0.143789\pi\)
0.899695 + 0.436518i \(0.143789\pi\)
\(744\) 0 0
\(745\) 39.9428 1.46339
\(746\) 0 0
\(747\) 6.62844i 0.242522i
\(748\) 0 0
\(749\) 17.0314i 0.622313i
\(750\) 0 0
\(751\) 16.3556 0.596825 0.298412 0.954437i \(-0.403543\pi\)
0.298412 + 0.954437i \(0.403543\pi\)
\(752\) 0 0
\(753\) 5.41847 0.197460
\(754\) 0 0
\(755\) 10.8067i 0.393296i
\(756\) 0 0
\(757\) 9.50390i 0.345425i 0.984972 + 0.172713i \(0.0552532\pi\)
−0.984972 + 0.172713i \(0.944747\pi\)
\(758\) 0 0
\(759\) 3.87767 0.140750
\(760\) 0 0
\(761\) 21.2994 0.772102 0.386051 0.922477i \(-0.373839\pi\)
0.386051 + 0.922477i \(0.373839\pi\)
\(762\) 0 0
\(763\) − 40.2998i − 1.45895i
\(764\) 0 0
\(765\) − 14.7802i − 0.534379i
\(766\) 0 0
\(767\) −4.75759 −0.171787
\(768\) 0 0
\(769\) −28.7969 −1.03844 −0.519222 0.854639i \(-0.673778\pi\)
−0.519222 + 0.854639i \(0.673778\pi\)
\(770\) 0 0
\(771\) − 1.09367i − 0.0393875i
\(772\) 0 0
\(773\) 14.0271i 0.504518i 0.967660 + 0.252259i \(0.0811735\pi\)
−0.967660 + 0.252259i \(0.918826\pi\)
\(774\) 0 0
\(775\) 77.7679 2.79350
\(776\) 0 0
\(777\) 21.3695 0.766628
\(778\) 0 0
\(779\) − 0.298260i − 0.0106863i
\(780\) 0 0
\(781\) − 7.93328i − 0.283875i
\(782\) 0 0
\(783\) −2.41805 −0.0864141
\(784\) 0 0
\(785\) 18.1647 0.648327
\(786\) 0 0
\(787\) 6.25929i 0.223119i 0.993758 + 0.111560i \(0.0355846\pi\)
−0.993758 + 0.111560i \(0.964415\pi\)
\(788\) 0 0
\(789\) 8.89318i 0.316606i
\(790\) 0 0
\(791\) 24.1185 0.857556
\(792\) 0 0
\(793\) 3.29149 0.116884
\(794\) 0 0
\(795\) 57.0821i 2.02449i
\(796\) 0 0
\(797\) − 17.5042i − 0.620031i −0.950732 0.310015i \(-0.899666\pi\)
0.950732 0.310015i \(-0.100334\pi\)
\(798\) 0 0
\(799\) 0.106666 0.00377356
\(800\) 0 0
\(801\) −8.23880 −0.291104
\(802\) 0 0
\(803\) 0.254548i 0.00898279i
\(804\) 0 0
\(805\) 66.5395i 2.34521i
\(806\) 0 0
\(807\) 15.6451 0.550735
\(808\) 0 0
\(809\) −28.5503 −1.00377 −0.501887 0.864933i \(-0.667361\pi\)
−0.501887 + 0.864933i \(0.667361\pi\)
\(810\) 0 0
\(811\) − 17.7550i − 0.623462i −0.950170 0.311731i \(-0.899091\pi\)
0.950170 0.311731i \(-0.100909\pi\)
\(812\) 0 0
\(813\) 17.2508i 0.605012i
\(814\) 0 0
\(815\) 46.9933 1.64610
\(816\) 0 0
\(817\) 0.493423 0.0172627
\(818\) 0 0
\(819\) 2.30442i 0.0805230i
\(820\) 0 0
\(821\) 47.7170i 1.66534i 0.553773 + 0.832668i \(0.313188\pi\)
−0.553773 + 0.832668i \(0.686812\pi\)
\(822\) 0 0
\(823\) −11.6508 −0.406122 −0.203061 0.979166i \(-0.565089\pi\)
−0.203061 + 0.979166i \(0.565089\pi\)
\(824\) 0 0
\(825\) −8.03420 −0.279715
\(826\) 0 0
\(827\) − 45.4863i − 1.58171i −0.612001 0.790857i \(-0.709635\pi\)
0.612001 0.790857i \(-0.290365\pi\)
\(828\) 0 0
\(829\) − 35.2812i − 1.22537i −0.790328 0.612684i \(-0.790090\pi\)
0.790328 0.612684i \(-0.209910\pi\)
\(830\) 0 0
\(831\) −5.22709 −0.181326
\(832\) 0 0
\(833\) −5.75987 −0.199568
\(834\) 0 0
\(835\) 58.6819i 2.03077i
\(836\) 0 0
\(837\) − 5.63600i − 0.194809i
\(838\) 0 0
\(839\) −21.3143 −0.735853 −0.367926 0.929855i \(-0.619932\pi\)
−0.367926 + 0.929855i \(0.619932\pi\)
\(840\) 0 0
\(841\) 23.1530 0.798380
\(842\) 0 0
\(843\) − 23.5272i − 0.810319i
\(844\) 0 0
\(845\) − 4.33571i − 0.149153i
\(846\) 0 0
\(847\) 24.5674 0.844146
\(848\) 0 0
\(849\) −6.22302 −0.213574
\(850\) 0 0
\(851\) 61.7575i 2.11702i
\(852\) 0 0
\(853\) 9.99152i 0.342103i 0.985262 + 0.171052i \(0.0547165\pi\)
−0.985262 + 0.171052i \(0.945284\pi\)
\(854\) 0 0
\(855\) −0.272031 −0.00930325
\(856\) 0 0
\(857\) −49.7277 −1.69867 −0.849333 0.527857i \(-0.822996\pi\)
−0.849333 + 0.527857i \(0.822996\pi\)
\(858\) 0 0
\(859\) − 16.8742i − 0.575741i −0.957669 0.287870i \(-0.907053\pi\)
0.957669 0.287870i \(-0.0929472\pi\)
\(860\) 0 0
\(861\) − 10.9547i − 0.373334i
\(862\) 0 0
\(863\) −36.9205 −1.25679 −0.628394 0.777895i \(-0.716287\pi\)
−0.628394 + 0.777895i \(0.716287\pi\)
\(864\) 0 0
\(865\) −49.3934 −1.67942
\(866\) 0 0
\(867\) 5.37912i 0.182684i
\(868\) 0 0
\(869\) 3.81088i 0.129275i
\(870\) 0 0
\(871\) −11.8777 −0.402460
\(872\) 0 0
\(873\) 0.664432 0.0224876
\(874\) 0 0
\(875\) − 87.9076i − 2.97182i
\(876\) 0 0
\(877\) 4.90899i 0.165765i 0.996559 + 0.0828824i \(0.0264126\pi\)
−0.996559 + 0.0828824i \(0.973587\pi\)
\(878\) 0 0
\(879\) 13.3240 0.449407
\(880\) 0 0
\(881\) −7.76972 −0.261769 −0.130884 0.991398i \(-0.541782\pi\)
−0.130884 + 0.991398i \(0.541782\pi\)
\(882\) 0 0
\(883\) − 15.6142i − 0.525459i −0.964869 0.262730i \(-0.915377\pi\)
0.964869 0.262730i \(-0.0846227\pi\)
\(884\) 0 0
\(885\) − 20.6275i − 0.693387i
\(886\) 0 0
\(887\) 2.11858 0.0711349 0.0355674 0.999367i \(-0.488676\pi\)
0.0355674 + 0.999367i \(0.488676\pi\)
\(888\) 0 0
\(889\) −48.2650 −1.61876
\(890\) 0 0
\(891\) 0.582255i 0.0195063i
\(892\) 0 0
\(893\) − 0.00196319i 0 6.56957e-5i
\(894\) 0 0
\(895\) 43.3195 1.44801
\(896\) 0 0
\(897\) −6.65973 −0.222362
\(898\) 0 0
\(899\) − 13.6281i − 0.454524i
\(900\) 0 0
\(901\) 44.8807i 1.49519i
\(902\) 0 0
\(903\) 18.1228 0.603087
\(904\) 0 0
\(905\) 105.033 3.49142
\(906\) 0 0
\(907\) − 28.8005i − 0.956305i −0.878277 0.478153i \(-0.841307\pi\)
0.878277 0.478153i \(-0.158693\pi\)
\(908\) 0 0
\(909\) − 11.3867i − 0.377673i
\(910\) 0 0
\(911\) −4.72015 −0.156386 −0.0781929 0.996938i \(-0.524915\pi\)
−0.0781929 + 0.996938i \(0.524915\pi\)
\(912\) 0 0
\(913\) 3.85945 0.127729
\(914\) 0 0
\(915\) 14.2710i 0.471783i
\(916\) 0 0
\(917\) − 7.81367i − 0.258030i
\(918\) 0 0
\(919\) −43.7254 −1.44237 −0.721185 0.692743i \(-0.756402\pi\)
−0.721185 + 0.692743i \(0.756402\pi\)
\(920\) 0 0
\(921\) −28.7588 −0.947633
\(922\) 0 0
\(923\) 13.6251i 0.448475i
\(924\) 0 0
\(925\) − 127.956i − 4.20718i
\(926\) 0 0
\(927\) −14.9131 −0.489811
\(928\) 0 0
\(929\) 4.56638 0.149818 0.0749091 0.997190i \(-0.476133\pi\)
0.0749091 + 0.997190i \(0.476133\pi\)
\(930\) 0 0
\(931\) 0.106011i 0.00347437i
\(932\) 0 0
\(933\) 21.9394i 0.718263i
\(934\) 0 0
\(935\) −8.60585 −0.281441
\(936\) 0 0
\(937\) −14.8258 −0.484338 −0.242169 0.970234i \(-0.577859\pi\)
−0.242169 + 0.970234i \(0.577859\pi\)
\(938\) 0 0
\(939\) 2.60950i 0.0851578i
\(940\) 0 0
\(941\) 23.4674i 0.765015i 0.923952 + 0.382508i \(0.124939\pi\)
−0.923952 + 0.382508i \(0.875061\pi\)
\(942\) 0 0
\(943\) 31.6588 1.03095
\(944\) 0 0
\(945\) −9.99131 −0.325017
\(946\) 0 0
\(947\) − 6.85871i − 0.222878i −0.993771 0.111439i \(-0.964454\pi\)
0.993771 0.111439i \(-0.0355460\pi\)
\(948\) 0 0
\(949\) − 0.437175i − 0.0141913i
\(950\) 0 0
\(951\) −16.0656 −0.520963
\(952\) 0 0
\(953\) −33.6118 −1.08879 −0.544396 0.838828i \(-0.683241\pi\)
−0.544396 + 0.838828i \(0.683241\pi\)
\(954\) 0 0
\(955\) 61.8902i 2.00272i
\(956\) 0 0
\(957\) 1.40792i 0.0455117i
\(958\) 0 0
\(959\) −13.3392 −0.430745
\(960\) 0 0
\(961\) 0.764545 0.0246627
\(962\) 0 0
\(963\) − 7.39073i − 0.238163i
\(964\) 0 0
\(965\) 21.6306i 0.696314i
\(966\) 0 0
\(967\) −38.4327 −1.23591 −0.617956 0.786212i \(-0.712039\pi\)
−0.617956 + 0.786212i \(0.712039\pi\)
\(968\) 0 0
\(969\) −0.213883 −0.00687092
\(970\) 0 0
\(971\) 38.2120i 1.22628i 0.789974 + 0.613141i \(0.210094\pi\)
−0.789974 + 0.613141i \(0.789906\pi\)
\(972\) 0 0
\(973\) 41.6809i 1.33623i
\(974\) 0 0
\(975\) 13.7984 0.441903
\(976\) 0 0
\(977\) −3.28633 −0.105139 −0.0525695 0.998617i \(-0.516741\pi\)
−0.0525695 + 0.998617i \(0.516741\pi\)
\(978\) 0 0
\(979\) 4.79708i 0.153315i
\(980\) 0 0
\(981\) 17.4880i 0.558350i
\(982\) 0 0
\(983\) 13.0281 0.415530 0.207765 0.978179i \(-0.433381\pi\)
0.207765 + 0.978179i \(0.433381\pi\)
\(984\) 0 0
\(985\) 47.6880 1.51946
\(986\) 0 0
\(987\) − 0.0721054i − 0.00229514i
\(988\) 0 0
\(989\) 52.3744i 1.66541i
\(990\) 0 0
\(991\) −11.7140 −0.372106 −0.186053 0.982540i \(-0.559570\pi\)
−0.186053 + 0.982540i \(0.559570\pi\)
\(992\) 0 0
\(993\) −4.12863 −0.131018
\(994\) 0 0
\(995\) − 39.6096i − 1.25571i
\(996\) 0 0
\(997\) − 61.2009i − 1.93825i −0.246566 0.969126i \(-0.579302\pi\)
0.246566 0.969126i \(-0.420698\pi\)
\(998\) 0 0
\(999\) −9.27328 −0.293394
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.2.g.b.625.8 16
3.2 odd 2 3744.2.g.e.1873.1 16
4.3 odd 2 312.2.g.b.157.6 yes 16
8.3 odd 2 312.2.g.b.157.5 16
8.5 even 2 inner 1248.2.g.b.625.9 16
12.11 even 2 936.2.g.e.469.11 16
16.3 odd 4 9984.2.a.bt.1.8 8
16.5 even 4 9984.2.a.bs.1.1 8
16.11 odd 4 9984.2.a.bu.1.1 8
16.13 even 4 9984.2.a.bv.1.8 8
24.5 odd 2 3744.2.g.e.1873.16 16
24.11 even 2 936.2.g.e.469.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.g.b.157.5 16 8.3 odd 2
312.2.g.b.157.6 yes 16 4.3 odd 2
936.2.g.e.469.11 16 12.11 even 2
936.2.g.e.469.12 16 24.11 even 2
1248.2.g.b.625.8 16 1.1 even 1 trivial
1248.2.g.b.625.9 16 8.5 even 2 inner
3744.2.g.e.1873.1 16 3.2 odd 2
3744.2.g.e.1873.16 16 24.5 odd 2
9984.2.a.bs.1.1 8 16.5 even 4
9984.2.a.bt.1.8 8 16.3 odd 4
9984.2.a.bu.1.1 8 16.11 odd 4
9984.2.a.bv.1.8 8 16.13 even 4