Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3744,2,Mod(1873,3744)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3744, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3744.1873");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3744.g (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(29.8959905168\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{16} - 2 x^{15} + 2 x^{14} - 4 x^{13} + 9 x^{12} - 10 x^{11} + 2 x^{10} - 8 x^{9} + 28 x^{8} + \cdots + 256 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{19}]\) |
Coefficient ring index: | \( 2^{20} \) |
Twist minimal: | no (minimal twist has level 312) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 1873.1 | ||
Root | \(-1.32561 - 0.492712i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 3744.1873 |
Dual form | 3744.2.g.e.1873.16 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3744\mathbb{Z}\right)^\times\).
\(n\) | \(703\) | \(2017\) | \(2081\) | \(2341\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | − 4.33571i | − 1.93899i | −0.245112 | − | 0.969495i | \(-0.578825\pi\) | ||||
0.245112 | − | 0.969495i | \(-0.421175\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 2.30442 | 0.870990 | 0.435495 | − | 0.900191i | \(-0.356573\pi\) | ||||
0.435495 | + | 0.900191i | \(0.356573\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | − 0.582255i | − 0.175557i | −0.996140 | − | 0.0877783i | \(-0.972023\pi\) | ||||
0.996140 | − | 0.0877783i | \(-0.0279767\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | − 1.00000i | − 0.277350i | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −3.40894 | −0.826790 | −0.413395 | − | 0.910552i | \(-0.635657\pi\) | ||||
−0.413395 | + | 0.910552i | \(0.635657\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | − 0.0627418i | − 0.0143940i | −0.999974 | − | 0.00719698i | \(-0.997709\pi\) | ||||
0.999974 | − | 0.00719698i | \(-0.00229089\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −6.65973 | −1.38865 | −0.694325 | − | 0.719662i | \(-0.744297\pi\) | ||||
−0.694325 | + | 0.719662i | \(0.744297\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −13.7984 | −2.75968 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | − 2.41805i | − 0.449021i | −0.974472 | − | 0.224510i | \(-0.927922\pi\) | ||||
0.974472 | − | 0.224510i | \(-0.0720783\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −5.63600 | −1.01226 | −0.506128 | − | 0.862458i | \(-0.668924\pi\) | ||||
−0.506128 | + | 0.862458i | \(0.668924\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | − 9.99131i | − 1.68884i | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 9.27328i | 1.52452i | 0.647272 | + | 0.762259i | \(0.275910\pi\) | ||||
−0.647272 | + | 0.762259i | \(0.724090\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −4.75376 | −0.742413 | −0.371207 | − | 0.928550i | \(-0.621056\pi\) | ||||
−0.371207 | + | 0.928550i | \(0.621056\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 7.86434i | 1.19930i | 0.800262 | + | 0.599650i | \(0.204694\pi\) | ||||
−0.800262 | + | 0.599650i | \(0.795306\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −0.0312900 | −0.00456412 | −0.00228206 | − | 0.999997i | \(-0.500726\pi\) | ||||
−0.00228206 | + | 0.999997i | \(0.500726\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −1.68964 | −0.241377 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 13.1656i | − 1.80843i | −0.427078 | − | 0.904215i | \(-0.640457\pi\) | ||||
0.427078 | − | 0.904215i | \(-0.359543\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −2.52449 | −0.340402 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 4.75759i | 0.619385i | 0.950837 | + | 0.309693i | \(0.100226\pi\) | ||||
−0.950837 | + | 0.309693i | \(0.899774\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 3.29149i | 0.421432i | 0.977547 | + | 0.210716i | \(0.0675795\pi\) | ||||
−0.977547 | + | 0.210716i | \(0.932420\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | −4.33571 | −0.537779 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 11.8777i | − 1.45109i | −0.688175 | − | 0.725545i | \(-0.741588\pi\) | ||||
0.688175 | − | 0.725545i | \(-0.258412\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 13.6251 | 1.61700 | 0.808500 | − | 0.588496i | \(-0.200280\pi\) | ||||
0.808500 | + | 0.588496i | \(0.200280\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 0.437175 | 0.0511675 | 0.0255837 | − | 0.999673i | \(-0.491856\pi\) | ||||
0.0255837 | + | 0.999673i | \(0.491856\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | − 1.34176i | − 0.152908i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 6.54503 | 0.736373 | 0.368187 | − | 0.929752i | \(-0.379979\pi\) | ||||
0.368187 | + | 0.929752i | \(0.379979\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 6.62844i | 0.727566i | 0.931484 | + | 0.363783i | \(0.118515\pi\) | ||||
−0.931484 | + | 0.363783i | \(0.881485\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 14.7802i | 1.60314i | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −8.23880 | −0.873311 | −0.436655 | − | 0.899629i | \(-0.643837\pi\) | ||||
−0.436655 | + | 0.899629i | \(0.643837\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | − 2.30442i | − 0.241569i | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | −0.272031 | −0.0279097 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −0.664432 | −0.0674629 | −0.0337314 | − | 0.999431i | \(-0.510739\pi\) | ||||
−0.0337314 | + | 0.999431i | \(0.510739\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | − 11.3867i | − 1.13302i | −0.824055 | − | 0.566510i | \(-0.808293\pi\) | ||||
0.824055 | − | 0.566510i | \(-0.191707\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 14.9131 | 1.46943 | 0.734716 | − | 0.678375i | \(-0.237315\pi\) | ||||
0.734716 | + | 0.678375i | \(0.237315\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 7.39073i | − 0.714489i | −0.934011 | − | 0.357244i | \(-0.883716\pi\) | ||||
0.934011 | − | 0.357244i | \(-0.116284\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | − 17.4880i | − 1.67505i | −0.546399 | − | 0.837525i | \(-0.684002\pi\) | ||||
0.546399 | − | 0.837525i | \(-0.315998\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −10.4662 | −0.984576 | −0.492288 | − | 0.870432i | \(-0.663839\pi\) | ||||
−0.492288 | + | 0.870432i | \(0.663839\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 28.8747i | 2.69258i | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −7.85564 | −0.720126 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 10.6610 | 0.969180 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 38.1473i | 3.41200i | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −20.9445 | −1.85852 | −0.929262 | − | 0.369420i | \(-0.879556\pi\) | ||||
−0.929262 | + | 0.369420i | \(0.879556\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 3.39073i | 0.296249i | 0.988969 | + | 0.148125i | \(0.0473237\pi\) | ||||
−0.988969 | + | 0.148125i | \(0.952676\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 0.144584i | − 0.0125370i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 5.78852 | 0.494546 | 0.247273 | − | 0.968946i | \(-0.420466\pi\) | ||||
0.247273 | + | 0.968946i | \(0.420466\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 18.0874i | 1.53415i | 0.641558 | + | 0.767075i | \(0.278289\pi\) | ||||
−0.641558 | + | 0.767075i | \(0.721711\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −0.582255 | −0.0486906 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −10.4840 | −0.870647 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 9.21251i | 0.754719i | 0.926067 | + | 0.377359i | \(0.123168\pi\) | ||||
−0.926067 | + | 0.377359i | \(0.876832\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 2.49249 | 0.202836 | 0.101418 | − | 0.994844i | \(-0.467662\pi\) | ||||
0.101418 | + | 0.994844i | \(0.467662\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 24.4361i | 1.96275i | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 4.18956i | − 0.334363i | −0.985926 | − | 0.167182i | \(-0.946533\pi\) | ||||
0.985926 | − | 0.167182i | \(-0.0534666\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −15.3468 | −1.20950 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 10.8387i | − 0.848949i | −0.905440 | − | 0.424475i | \(-0.860459\pi\) | ||||
0.905440 | − | 0.424475i | \(-0.139541\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −13.5345 | −1.04733 | −0.523667 | − | 0.851923i | \(-0.675436\pi\) | ||||
−0.523667 | + | 0.851923i | \(0.675436\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −1.00000 | −0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 11.3922i | − 0.866134i | −0.901362 | − | 0.433067i | \(-0.857431\pi\) | ||||
0.901362 | − | 0.433067i | \(-0.142569\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | −31.7974 | −2.40365 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 9.99131i | 0.746786i | 0.927673 | + | 0.373393i | \(0.121806\pi\) | ||||
−0.927673 | + | 0.373393i | \(0.878194\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | − 24.2251i | − 1.80064i | −0.435229 | − | 0.900320i | \(-0.643332\pi\) | ||||
0.435229 | − | 0.900320i | \(-0.356668\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 40.2063 | 2.95602 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 1.98487i | 0.145148i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −14.2745 | −1.03287 | −0.516434 | − | 0.856327i | \(-0.672741\pi\) | ||||
−0.516434 | + | 0.856327i | \(0.672741\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 4.98894 | 0.359112 | 0.179556 | − | 0.983748i | \(-0.442534\pi\) | ||||
0.179556 | + | 0.983748i | \(0.442534\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 10.9989i | 0.783637i | 0.920042 | + | 0.391819i | \(0.128154\pi\) | ||||
−0.920042 | + | 0.391819i | \(0.871846\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −9.13566 | −0.647609 | −0.323805 | − | 0.946124i | \(-0.604962\pi\) | ||||
−0.323805 | + | 0.946124i | \(0.604962\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 5.57221i | − 0.391093i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 20.6110i | 1.43953i | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −0.0365318 | −0.00252696 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 1.06551i | 0.0733526i | 0.999327 | + | 0.0366763i | \(0.0116770\pi\) | ||||
−0.999327 | + | 0.0366763i | \(0.988323\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 34.0975 | 2.32543 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −12.9877 | −0.881665 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 3.40894i | 0.229310i | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −8.91055 | −0.596695 | −0.298347 | − | 0.954457i | \(-0.596435\pi\) | ||||
−0.298347 | + | 0.954457i | \(0.596435\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 17.1895i | 1.14091i | 0.821330 | + | 0.570454i | \(0.193233\pi\) | ||||
−0.821330 | + | 0.570454i | \(0.806767\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | − 10.3375i | − 0.683122i | −0.939860 | − | 0.341561i | \(-0.889044\pi\) | ||||
0.939860 | − | 0.341561i | \(-0.110956\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −0.475100 | −0.0311248 | −0.0155624 | − | 0.999879i | \(-0.504954\pi\) | ||||
−0.0155624 | + | 0.999879i | \(0.504954\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0.135664i | 0.00884977i | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 8.74191 | 0.565467 | 0.282734 | − | 0.959198i | \(-0.408759\pi\) | ||||
0.282734 | + | 0.959198i | \(0.408759\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 11.6534 | 0.750660 | 0.375330 | − | 0.926891i | \(-0.377529\pi\) | ||||
0.375330 | + | 0.926891i | \(0.377529\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 7.32578i | 0.468027i | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −0.0627418 | −0.00399217 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | − 5.41847i | − 0.342011i | −0.985270 | − | 0.171005i | \(-0.945298\pi\) | ||||
0.985270 | − | 0.171005i | \(-0.0547015\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 3.87767i | 0.243787i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −1.09367 | −0.0682212 | −0.0341106 | − | 0.999418i | \(-0.510860\pi\) | ||||
−0.0341106 | + | 0.999418i | \(0.510860\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 21.3695i | 1.32784i | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 8.89318 | 0.548377 | 0.274189 | − | 0.961676i | \(-0.411591\pi\) | ||||
0.274189 | + | 0.961676i | \(0.411591\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −57.0821 | −3.50653 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | − 15.6451i | − 0.953901i | −0.878930 | − | 0.476951i | \(-0.841742\pi\) | ||||
0.878930 | − | 0.476951i | \(-0.158258\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −17.2508 | −1.04791 | −0.523956 | − | 0.851746i | \(-0.675544\pi\) | ||||
−0.523956 | + | 0.851746i | \(0.675544\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 8.03420i | 0.484480i | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 5.22709i | − 0.314065i | −0.987593 | − | 0.157033i | \(-0.949807\pi\) | ||||
0.987593 | − | 0.157033i | \(-0.0501928\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −23.5272 | −1.40351 | −0.701757 | − | 0.712416i | \(-0.747601\pi\) | ||||
−0.701757 | + | 0.712416i | \(0.747601\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 6.22302i | − 0.369920i | −0.982746 | − | 0.184960i | \(-0.940784\pi\) | ||||
0.982746 | − | 0.184960i | \(-0.0592156\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −10.9547 | −0.646634 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −5.37912 | −0.316419 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 13.3240i | − 0.778396i | −0.921154 | − | 0.389198i | \(-0.872752\pi\) | ||||
0.921154 | − | 0.389198i | \(-0.127248\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 20.6275 | 1.20098 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 6.65973i | 0.385142i | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 18.1228i | 1.04458i | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 14.2710 | 0.817152 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 28.7588i | − 1.64135i | −0.571396 | − | 0.820675i | \(-0.693598\pi\) | ||||
0.571396 | − | 0.820675i | \(-0.306402\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 21.9394 | 1.24407 | 0.622034 | − | 0.782990i | \(-0.286306\pi\) | ||||
0.622034 | + | 0.782990i | \(0.286306\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −2.60950 | −0.147498 | −0.0737488 | − | 0.997277i | \(-0.523496\pi\) | ||||
−0.0737488 | + | 0.997277i | \(0.523496\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 16.0656i | 0.902334i | 0.892439 | + | 0.451167i | \(0.148992\pi\) | ||||
−0.892439 | + | 0.451167i | \(0.851008\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −1.40792 | −0.0788286 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0.213883i | 0.0119008i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 13.7984i | 0.765398i | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −0.0721054 | −0.00397530 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | − 4.12863i | − 0.226930i | −0.993542 | − | 0.113465i | \(-0.963805\pi\) | ||||
0.993542 | − | 0.113465i | \(-0.0361950\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −51.4982 | −2.81365 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 6.01639 | 0.327734 | 0.163867 | − | 0.986482i | \(-0.447603\pi\) | ||||
0.163867 | + | 0.986482i | \(0.447603\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 3.28159i | 0.177708i | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −20.0246 | −1.08123 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 1.60019i | 0.0859029i | 0.999077 | + | 0.0429514i | \(0.0136761\pi\) | ||||
−0.999077 | + | 0.0429514i | \(0.986324\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | − 0.755303i | − 0.0404305i | −0.999796 | − | 0.0202152i | \(-0.993565\pi\) | ||||
0.999796 | − | 0.0202152i | \(-0.00643515\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −23.2960 | −1.23992 | −0.619962 | − | 0.784632i | \(-0.712852\pi\) | ||||
−0.619962 | + | 0.784632i | \(0.712852\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | − 59.0745i | − 3.13535i | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −32.9111 | −1.73698 | −0.868491 | − | 0.495706i | \(-0.834910\pi\) | ||||
−0.868491 | + | 0.495706i | \(0.834910\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 18.9961 | 0.999793 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | − 1.89547i | − 0.0992132i | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −2.51714 | −0.131394 | −0.0656969 | − | 0.997840i | \(-0.520927\pi\) | ||||
−0.0656969 | + | 0.997840i | \(0.520927\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | − 30.3390i | − 1.57512i | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 25.9826i | − 1.34533i | −0.739947 | − | 0.672665i | \(-0.765150\pi\) | ||||
0.739947 | − | 0.672665i | \(-0.234850\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −2.41805 | −0.124536 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | − 25.5104i | − 1.31038i | −0.755464 | − | 0.655190i | \(-0.772589\pi\) | ||||
0.755464 | − | 0.655190i | \(-0.227411\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −25.1320 | −1.28419 | −0.642093 | − | 0.766627i | \(-0.721934\pi\) | ||||
−0.642093 | + | 0.766627i | \(0.721934\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | −5.81750 | −0.296487 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 21.2888i | 1.07938i | 0.841862 | + | 0.539692i | \(0.181459\pi\) | ||||
−0.841862 | + | 0.539692i | \(0.818541\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 22.7026 | 1.14812 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | − 28.3774i | − 1.42782i | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 12.1291i | − 0.608741i | −0.952554 | − | 0.304371i | \(-0.901554\pi\) | ||||
0.952554 | − | 0.304371i | \(-0.0984461\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −10.4114 | −0.519919 | −0.259959 | − | 0.965620i | \(-0.583709\pi\) | ||||
−0.259959 | + | 0.965620i | \(0.583709\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 5.63600i | 0.280749i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 5.39942 | 0.267639 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −2.94848 | −0.145793 | −0.0728965 | − | 0.997340i | \(-0.523224\pi\) | ||||
−0.0728965 | + | 0.997340i | \(0.523224\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 10.9635i | 0.539478i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 28.7390 | 1.41074 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | − 26.3514i | − 1.28735i | −0.765299 | − | 0.643675i | \(-0.777409\pi\) | ||||
0.765299 | − | 0.643675i | \(-0.222591\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 4.54054i | 0.221292i | 0.993860 | + | 0.110646i | \(0.0352920\pi\) | ||||
−0.993860 | + | 0.110646i | \(0.964708\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 47.0380 | 2.28168 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 7.58498i | 0.367063i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 15.3547 | 0.739608 | 0.369804 | − | 0.929110i | \(-0.379425\pi\) | ||||
0.369804 | + | 0.929110i | \(0.379425\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 27.9869 | 1.34497 | 0.672483 | − | 0.740113i | \(-0.265228\pi\) | ||||
0.672483 | + | 0.740113i | \(0.265228\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0.417844i | 0.0199882i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 6.64728 | 0.317257 | 0.158629 | − | 0.987338i | \(-0.449293\pi\) | ||||
0.158629 | + | 0.987338i | \(0.449293\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 32.6534i | 1.55141i | 0.631096 | + | 0.775705i | \(0.282605\pi\) | ||||
−0.631096 | + | 0.775705i | \(0.717395\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 35.7211i | 1.69334i | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 21.1274 | 0.997063 | 0.498531 | − | 0.866872i | \(-0.333873\pi\) | ||||
0.498531 | + | 0.866872i | \(0.333873\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 2.76790i | 0.130336i | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | −9.99131 | −0.468400 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 18.2163 | 0.852121 | 0.426060 | − | 0.904695i | \(-0.359901\pi\) | ||||
0.426060 | + | 0.904695i | \(0.359901\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | − 20.4992i | − 0.954741i | −0.878702 | − | 0.477371i | \(-0.841590\pi\) | ||||
0.878702 | − | 0.477371i | \(-0.158410\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 5.45645 | 0.253583 | 0.126791 | − | 0.991929i | \(-0.459532\pi\) | ||||
0.126791 | + | 0.991929i | \(0.459532\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 33.7488i | − 1.56171i | −0.624714 | − | 0.780853i | \(-0.714785\pi\) | ||||
0.624714 | − | 0.780853i | \(-0.285215\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | − 27.3712i | − 1.26388i | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 4.57905 | 0.210545 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0.865737i | 0.0397227i | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −7.19006 | −0.328522 | −0.164261 | − | 0.986417i | \(-0.552524\pi\) | ||||
−0.164261 | + | 0.986417i | \(0.552524\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 9.27328 | 0.422825 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 2.88079i | 0.130810i | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 9.72505 | 0.440684 | 0.220342 | − | 0.975423i | \(-0.429283\pi\) | ||||
0.220342 | + | 0.975423i | \(0.429283\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 7.93742i | 0.358211i | 0.983830 | + | 0.179105i | \(0.0573203\pi\) | ||||
−0.983830 | + | 0.179105i | \(0.942680\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 8.24300i | 0.371246i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 31.3980 | 1.40839 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | − 10.1702i | − 0.455282i | −0.973745 | − | 0.227641i | \(-0.926899\pi\) | ||||
0.973745 | − | 0.227641i | \(-0.0731013\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −22.4670 | −1.00176 | −0.500878 | − | 0.865518i | \(-0.666989\pi\) | ||||
−0.500878 | + | 0.865518i | \(0.666989\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −49.3695 | −2.19691 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | − 2.95818i | − 0.131119i | −0.997849 | − | 0.0655595i | \(-0.979117\pi\) | ||||
0.997849 | − | 0.0655595i | \(-0.0208832\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 1.00744 | 0.0445663 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | − 64.6589i | − 2.84921i | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0.0182188i | 0 0.000801261i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 38.3759 | 1.68128 | 0.840640 | − | 0.541594i | \(-0.182179\pi\) | ||||
0.840640 | + | 0.541594i | \(0.182179\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 20.7001i | 0.905153i | 0.891726 | + | 0.452576i | \(0.149495\pi\) | ||||
−0.891726 | + | 0.452576i | \(0.850505\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 19.2128 | 0.836923 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 21.3520 | 0.928349 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 4.75376i | 0.205908i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −32.0441 | −1.38539 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0.983800i | 0.0423753i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | − 0.180587i | − 0.00776404i | −0.999992 | − | 0.00388202i | \(-0.998764\pi\) | ||||
0.999992 | − | 0.00388202i | \(-0.00123569\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −75.8231 | −3.24791 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 11.6587i | − 0.498489i | −0.968441 | − | 0.249244i | \(-0.919818\pi\) | ||||
0.968441 | − | 0.249244i | \(-0.0801822\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −0.151713 | −0.00646319 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 15.0825 | 0.641374 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 13.1212i | − 0.555961i | −0.960587 | − | 0.277981i | \(-0.910335\pi\) | ||||
0.960587 | − | 0.277981i | \(-0.0896651\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 7.86434 | 0.332626 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 22.1529i | − 0.933633i | −0.884354 | − | 0.466817i | \(-0.845401\pi\) | ||||
0.884354 | − | 0.466817i | \(-0.154599\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 45.3784i | 1.90908i | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −32.0592 | −1.34399 | −0.671997 | − | 0.740554i | \(-0.734563\pi\) | ||||
−0.671997 | + | 0.740554i | \(0.734563\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 19.0642i | 0.797812i | 0.916992 | + | 0.398906i | \(0.130610\pi\) | ||||
−0.916992 | + | 0.398906i | \(0.869390\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 91.8937 | 3.83223 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 6.36039 | 0.264786 | 0.132393 | − | 0.991197i | \(-0.457734\pi\) | ||||
0.132393 | + | 0.991197i | \(0.457734\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 15.2747i | 0.633703i | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −7.66572 | −0.317482 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 16.8490i | − 0.695432i | −0.937600 | − | 0.347716i | \(-0.886957\pi\) | ||||
0.937600 | − | 0.347716i | \(-0.113043\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0.353613i | 0.0145704i | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 30.9202 | 1.26974 | 0.634871 | − | 0.772618i | \(-0.281053\pi\) | ||||
0.634871 | + | 0.772618i | \(0.281053\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 34.0598i | 1.39632i | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −0.158853 | −0.00649057 | −0.00324528 | − | 0.999995i | \(-0.501033\pi\) | ||||
−0.00324528 | + | 0.999995i | \(0.501033\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −6.96910 | −0.284276 | −0.142138 | − | 0.989847i | \(-0.545398\pi\) | ||||
−0.142138 | + | 0.989847i | \(0.545398\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | − 46.2229i | − 1.87923i | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −43.8942 | −1.78161 | −0.890805 | − | 0.454385i | \(-0.849859\pi\) | ||||
−0.890805 | + | 0.454385i | \(0.849859\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0.0312900i | 0.00126586i | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 0.317515i | 0.0128243i | 0.999979 | + | 0.00641216i | \(0.00204107\pi\) | ||||
−0.999979 | + | 0.00641216i | \(0.997959\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −2.54233 | −0.102350 | −0.0511752 | − | 0.998690i | \(-0.516297\pi\) | ||||
−0.0511752 | + | 0.998690i | \(0.516297\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 36.6748i | 1.47409i | 0.675846 | + | 0.737043i | \(0.263778\pi\) | ||||
−0.675846 | + | 0.737043i | \(0.736222\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | −18.9857 | −0.760645 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 96.4039 | 3.85616 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | − 31.6121i | − 1.26046i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 32.5523 | 1.29589 | 0.647943 | − | 0.761689i | \(-0.275630\pi\) | ||||
0.647943 | + | 0.761689i | \(0.275630\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 90.8094i | 3.60366i | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 1.68964i | 0.0669458i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −17.0435 | −0.673178 | −0.336589 | − | 0.941652i | \(-0.609273\pi\) | ||||
−0.336589 | + | 0.941652i | \(0.609273\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 11.2883i | − 0.445168i | −0.974914 | − | 0.222584i | \(-0.928551\pi\) | ||||
0.974914 | − | 0.222584i | \(-0.0714492\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 22.0458 | 0.866711 | 0.433355 | − | 0.901223i | \(-0.357330\pi\) | ||||
0.433355 | + | 0.901223i | \(0.357330\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 2.77013 | 0.108737 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 28.8324i | 1.12830i | 0.825673 | + | 0.564149i | \(0.190796\pi\) | ||||
−0.825673 | + | 0.564149i | \(0.809204\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 14.7012 | 0.574425 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 44.5007i | 1.73350i | 0.498742 | + | 0.866750i | \(0.333795\pi\) | ||||
−0.498742 | + | 0.866750i | \(0.666205\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | − 11.2482i | − 0.437503i | −0.975781 | − | 0.218752i | \(-0.929802\pi\) | ||||
0.975781 | − | 0.218752i | \(-0.0701984\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | −0.626873 | −0.0243091 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 16.1036i | 0.623533i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 1.91649 | 0.0739852 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −45.9571 | −1.77152 | −0.885758 | − | 0.464147i | \(-0.846361\pi\) | ||||
−0.885758 | + | 0.464147i | \(0.846361\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 42.4795i | 1.63262i | 0.577613 | + | 0.816310i | \(0.303984\pi\) | ||||
−0.577613 | + | 0.816310i | \(0.696016\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −1.53113 | −0.0587595 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 11.8075i | 0.451800i | 0.974150 | + | 0.225900i | \(0.0725323\pi\) | ||||
−0.974150 | + | 0.225900i | \(0.927468\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | − 25.0973i | − 0.958920i | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −13.1656 | −0.501568 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 23.5462i | 0.895739i | 0.894099 | + | 0.447870i | \(0.147817\pi\) | ||||
−0.894099 | + | 0.447870i | \(0.852183\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 78.4216 | 2.97470 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 16.2053 | 0.613820 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | − 5.15813i | − 0.194820i | −0.995244 | − | 0.0974099i | \(-0.968944\pi\) | ||||
0.995244 | − | 0.0974099i | \(-0.0310558\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0.581822 | 0.0219438 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 26.2398i | − 0.986849i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | − 20.1043i | − 0.755032i | −0.926003 | − | 0.377516i | \(-0.876778\pi\) | ||||
0.926003 | − | 0.377516i | \(-0.123222\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 37.5343 | 1.40567 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 2.52449i | 0.0944107i | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −10.5580 | −0.393745 | −0.196873 | − | 0.980429i | \(-0.563079\pi\) | ||||
−0.196873 | + | 0.980429i | \(0.563079\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 34.3661 | 1.27986 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 33.3652i | 1.23915i | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 51.2972 | 1.90251 | 0.951255 | − | 0.308407i | \(-0.0997958\pi\) | ||||
0.951255 | + | 0.308407i | \(0.0997958\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | − 26.8091i | − 0.991569i | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 22.1820i | 0.819313i | 0.912240 | + | 0.409656i | \(0.134351\pi\) | ||||
−0.912240 | + | 0.409656i | \(0.865649\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −6.91585 | −0.254748 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | − 19.5216i | − 0.718115i | −0.933315 | − | 0.359057i | \(-0.883098\pi\) | ||||
0.933315 | − | 0.359057i | \(-0.116902\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −49.0478 | −1.79939 | −0.899695 | − | 0.436518i | \(-0.856211\pi\) | ||||
−0.899695 | + | 0.436518i | \(0.856211\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 39.9428 | 1.46339 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | − 17.0314i | − 0.622313i | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 16.3556 | 0.596825 | 0.298412 | − | 0.954437i | \(-0.403543\pi\) | ||||
0.298412 | + | 0.954437i | \(0.403543\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | − 10.8067i | − 0.393296i | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 9.50390i | 0.345425i | 0.984972 | + | 0.172713i | \(0.0552532\pi\) | ||||
−0.984972 | + | 0.172713i | \(0.944747\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −21.2994 | −0.772102 | −0.386051 | − | 0.922477i | \(-0.626161\pi\) | ||||
−0.386051 | + | 0.922477i | \(0.626161\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 40.2998i | − 1.45895i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 4.75759 | 0.171787 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −28.7969 | −1.03844 | −0.519222 | − | 0.854639i | \(-0.673778\pi\) | ||||
−0.519222 | + | 0.854639i | \(0.673778\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 14.0271i | − 0.504518i | −0.967660 | − | 0.252259i | \(-0.918826\pi\) | ||||
0.967660 | − | 0.252259i | \(-0.0811735\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 77.7679 | 2.79350 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0.298260i | 0.0106863i | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | − 7.93328i | − 0.283875i | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −18.1647 | −0.648327 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 6.25929i | 0.223119i | 0.993758 | + | 0.111560i | \(0.0355846\pi\) | ||||
−0.993758 | + | 0.111560i | \(0.964415\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −24.1185 | −0.857556 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 3.29149 | 0.116884 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 17.5042i | 0.620031i | 0.950732 | + | 0.310015i | \(0.100334\pi\) | ||||
−0.950732 | + | 0.310015i | \(0.899666\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0.106666 | 0.00377356 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 0.254548i | − 0.00898279i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 66.5395i | 2.34521i | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 28.5503 | 1.00377 | 0.501887 | − | 0.864933i | \(-0.332639\pi\) | ||||
0.501887 | + | 0.864933i | \(0.332639\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | − 17.7550i | − 0.623462i | −0.950170 | − | 0.311731i | \(-0.899091\pi\) | ||||
0.950170 | − | 0.311731i | \(-0.100909\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −46.9933 | −1.64610 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0.493423 | 0.0172627 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | − 47.7170i | − 1.66534i | −0.553773 | − | 0.832668i | \(-0.686812\pi\) | ||||
0.553773 | − | 0.832668i | \(-0.313188\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −11.6508 | −0.406122 | −0.203061 | − | 0.979166i | \(-0.565089\pi\) | ||||
−0.203061 | + | 0.979166i | \(0.565089\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 45.4863i | 1.58171i | 0.612001 | + | 0.790857i | \(0.290365\pi\) | ||||
−0.612001 | + | 0.790857i | \(0.709635\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | − 35.2812i | − 1.22537i | −0.790328 | − | 0.612684i | \(-0.790090\pi\) | ||||
0.790328 | − | 0.612684i | \(-0.209910\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 5.75987 | 0.199568 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 58.6819i | 2.03077i | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 21.3143 | 0.735853 | 0.367926 | − | 0.929855i | \(-0.380068\pi\) | ||||
0.367926 | + | 0.929855i | \(0.380068\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 23.1530 | 0.798380 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 4.33571i | 0.149153i | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 24.5674 | 0.844146 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | − 61.7575i | − 2.11702i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 9.99152i | 0.342103i | 0.985262 | + | 0.171052i | \(0.0547165\pi\) | ||||
−0.985262 | + | 0.171052i | \(0.945284\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 49.7277 | 1.69867 | 0.849333 | − | 0.527857i | \(-0.177004\pi\) | ||||
0.849333 | + | 0.527857i | \(0.177004\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | − 16.8742i | − 0.575741i | −0.957669 | − | 0.287870i | \(-0.907053\pi\) | ||||
0.957669 | − | 0.287870i | \(-0.0929472\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 36.9205 | 1.25679 | 0.628394 | − | 0.777895i | \(-0.283713\pi\) | ||||
0.628394 | + | 0.777895i | \(0.283713\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −49.3934 | −1.67942 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | − 3.81088i | − 0.129275i | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −11.8777 | −0.402460 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 87.9076i | 2.97182i | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 4.90899i | 0.165765i | 0.996559 | + | 0.0828824i | \(0.0264126\pi\) | ||||
−0.996559 | + | 0.0828824i | \(0.973587\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 7.76972 | 0.261769 | 0.130884 | − | 0.991398i | \(-0.458218\pi\) | ||||
0.130884 | + | 0.991398i | \(0.458218\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 15.6142i | − 0.525459i | −0.964869 | − | 0.262730i | \(-0.915377\pi\) | ||||
0.964869 | − | 0.262730i | \(-0.0846227\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −2.11858 | −0.0711349 | −0.0355674 | − | 0.999367i | \(-0.511324\pi\) | ||||
−0.0355674 | + | 0.999367i | \(0.511324\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −48.2650 | −1.61876 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0.00196319i | 0 6.56957e-5i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 43.3195 | 1.44801 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 13.6281i | 0.454524i | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 44.8807i | 1.49519i | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −105.033 | −3.49142 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 28.8005i | − 0.956305i | −0.878277 | − | 0.478153i | \(-0.841307\pi\) | ||||
0.878277 | − | 0.478153i | \(-0.158693\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 4.72015 | 0.156386 | 0.0781929 | − | 0.996938i | \(-0.475085\pi\) | ||||
0.0781929 | + | 0.996938i | \(0.475085\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 3.85945 | 0.127729 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 7.81367i | 0.258030i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −43.7254 | −1.44237 | −0.721185 | − | 0.692743i | \(-0.756402\pi\) | ||||
−0.721185 | + | 0.692743i | \(0.756402\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 13.6251i | − 0.448475i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | − 127.956i | − 4.20718i | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −4.56638 | −0.149818 | −0.0749091 | − | 0.997190i | \(-0.523867\pi\) | ||||
−0.0749091 | + | 0.997190i | \(0.523867\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0.106011i | 0.00347437i | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 8.60585 | 0.281441 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −14.8258 | −0.484338 | −0.242169 | − | 0.970234i | \(-0.577859\pi\) | ||||
−0.242169 | + | 0.970234i | \(0.577859\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | − 23.4674i | − 0.765015i | −0.923952 | − | 0.382508i | \(-0.875061\pi\) | ||||
0.923952 | − | 0.382508i | \(-0.124939\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 31.6588 | 1.03095 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 6.85871i | 0.222878i | 0.993771 | + | 0.111439i | \(0.0355460\pi\) | ||||
−0.993771 | + | 0.111439i | \(0.964454\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | − 0.437175i | − 0.0141913i | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 33.6118 | 1.08879 | 0.544396 | − | 0.838828i | \(-0.316759\pi\) | ||||
0.544396 | + | 0.838828i | \(0.316759\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 61.8902i | 2.00272i | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 13.3392 | 0.430745 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 0.764545 | 0.0246627 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | − 21.6306i | − 0.696314i | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −38.4327 | −1.23591 | −0.617956 | − | 0.786212i | \(-0.712039\pi\) | ||||
−0.617956 | + | 0.786212i | \(0.712039\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | − 38.2120i | − 1.22628i | −0.789974 | − | 0.613141i | \(-0.789906\pi\) | ||||
0.789974 | − | 0.613141i | \(-0.210094\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 41.6809i | 1.33623i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 3.28633 | 0.105139 | 0.0525695 | − | 0.998617i | \(-0.483259\pi\) | ||||
0.0525695 | + | 0.998617i | \(0.483259\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 4.79708i | 0.153315i | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −13.0281 | −0.415530 | −0.207765 | − | 0.978179i | \(-0.566619\pi\) | ||||
−0.207765 | + | 0.978179i | \(0.566619\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 47.6880 | 1.51946 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | − 52.3744i | − 1.66541i | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −11.7140 | −0.372106 | −0.186053 | − | 0.982540i | \(-0.559570\pi\) | ||||
−0.186053 | + | 0.982540i | \(0.559570\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 39.6096i | 1.25571i | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 61.2009i | − 1.93825i | −0.246566 | − | 0.969126i | \(-0.579302\pi\) | ||||
0.246566 | − | 0.969126i | \(-0.420698\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 3744.2.g.e.1873.1 | 16 | ||
3.2 | odd | 2 | 1248.2.g.b.625.8 | 16 | |||
4.3 | odd | 2 | 936.2.g.e.469.11 | 16 | |||
8.3 | odd | 2 | 936.2.g.e.469.12 | 16 | |||
8.5 | even | 2 | inner | 3744.2.g.e.1873.16 | 16 | ||
12.11 | even | 2 | 312.2.g.b.157.6 | yes | 16 | ||
24.5 | odd | 2 | 1248.2.g.b.625.9 | 16 | |||
24.11 | even | 2 | 312.2.g.b.157.5 | ✓ | 16 | ||
48.5 | odd | 4 | 9984.2.a.bs.1.1 | 8 | |||
48.11 | even | 4 | 9984.2.a.bu.1.1 | 8 | |||
48.29 | odd | 4 | 9984.2.a.bv.1.8 | 8 | |||
48.35 | even | 4 | 9984.2.a.bt.1.8 | 8 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
312.2.g.b.157.5 | ✓ | 16 | 24.11 | even | 2 | ||
312.2.g.b.157.6 | yes | 16 | 12.11 | even | 2 | ||
936.2.g.e.469.11 | 16 | 4.3 | odd | 2 | |||
936.2.g.e.469.12 | 16 | 8.3 | odd | 2 | |||
1248.2.g.b.625.8 | 16 | 3.2 | odd | 2 | |||
1248.2.g.b.625.9 | 16 | 24.5 | odd | 2 | |||
3744.2.g.e.1873.1 | 16 | 1.1 | even | 1 | trivial | ||
3744.2.g.e.1873.16 | 16 | 8.5 | even | 2 | inner | ||
9984.2.a.bs.1.1 | 8 | 48.5 | odd | 4 | |||
9984.2.a.bt.1.8 | 8 | 48.35 | even | 4 | |||
9984.2.a.bu.1.1 | 8 | 48.11 | even | 4 | |||
9984.2.a.bv.1.8 | 8 | 48.29 | odd | 4 |