Properties

Label 936.2.g.e.469.12
Level $936$
Weight $2$
Character 936.469
Analytic conductor $7.474$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(469,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.469");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 4 x^{13} + 9 x^{12} - 10 x^{11} + 2 x^{10} - 8 x^{9} + 28 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.12
Root \(-1.32561 + 0.492712i\) of defining polynomial
Character \(\chi\) \(=\) 936.469
Dual form 936.2.g.e.469.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.492712 + 1.32561i) q^{2} +(-1.51447 + 1.30629i) q^{4} +4.33571i q^{5} -2.30442 q^{7} +(-2.47782 - 1.36397i) q^{8} +(-5.74745 + 2.13626i) q^{10} -0.582255i q^{11} +1.00000i q^{13} +(-1.13542 - 3.05476i) q^{14} +(0.587238 - 3.95666i) q^{16} -3.40894 q^{17} -0.0627418i q^{19} +(-5.66368 - 6.56631i) q^{20} +(0.771842 - 0.286884i) q^{22} +6.65973 q^{23} -13.7984 q^{25} +(-1.32561 + 0.492712i) q^{26} +(3.48998 - 3.01023i) q^{28} +2.41805i q^{29} +5.63600 q^{31} +(5.53432 - 1.17105i) q^{32} +(-1.67963 - 4.51892i) q^{34} -9.99131i q^{35} -9.27328i q^{37} +(0.0831710 - 0.0309136i) q^{38} +(5.91378 - 10.7431i) q^{40} -4.75376 q^{41} +7.86434i q^{43} +(0.760592 + 0.881808i) q^{44} +(3.28133 + 8.82819i) q^{46} +0.0312900 q^{47} -1.68964 q^{49} +(-6.79864 - 18.2913i) q^{50} +(-1.30629 - 1.51447i) q^{52} +13.1656i q^{53} +2.52449 q^{55} +(5.70994 + 3.14316i) q^{56} +(-3.20539 + 1.19140i) q^{58} +4.75759i q^{59} -3.29149i q^{61} +(2.77693 + 7.47113i) q^{62} +(4.27917 + 6.75934i) q^{64} -4.33571 q^{65} -11.8777i q^{67} +(5.16274 - 4.45305i) q^{68} +(13.2446 - 4.92284i) q^{70} -13.6251 q^{71} +0.437175 q^{73} +(12.2927 - 4.56905i) q^{74} +(0.0819587 + 0.0950206i) q^{76} +1.34176i q^{77} -6.54503 q^{79} +(17.1549 + 2.54610i) q^{80} +(-2.34224 - 6.30162i) q^{82} +6.62844i q^{83} -14.7802i q^{85} +(-10.4250 + 3.87485i) q^{86} +(-0.794179 + 1.44272i) q^{88} -8.23880 q^{89} -2.30442i q^{91} +(-10.0860 + 8.69951i) q^{92} +(0.0154170 + 0.0414783i) q^{94} +0.272031 q^{95} -0.664432 q^{97} +(-0.832504 - 2.23980i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} + 4 q^{7} + 4 q^{8} - 8 q^{10} - 12 q^{14} - 12 q^{16} - 16 q^{17} - 24 q^{20} + 16 q^{22} + 8 q^{23} - 32 q^{25} + 2 q^{26} + 32 q^{28} - 4 q^{31} + 28 q^{32} - 32 q^{34} - 12 q^{38} - 12 q^{40}+ \cdots + 46 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.492712 + 1.32561i 0.348400 + 0.937346i
\(3\) 0 0
\(4\) −1.51447 + 1.30629i −0.757235 + 0.653143i
\(5\) 4.33571i 1.93899i 0.245112 + 0.969495i \(0.421175\pi\)
−0.245112 + 0.969495i \(0.578825\pi\)
\(6\) 0 0
\(7\) −2.30442 −0.870990 −0.435495 0.900191i \(-0.643427\pi\)
−0.435495 + 0.900191i \(0.643427\pi\)
\(8\) −2.47782 1.36397i −0.876041 0.482236i
\(9\) 0 0
\(10\) −5.74745 + 2.13626i −1.81750 + 0.675544i
\(11\) 0.582255i 0.175557i −0.996140 0.0877783i \(-0.972023\pi\)
0.996140 0.0877783i \(-0.0279767\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) −1.13542 3.05476i −0.303453 0.816419i
\(15\) 0 0
\(16\) 0.587238 3.95666i 0.146810 0.989165i
\(17\) −3.40894 −0.826790 −0.413395 0.910552i \(-0.635657\pi\)
−0.413395 + 0.910552i \(0.635657\pi\)
\(18\) 0 0
\(19\) 0.0627418i 0.0143940i −0.999974 0.00719698i \(-0.997709\pi\)
0.999974 0.00719698i \(-0.00229089\pi\)
\(20\) −5.66368 6.56631i −1.26644 1.46827i
\(21\) 0 0
\(22\) 0.771842 0.286884i 0.164557 0.0611639i
\(23\) 6.65973 1.38865 0.694325 0.719662i \(-0.255703\pi\)
0.694325 + 0.719662i \(0.255703\pi\)
\(24\) 0 0
\(25\) −13.7984 −2.75968
\(26\) −1.32561 + 0.492712i −0.259973 + 0.0966288i
\(27\) 0 0
\(28\) 3.48998 3.01023i 0.659544 0.568881i
\(29\) 2.41805i 0.449021i 0.974472 + 0.224510i \(0.0720783\pi\)
−0.974472 + 0.224510i \(0.927922\pi\)
\(30\) 0 0
\(31\) 5.63600 1.01226 0.506128 0.862458i \(-0.331076\pi\)
0.506128 + 0.862458i \(0.331076\pi\)
\(32\) 5.53432 1.17105i 0.978338 0.207014i
\(33\) 0 0
\(34\) −1.67963 4.51892i −0.288054 0.774988i
\(35\) 9.99131i 1.68884i
\(36\) 0 0
\(37\) 9.27328i 1.52452i −0.647272 0.762259i \(-0.724090\pi\)
0.647272 0.762259i \(-0.275910\pi\)
\(38\) 0.0831710 0.0309136i 0.0134921 0.00501486i
\(39\) 0 0
\(40\) 5.91378 10.7431i 0.935051 1.69863i
\(41\) −4.75376 −0.742413 −0.371207 0.928550i \(-0.621056\pi\)
−0.371207 + 0.928550i \(0.621056\pi\)
\(42\) 0 0
\(43\) 7.86434i 1.19930i 0.800262 + 0.599650i \(0.204694\pi\)
−0.800262 + 0.599650i \(0.795306\pi\)
\(44\) 0.760592 + 0.881808i 0.114664 + 0.132938i
\(45\) 0 0
\(46\) 3.28133 + 8.82819i 0.483806 + 1.30165i
\(47\) 0.0312900 0.00456412 0.00228206 0.999997i \(-0.499274\pi\)
0.00228206 + 0.999997i \(0.499274\pi\)
\(48\) 0 0
\(49\) −1.68964 −0.241377
\(50\) −6.79864 18.2913i −0.961473 2.58678i
\(51\) 0 0
\(52\) −1.30629 1.51447i −0.181149 0.210019i
\(53\) 13.1656i 1.80843i 0.427078 + 0.904215i \(0.359543\pi\)
−0.427078 + 0.904215i \(0.640457\pi\)
\(54\) 0 0
\(55\) 2.52449 0.340402
\(56\) 5.70994 + 3.14316i 0.763023 + 0.420023i
\(57\) 0 0
\(58\) −3.20539 + 1.19140i −0.420888 + 0.156439i
\(59\) 4.75759i 0.619385i 0.950837 + 0.309693i \(0.100226\pi\)
−0.950837 + 0.309693i \(0.899774\pi\)
\(60\) 0 0
\(61\) 3.29149i 0.421432i −0.977547 0.210716i \(-0.932420\pi\)
0.977547 0.210716i \(-0.0675795\pi\)
\(62\) 2.77693 + 7.47113i 0.352670 + 0.948834i
\(63\) 0 0
\(64\) 4.27917 + 6.75934i 0.534896 + 0.844918i
\(65\) −4.33571 −0.537779
\(66\) 0 0
\(67\) 11.8777i 1.45109i −0.688175 0.725545i \(-0.741588\pi\)
0.688175 0.725545i \(-0.258412\pi\)
\(68\) 5.16274 4.45305i 0.626074 0.540012i
\(69\) 0 0
\(70\) 13.2446 4.92284i 1.58303 0.588392i
\(71\) −13.6251 −1.61700 −0.808500 0.588496i \(-0.799720\pi\)
−0.808500 + 0.588496i \(0.799720\pi\)
\(72\) 0 0
\(73\) 0.437175 0.0511675 0.0255837 0.999673i \(-0.491856\pi\)
0.0255837 + 0.999673i \(0.491856\pi\)
\(74\) 12.2927 4.56905i 1.42900 0.531142i
\(75\) 0 0
\(76\) 0.0819587 + 0.0950206i 0.00940131 + 0.0108996i
\(77\) 1.34176i 0.152908i
\(78\) 0 0
\(79\) −6.54503 −0.736373 −0.368187 0.929752i \(-0.620021\pi\)
−0.368187 + 0.929752i \(0.620021\pi\)
\(80\) 17.1549 + 2.54610i 1.91798 + 0.284662i
\(81\) 0 0
\(82\) −2.34224 6.30162i −0.258657 0.695898i
\(83\) 6.62844i 0.727566i 0.931484 + 0.363783i \(0.118515\pi\)
−0.931484 + 0.363783i \(0.881485\pi\)
\(84\) 0 0
\(85\) 14.7802i 1.60314i
\(86\) −10.4250 + 3.87485i −1.12416 + 0.417836i
\(87\) 0 0
\(88\) −0.794179 + 1.44272i −0.0846598 + 0.153795i
\(89\) −8.23880 −0.873311 −0.436655 0.899629i \(-0.643837\pi\)
−0.436655 + 0.899629i \(0.643837\pi\)
\(90\) 0 0
\(91\) 2.30442i 0.241569i
\(92\) −10.0860 + 8.69951i −1.05153 + 0.906986i
\(93\) 0 0
\(94\) 0.0154170 + 0.0414783i 0.00159014 + 0.00427816i
\(95\) 0.272031 0.0279097
\(96\) 0 0
\(97\) −0.664432 −0.0674629 −0.0337314 0.999431i \(-0.510739\pi\)
−0.0337314 + 0.999431i \(0.510739\pi\)
\(98\) −0.832504 2.23980i −0.0840956 0.226253i
\(99\) 0 0
\(100\) 20.8973 18.0246i 2.08973 1.80246i
\(101\) 11.3867i 1.13302i 0.824055 + 0.566510i \(0.191707\pi\)
−0.824055 + 0.566510i \(0.808293\pi\)
\(102\) 0 0
\(103\) −14.9131 −1.46943 −0.734716 0.678375i \(-0.762685\pi\)
−0.734716 + 0.678375i \(0.762685\pi\)
\(104\) 1.36397 2.47782i 0.133748 0.242970i
\(105\) 0 0
\(106\) −17.4524 + 6.48683i −1.69512 + 0.630057i
\(107\) 7.39073i 0.714489i −0.934011 0.357244i \(-0.883716\pi\)
0.934011 0.357244i \(-0.116284\pi\)
\(108\) 0 0
\(109\) 17.4880i 1.67505i 0.546399 + 0.837525i \(0.315998\pi\)
−0.546399 + 0.837525i \(0.684002\pi\)
\(110\) 1.24385 + 3.34649i 0.118596 + 0.319075i
\(111\) 0 0
\(112\) −1.35324 + 9.11781i −0.127870 + 0.861552i
\(113\) −10.4662 −0.984576 −0.492288 0.870432i \(-0.663839\pi\)
−0.492288 + 0.870432i \(0.663839\pi\)
\(114\) 0 0
\(115\) 28.8747i 2.69258i
\(116\) −3.15866 3.66207i −0.293275 0.340014i
\(117\) 0 0
\(118\) −6.30669 + 2.34412i −0.580578 + 0.215794i
\(119\) 7.85564 0.720126
\(120\) 0 0
\(121\) 10.6610 0.969180
\(122\) 4.36322 1.62176i 0.395028 0.146827i
\(123\) 0 0
\(124\) −8.53556 + 7.36223i −0.766516 + 0.661148i
\(125\) 38.1473i 3.41200i
\(126\) 0 0
\(127\) 20.9445 1.85852 0.929262 0.369420i \(-0.120444\pi\)
0.929262 + 0.369420i \(0.120444\pi\)
\(128\) −6.85183 + 9.00291i −0.605622 + 0.795752i
\(129\) 0 0
\(130\) −2.13626 5.74745i −0.187362 0.504085i
\(131\) 3.39073i 0.296249i 0.988969 + 0.148125i \(0.0473237\pi\)
−0.988969 + 0.148125i \(0.952676\pi\)
\(132\) 0 0
\(133\) 0.144584i 0.0125370i
\(134\) 15.7451 5.85228i 1.36017 0.505560i
\(135\) 0 0
\(136\) 8.44674 + 4.64969i 0.724302 + 0.398708i
\(137\) 5.78852 0.494546 0.247273 0.968946i \(-0.420466\pi\)
0.247273 + 0.968946i \(0.420466\pi\)
\(138\) 0 0
\(139\) 18.0874i 1.53415i 0.641558 + 0.767075i \(0.278289\pi\)
−0.641558 + 0.767075i \(0.721711\pi\)
\(140\) 13.0515 + 15.1315i 1.10305 + 1.27885i
\(141\) 0 0
\(142\) −6.71324 18.0615i −0.563363 1.51569i
\(143\) 0.582255 0.0486906
\(144\) 0 0
\(145\) −10.4840 −0.870647
\(146\) 0.215401 + 0.579522i 0.0178267 + 0.0479616i
\(147\) 0 0
\(148\) 12.1135 + 14.0441i 0.995727 + 1.15442i
\(149\) 9.21251i 0.754719i −0.926067 0.377359i \(-0.876832\pi\)
0.926067 0.377359i \(-0.123168\pi\)
\(150\) 0 0
\(151\) −2.49249 −0.202836 −0.101418 0.994844i \(-0.532338\pi\)
−0.101418 + 0.994844i \(0.532338\pi\)
\(152\) −0.0855780 + 0.155463i −0.00694129 + 0.0126097i
\(153\) 0 0
\(154\) −1.77865 + 0.661102i −0.143328 + 0.0532732i
\(155\) 24.4361i 1.96275i
\(156\) 0 0
\(157\) 4.18956i 0.334363i 0.985926 + 0.167182i \(0.0534666\pi\)
−0.985926 + 0.167182i \(0.946533\pi\)
\(158\) −3.22481 8.67614i −0.256552 0.690237i
\(159\) 0 0
\(160\) 5.07732 + 23.9952i 0.401397 + 1.89699i
\(161\) −15.3468 −1.20950
\(162\) 0 0
\(163\) 10.8387i 0.848949i −0.905440 0.424475i \(-0.860459\pi\)
0.905440 0.424475i \(-0.139541\pi\)
\(164\) 7.19943 6.20977i 0.562181 0.484902i
\(165\) 0 0
\(166\) −8.78671 + 3.26591i −0.681981 + 0.253484i
\(167\) 13.5345 1.04733 0.523667 0.851923i \(-0.324564\pi\)
0.523667 + 0.851923i \(0.324564\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 19.5927 7.28238i 1.50269 0.558533i
\(171\) 0 0
\(172\) −10.2731 11.9103i −0.783314 0.908152i
\(173\) 11.3922i 0.866134i 0.901362 + 0.433067i \(0.142569\pi\)
−0.901362 + 0.433067i \(0.857431\pi\)
\(174\) 0 0
\(175\) 31.7974 2.40365
\(176\) −2.30379 0.341923i −0.173654 0.0257734i
\(177\) 0 0
\(178\) −4.05935 10.9214i −0.304261 0.818594i
\(179\) 9.99131i 0.746786i 0.927673 + 0.373393i \(0.121806\pi\)
−0.927673 + 0.373393i \(0.878194\pi\)
\(180\) 0 0
\(181\) 24.2251i 1.80064i 0.435229 + 0.900320i \(0.356668\pi\)
−0.435229 + 0.900320i \(0.643332\pi\)
\(182\) 3.05476 1.13542i 0.226434 0.0841627i
\(183\) 0 0
\(184\) −16.5016 9.08368i −1.21651 0.669657i
\(185\) 40.2063 2.95602
\(186\) 0 0
\(187\) 1.98487i 0.145148i
\(188\) −0.0473878 + 0.0408737i −0.00345611 + 0.00298102i
\(189\) 0 0
\(190\) 0.134033 + 0.360606i 0.00972375 + 0.0261611i
\(191\) 14.2745 1.03287 0.516434 0.856327i \(-0.327259\pi\)
0.516434 + 0.856327i \(0.327259\pi\)
\(192\) 0 0
\(193\) 4.98894 0.359112 0.179556 0.983748i \(-0.442534\pi\)
0.179556 + 0.983748i \(0.442534\pi\)
\(194\) −0.327374 0.880776i −0.0235041 0.0632361i
\(195\) 0 0
\(196\) 2.55890 2.20715i 0.182779 0.157653i
\(197\) 10.9989i 0.783637i −0.920042 0.391819i \(-0.871846\pi\)
0.920042 0.391819i \(-0.128154\pi\)
\(198\) 0 0
\(199\) 9.13566 0.647609 0.323805 0.946124i \(-0.395038\pi\)
0.323805 + 0.946124i \(0.395038\pi\)
\(200\) 34.1899 + 18.8206i 2.41759 + 1.33082i
\(201\) 0 0
\(202\) −15.0943 + 5.61037i −1.06203 + 0.394744i
\(203\) 5.57221i 0.391093i
\(204\) 0 0
\(205\) 20.6110i 1.43953i
\(206\) −7.34787 19.7689i −0.511950 1.37737i
\(207\) 0 0
\(208\) 3.95666 + 0.587238i 0.274345 + 0.0407176i
\(209\) −0.0365318 −0.00252696
\(210\) 0 0
\(211\) 1.06551i 0.0733526i 0.999327 + 0.0366763i \(0.0116770\pi\)
−0.999327 + 0.0366763i \(0.988323\pi\)
\(212\) −17.1980 19.9389i −1.18116 1.36941i
\(213\) 0 0
\(214\) 9.79721 3.64150i 0.669723 0.248928i
\(215\) −34.0975 −2.32543
\(216\) 0 0
\(217\) −12.9877 −0.881665
\(218\) −23.1823 + 8.61657i −1.57010 + 0.583587i
\(219\) 0 0
\(220\) −3.82327 + 3.29771i −0.257765 + 0.222331i
\(221\) 3.40894i 0.229310i
\(222\) 0 0
\(223\) 8.91055 0.596695 0.298347 0.954457i \(-0.403565\pi\)
0.298347 + 0.954457i \(0.403565\pi\)
\(224\) −12.7534 + 2.69858i −0.852123 + 0.180307i
\(225\) 0 0
\(226\) −5.15682 13.8741i −0.343026 0.922888i
\(227\) 17.1895i 1.14091i 0.821330 + 0.570454i \(0.193233\pi\)
−0.821330 + 0.570454i \(0.806767\pi\)
\(228\) 0 0
\(229\) 10.3375i 0.683122i 0.939860 + 0.341561i \(0.110956\pi\)
−0.939860 + 0.341561i \(0.889044\pi\)
\(230\) −38.2765 + 14.2269i −2.52388 + 0.938094i
\(231\) 0 0
\(232\) 3.29815 5.99149i 0.216534 0.393361i
\(233\) −0.475100 −0.0311248 −0.0155624 0.999879i \(-0.504954\pi\)
−0.0155624 + 0.999879i \(0.504954\pi\)
\(234\) 0 0
\(235\) 0.135664i 0.00884977i
\(236\) −6.21477 7.20522i −0.404547 0.469020i
\(237\) 0 0
\(238\) 3.87057 + 10.4135i 0.250892 + 0.675007i
\(239\) −8.74191 −0.565467 −0.282734 0.959198i \(-0.591241\pi\)
−0.282734 + 0.959198i \(0.591241\pi\)
\(240\) 0 0
\(241\) 11.6534 0.750660 0.375330 0.926891i \(-0.377529\pi\)
0.375330 + 0.926891i \(0.377529\pi\)
\(242\) 5.25279 + 14.1323i 0.337662 + 0.908457i
\(243\) 0 0
\(244\) 4.29962 + 4.98486i 0.275255 + 0.319123i
\(245\) 7.32578i 0.468027i
\(246\) 0 0
\(247\) 0.0627418 0.00399217
\(248\) −13.9650 7.68734i −0.886778 0.488147i
\(249\) 0 0
\(250\) 50.5684 18.7957i 3.19823 1.18874i
\(251\) 5.41847i 0.342011i −0.985270 0.171005i \(-0.945298\pi\)
0.985270 0.171005i \(-0.0547015\pi\)
\(252\) 0 0
\(253\) 3.87767i 0.243787i
\(254\) 10.3196 + 27.7642i 0.647510 + 1.74208i
\(255\) 0 0
\(256\) −15.3103 4.64700i −0.956894 0.290438i
\(257\) −1.09367 −0.0682212 −0.0341106 0.999418i \(-0.510860\pi\)
−0.0341106 + 0.999418i \(0.510860\pi\)
\(258\) 0 0
\(259\) 21.3695i 1.32784i
\(260\) 6.56631 5.66368i 0.407225 0.351246i
\(261\) 0 0
\(262\) −4.49478 + 1.67065i −0.277688 + 0.103213i
\(263\) −8.89318 −0.548377 −0.274189 0.961676i \(-0.588409\pi\)
−0.274189 + 0.961676i \(0.588409\pi\)
\(264\) 0 0
\(265\) −57.0821 −3.50653
\(266\) −0.191661 + 0.0712381i −0.0117515 + 0.00436789i
\(267\) 0 0
\(268\) 15.5156 + 17.9884i 0.947769 + 1.09882i
\(269\) 15.6451i 0.953901i 0.878930 + 0.476951i \(0.158258\pi\)
−0.878930 + 0.476951i \(0.841742\pi\)
\(270\) 0 0
\(271\) 17.2508 1.04791 0.523956 0.851746i \(-0.324456\pi\)
0.523956 + 0.851746i \(0.324456\pi\)
\(272\) −2.00186 + 13.4880i −0.121381 + 0.817831i
\(273\) 0 0
\(274\) 2.85207 + 7.67330i 0.172300 + 0.463561i
\(275\) 8.03420i 0.484480i
\(276\) 0 0
\(277\) 5.22709i 0.314065i 0.987593 + 0.157033i \(0.0501928\pi\)
−0.987593 + 0.157033i \(0.949807\pi\)
\(278\) −23.9767 + 8.91186i −1.43803 + 0.534498i
\(279\) 0 0
\(280\) −13.6279 + 24.7567i −0.814420 + 1.47949i
\(281\) −23.5272 −1.40351 −0.701757 0.712416i \(-0.747601\pi\)
−0.701757 + 0.712416i \(0.747601\pi\)
\(282\) 0 0
\(283\) 6.22302i 0.369920i −0.982746 0.184960i \(-0.940784\pi\)
0.982746 0.184960i \(-0.0592156\pi\)
\(284\) 20.6348 17.7983i 1.22445 1.05613i
\(285\) 0 0
\(286\) 0.286884 + 0.771842i 0.0169638 + 0.0456400i
\(287\) 10.9547 0.646634
\(288\) 0 0
\(289\) −5.37912 −0.316419
\(290\) −5.16558 13.8976i −0.303333 0.816097i
\(291\) 0 0
\(292\) −0.662088 + 0.571075i −0.0387458 + 0.0334197i
\(293\) 13.3240i 0.778396i 0.921154 + 0.389198i \(0.127248\pi\)
−0.921154 + 0.389198i \(0.872752\pi\)
\(294\) 0 0
\(295\) −20.6275 −1.20098
\(296\) −12.6485 + 22.9775i −0.735178 + 1.33554i
\(297\) 0 0
\(298\) 12.2122 4.53912i 0.707432 0.262944i
\(299\) 6.65973i 0.385142i
\(300\) 0 0
\(301\) 18.1228i 1.04458i
\(302\) −1.22808 3.30406i −0.0706679 0.190127i
\(303\) 0 0
\(304\) −0.248248 0.0368444i −0.0142380 0.00211317i
\(305\) 14.2710 0.817152
\(306\) 0 0
\(307\) 28.7588i 1.64135i −0.571396 0.820675i \(-0.693598\pi\)
0.571396 0.820675i \(-0.306402\pi\)
\(308\) −1.75272 2.03206i −0.0998708 0.115787i
\(309\) 0 0
\(310\) −32.3927 + 12.0400i −1.83978 + 0.683824i
\(311\) −21.9394 −1.24407 −0.622034 0.782990i \(-0.713694\pi\)
−0.622034 + 0.782990i \(0.713694\pi\)
\(312\) 0 0
\(313\) −2.60950 −0.147498 −0.0737488 0.997277i \(-0.523496\pi\)
−0.0737488 + 0.997277i \(0.523496\pi\)
\(314\) −5.55371 + 2.06425i −0.313414 + 0.116492i
\(315\) 0 0
\(316\) 9.91225 8.54967i 0.557608 0.480957i
\(317\) 16.0656i 0.902334i −0.892439 0.451167i \(-0.851008\pi\)
0.892439 0.451167i \(-0.148992\pi\)
\(318\) 0 0
\(319\) 1.40792 0.0788286
\(320\) −29.3066 + 18.5533i −1.63829 + 1.03716i
\(321\) 0 0
\(322\) −7.56157 20.3439i −0.421390 1.13372i
\(323\) 0.213883i 0.0119008i
\(324\) 0 0
\(325\) 13.7984i 0.765398i
\(326\) 14.3678 5.34034i 0.795759 0.295774i
\(327\) 0 0
\(328\) 11.7790 + 6.48399i 0.650385 + 0.358019i
\(329\) −0.0721054 −0.00397530
\(330\) 0 0
\(331\) 4.12863i 0.226930i −0.993542 0.113465i \(-0.963805\pi\)
0.993542 0.113465i \(-0.0361950\pi\)
\(332\) −8.65864 10.0386i −0.475204 0.550938i
\(333\) 0 0
\(334\) 6.66863 + 17.9415i 0.364891 + 0.981715i
\(335\) 51.4982 2.81365
\(336\) 0 0
\(337\) 6.01639 0.327734 0.163867 0.986482i \(-0.447603\pi\)
0.163867 + 0.986482i \(0.447603\pi\)
\(338\) −0.492712 1.32561i −0.0268000 0.0721035i
\(339\) 0 0
\(340\) 19.3071 + 22.3842i 1.04708 + 1.21395i
\(341\) 3.28159i 0.177708i
\(342\) 0 0
\(343\) 20.0246 1.08123
\(344\) 10.7267 19.4864i 0.578346 1.05064i
\(345\) 0 0
\(346\) −15.1016 + 5.61308i −0.811867 + 0.301761i
\(347\) 1.60019i 0.0859029i 0.999077 + 0.0429514i \(0.0136761\pi\)
−0.999077 + 0.0429514i \(0.986324\pi\)
\(348\) 0 0
\(349\) 0.755303i 0.0404305i 0.999796 + 0.0202152i \(0.00643515\pi\)
−0.999796 + 0.0202152i \(0.993565\pi\)
\(350\) 15.6669 + 42.1508i 0.837433 + 2.25306i
\(351\) 0 0
\(352\) −0.681848 3.22239i −0.0363426 0.171754i
\(353\) −23.2960 −1.23992 −0.619962 0.784632i \(-0.712852\pi\)
−0.619962 + 0.784632i \(0.712852\pi\)
\(354\) 0 0
\(355\) 59.0745i 3.13535i
\(356\) 12.4774 10.7622i 0.661301 0.570396i
\(357\) 0 0
\(358\) −13.2446 + 4.92284i −0.699997 + 0.260180i
\(359\) 32.9111 1.73698 0.868491 0.495706i \(-0.165090\pi\)
0.868491 + 0.495706i \(0.165090\pi\)
\(360\) 0 0
\(361\) 18.9961 0.999793
\(362\) −32.1130 + 11.9360i −1.68782 + 0.627343i
\(363\) 0 0
\(364\) 3.01023 + 3.48998i 0.157779 + 0.182925i
\(365\) 1.89547i 0.0992132i
\(366\) 0 0
\(367\) 2.51714 0.131394 0.0656969 0.997840i \(-0.479073\pi\)
0.0656969 + 0.997840i \(0.479073\pi\)
\(368\) 3.91085 26.3503i 0.203867 1.37360i
\(369\) 0 0
\(370\) 19.8101 + 53.2977i 1.02988 + 2.77082i
\(371\) 30.3390i 1.57512i
\(372\) 0 0
\(373\) 25.9826i 1.34533i 0.739947 + 0.672665i \(0.234850\pi\)
−0.739947 + 0.672665i \(0.765150\pi\)
\(374\) −2.63116 + 0.977972i −0.136054 + 0.0505697i
\(375\) 0 0
\(376\) −0.0775309 0.0426786i −0.00399835 0.00220098i
\(377\) −2.41805 −0.124536
\(378\) 0 0
\(379\) 25.5104i 1.31038i −0.755464 0.655190i \(-0.772589\pi\)
0.755464 0.655190i \(-0.227411\pi\)
\(380\) −0.411982 + 0.355349i −0.0211342 + 0.0182290i
\(381\) 0 0
\(382\) 7.03323 + 18.9224i 0.359851 + 0.968155i
\(383\) 25.1320 1.28419 0.642093 0.766627i \(-0.278066\pi\)
0.642093 + 0.766627i \(0.278066\pi\)
\(384\) 0 0
\(385\) −5.81750 −0.296487
\(386\) 2.45811 + 6.61338i 0.125115 + 0.336612i
\(387\) 0 0
\(388\) 1.00626 0.867938i 0.0510852 0.0440629i
\(389\) 21.2888i 1.07938i −0.841862 0.539692i \(-0.818541\pi\)
0.841862 0.539692i \(-0.181459\pi\)
\(390\) 0 0
\(391\) −22.7026 −1.14812
\(392\) 4.18661 + 2.30461i 0.211456 + 0.116401i
\(393\) 0 0
\(394\) 14.5802 5.41928i 0.734539 0.273019i
\(395\) 28.3774i 1.42782i
\(396\) 0 0
\(397\) 12.1291i 0.608741i 0.952554 + 0.304371i \(0.0984461\pi\)
−0.952554 + 0.304371i \(0.901554\pi\)
\(398\) 4.50125 + 12.1103i 0.225627 + 0.607034i
\(399\) 0 0
\(400\) −8.10295 + 54.5956i −0.405147 + 2.72978i
\(401\) −10.4114 −0.519919 −0.259959 0.965620i \(-0.583709\pi\)
−0.259959 + 0.965620i \(0.583709\pi\)
\(402\) 0 0
\(403\) 5.63600i 0.280749i
\(404\) −14.8743 17.2448i −0.740024 0.857962i
\(405\) 0 0
\(406\) 7.38656 2.74550i 0.366589 0.136257i
\(407\) −5.39942 −0.267639
\(408\) 0 0
\(409\) −2.94848 −0.145793 −0.0728965 0.997340i \(-0.523224\pi\)
−0.0728965 + 0.997340i \(0.523224\pi\)
\(410\) 27.3220 10.1553i 1.34934 0.501533i
\(411\) 0 0
\(412\) 22.5854 19.4808i 1.11271 0.959749i
\(413\) 10.9635i 0.539478i
\(414\) 0 0
\(415\) −28.7390 −1.41074
\(416\) 1.17105 + 5.53432i 0.0574153 + 0.271342i
\(417\) 0 0
\(418\) −0.0179996 0.0484268i −0.000880391 0.00236863i
\(419\) 26.3514i 1.28735i −0.765299 0.643675i \(-0.777409\pi\)
0.765299 0.643675i \(-0.222591\pi\)
\(420\) 0 0
\(421\) 4.54054i 0.221292i −0.993860 0.110646i \(-0.964708\pi\)
0.993860 0.110646i \(-0.0352920\pi\)
\(422\) −1.41244 + 0.524988i −0.0687567 + 0.0255560i
\(423\) 0 0
\(424\) 17.9574 32.6219i 0.872090 1.58426i
\(425\) 47.0380 2.28168
\(426\) 0 0
\(427\) 7.58498i 0.367063i
\(428\) 9.65440 + 11.1930i 0.466663 + 0.541036i
\(429\) 0 0
\(430\) −16.8002 45.1999i −0.810180 2.17973i
\(431\) −15.3547 −0.739608 −0.369804 0.929110i \(-0.620575\pi\)
−0.369804 + 0.929110i \(0.620575\pi\)
\(432\) 0 0
\(433\) 27.9869 1.34497 0.672483 0.740113i \(-0.265228\pi\)
0.672483 + 0.740113i \(0.265228\pi\)
\(434\) −6.39921 17.2166i −0.307172 0.826425i
\(435\) 0 0
\(436\) −22.8444 26.4851i −1.09405 1.26841i
\(437\) 0.417844i 0.0199882i
\(438\) 0 0
\(439\) −6.64728 −0.317257 −0.158629 0.987338i \(-0.550707\pi\)
−0.158629 + 0.987338i \(0.550707\pi\)
\(440\) −6.25523 3.44333i −0.298207 0.164154i
\(441\) 0 0
\(442\) 4.51892 1.67963i 0.214943 0.0798917i
\(443\) 32.6534i 1.55141i 0.631096 + 0.775705i \(0.282605\pi\)
−0.631096 + 0.775705i \(0.717395\pi\)
\(444\) 0 0
\(445\) 35.7211i 1.69334i
\(446\) 4.39033 + 11.8119i 0.207888 + 0.559309i
\(447\) 0 0
\(448\) −9.86102 15.5764i −0.465889 0.735915i
\(449\) 21.1274 0.997063 0.498531 0.866872i \(-0.333873\pi\)
0.498531 + 0.866872i \(0.333873\pi\)
\(450\) 0 0
\(451\) 2.76790i 0.130336i
\(452\) 15.8507 13.6718i 0.745555 0.643069i
\(453\) 0 0
\(454\) −22.7865 + 8.46948i −1.06943 + 0.397492i
\(455\) 9.99131 0.468400
\(456\) 0 0
\(457\) 18.2163 0.852121 0.426060 0.904695i \(-0.359901\pi\)
0.426060 + 0.904695i \(0.359901\pi\)
\(458\) −13.7035 + 5.09342i −0.640322 + 0.238000i
\(459\) 0 0
\(460\) −37.7186 43.7298i −1.75864 2.03891i
\(461\) 20.4992i 0.954741i 0.878702 + 0.477371i \(0.158410\pi\)
−0.878702 + 0.477371i \(0.841590\pi\)
\(462\) 0 0
\(463\) −5.45645 −0.253583 −0.126791 0.991929i \(-0.540468\pi\)
−0.126791 + 0.991929i \(0.540468\pi\)
\(464\) 9.56740 + 1.41997i 0.444156 + 0.0659205i
\(465\) 0 0
\(466\) −0.234087 0.629796i −0.0108439 0.0291747i
\(467\) 33.7488i 1.56171i −0.624714 0.780853i \(-0.714785\pi\)
0.624714 0.780853i \(-0.285215\pi\)
\(468\) 0 0
\(469\) 27.3712i 1.26388i
\(470\) −0.179838 + 0.0668435i −0.00829530 + 0.00308326i
\(471\) 0 0
\(472\) 6.48921 11.7884i 0.298690 0.542607i
\(473\) 4.57905 0.210545
\(474\) 0 0
\(475\) 0.865737i 0.0397227i
\(476\) −11.8971 + 10.2617i −0.545304 + 0.470345i
\(477\) 0 0
\(478\) −4.30724 11.5883i −0.197009 0.530038i
\(479\) 7.19006 0.328522 0.164261 0.986417i \(-0.447476\pi\)
0.164261 + 0.986417i \(0.447476\pi\)
\(480\) 0 0
\(481\) 9.27328 0.422825
\(482\) 5.74176 + 15.4478i 0.261530 + 0.703628i
\(483\) 0 0
\(484\) −16.1457 + 13.9263i −0.733897 + 0.633013i
\(485\) 2.88079i 0.130810i
\(486\) 0 0
\(487\) −9.72505 −0.440684 −0.220342 0.975423i \(-0.570717\pi\)
−0.220342 + 0.975423i \(0.570717\pi\)
\(488\) −4.48949 + 8.15571i −0.203230 + 0.369192i
\(489\) 0 0
\(490\) 9.71111 3.60950i 0.438703 0.163061i
\(491\) 7.93742i 0.358211i 0.983830 + 0.179105i \(0.0573203\pi\)
−0.983830 + 0.179105i \(0.942680\pi\)
\(492\) 0 0
\(493\) 8.24300i 0.371246i
\(494\) 0.0309136 + 0.0831710i 0.00139087 + 0.00374204i
\(495\) 0 0
\(496\) 3.30968 22.2997i 0.148609 1.00129i
\(497\) 31.3980 1.40839
\(498\) 0 0
\(499\) 10.1702i 0.455282i −0.973745 0.227641i \(-0.926899\pi\)
0.973745 0.227641i \(-0.0731013\pi\)
\(500\) 49.8313 + 57.7730i 2.22852 + 2.58369i
\(501\) 0 0
\(502\) 7.18276 2.66974i 0.320582 0.119156i
\(503\) 22.4670 1.00176 0.500878 0.865518i \(-0.333011\pi\)
0.500878 + 0.865518i \(0.333011\pi\)
\(504\) 0 0
\(505\) −49.3695 −2.19691
\(506\) 5.14026 1.91057i 0.228513 0.0849353i
\(507\) 0 0
\(508\) −31.7198 + 27.3595i −1.40734 + 1.21388i
\(509\) 2.95818i 0.131119i 0.997849 + 0.0655595i \(0.0208832\pi\)
−0.997849 + 0.0655595i \(0.979117\pi\)
\(510\) 0 0
\(511\) −1.00744 −0.0445663
\(512\) −1.38347 22.5851i −0.0611412 0.998129i
\(513\) 0 0
\(514\) −0.538864 1.44978i −0.0237683 0.0639469i
\(515\) 64.6589i 2.84921i
\(516\) 0 0
\(517\) 0.0182188i 0.000801261i
\(518\) −28.3276 + 10.5290i −1.24464 + 0.462619i
\(519\) 0 0
\(520\) 10.7431 + 5.91378i 0.471117 + 0.259337i
\(521\) 38.3759 1.68128 0.840640 0.541594i \(-0.182179\pi\)
0.840640 + 0.541594i \(0.182179\pi\)
\(522\) 0 0
\(523\) 20.7001i 0.905153i 0.891726 + 0.452576i \(0.149495\pi\)
−0.891726 + 0.452576i \(0.850505\pi\)
\(524\) −4.42926 5.13516i −0.193493 0.224330i
\(525\) 0 0
\(526\) −4.38178 11.7889i −0.191055 0.514019i
\(527\) −19.2128 −0.836923
\(528\) 0 0
\(529\) 21.3520 0.928349
\(530\) −28.1250 75.6685i −1.22167 3.28683i
\(531\) 0 0
\(532\) −0.188868 0.218968i −0.00818845 0.00949345i
\(533\) 4.75376i 0.205908i
\(534\) 0 0
\(535\) 32.0441 1.38539
\(536\) −16.2008 + 29.4307i −0.699768 + 1.27121i
\(537\) 0 0
\(538\) −20.7393 + 7.70855i −0.894135 + 0.332339i
\(539\) 0.983800i 0.0423753i
\(540\) 0 0
\(541\) 0.180587i 0.00776404i 0.999992 + 0.00388202i \(0.00123569\pi\)
−0.999992 + 0.00388202i \(0.998764\pi\)
\(542\) 8.49967 + 22.8678i 0.365092 + 0.982255i
\(543\) 0 0
\(544\) −18.8662 + 3.99203i −0.808880 + 0.171157i
\(545\) −75.8231 −3.24791
\(546\) 0 0
\(547\) 11.6587i 0.498489i −0.968441 0.249244i \(-0.919818\pi\)
0.968441 0.249244i \(-0.0801822\pi\)
\(548\) −8.76653 + 7.56145i −0.374488 + 0.323009i
\(549\) 0 0
\(550\) −10.6502 + 3.95854i −0.454126 + 0.168793i
\(551\) 0.151713 0.00646319
\(552\) 0 0
\(553\) 15.0825 0.641374
\(554\) −6.92907 + 2.57545i −0.294388 + 0.109420i
\(555\) 0 0
\(556\) −23.6272 27.3928i −1.00202 1.16171i
\(557\) 13.1212i 0.555961i 0.960587 + 0.277981i \(0.0896651\pi\)
−0.960587 + 0.277981i \(0.910335\pi\)
\(558\) 0 0
\(559\) −7.86434 −0.332626
\(560\) −39.5322 5.86728i −1.67054 0.247938i
\(561\) 0 0
\(562\) −11.5921 31.1878i −0.488984 1.31558i
\(563\) 22.1529i 0.933633i −0.884354 0.466817i \(-0.845401\pi\)
0.884354 0.466817i \(-0.154599\pi\)
\(564\) 0 0
\(565\) 45.3784i 1.90908i
\(566\) 8.24929 3.06616i 0.346743 0.128880i
\(567\) 0 0
\(568\) 33.7605 + 18.5842i 1.41656 + 0.779776i
\(569\) −32.0592 −1.34399 −0.671997 0.740554i \(-0.734563\pi\)
−0.671997 + 0.740554i \(0.734563\pi\)
\(570\) 0 0
\(571\) 19.0642i 0.797812i 0.916992 + 0.398906i \(0.130610\pi\)
−0.916992 + 0.398906i \(0.869390\pi\)
\(572\) −0.881808 + 0.760592i −0.0368703 + 0.0318019i
\(573\) 0 0
\(574\) 5.39750 + 14.5216i 0.225287 + 0.606120i
\(575\) −91.8937 −3.83223
\(576\) 0 0
\(577\) 6.36039 0.264786 0.132393 0.991197i \(-0.457734\pi\)
0.132393 + 0.991197i \(0.457734\pi\)
\(578\) −2.65035 7.13060i −0.110240 0.296594i
\(579\) 0 0
\(580\) 15.8777 13.6951i 0.659284 0.568656i
\(581\) 15.2747i 0.633703i
\(582\) 0 0
\(583\) 7.66572 0.317482
\(584\) −1.08324 0.596294i −0.0448248 0.0246748i
\(585\) 0 0
\(586\) −17.6624 + 6.56489i −0.729627 + 0.271193i
\(587\) 16.8490i 0.695432i −0.937600 0.347716i \(-0.886957\pi\)
0.937600 0.347716i \(-0.113043\pi\)
\(588\) 0 0
\(589\) 0.353613i 0.0145704i
\(590\) −10.1634 27.3440i −0.418422 1.12574i
\(591\) 0 0
\(592\) −36.6912 5.44562i −1.50800 0.223814i
\(593\) 30.9202 1.26974 0.634871 0.772618i \(-0.281053\pi\)
0.634871 + 0.772618i \(0.281053\pi\)
\(594\) 0 0
\(595\) 34.0598i 1.39632i
\(596\) 12.0342 + 13.9521i 0.492939 + 0.571499i
\(597\) 0 0
\(598\) −8.82819 + 3.28133i −0.361012 + 0.134184i
\(599\) 0.158853 0.00649057 0.00324528 0.999995i \(-0.498967\pi\)
0.00324528 + 0.999995i \(0.498967\pi\)
\(600\) 0 0
\(601\) −6.96910 −0.284276 −0.142138 0.989847i \(-0.545398\pi\)
−0.142138 + 0.989847i \(0.545398\pi\)
\(602\) 24.0237 8.92930i 0.979131 0.363931i
\(603\) 0 0
\(604\) 3.77480 3.25590i 0.153594 0.132481i
\(605\) 46.2229i 1.87923i
\(606\) 0 0
\(607\) 43.8942 1.78161 0.890805 0.454385i \(-0.150141\pi\)
0.890805 + 0.454385i \(0.150141\pi\)
\(608\) −0.0734736 0.347233i −0.00297975 0.0140822i
\(609\) 0 0
\(610\) 7.03147 + 18.9177i 0.284696 + 0.765954i
\(611\) 0.0312900i 0.00126586i
\(612\) 0 0
\(613\) 0.317515i 0.0128243i −0.999979 0.00641216i \(-0.997959\pi\)
0.999979 0.00641216i \(-0.00204107\pi\)
\(614\) 38.1228 14.1698i 1.53851 0.571846i
\(615\) 0 0
\(616\) 1.83012 3.32464i 0.0737378 0.133954i
\(617\) −2.54233 −0.102350 −0.0511752 0.998690i \(-0.516297\pi\)
−0.0511752 + 0.998690i \(0.516297\pi\)
\(618\) 0 0
\(619\) 36.6748i 1.47409i 0.675846 + 0.737043i \(0.263778\pi\)
−0.675846 + 0.737043i \(0.736222\pi\)
\(620\) −31.9205 37.0077i −1.28196 1.48627i
\(621\) 0 0
\(622\) −10.8098 29.0830i −0.433433 1.16612i
\(623\) 18.9857 0.760645
\(624\) 0 0
\(625\) 96.4039 3.85616
\(626\) −1.28573 3.45917i −0.0513882 0.138256i
\(627\) 0 0
\(628\) −5.47276 6.34496i −0.218387 0.253191i
\(629\) 31.6121i 1.26046i
\(630\) 0 0
\(631\) −32.5523 −1.29589 −0.647943 0.761689i \(-0.724370\pi\)
−0.647943 + 0.761689i \(0.724370\pi\)
\(632\) 16.2174 + 8.92722i 0.645093 + 0.355106i
\(633\) 0 0
\(634\) 21.2967 7.91572i 0.845800 0.314373i
\(635\) 90.8094i 3.60366i
\(636\) 0 0
\(637\) 1.68964i 0.0669458i
\(638\) 0.693701 + 1.86635i 0.0274639 + 0.0738897i
\(639\) 0 0
\(640\) −39.0340 29.7076i −1.54296 1.17430i
\(641\) −17.0435 −0.673178 −0.336589 0.941652i \(-0.609273\pi\)
−0.336589 + 0.941652i \(0.609273\pi\)
\(642\) 0 0
\(643\) 11.2883i 0.445168i −0.974914 0.222584i \(-0.928551\pi\)
0.974914 0.222584i \(-0.0714492\pi\)
\(644\) 23.2423 20.0473i 0.915876 0.789976i
\(645\) 0 0
\(646\) −0.283525 + 0.105383i −0.0111552 + 0.00414623i
\(647\) −22.0458 −0.866711 −0.433355 0.901223i \(-0.642670\pi\)
−0.433355 + 0.901223i \(0.642670\pi\)
\(648\) 0 0
\(649\) 2.77013 0.108737
\(650\) 18.2913 6.79864i 0.717442 0.266665i
\(651\) 0 0
\(652\) 14.1584 + 16.4148i 0.554485 + 0.642854i
\(653\) 28.8324i 1.12830i −0.825673 0.564149i \(-0.809204\pi\)
0.825673 0.564149i \(-0.190796\pi\)
\(654\) 0 0
\(655\) −14.7012 −0.574425
\(656\) −2.79159 + 18.8090i −0.108993 + 0.734369i
\(657\) 0 0
\(658\) −0.0355272 0.0955834i −0.00138499 0.00372623i
\(659\) 44.5007i 1.73350i 0.498742 + 0.866750i \(0.333795\pi\)
−0.498742 + 0.866750i \(0.666205\pi\)
\(660\) 0 0
\(661\) 11.2482i 0.437503i 0.975781 + 0.218752i \(0.0701984\pi\)
−0.975781 + 0.218752i \(0.929802\pi\)
\(662\) 5.47295 2.03423i 0.212712 0.0790625i
\(663\) 0 0
\(664\) 9.04100 16.4241i 0.350859 0.637378i
\(665\) −0.626873 −0.0243091
\(666\) 0 0
\(667\) 16.1036i 0.623533i
\(668\) −20.4977 + 17.6800i −0.793078 + 0.684059i
\(669\) 0 0
\(670\) 25.3738 + 68.2664i 0.980275 + 2.63736i
\(671\) −1.91649 −0.0739852
\(672\) 0 0
\(673\) −45.9571 −1.77152 −0.885758 0.464147i \(-0.846361\pi\)
−0.885758 + 0.464147i \(0.846361\pi\)
\(674\) 2.96435 + 7.97538i 0.114182 + 0.307200i
\(675\) 0 0
\(676\) 1.51447 1.30629i 0.0582488 0.0502417i
\(677\) 42.4795i 1.63262i −0.577613 0.816310i \(-0.696016\pi\)
0.577613 0.816310i \(-0.303984\pi\)
\(678\) 0 0
\(679\) 1.53113 0.0587595
\(680\) −20.1597 + 36.6226i −0.773091 + 1.40441i
\(681\) 0 0
\(682\) 4.35011 1.61688i 0.166574 0.0619136i
\(683\) 11.8075i 0.451800i 0.974150 + 0.225900i \(0.0725323\pi\)
−0.974150 + 0.225900i \(0.927468\pi\)
\(684\) 0 0
\(685\) 25.0973i 0.958920i
\(686\) 9.86636 + 26.5448i 0.376699 + 1.01348i
\(687\) 0 0
\(688\) 31.1165 + 4.61824i 1.18631 + 0.176069i
\(689\) −13.1656 −0.501568
\(690\) 0 0
\(691\) 23.5462i 0.895739i 0.894099 + 0.447870i \(0.147817\pi\)
−0.894099 + 0.447870i \(0.852183\pi\)
\(692\) −14.8815 17.2532i −0.565709 0.655867i
\(693\) 0 0
\(694\) −2.12123 + 0.788434i −0.0805207 + 0.0299286i
\(695\) −78.4216 −2.97470
\(696\) 0 0
\(697\) 16.2053 0.613820
\(698\) −1.00124 + 0.372147i −0.0378973 + 0.0140860i
\(699\) 0 0
\(700\) −48.1561 + 41.5364i −1.82013 + 1.56993i
\(701\) 5.15813i 0.194820i 0.995244 + 0.0974099i \(0.0310558\pi\)
−0.995244 + 0.0974099i \(0.968944\pi\)
\(702\) 0 0
\(703\) −0.581822 −0.0219438
\(704\) 3.93566 2.49157i 0.148331 0.0939046i
\(705\) 0 0
\(706\) −11.4782 30.8814i −0.431989 1.16224i
\(707\) 26.2398i 0.986849i
\(708\) 0 0
\(709\) 20.1043i 0.755032i 0.926003 + 0.377516i \(0.123222\pi\)
−0.926003 + 0.377516i \(0.876778\pi\)
\(710\) 78.3096 29.1067i 2.93891 1.09235i
\(711\) 0 0
\(712\) 20.4142 + 11.2375i 0.765056 + 0.421142i
\(713\) 37.5343 1.40567
\(714\) 0 0
\(715\) 2.52449i 0.0944107i
\(716\) −13.0515 15.1315i −0.487758 0.565492i
\(717\) 0 0
\(718\) 16.2157 + 43.6272i 0.605164 + 1.62815i
\(719\) 10.5580 0.393745 0.196873 0.980429i \(-0.436921\pi\)
0.196873 + 0.980429i \(0.436921\pi\)
\(720\) 0 0
\(721\) 34.3661 1.27986
\(722\) 9.35959 + 25.1813i 0.348328 + 0.937152i
\(723\) 0 0
\(724\) −31.6449 36.6882i −1.17607 1.36351i
\(725\) 33.3652i 1.23915i
\(726\) 0 0
\(727\) −51.2972 −1.90251 −0.951255 0.308407i \(-0.900204\pi\)
−0.951255 + 0.308407i \(0.900204\pi\)
\(728\) −3.14316 + 5.70994i −0.116493 + 0.211624i
\(729\) 0 0
\(730\) −2.51264 + 0.933918i −0.0929971 + 0.0345659i
\(731\) 26.8091i 0.991569i
\(732\) 0 0
\(733\) 22.1820i 0.819313i −0.912240 0.409656i \(-0.865649\pi\)
0.912240 0.409656i \(-0.134351\pi\)
\(734\) 1.24023 + 3.33674i 0.0457776 + 0.123161i
\(735\) 0 0
\(736\) 36.8571 7.79885i 1.35857 0.287469i
\(737\) −6.91585 −0.254748
\(738\) 0 0
\(739\) 19.5216i 0.718115i −0.933315 0.359057i \(-0.883098\pi\)
0.933315 0.359057i \(-0.116902\pi\)
\(740\) −60.8912 + 52.5208i −2.23840 + 1.93070i
\(741\) 0 0
\(742\) 40.2176 14.9484i 1.47644 0.548773i
\(743\) 49.0478 1.79939 0.899695 0.436518i \(-0.143789\pi\)
0.899695 + 0.436518i \(0.143789\pi\)
\(744\) 0 0
\(745\) 39.9428 1.46339
\(746\) −34.4428 + 12.8020i −1.26104 + 0.468713i
\(747\) 0 0
\(748\) −2.59281 3.00603i −0.0948026 0.109911i
\(749\) 17.0314i 0.622313i
\(750\) 0 0
\(751\) −16.3556 −0.596825 −0.298412 0.954437i \(-0.596457\pi\)
−0.298412 + 0.954437i \(0.596457\pi\)
\(752\) 0.0183747 0.123804i 0.000670056 0.00451466i
\(753\) 0 0
\(754\) −1.19140 3.20539i −0.0433883 0.116733i
\(755\) 10.8067i 0.393296i
\(756\) 0 0
\(757\) 9.50390i 0.345425i −0.984972 0.172713i \(-0.944747\pi\)
0.984972 0.172713i \(-0.0552532\pi\)
\(758\) 33.8167 12.5693i 1.22828 0.456536i
\(759\) 0 0
\(760\) −0.674042 0.371042i −0.0244501 0.0134591i
\(761\) −21.2994 −0.772102 −0.386051 0.922477i \(-0.626161\pi\)
−0.386051 + 0.922477i \(0.626161\pi\)
\(762\) 0 0
\(763\) 40.2998i 1.45895i
\(764\) −21.6183 + 18.6466i −0.782124 + 0.674610i
\(765\) 0 0
\(766\) 12.3828 + 33.3152i 0.447410 + 1.20373i
\(767\) −4.75759 −0.171787
\(768\) 0 0
\(769\) −28.7969 −1.03844 −0.519222 0.854639i \(-0.673778\pi\)
−0.519222 + 0.854639i \(0.673778\pi\)
\(770\) −2.86635 7.71172i −0.103296 0.277911i
\(771\) 0 0
\(772\) −7.55560 + 6.51698i −0.271932 + 0.234551i
\(773\) 14.0271i 0.504518i 0.967660 + 0.252259i \(0.0811735\pi\)
−0.967660 + 0.252259i \(0.918826\pi\)
\(774\) 0 0
\(775\) −77.7679 −2.79350
\(776\) 1.64634 + 0.906266i 0.0591003 + 0.0325330i
\(777\) 0 0
\(778\) 28.2206 10.4892i 1.01176 0.376058i
\(779\) 0.298260i 0.0106863i
\(780\) 0 0
\(781\) 7.93328i 0.283875i
\(782\) −11.1859 30.0948i −0.400006 1.07619i
\(783\) 0 0
\(784\) −0.992219 + 6.68532i −0.0354364 + 0.238761i
\(785\) −18.1647 −0.648327
\(786\) 0 0
\(787\) 6.25929i 0.223119i 0.993758 + 0.111560i \(0.0355846\pi\)
−0.993758 + 0.111560i \(0.964415\pi\)
\(788\) 14.3677 + 16.6575i 0.511827 + 0.593398i
\(789\) 0 0
\(790\) 37.6172 13.9819i 1.33836 0.497452i
\(791\) 24.1185 0.857556
\(792\) 0 0
\(793\) 3.29149 0.116884
\(794\) −16.0784 + 5.97615i −0.570601 + 0.212085i
\(795\) 0 0
\(796\) −13.8357 + 11.9338i −0.490393 + 0.422981i
\(797\) 17.5042i 0.620031i −0.950732 0.310015i \(-0.899666\pi\)
0.950732 0.310015i \(-0.100334\pi\)
\(798\) 0 0
\(799\) −0.106666 −0.00377356
\(800\) −76.3647 + 16.1586i −2.69990 + 0.571292i
\(801\) 0 0
\(802\) −5.12980 13.8014i −0.181140 0.487344i
\(803\) 0.254548i 0.00898279i
\(804\) 0 0
\(805\) 66.5395i 2.34521i
\(806\) −7.47113 + 2.77693i −0.263159 + 0.0978131i
\(807\) 0 0
\(808\) 15.5311 28.2142i 0.546383 0.992572i
\(809\) 28.5503 1.00377 0.501887 0.864933i \(-0.332639\pi\)
0.501887 + 0.864933i \(0.332639\pi\)
\(810\) 0 0
\(811\) 17.7550i 0.623462i −0.950170 0.311731i \(-0.899091\pi\)
0.950170 0.311731i \(-0.100909\pi\)
\(812\) 7.27890 + 8.43895i 0.255439 + 0.296149i
\(813\) 0 0
\(814\) −2.66036 7.15751i −0.0932455 0.250870i
\(815\) 46.9933 1.64610
\(816\) 0 0
\(817\) 0.493423 0.0172627
\(818\) −1.45275 3.90853i −0.0507943 0.136658i
\(819\) 0 0
\(820\) 26.9238 + 31.2147i 0.940219 + 1.09006i
\(821\) 47.7170i 1.66534i 0.553773 + 0.832668i \(0.313188\pi\)
−0.553773 + 0.832668i \(0.686812\pi\)
\(822\) 0 0
\(823\) 11.6508 0.406122 0.203061 0.979166i \(-0.434911\pi\)
0.203061 + 0.979166i \(0.434911\pi\)
\(824\) 36.9520 + 20.3410i 1.28728 + 0.708613i
\(825\) 0 0
\(826\) 14.5333 5.40184i 0.505678 0.187954i
\(827\) 45.4863i 1.58171i 0.612001 + 0.790857i \(0.290365\pi\)
−0.612001 + 0.790857i \(0.709635\pi\)
\(828\) 0 0
\(829\) 35.2812i 1.22537i 0.790328 + 0.612684i \(0.209910\pi\)
−0.790328 + 0.612684i \(0.790090\pi\)
\(830\) −14.1601 38.0967i −0.491503 1.32235i
\(831\) 0 0
\(832\) −6.75934 + 4.27917i −0.234338 + 0.148354i
\(833\) 5.75987 0.199568
\(834\) 0 0
\(835\) 58.6819i 2.03077i
\(836\) 0.0553263 0.0477209i 0.00191350 0.00165046i
\(837\) 0 0
\(838\) 34.9316 12.9836i 1.20669 0.448513i
\(839\) −21.3143 −0.735853 −0.367926 0.929855i \(-0.619932\pi\)
−0.367926 + 0.929855i \(0.619932\pi\)
\(840\) 0 0
\(841\) 23.1530 0.798380
\(842\) 6.01897 2.23718i 0.207428 0.0770983i
\(843\) 0 0
\(844\) −1.39186 1.61368i −0.0479097 0.0555451i
\(845\) 4.33571i 0.149153i
\(846\) 0 0
\(847\) −24.5674 −0.844146
\(848\) 52.0917 + 7.73132i 1.78884 + 0.265495i
\(849\) 0 0
\(850\) 23.1762 + 62.3539i 0.794936 + 2.13872i
\(851\) 61.7575i 2.11702i
\(852\) 0 0
\(853\) 9.99152i 0.342103i −0.985262 0.171052i \(-0.945284\pi\)
0.985262 0.171052i \(-0.0547165\pi\)
\(854\) −10.0547 + 3.73721i −0.344065 + 0.127885i
\(855\) 0 0
\(856\) −10.0807 + 18.3129i −0.344552 + 0.625922i
\(857\) 49.7277 1.69867 0.849333 0.527857i \(-0.177004\pi\)
0.849333 + 0.527857i \(0.177004\pi\)
\(858\) 0 0
\(859\) 16.8742i 0.575741i −0.957669 0.287870i \(-0.907053\pi\)
0.957669 0.287870i \(-0.0929472\pi\)
\(860\) 51.6396 44.5411i 1.76090 1.51884i
\(861\) 0 0
\(862\) −7.56542 20.3542i −0.257679 0.693268i
\(863\) −36.9205 −1.25679 −0.628394 0.777895i \(-0.716287\pi\)
−0.628394 + 0.777895i \(0.716287\pi\)
\(864\) 0 0
\(865\) −49.3934 −1.67942
\(866\) 13.7895 + 37.0997i 0.468586 + 1.26070i
\(867\) 0 0
\(868\) 19.6695 16.9657i 0.667627 0.575853i
\(869\) 3.81088i 0.129275i
\(870\) 0 0
\(871\) 11.8777 0.402460
\(872\) 23.8532 43.3322i 0.807770 1.46741i
\(873\) 0 0
\(874\) 0.553897 0.205877i 0.0187358 0.00696388i
\(875\) 87.9076i 2.97182i
\(876\) 0 0
\(877\) 4.90899i 0.165765i −0.996559 0.0828824i \(-0.973587\pi\)
0.996559 0.0828824i \(-0.0264126\pi\)
\(878\) −3.27519 8.81168i −0.110532 0.297380i
\(879\) 0 0
\(880\) 1.48248 9.98856i 0.0499743 0.336714i
\(881\) 7.76972 0.261769 0.130884 0.991398i \(-0.458218\pi\)
0.130884 + 0.991398i \(0.458218\pi\)
\(882\) 0 0
\(883\) 15.6142i 0.525459i −0.964869 0.262730i \(-0.915377\pi\)
0.964869 0.262730i \(-0.0846227\pi\)
\(884\) 4.45305 + 5.16274i 0.149772 + 0.173642i
\(885\) 0 0
\(886\) −43.2856 + 16.0887i −1.45421 + 0.540511i
\(887\) 2.11858 0.0711349 0.0355674 0.999367i \(-0.488676\pi\)
0.0355674 + 0.999367i \(0.488676\pi\)
\(888\) 0 0
\(889\) −48.2650 −1.61876
\(890\) 47.3521 17.6002i 1.58725 0.589960i
\(891\) 0 0
\(892\) −13.4948 + 11.6397i −0.451838 + 0.389727i
\(893\) 0.00196319i 6.56957e-5i
\(894\) 0 0
\(895\) −43.3195 −1.44801
\(896\) 15.7895 20.7465i 0.527491 0.693092i
\(897\) 0 0
\(898\) 10.4097 + 28.0066i 0.347377 + 0.934593i
\(899\) 13.6281i 0.454524i
\(900\) 0 0
\(901\) 44.8807i 1.49519i
\(902\) −3.66916 + 1.36378i −0.122170 + 0.0454089i
\(903\) 0 0
\(904\) 25.9333 + 14.2756i 0.862529 + 0.474798i
\(905\) −105.033 −3.49142
\(906\) 0 0
\(907\) 28.8005i 0.956305i −0.878277 0.478153i \(-0.841307\pi\)
0.878277 0.478153i \(-0.158693\pi\)
\(908\) −22.4544 26.0330i −0.745175 0.863935i
\(909\) 0 0
\(910\) 4.92284 + 13.2446i 0.163191 + 0.439053i
\(911\) −4.72015 −0.156386 −0.0781929 0.996938i \(-0.524915\pi\)
−0.0781929 + 0.996938i \(0.524915\pi\)
\(912\) 0 0
\(913\) 3.85945 0.127729
\(914\) 8.97537 + 24.1476i 0.296879 + 0.798732i
\(915\) 0 0
\(916\) −13.5037 15.6559i −0.446176 0.517284i
\(917\) 7.81367i 0.258030i
\(918\) 0 0
\(919\) 43.7254 1.44237 0.721185 0.692743i \(-0.243598\pi\)
0.721185 + 0.692743i \(0.243598\pi\)
\(920\) 39.3842 71.5462i 1.29846 2.35881i
\(921\) 0 0
\(922\) −27.1738 + 10.1002i −0.894923 + 0.332632i
\(923\) 13.6251i 0.448475i
\(924\) 0 0
\(925\) 127.956i 4.20718i
\(926\) −2.68846 7.23311i −0.0883482 0.237695i
\(927\) 0 0
\(928\) 2.83165 + 13.3823i 0.0929534 + 0.439294i
\(929\) −4.56638 −0.149818 −0.0749091 0.997190i \(-0.523867\pi\)
−0.0749091 + 0.997190i \(0.523867\pi\)
\(930\) 0 0
\(931\) 0.106011i 0.00347437i
\(932\) 0.719525 0.620616i 0.0235688 0.0203290i
\(933\) 0 0
\(934\) 44.7376 16.6284i 1.46386 0.544099i
\(935\) −8.60585 −0.281441
\(936\) 0 0
\(937\) −14.8258 −0.484338 −0.242169 0.970234i \(-0.577859\pi\)
−0.242169 + 0.970234i \(0.577859\pi\)
\(938\) −36.2835 + 13.4861i −1.18470 + 0.440337i
\(939\) 0 0
\(940\) −0.177216 0.205460i −0.00578016 0.00670136i
\(941\) 23.4674i 0.765015i 0.923952 + 0.382508i \(0.124939\pi\)
−0.923952 + 0.382508i \(0.875061\pi\)
\(942\) 0 0
\(943\) −31.6588 −1.03095
\(944\) 18.8242 + 2.79384i 0.612674 + 0.0909317i
\(945\) 0 0
\(946\) 2.25615 + 6.07003i 0.0733539 + 0.197354i
\(947\) 6.85871i 0.222878i 0.993771 + 0.111439i \(0.0355460\pi\)
−0.993771 + 0.111439i \(0.964454\pi\)
\(948\) 0 0
\(949\) 0.437175i 0.0141913i
\(950\) −1.14763 + 0.426559i −0.0372340 + 0.0138394i
\(951\) 0 0
\(952\) −19.4649 10.7149i −0.630860 0.347271i
\(953\) 33.6118 1.08879 0.544396 0.838828i \(-0.316759\pi\)
0.544396 + 0.838828i \(0.316759\pi\)
\(954\) 0 0
\(955\) 61.8902i 2.00272i
\(956\) 13.2394 11.4194i 0.428191 0.369331i
\(957\) 0 0
\(958\) 3.54263 + 9.53120i 0.114457 + 0.307939i
\(959\) −13.3392 −0.430745
\(960\) 0 0
\(961\) 0.764545 0.0246627
\(962\) 4.56905 + 12.2927i 0.147312 + 0.396333i
\(963\) 0 0
\(964\) −17.6487 + 15.2226i −0.568426 + 0.490288i
\(965\) 21.6306i 0.696314i
\(966\) 0 0
\(967\) 38.4327 1.23591 0.617956 0.786212i \(-0.287961\pi\)
0.617956 + 0.786212i \(0.287961\pi\)
\(968\) −26.4160 14.5413i −0.849041 0.467374i
\(969\) 0 0
\(970\) 3.81879 1.41940i 0.122614 0.0455741i
\(971\) 38.2120i 1.22628i −0.789974 0.613141i \(-0.789906\pi\)
0.789974 0.613141i \(-0.210094\pi\)
\(972\) 0 0
\(973\) 41.6809i 1.33623i
\(974\) −4.79165 12.8916i −0.153534 0.413073i
\(975\) 0 0
\(976\) −13.0233 1.93289i −0.416866 0.0618702i
\(977\) 3.28633 0.105139 0.0525695 0.998617i \(-0.483259\pi\)
0.0525695 + 0.998617i \(0.483259\pi\)
\(978\) 0 0
\(979\) 4.79708i 0.153315i
\(980\) 9.56956 + 11.0947i 0.305688 + 0.354406i
\(981\) 0 0
\(982\) −10.5219 + 3.91086i −0.335767 + 0.124801i
\(983\) 13.0281 0.415530 0.207765 0.978179i \(-0.433381\pi\)
0.207765 + 0.978179i \(0.433381\pi\)
\(984\) 0 0
\(985\) 47.6880 1.51946
\(986\) 10.9270 4.06142i 0.347986 0.129342i
\(987\) 0 0
\(988\) −0.0950206 + 0.0819587i −0.00302301 + 0.00260745i
\(989\) 52.3744i 1.66541i
\(990\) 0 0
\(991\) 11.7140 0.372106 0.186053 0.982540i \(-0.440430\pi\)
0.186053 + 0.982540i \(0.440430\pi\)
\(992\) 31.1914 6.60002i 0.990329 0.209551i
\(993\) 0 0
\(994\) 15.4702 + 41.6214i 0.490683 + 1.32015i
\(995\) 39.6096i 1.25571i
\(996\) 0 0
\(997\) 61.2009i 1.93825i 0.246566 + 0.969126i \(0.420698\pi\)
−0.246566 + 0.969126i \(0.579302\pi\)
\(998\) 13.4817 5.01100i 0.426757 0.158620i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.g.e.469.12 16
3.2 odd 2 312.2.g.b.157.5 16
4.3 odd 2 3744.2.g.e.1873.16 16
8.3 odd 2 3744.2.g.e.1873.1 16
8.5 even 2 inner 936.2.g.e.469.11 16
12.11 even 2 1248.2.g.b.625.9 16
24.5 odd 2 312.2.g.b.157.6 yes 16
24.11 even 2 1248.2.g.b.625.8 16
48.5 odd 4 9984.2.a.bt.1.8 8
48.11 even 4 9984.2.a.bv.1.8 8
48.29 odd 4 9984.2.a.bu.1.1 8
48.35 even 4 9984.2.a.bs.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.g.b.157.5 16 3.2 odd 2
312.2.g.b.157.6 yes 16 24.5 odd 2
936.2.g.e.469.11 16 8.5 even 2 inner
936.2.g.e.469.12 16 1.1 even 1 trivial
1248.2.g.b.625.8 16 24.11 even 2
1248.2.g.b.625.9 16 12.11 even 2
3744.2.g.e.1873.1 16 8.3 odd 2
3744.2.g.e.1873.16 16 4.3 odd 2
9984.2.a.bs.1.1 8 48.35 even 4
9984.2.a.bt.1.8 8 48.5 odd 4
9984.2.a.bu.1.1 8 48.29 odd 4
9984.2.a.bv.1.8 8 48.11 even 4