Properties

Label 125.2.e.a.74.1
Level $125$
Weight $2$
Character 125.74
Analytic conductor $0.998$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [125,2,Mod(24,125)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(125, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("125.24");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 125 = 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 125.e (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.998130025266\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 25)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 74.1
Root \(0.951057 + 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 125.74
Dual form 125.2.e.a.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.363271 - 0.500000i) q^{2} +(-0.951057 - 0.309017i) q^{3} +(0.500000 - 1.53884i) q^{4} +(0.190983 + 0.587785i) q^{6} -1.61803i q^{7} +(-2.12663 + 0.690983i) q^{8} +(-1.61803 - 1.17557i) q^{9} +(0.618034 - 0.449028i) q^{11} +(-0.951057 + 1.30902i) q^{12} +(2.85317 - 3.92705i) q^{13} +(-0.809017 + 0.587785i) q^{14} +(-1.50000 - 1.08981i) q^{16} +(0.726543 - 0.236068i) q^{17} +1.23607i q^{18} +(1.80902 + 5.56758i) q^{19} +(-0.500000 + 1.53884i) q^{21} +(-0.449028 - 0.145898i) q^{22} +(4.84104 + 6.66312i) q^{23} +2.23607 q^{24} -3.00000 q^{26} +(2.93893 + 4.04508i) q^{27} +(-2.48990 - 0.809017i) q^{28} +(0.427051 - 1.31433i) q^{29} +(-0.927051 - 2.85317i) q^{31} +5.61803i q^{32} +(-0.726543 + 0.236068i) q^{33} +(-0.381966 - 0.277515i) q^{34} +(-2.61803 + 1.90211i) q^{36} +(2.48990 - 3.42705i) q^{37} +(2.12663 - 2.92705i) q^{38} +(-3.92705 + 2.85317i) q^{39} +(4.23607 + 3.07768i) q^{41} +(0.951057 - 0.309017i) q^{42} -1.85410i q^{43} +(-0.381966 - 1.17557i) q^{44} +(1.57295 - 4.84104i) q^{46} +(-1.53884 - 0.500000i) q^{47} +(1.08981 + 1.50000i) q^{48} +4.38197 q^{49} -0.763932 q^{51} +(-4.61653 - 6.35410i) q^{52} +(-5.20431 - 1.69098i) q^{53} +(0.954915 - 2.93893i) q^{54} +(1.11803 + 3.44095i) q^{56} -5.85410i q^{57} +(-0.812299 + 0.263932i) q^{58} +(-3.35410 - 2.43690i) q^{59} +(3.80902 - 2.76741i) q^{61} +(-1.08981 + 1.50000i) q^{62} +(-1.90211 + 2.61803i) q^{63} +(-0.190983 + 0.138757i) q^{64} +(0.381966 + 0.277515i) q^{66} +(-8.78402 + 2.85410i) q^{67} -1.23607i q^{68} +(-2.54508 - 7.83297i) q^{69} +(-1.35410 + 4.16750i) q^{71} +(4.25325 + 1.38197i) q^{72} +(-5.29007 - 7.28115i) q^{73} -2.61803 q^{74} +9.47214 q^{76} +(-0.726543 - 1.00000i) q^{77} +(2.85317 + 0.927051i) q^{78} +(-0.954915 + 2.93893i) q^{79} +(0.309017 + 0.951057i) q^{81} -3.23607i q^{82} +(-1.67760 + 0.545085i) q^{83} +(2.11803 + 1.53884i) q^{84} +(-0.927051 + 0.673542i) q^{86} +(-0.812299 + 1.11803i) q^{87} +(-1.00406 + 1.38197i) q^{88} +(7.23607 - 5.25731i) q^{89} +(-6.35410 - 4.61653i) q^{91} +(12.6740 - 4.11803i) q^{92} +3.00000i q^{93} +(0.309017 + 0.951057i) q^{94} +(1.73607 - 5.34307i) q^{96} +(2.71441 + 0.881966i) q^{97} +(-1.59184 - 2.19098i) q^{98} -1.52786 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} + 6 q^{6} - 4 q^{9} - 4 q^{11} - 2 q^{14} - 12 q^{16} + 10 q^{19} - 4 q^{21} - 24 q^{26} - 10 q^{29} + 6 q^{31} - 12 q^{34} - 12 q^{36} - 18 q^{39} + 16 q^{41} - 12 q^{44} + 26 q^{46} + 44 q^{49}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/125\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.363271 0.500000i −0.256872 0.353553i 0.661031 0.750358i \(-0.270119\pi\)
−0.917903 + 0.396805i \(0.870119\pi\)
\(3\) −0.951057 0.309017i −0.549093 0.178411i 0.0213149 0.999773i \(-0.493215\pi\)
−0.570408 + 0.821362i \(0.693215\pi\)
\(4\) 0.500000 1.53884i 0.250000 0.769421i
\(5\) 0 0
\(6\) 0.190983 + 0.587785i 0.0779685 + 0.239962i
\(7\) 1.61803i 0.611559i −0.952102 0.305780i \(-0.901083\pi\)
0.952102 0.305780i \(-0.0989171\pi\)
\(8\) −2.12663 + 0.690983i −0.751876 + 0.244299i
\(9\) −1.61803 1.17557i −0.539345 0.391857i
\(10\) 0 0
\(11\) 0.618034 0.449028i 0.186344 0.135387i −0.490702 0.871327i \(-0.663260\pi\)
0.677046 + 0.735940i \(0.263260\pi\)
\(12\) −0.951057 + 1.30902i −0.274546 + 0.377881i
\(13\) 2.85317 3.92705i 0.791327 1.08917i −0.202615 0.979259i \(-0.564944\pi\)
0.993942 0.109909i \(-0.0350561\pi\)
\(14\) −0.809017 + 0.587785i −0.216219 + 0.157092i
\(15\) 0 0
\(16\) −1.50000 1.08981i −0.375000 0.272453i
\(17\) 0.726543 0.236068i 0.176212 0.0572549i −0.219582 0.975594i \(-0.570469\pi\)
0.395794 + 0.918339i \(0.370469\pi\)
\(18\) 1.23607i 0.291344i
\(19\) 1.80902 + 5.56758i 0.415017 + 1.27729i 0.912236 + 0.409666i \(0.134355\pi\)
−0.497219 + 0.867625i \(0.665645\pi\)
\(20\) 0 0
\(21\) −0.500000 + 1.53884i −0.109109 + 0.335803i
\(22\) −0.449028 0.145898i −0.0957331 0.0311056i
\(23\) 4.84104 + 6.66312i 1.00943 + 1.38936i 0.919359 + 0.393421i \(0.128708\pi\)
0.0900679 + 0.995936i \(0.471292\pi\)
\(24\) 2.23607 0.456435
\(25\) 0 0
\(26\) −3.00000 −0.588348
\(27\) 2.93893 + 4.04508i 0.565597 + 0.778477i
\(28\) −2.48990 0.809017i −0.470547 0.152890i
\(29\) 0.427051 1.31433i 0.0793014 0.244065i −0.903544 0.428495i \(-0.859044\pi\)
0.982846 + 0.184430i \(0.0590440\pi\)
\(30\) 0 0
\(31\) −0.927051 2.85317i −0.166503 0.512444i 0.832641 0.553814i \(-0.186828\pi\)
−0.999144 + 0.0413693i \(0.986828\pi\)
\(32\) 5.61803i 0.993137i
\(33\) −0.726543 + 0.236068i −0.126475 + 0.0410942i
\(34\) −0.381966 0.277515i −0.0655066 0.0475934i
\(35\) 0 0
\(36\) −2.61803 + 1.90211i −0.436339 + 0.317019i
\(37\) 2.48990 3.42705i 0.409337 0.563404i −0.553720 0.832703i \(-0.686792\pi\)
0.963057 + 0.269299i \(0.0867921\pi\)
\(38\) 2.12663 2.92705i 0.344984 0.474830i
\(39\) −3.92705 + 2.85317i −0.628831 + 0.456873i
\(40\) 0 0
\(41\) 4.23607 + 3.07768i 0.661563 + 0.480653i 0.867190 0.497977i \(-0.165924\pi\)
−0.205628 + 0.978630i \(0.565924\pi\)
\(42\) 0.951057 0.309017i 0.146751 0.0476824i
\(43\) 1.85410i 0.282748i −0.989956 0.141374i \(-0.954848\pi\)
0.989956 0.141374i \(-0.0451520\pi\)
\(44\) −0.381966 1.17557i −0.0575835 0.177224i
\(45\) 0 0
\(46\) 1.57295 4.84104i 0.231919 0.713772i
\(47\) −1.53884 0.500000i −0.224463 0.0729325i 0.194626 0.980877i \(-0.437651\pi\)
−0.419089 + 0.907945i \(0.637651\pi\)
\(48\) 1.08981 + 1.50000i 0.157301 + 0.216506i
\(49\) 4.38197 0.625995
\(50\) 0 0
\(51\) −0.763932 −0.106972
\(52\) −4.61653 6.35410i −0.640197 0.881155i
\(53\) −5.20431 1.69098i −0.714867 0.232274i −0.0710707 0.997471i \(-0.522642\pi\)
−0.643796 + 0.765197i \(0.722642\pi\)
\(54\) 0.954915 2.93893i 0.129947 0.399937i
\(55\) 0 0
\(56\) 1.11803 + 3.44095i 0.149404 + 0.459817i
\(57\) 5.85410i 0.775395i
\(58\) −0.812299 + 0.263932i −0.106660 + 0.0346560i
\(59\) −3.35410 2.43690i −0.436667 0.317257i 0.347642 0.937627i \(-0.386982\pi\)
−0.784309 + 0.620370i \(0.786982\pi\)
\(60\) 0 0
\(61\) 3.80902 2.76741i 0.487695 0.354331i −0.316602 0.948558i \(-0.602542\pi\)
0.804297 + 0.594227i \(0.202542\pi\)
\(62\) −1.08981 + 1.50000i −0.138406 + 0.190500i
\(63\) −1.90211 + 2.61803i −0.239644 + 0.329841i
\(64\) −0.190983 + 0.138757i −0.0238729 + 0.0173447i
\(65\) 0 0
\(66\) 0.381966 + 0.277515i 0.0470168 + 0.0341597i
\(67\) −8.78402 + 2.85410i −1.07314 + 0.348684i −0.791709 0.610898i \(-0.790809\pi\)
−0.281430 + 0.959582i \(0.590809\pi\)
\(68\) 1.23607i 0.149895i
\(69\) −2.54508 7.83297i −0.306392 0.942978i
\(70\) 0 0
\(71\) −1.35410 + 4.16750i −0.160702 + 0.494591i −0.998694 0.0510922i \(-0.983730\pi\)
0.837992 + 0.545683i \(0.183730\pi\)
\(72\) 4.25325 + 1.38197i 0.501251 + 0.162866i
\(73\) −5.29007 7.28115i −0.619156 0.852194i 0.378136 0.925750i \(-0.376565\pi\)
−0.997291 + 0.0735557i \(0.976565\pi\)
\(74\) −2.61803 −0.304340
\(75\) 0 0
\(76\) 9.47214 1.08653
\(77\) −0.726543 1.00000i −0.0827972 0.113961i
\(78\) 2.85317 + 0.927051i 0.323058 + 0.104968i
\(79\) −0.954915 + 2.93893i −0.107436 + 0.330655i −0.990295 0.138985i \(-0.955616\pi\)
0.882858 + 0.469640i \(0.155616\pi\)
\(80\) 0 0
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 3.23607i 0.357364i
\(83\) −1.67760 + 0.545085i −0.184140 + 0.0598308i −0.399636 0.916674i \(-0.630863\pi\)
0.215495 + 0.976505i \(0.430863\pi\)
\(84\) 2.11803 + 1.53884i 0.231096 + 0.167901i
\(85\) 0 0
\(86\) −0.927051 + 0.673542i −0.0999665 + 0.0726299i
\(87\) −0.812299 + 1.11803i −0.0870876 + 0.119866i
\(88\) −1.00406 + 1.38197i −0.107033 + 0.147318i
\(89\) 7.23607 5.25731i 0.767022 0.557274i −0.134034 0.990977i \(-0.542793\pi\)
0.901056 + 0.433703i \(0.142793\pi\)
\(90\) 0 0
\(91\) −6.35410 4.61653i −0.666091 0.483943i
\(92\) 12.6740 4.11803i 1.32136 0.429335i
\(93\) 3.00000i 0.311086i
\(94\) 0.309017 + 0.951057i 0.0318727 + 0.0980940i
\(95\) 0 0
\(96\) 1.73607 5.34307i 0.177187 0.545325i
\(97\) 2.71441 + 0.881966i 0.275607 + 0.0895501i 0.443559 0.896245i \(-0.353716\pi\)
−0.167953 + 0.985795i \(0.553716\pi\)
\(98\) −1.59184 2.19098i −0.160800 0.221323i
\(99\) −1.52786 −0.153556
\(100\) 0 0
\(101\) −7.47214 −0.743505 −0.371753 0.928332i \(-0.621243\pi\)
−0.371753 + 0.928332i \(0.621243\pi\)
\(102\) 0.277515 + 0.381966i 0.0274780 + 0.0378203i
\(103\) 10.9964 + 3.57295i 1.08351 + 0.352053i 0.795735 0.605645i \(-0.207085\pi\)
0.287773 + 0.957699i \(0.407085\pi\)
\(104\) −3.35410 + 10.3229i −0.328897 + 1.01224i
\(105\) 0 0
\(106\) 1.04508 + 3.21644i 0.101508 + 0.312408i
\(107\) 10.4164i 1.00699i 0.863998 + 0.503496i \(0.167953\pi\)
−0.863998 + 0.503496i \(0.832047\pi\)
\(108\) 7.69421 2.50000i 0.740376 0.240563i
\(109\) 8.09017 + 5.87785i 0.774898 + 0.562996i 0.903443 0.428707i \(-0.141031\pi\)
−0.128546 + 0.991704i \(0.541031\pi\)
\(110\) 0 0
\(111\) −3.42705 + 2.48990i −0.325281 + 0.236331i
\(112\) −1.76336 + 2.42705i −0.166621 + 0.229335i
\(113\) −5.96361 + 8.20820i −0.561009 + 0.772163i −0.991454 0.130454i \(-0.958357\pi\)
0.430445 + 0.902617i \(0.358357\pi\)
\(114\) −2.92705 + 2.12663i −0.274143 + 0.199177i
\(115\) 0 0
\(116\) −1.80902 1.31433i −0.167963 0.122032i
\(117\) −9.23305 + 3.00000i −0.853596 + 0.277350i
\(118\) 2.56231i 0.235879i
\(119\) −0.381966 1.17557i −0.0350148 0.107764i
\(120\) 0 0
\(121\) −3.21885 + 9.90659i −0.292622 + 0.900599i
\(122\) −2.76741 0.899187i −0.250550 0.0814086i
\(123\) −3.07768 4.23607i −0.277505 0.381953i
\(124\) −4.85410 −0.435911
\(125\) 0 0
\(126\) 2.00000 0.178174
\(127\) 9.33905 + 12.8541i 0.828707 + 1.14062i 0.988162 + 0.153412i \(0.0490262\pi\)
−0.159455 + 0.987205i \(0.550974\pi\)
\(128\) 10.8249 + 3.51722i 0.956794 + 0.310881i
\(129\) −0.572949 + 1.76336i −0.0504453 + 0.155255i
\(130\) 0 0
\(131\) −5.50000 16.9273i −0.480537 1.47894i −0.838342 0.545145i \(-0.816475\pi\)
0.357805 0.933797i \(-0.383525\pi\)
\(132\) 1.23607i 0.107586i
\(133\) 9.00854 2.92705i 0.781139 0.253808i
\(134\) 4.61803 + 3.35520i 0.398937 + 0.289845i
\(135\) 0 0
\(136\) −1.38197 + 1.00406i −0.118503 + 0.0860972i
\(137\) 3.49396 4.80902i 0.298509 0.410862i −0.633246 0.773951i \(-0.718278\pi\)
0.931755 + 0.363089i \(0.118278\pi\)
\(138\) −2.99193 + 4.11803i −0.254690 + 0.350550i
\(139\) 4.04508 2.93893i 0.343100 0.249276i −0.402869 0.915258i \(-0.631987\pi\)
0.745968 + 0.665981i \(0.231987\pi\)
\(140\) 0 0
\(141\) 1.30902 + 0.951057i 0.110239 + 0.0800934i
\(142\) 2.57565 0.836881i 0.216144 0.0702295i
\(143\) 3.70820i 0.310096i
\(144\) 1.14590 + 3.52671i 0.0954915 + 0.293893i
\(145\) 0 0
\(146\) −1.71885 + 5.29007i −0.142253 + 0.437809i
\(147\) −4.16750 1.35410i −0.343729 0.111684i
\(148\) −4.02874 5.54508i −0.331160 0.455803i
\(149\) −13.9443 −1.14236 −0.571180 0.820825i \(-0.693514\pi\)
−0.571180 + 0.820825i \(0.693514\pi\)
\(150\) 0 0
\(151\) −5.56231 −0.452654 −0.226327 0.974051i \(-0.572672\pi\)
−0.226327 + 0.974051i \(0.572672\pi\)
\(152\) −7.69421 10.5902i −0.624083 0.858976i
\(153\) −1.45309 0.472136i −0.117475 0.0381699i
\(154\) −0.236068 + 0.726543i −0.0190229 + 0.0585465i
\(155\) 0 0
\(156\) 2.42705 + 7.46969i 0.194320 + 0.598054i
\(157\) 9.18034i 0.732671i −0.930483 0.366335i \(-0.880612\pi\)
0.930483 0.366335i \(-0.119388\pi\)
\(158\) 1.81636 0.590170i 0.144502 0.0469514i
\(159\) 4.42705 + 3.21644i 0.351088 + 0.255080i
\(160\) 0 0
\(161\) 10.7812 7.83297i 0.849674 0.617324i
\(162\) 0.363271 0.500000i 0.0285413 0.0392837i
\(163\) −6.46564 + 8.89919i −0.506428 + 0.697038i −0.983312 0.181928i \(-0.941766\pi\)
0.476884 + 0.878966i \(0.341766\pi\)
\(164\) 6.85410 4.97980i 0.535215 0.388857i
\(165\) 0 0
\(166\) 0.881966 + 0.640786i 0.0684538 + 0.0497346i
\(167\) 5.29007 1.71885i 0.409358 0.133008i −0.0970971 0.995275i \(-0.530956\pi\)
0.506455 + 0.862267i \(0.330956\pi\)
\(168\) 3.61803i 0.279137i
\(169\) −3.26393 10.0453i −0.251072 0.772719i
\(170\) 0 0
\(171\) 3.61803 11.1352i 0.276678 0.851527i
\(172\) −2.85317 0.927051i −0.217552 0.0706870i
\(173\) −9.92684 13.6631i −0.754723 1.03879i −0.997635 0.0687392i \(-0.978102\pi\)
0.242911 0.970049i \(-0.421898\pi\)
\(174\) 0.854102 0.0647493
\(175\) 0 0
\(176\) −1.41641 −0.106766
\(177\) 2.43690 + 3.35410i 0.183168 + 0.252110i
\(178\) −5.25731 1.70820i −0.394052 0.128035i
\(179\) 2.92705 9.00854i 0.218778 0.673330i −0.780086 0.625673i \(-0.784825\pi\)
0.998864 0.0476570i \(-0.0151754\pi\)
\(180\) 0 0
\(181\) 4.23607 + 13.0373i 0.314864 + 0.969053i 0.975810 + 0.218619i \(0.0701553\pi\)
−0.660946 + 0.750434i \(0.729845\pi\)
\(182\) 4.85410i 0.359810i
\(183\) −4.47777 + 1.45492i −0.331006 + 0.107550i
\(184\) −14.8992 10.8249i −1.09838 0.798022i
\(185\) 0 0
\(186\) 1.50000 1.08981i 0.109985 0.0799090i
\(187\) 0.343027 0.472136i 0.0250846 0.0345260i
\(188\) −1.53884 + 2.11803i −0.112232 + 0.154474i
\(189\) 6.54508 4.75528i 0.476085 0.345896i
\(190\) 0 0
\(191\) 19.5623 + 14.2128i 1.41548 + 1.02841i 0.992497 + 0.122267i \(0.0390165\pi\)
0.422982 + 0.906138i \(0.360984\pi\)
\(192\) 0.224514 0.0729490i 0.0162029 0.00526464i
\(193\) 5.70820i 0.410886i 0.978669 + 0.205443i \(0.0658634\pi\)
−0.978669 + 0.205443i \(0.934137\pi\)
\(194\) −0.545085 1.67760i −0.0391348 0.120445i
\(195\) 0 0
\(196\) 2.19098 6.74315i 0.156499 0.481654i
\(197\) −9.23305 3.00000i −0.657828 0.213741i −0.0389652 0.999241i \(-0.512406\pi\)
−0.618862 + 0.785499i \(0.712406\pi\)
\(198\) 0.555029 + 0.763932i 0.0394442 + 0.0542903i
\(199\) −2.56231 −0.181637 −0.0908185 0.995867i \(-0.528948\pi\)
−0.0908185 + 0.995867i \(0.528948\pi\)
\(200\) 0 0
\(201\) 9.23607 0.651462
\(202\) 2.71441 + 3.73607i 0.190985 + 0.262869i
\(203\) −2.12663 0.690983i −0.149260 0.0484975i
\(204\) −0.381966 + 1.17557i −0.0267430 + 0.0823064i
\(205\) 0 0
\(206\) −2.20820 6.79615i −0.153853 0.473510i
\(207\) 16.4721i 1.14489i
\(208\) −8.55951 + 2.78115i −0.593495 + 0.192838i
\(209\) 3.61803 + 2.62866i 0.250265 + 0.181828i
\(210\) 0 0
\(211\) −10.6631 + 7.74721i −0.734079 + 0.533340i −0.890851 0.454295i \(-0.849891\pi\)
0.156772 + 0.987635i \(0.449891\pi\)
\(212\) −5.20431 + 7.16312i −0.357434 + 0.491965i
\(213\) 2.57565 3.54508i 0.176481 0.242905i
\(214\) 5.20820 3.78398i 0.356025 0.258668i
\(215\) 0 0
\(216\) −9.04508 6.57164i −0.615440 0.447143i
\(217\) −4.61653 + 1.50000i −0.313390 + 0.101827i
\(218\) 6.18034i 0.418585i
\(219\) 2.78115 + 8.55951i 0.187933 + 0.578398i
\(220\) 0 0
\(221\) 1.14590 3.52671i 0.0770814 0.237232i
\(222\) 2.48990 + 0.809017i 0.167111 + 0.0542977i
\(223\) 13.0373 + 17.9443i 0.873041 + 1.20164i 0.978300 + 0.207193i \(0.0664327\pi\)
−0.105260 + 0.994445i \(0.533567\pi\)
\(224\) 9.09017 0.607363
\(225\) 0 0
\(226\) 6.27051 0.417108
\(227\) −11.3067 15.5623i −0.750451 1.03291i −0.997949 0.0640182i \(-0.979608\pi\)
0.247498 0.968888i \(-0.420392\pi\)
\(228\) −9.00854 2.92705i −0.596605 0.193849i
\(229\) −2.56231 + 7.88597i −0.169322 + 0.521119i −0.999329 0.0366339i \(-0.988336\pi\)
0.830007 + 0.557753i \(0.188336\pi\)
\(230\) 0 0
\(231\) 0.381966 + 1.17557i 0.0251315 + 0.0773469i
\(232\) 3.09017i 0.202880i
\(233\) 14.2128 4.61803i 0.931115 0.302537i 0.196096 0.980585i \(-0.437174\pi\)
0.735018 + 0.678047i \(0.237174\pi\)
\(234\) 4.85410 + 3.52671i 0.317323 + 0.230548i
\(235\) 0 0
\(236\) −5.42705 + 3.94298i −0.353271 + 0.256666i
\(237\) 1.81636 2.50000i 0.117985 0.162392i
\(238\) −0.449028 + 0.618034i −0.0291062 + 0.0400612i
\(239\) −23.8435 + 17.3233i −1.54231 + 1.12055i −0.593436 + 0.804881i \(0.702229\pi\)
−0.948869 + 0.315669i \(0.897771\pi\)
\(240\) 0 0
\(241\) −9.28115 6.74315i −0.597852 0.434365i 0.247264 0.968948i \(-0.420468\pi\)
−0.845116 + 0.534584i \(0.820468\pi\)
\(242\) 6.12261 1.98936i 0.393576 0.127881i
\(243\) 16.0000i 1.02640i
\(244\) −2.35410 7.24518i −0.150706 0.463825i
\(245\) 0 0
\(246\) −1.00000 + 3.07768i −0.0637577 + 0.196226i
\(247\) 27.0256 + 8.78115i 1.71960 + 0.558731i
\(248\) 3.94298 + 5.42705i 0.250380 + 0.344618i
\(249\) 1.76393 0.111785
\(250\) 0 0
\(251\) −6.81966 −0.430453 −0.215227 0.976564i \(-0.569049\pi\)
−0.215227 + 0.976564i \(0.569049\pi\)
\(252\) 3.07768 + 4.23607i 0.193876 + 0.266847i
\(253\) 5.98385 + 1.94427i 0.376202 + 0.122235i
\(254\) 3.03444 9.33905i 0.190398 0.585984i
\(255\) 0 0
\(256\) −2.02786 6.24112i −0.126742 0.390070i
\(257\) 16.1459i 1.00715i 0.863951 + 0.503577i \(0.167983\pi\)
−0.863951 + 0.503577i \(0.832017\pi\)
\(258\) 1.08981 0.354102i 0.0678488 0.0220454i
\(259\) −5.54508 4.02874i −0.344555 0.250334i
\(260\) 0 0
\(261\) −2.23607 + 1.62460i −0.138409 + 0.100560i
\(262\) −6.46564 + 8.89919i −0.399448 + 0.549794i
\(263\) 12.9843 17.8713i 0.800645 1.10199i −0.192055 0.981384i \(-0.561515\pi\)
0.992700 0.120609i \(-0.0384847\pi\)
\(264\) 1.38197 1.00406i 0.0850541 0.0617954i
\(265\) 0 0
\(266\) −4.73607 3.44095i −0.290387 0.210978i
\(267\) −8.50651 + 2.76393i −0.520590 + 0.169150i
\(268\) 14.9443i 0.912867i
\(269\) 5.32624 + 16.3925i 0.324746 + 0.999467i 0.971555 + 0.236814i \(0.0761033\pi\)
−0.646808 + 0.762652i \(0.723897\pi\)
\(270\) 0 0
\(271\) −2.47214 + 7.60845i −0.150172 + 0.462181i −0.997640 0.0686657i \(-0.978126\pi\)
0.847468 + 0.530846i \(0.178126\pi\)
\(272\) −1.34708 0.437694i −0.0816790 0.0265391i
\(273\) 4.61653 + 6.35410i 0.279405 + 0.384568i
\(274\) −3.67376 −0.221940
\(275\) 0 0
\(276\) −13.3262 −0.802145
\(277\) 6.63715 + 9.13525i 0.398788 + 0.548884i 0.960439 0.278490i \(-0.0898338\pi\)
−0.561651 + 0.827374i \(0.689834\pi\)
\(278\) −2.93893 0.954915i −0.176265 0.0572720i
\(279\) −1.85410 + 5.70634i −0.111002 + 0.341630i
\(280\) 0 0
\(281\) −0.336881 1.03681i −0.0200966 0.0618511i 0.940505 0.339779i \(-0.110352\pi\)
−0.960602 + 0.277928i \(0.910352\pi\)
\(282\) 1.00000i 0.0595491i
\(283\) −22.0131 + 7.15248i −1.30854 + 0.425171i −0.878545 0.477660i \(-0.841485\pi\)
−0.429996 + 0.902831i \(0.641485\pi\)
\(284\) 5.73607 + 4.16750i 0.340373 + 0.247295i
\(285\) 0 0
\(286\) −1.85410 + 1.34708i −0.109635 + 0.0796547i
\(287\) 4.97980 6.85410i 0.293948 0.404585i
\(288\) 6.60440 9.09017i 0.389168 0.535643i
\(289\) −13.2812 + 9.64932i −0.781244 + 0.567607i
\(290\) 0 0
\(291\) −2.30902 1.67760i −0.135357 0.0983426i
\(292\) −13.8496 + 4.50000i −0.810485 + 0.263343i
\(293\) 28.4721i 1.66336i 0.555255 + 0.831680i \(0.312621\pi\)
−0.555255 + 0.831680i \(0.687379\pi\)
\(294\) 0.836881 + 2.57565i 0.0488079 + 0.150215i
\(295\) 0 0
\(296\) −2.92705 + 9.00854i −0.170131 + 0.523611i
\(297\) 3.63271 + 1.18034i 0.210791 + 0.0684903i
\(298\) 5.06555 + 6.97214i 0.293440 + 0.403885i
\(299\) 39.9787 2.31203
\(300\) 0 0
\(301\) −3.00000 −0.172917
\(302\) 2.02063 + 2.78115i 0.116274 + 0.160037i
\(303\) 7.10642 + 2.30902i 0.408253 + 0.132650i
\(304\) 3.35410 10.3229i 0.192371 0.592057i
\(305\) 0 0
\(306\) 0.291796 + 0.898056i 0.0166809 + 0.0513384i
\(307\) 4.76393i 0.271892i 0.990716 + 0.135946i \(0.0434074\pi\)
−0.990716 + 0.135946i \(0.956593\pi\)
\(308\) −1.90211 + 0.618034i −0.108383 + 0.0352158i
\(309\) −9.35410 6.79615i −0.532136 0.386620i
\(310\) 0 0
\(311\) 23.8713 17.3435i 1.35362 0.983461i 0.354796 0.934944i \(-0.384550\pi\)
0.998822 0.0485178i \(-0.0154498\pi\)
\(312\) 6.37988 8.78115i 0.361190 0.497135i
\(313\) 12.4822 17.1803i 0.705538 0.971090i −0.294343 0.955700i \(-0.595101\pi\)
0.999882 0.0153904i \(-0.00489912\pi\)
\(314\) −4.59017 + 3.33495i −0.259038 + 0.188202i
\(315\) 0 0
\(316\) 4.04508 + 2.93893i 0.227554 + 0.165328i
\(317\) 22.4948 7.30902i 1.26344 0.410515i 0.400719 0.916201i \(-0.368761\pi\)
0.862718 + 0.505686i \(0.168761\pi\)
\(318\) 3.38197i 0.189651i
\(319\) −0.326238 1.00406i −0.0182658 0.0562164i
\(320\) 0 0
\(321\) 3.21885 9.90659i 0.179659 0.552932i
\(322\) −7.83297 2.54508i −0.436514 0.141832i
\(323\) 2.62866 + 3.61803i 0.146262 + 0.201313i
\(324\) 1.61803 0.0898908
\(325\) 0 0
\(326\) 6.79837 0.376527
\(327\) −5.87785 8.09017i −0.325046 0.447387i
\(328\) −11.1352 3.61803i −0.614837 0.199773i
\(329\) −0.809017 + 2.48990i −0.0446026 + 0.137273i
\(330\) 0 0
\(331\) 5.29180 + 16.2865i 0.290863 + 0.895186i 0.984580 + 0.174937i \(0.0559722\pi\)
−0.693716 + 0.720248i \(0.744028\pi\)
\(332\) 2.85410i 0.156639i
\(333\) −8.05748 + 2.61803i −0.441547 + 0.143467i
\(334\) −2.78115 2.02063i −0.152178 0.110564i
\(335\) 0 0
\(336\) 2.42705 1.76336i 0.132406 0.0961989i
\(337\) 0.673542 0.927051i 0.0366902 0.0504997i −0.790278 0.612749i \(-0.790064\pi\)
0.826968 + 0.562249i \(0.190064\pi\)
\(338\) −3.83698 + 5.28115i −0.208704 + 0.287257i
\(339\) 8.20820 5.96361i 0.445808 0.323899i
\(340\) 0 0
\(341\) −1.85410 1.34708i −0.100405 0.0729487i
\(342\) −6.88191 + 2.23607i −0.372131 + 0.120913i
\(343\) 18.4164i 0.994393i
\(344\) 1.28115 + 3.94298i 0.0690751 + 0.212591i
\(345\) 0 0
\(346\) −3.22542 + 9.92684i −0.173400 + 0.533670i
\(347\) −29.5685 9.60739i −1.58732 0.515752i −0.623391 0.781910i \(-0.714246\pi\)
−0.963929 + 0.266158i \(0.914246\pi\)
\(348\) 1.31433 + 1.80902i 0.0704554 + 0.0969735i
\(349\) −8.29180 −0.443850 −0.221925 0.975064i \(-0.571234\pi\)
−0.221925 + 0.975064i \(0.571234\pi\)
\(350\) 0 0
\(351\) 24.2705 1.29546
\(352\) 2.52265 + 3.47214i 0.134458 + 0.185065i
\(353\) −22.9111 7.44427i −1.21944 0.396219i −0.372559 0.928008i \(-0.621520\pi\)
−0.846876 + 0.531790i \(0.821520\pi\)
\(354\) 0.791796 2.43690i 0.0420835 0.129520i
\(355\) 0 0
\(356\) −4.47214 13.7638i −0.237023 0.729481i
\(357\) 1.23607i 0.0654197i
\(358\) −5.56758 + 1.80902i −0.294256 + 0.0956095i
\(359\) −23.2533 16.8945i −1.22726 0.891658i −0.230580 0.973053i \(-0.574062\pi\)
−0.996682 + 0.0813956i \(0.974062\pi\)
\(360\) 0 0
\(361\) −12.3541 + 8.97578i −0.650216 + 0.472409i
\(362\) 4.97980 6.85410i 0.261732 0.360244i
\(363\) 6.12261 8.42705i 0.321354 0.442305i
\(364\) −10.2812 + 7.46969i −0.538879 + 0.391518i
\(365\) 0 0
\(366\) 2.35410 + 1.71036i 0.123051 + 0.0894017i
\(367\) 5.17155 1.68034i 0.269953 0.0877130i −0.170913 0.985286i \(-0.554672\pi\)
0.440866 + 0.897573i \(0.354672\pi\)
\(368\) 15.2705i 0.796030i
\(369\) −3.23607 9.95959i −0.168463 0.518476i
\(370\) 0 0
\(371\) −2.73607 + 8.42075i −0.142050 + 0.437184i
\(372\) 4.61653 + 1.50000i 0.239356 + 0.0777714i
\(373\) 3.09793 + 4.26393i 0.160405 + 0.220778i 0.881653 0.471899i \(-0.156431\pi\)
−0.721248 + 0.692677i \(0.756431\pi\)
\(374\) −0.360680 −0.0186503
\(375\) 0 0
\(376\) 3.61803 0.186586
\(377\) −3.94298 5.42705i −0.203074 0.279507i
\(378\) −4.75528 1.54508i −0.244585 0.0794706i
\(379\) 10.6910 32.9035i 0.549159 1.69014i −0.161732 0.986835i \(-0.551708\pi\)
0.710891 0.703303i \(-0.248292\pi\)
\(380\) 0 0
\(381\) −4.90983 15.1109i −0.251538 0.774155i
\(382\) 14.9443i 0.764615i
\(383\) −10.8046 + 3.51064i −0.552092 + 0.179385i −0.571760 0.820421i \(-0.693739\pi\)
0.0196680 + 0.999807i \(0.493739\pi\)
\(384\) −9.20820 6.69015i −0.469904 0.341405i
\(385\) 0 0
\(386\) 2.85410 2.07363i 0.145270 0.105545i
\(387\) −2.17963 + 3.00000i −0.110797 + 0.152499i
\(388\) 2.71441 3.73607i 0.137803 0.189670i
\(389\) 12.1353 8.81678i 0.615282 0.447028i −0.235988 0.971756i \(-0.575833\pi\)
0.851270 + 0.524727i \(0.175833\pi\)
\(390\) 0 0
\(391\) 5.09017 + 3.69822i 0.257421 + 0.187027i
\(392\) −9.31881 + 3.02786i −0.470671 + 0.152930i
\(393\) 17.7984i 0.897809i
\(394\) 1.85410 + 5.70634i 0.0934083 + 0.287481i
\(395\) 0 0
\(396\) −0.763932 + 2.35114i −0.0383890 + 0.118149i
\(397\) −0.0327561 0.0106431i −0.00164398 0.000534163i 0.308195 0.951323i \(-0.400275\pi\)
−0.309839 + 0.950789i \(0.600275\pi\)
\(398\) 0.930812 + 1.28115i 0.0466574 + 0.0642184i
\(399\) −9.47214 −0.474200
\(400\) 0 0
\(401\) −22.5967 −1.12843 −0.564214 0.825629i \(-0.690821\pi\)
−0.564214 + 0.825629i \(0.690821\pi\)
\(402\) −3.35520 4.61803i −0.167342 0.230327i
\(403\) −13.8496 4.50000i −0.689897 0.224161i
\(404\) −3.73607 + 11.4984i −0.185876 + 0.572069i
\(405\) 0 0
\(406\) 0.427051 + 1.31433i 0.0211942 + 0.0652290i
\(407\) 3.23607i 0.160406i
\(408\) 1.62460 0.527864i 0.0804296 0.0261332i
\(409\) 22.9894 + 16.7027i 1.13675 + 0.825898i 0.986663 0.162775i \(-0.0520445\pi\)
0.150087 + 0.988673i \(0.452045\pi\)
\(410\) 0 0
\(411\) −4.80902 + 3.49396i −0.237211 + 0.172344i
\(412\) 10.9964 15.1353i 0.541754 0.745660i
\(413\) −3.94298 + 5.42705i −0.194022 + 0.267048i
\(414\) −8.23607 + 5.98385i −0.404781 + 0.294090i
\(415\) 0 0
\(416\) 22.0623 + 16.0292i 1.08169 + 0.785896i
\(417\) −4.75528 + 1.54508i −0.232867 + 0.0756631i
\(418\) 2.76393i 0.135188i
\(419\) 0.163119 + 0.502029i 0.00796888 + 0.0245257i 0.954962 0.296728i \(-0.0958956\pi\)
−0.946993 + 0.321254i \(0.895896\pi\)
\(420\) 0 0
\(421\) 9.88854 30.4338i 0.481938 1.48325i −0.354429 0.935083i \(-0.615325\pi\)
0.836367 0.548170i \(-0.184675\pi\)
\(422\) 7.74721 + 2.51722i 0.377128 + 0.122536i
\(423\) 1.90211 + 2.61803i 0.0924839 + 0.127293i
\(424\) 12.2361 0.594236
\(425\) 0 0
\(426\) −2.70820 −0.131213
\(427\) −4.47777 6.16312i −0.216694 0.298254i
\(428\) 16.0292 + 5.20820i 0.774801 + 0.251748i
\(429\) −1.14590 + 3.52671i −0.0553245 + 0.170271i
\(430\) 0 0
\(431\) 7.36475 + 22.6664i 0.354747 + 1.09180i 0.956156 + 0.292858i \(0.0946064\pi\)
−0.601409 + 0.798942i \(0.705394\pi\)
\(432\) 9.27051i 0.446028i
\(433\) 19.1599 6.22542i 0.920765 0.299175i 0.189985 0.981787i \(-0.439156\pi\)
0.730781 + 0.682612i \(0.239156\pi\)
\(434\) 2.42705 + 1.76336i 0.116502 + 0.0846438i
\(435\) 0 0
\(436\) 13.0902 9.51057i 0.626905 0.455473i
\(437\) −28.3399 + 39.0066i −1.35568 + 1.86594i
\(438\) 3.26944 4.50000i 0.156220 0.215018i
\(439\) 4.83688 3.51420i 0.230852 0.167724i −0.466346 0.884602i \(-0.654430\pi\)
0.697198 + 0.716879i \(0.254430\pi\)
\(440\) 0 0
\(441\) −7.09017 5.15131i −0.337627 0.245300i
\(442\) −2.17963 + 0.708204i −0.103674 + 0.0336858i
\(443\) 12.0557i 0.572785i −0.958112 0.286392i \(-0.907544\pi\)
0.958112 0.286392i \(-0.0924561\pi\)
\(444\) 2.11803 + 6.51864i 0.100517 + 0.309361i
\(445\) 0 0
\(446\) 4.23607 13.0373i 0.200584 0.617333i
\(447\) 13.2618 + 4.30902i 0.627261 + 0.203810i
\(448\) 0.224514 + 0.309017i 0.0106073 + 0.0145997i
\(449\) −20.3262 −0.959254 −0.479627 0.877472i \(-0.659228\pi\)
−0.479627 + 0.877472i \(0.659228\pi\)
\(450\) 0 0
\(451\) 4.00000 0.188353
\(452\) 9.64932 + 13.2812i 0.453866 + 0.624693i
\(453\) 5.29007 + 1.71885i 0.248549 + 0.0807585i
\(454\) −3.67376 + 11.3067i −0.172418 + 0.530649i
\(455\) 0 0
\(456\) 4.04508 + 12.4495i 0.189428 + 0.583001i
\(457\) 5.41641i 0.253369i 0.991943 + 0.126684i \(0.0404336\pi\)
−0.991943 + 0.126684i \(0.959566\pi\)
\(458\) 4.87380 1.58359i 0.227738 0.0739964i
\(459\) 3.09017 + 2.24514i 0.144237 + 0.104794i
\(460\) 0 0
\(461\) −18.7533 + 13.6251i −0.873428 + 0.634582i −0.931505 0.363730i \(-0.881503\pi\)
0.0580768 + 0.998312i \(0.481503\pi\)
\(462\) 0.449028 0.618034i 0.0208907 0.0287535i
\(463\) −9.47781 + 13.0451i −0.440471 + 0.606257i −0.970317 0.241838i \(-0.922250\pi\)
0.529846 + 0.848094i \(0.322250\pi\)
\(464\) −2.07295 + 1.50609i −0.0962342 + 0.0699183i
\(465\) 0 0
\(466\) −7.47214 5.42882i −0.346140 0.251485i
\(467\) 27.0584 8.79180i 1.25211 0.406836i 0.393435 0.919353i \(-0.371287\pi\)
0.858677 + 0.512517i \(0.171287\pi\)
\(468\) 15.7082i 0.726112i
\(469\) 4.61803 + 14.2128i 0.213241 + 0.656288i
\(470\) 0 0
\(471\) −2.83688 + 8.73102i −0.130717 + 0.402304i
\(472\) 8.81678 + 2.86475i 0.405825 + 0.131861i
\(473\) −0.832544 1.14590i −0.0382804 0.0526884i
\(474\) −1.90983 −0.0877214
\(475\) 0 0
\(476\) −2.00000 −0.0916698
\(477\) 6.43288 + 8.85410i 0.294541 + 0.405401i
\(478\) 17.3233 + 5.62868i 0.792349 + 0.257450i
\(479\) 1.28115 3.94298i 0.0585374 0.180160i −0.917512 0.397708i \(-0.869806\pi\)
0.976050 + 0.217548i \(0.0698059\pi\)
\(480\) 0 0
\(481\) −6.35410 19.5559i −0.289722 0.891673i
\(482\) 7.09017i 0.322948i
\(483\) −12.6740 + 4.11803i −0.576687 + 0.187377i
\(484\) 13.6353 + 9.90659i 0.619784 + 0.450300i
\(485\) 0 0
\(486\) −8.00000 + 5.81234i −0.362887 + 0.263653i
\(487\) −5.63309 + 7.75329i −0.255260 + 0.351335i −0.917345 0.398094i \(-0.869672\pi\)
0.662085 + 0.749429i \(0.269672\pi\)
\(488\) −6.18812 + 8.51722i −0.280123 + 0.385556i
\(489\) 8.89919 6.46564i 0.402435 0.292386i
\(490\) 0 0
\(491\) −30.1353 21.8945i −1.35999 0.988087i −0.998446 0.0557300i \(-0.982251\pi\)
−0.361539 0.932357i \(-0.617749\pi\)
\(492\) −8.05748 + 2.61803i −0.363259 + 0.118030i
\(493\) 1.05573i 0.0475476i
\(494\) −5.42705 16.7027i −0.244175 0.751492i
\(495\) 0 0
\(496\) −1.71885 + 5.29007i −0.0771785 + 0.237531i
\(497\) 6.74315 + 2.19098i 0.302472 + 0.0982790i
\(498\) −0.640786 0.881966i −0.0287143 0.0395218i
\(499\) 12.5623 0.562366 0.281183 0.959654i \(-0.409273\pi\)
0.281183 + 0.959654i \(0.409273\pi\)
\(500\) 0 0
\(501\) −5.56231 −0.248506
\(502\) 2.47739 + 3.40983i 0.110571 + 0.152188i
\(503\) 10.0656 + 3.27051i 0.448803 + 0.145825i 0.524693 0.851291i \(-0.324180\pi\)
−0.0758907 + 0.997116i \(0.524180\pi\)
\(504\) 2.23607 6.88191i 0.0996024 0.306545i
\(505\) 0 0
\(506\) −1.20163 3.69822i −0.0534188 0.164406i
\(507\) 10.5623i 0.469088i
\(508\) 24.4500 7.94427i 1.08479 0.352470i
\(509\) −3.78115 2.74717i −0.167597 0.121766i 0.500825 0.865548i \(-0.333030\pi\)
−0.668422 + 0.743782i \(0.733030\pi\)
\(510\) 0 0
\(511\) −11.7812 + 8.55951i −0.521168 + 0.378650i
\(512\) 10.9964 15.1353i 0.485977 0.668890i
\(513\) −17.2048 + 23.6803i −0.759609 + 1.04551i
\(514\) 8.07295 5.86534i 0.356083 0.258709i
\(515\) 0 0
\(516\) 2.42705 + 1.76336i 0.106845 + 0.0776274i
\(517\) −1.17557 + 0.381966i −0.0517015 + 0.0167988i
\(518\) 4.23607i 0.186122i
\(519\) 5.21885 + 16.0620i 0.229082 + 0.705042i
\(520\) 0 0
\(521\) −4.74671 + 14.6089i −0.207957 + 0.640026i 0.791622 + 0.611011i \(0.209237\pi\)
−0.999579 + 0.0290150i \(0.990763\pi\)
\(522\) 1.62460 + 0.527864i 0.0711067 + 0.0231040i
\(523\) −11.6699 16.0623i −0.510291 0.702356i 0.473677 0.880699i \(-0.342926\pi\)
−0.983968 + 0.178343i \(0.942926\pi\)
\(524\) −28.7984 −1.25806
\(525\) 0 0
\(526\) −13.6525 −0.595276
\(527\) −1.34708 1.85410i −0.0586799 0.0807660i
\(528\) 1.34708 + 0.437694i 0.0586243 + 0.0190482i
\(529\) −13.8541 + 42.6385i −0.602352 + 1.85385i
\(530\) 0 0
\(531\) 2.56231 + 7.88597i 0.111195 + 0.342222i
\(532\) 15.3262i 0.664477i
\(533\) 24.1724 7.85410i 1.04702 0.340199i
\(534\) 4.47214 + 3.24920i 0.193528 + 0.140607i
\(535\) 0 0
\(536\) 16.7082 12.1392i 0.721684 0.524334i
\(537\) −5.56758 + 7.66312i −0.240259 + 0.330688i
\(538\) 6.26137 8.61803i 0.269947 0.371550i
\(539\) 2.70820 1.96763i 0.116651 0.0847516i
\(540\) 0 0
\(541\) 10.6180 + 7.71445i 0.456505 + 0.331670i 0.792159 0.610315i \(-0.208957\pi\)
−0.335654 + 0.941985i \(0.608957\pi\)
\(542\) 4.70228 1.52786i 0.201980 0.0656274i
\(543\) 13.7082i 0.588275i
\(544\) 1.32624 + 4.08174i 0.0568620 + 0.175003i
\(545\) 0 0
\(546\) 1.50000 4.61653i 0.0641941 0.197569i
\(547\) −33.0095 10.7254i −1.41138 0.458586i −0.498529 0.866873i \(-0.666126\pi\)
−0.912854 + 0.408287i \(0.866126\pi\)
\(548\) −5.65334 7.78115i −0.241499 0.332394i
\(549\) −9.41641 −0.401882
\(550\) 0 0
\(551\) 8.09017 0.344653
\(552\) 10.8249 + 14.8992i 0.460738 + 0.634152i
\(553\) 4.75528 + 1.54508i 0.202215 + 0.0657037i
\(554\) 2.15654 6.63715i 0.0916227 0.281986i
\(555\) 0 0
\(556\) −2.50000 7.69421i −0.106024 0.326307i
\(557\) 9.23607i 0.391345i 0.980669 + 0.195672i \(0.0626889\pi\)
−0.980669 + 0.195672i \(0.937311\pi\)
\(558\) 3.52671 1.14590i 0.149298 0.0485097i
\(559\) −7.28115 5.29007i −0.307960 0.223746i
\(560\) 0 0
\(561\) −0.472136 + 0.343027i −0.0199336 + 0.0144826i
\(562\) −0.396027 + 0.545085i −0.0167054 + 0.0229930i
\(563\) −5.65334 + 7.78115i −0.238260 + 0.327936i −0.911356 0.411618i \(-0.864964\pi\)
0.673097 + 0.739555i \(0.264964\pi\)
\(564\) 2.11803 1.53884i 0.0891853 0.0647969i
\(565\) 0 0
\(566\) 11.5729 + 8.40824i 0.486447 + 0.353425i
\(567\) 1.53884 0.500000i 0.0646253 0.0209980i
\(568\) 9.79837i 0.411131i
\(569\) −9.10739 28.0297i −0.381802 1.17506i −0.938774 0.344534i \(-0.888037\pi\)
0.556972 0.830531i \(-0.311963\pi\)
\(570\) 0 0
\(571\) 9.92705 30.5523i 0.415434 1.27857i −0.496428 0.868078i \(-0.665355\pi\)
0.911862 0.410497i \(-0.134645\pi\)
\(572\) −5.70634 1.85410i −0.238594 0.0775239i
\(573\) −14.2128 19.5623i −0.593750 0.817227i
\(574\) −5.23607 −0.218549
\(575\) 0 0
\(576\) 0.472136 0.0196723
\(577\) −22.2048 30.5623i −0.924399 1.27233i −0.962005 0.273033i \(-0.911973\pi\)
0.0376062 0.999293i \(-0.488027\pi\)
\(578\) 9.64932 + 3.13525i 0.401359 + 0.130409i
\(579\) 1.76393 5.42882i 0.0733065 0.225614i
\(580\) 0 0
\(581\) 0.881966 + 2.71441i 0.0365901 + 0.112613i
\(582\) 1.76393i 0.0731173i
\(583\) −3.97574 + 1.29180i −0.164658 + 0.0535007i
\(584\) 16.2812 + 11.8290i 0.673719 + 0.489485i
\(585\) 0 0
\(586\) 14.2361 10.3431i 0.588087 0.427270i
\(587\) 10.9964 15.1353i 0.453870 0.624699i −0.519353 0.854560i \(-0.673827\pi\)
0.973224 + 0.229861i \(0.0738271\pi\)
\(588\) −4.16750 + 5.73607i −0.171865 + 0.236551i
\(589\) 14.2082 10.3229i 0.585439 0.425346i
\(590\) 0 0
\(591\) 7.85410 + 5.70634i 0.323075 + 0.234727i
\(592\) −7.46969 + 2.42705i −0.307003 + 0.0997512i
\(593\) 22.0902i 0.907135i 0.891222 + 0.453567i \(0.149849\pi\)
−0.891222 + 0.453567i \(0.850151\pi\)
\(594\) −0.729490 2.24514i −0.0299313 0.0921192i
\(595\) 0 0
\(596\) −6.97214 + 21.4580i −0.285590 + 0.878955i
\(597\) 2.43690 + 0.791796i 0.0997356 + 0.0324061i
\(598\) −14.5231 19.9894i −0.593894 0.817426i
\(599\) 0.527864 0.0215679 0.0107840 0.999942i \(-0.496567\pi\)
0.0107840 + 0.999942i \(0.496567\pi\)
\(600\) 0 0
\(601\) 36.2705 1.47950 0.739752 0.672879i \(-0.234943\pi\)
0.739752 + 0.672879i \(0.234943\pi\)
\(602\) 1.08981 + 1.50000i 0.0444175 + 0.0611354i
\(603\) 17.5680 + 5.70820i 0.715426 + 0.232456i
\(604\) −2.78115 + 8.55951i −0.113164 + 0.348281i
\(605\) 0 0
\(606\) −1.42705 4.39201i −0.0579700 0.178413i
\(607\) 15.4377i 0.626597i −0.949655 0.313298i \(-0.898566\pi\)
0.949655 0.313298i \(-0.101434\pi\)
\(608\) −31.2789 + 10.1631i −1.26853 + 0.412169i
\(609\) 1.80902 + 1.31433i 0.0733051 + 0.0532592i
\(610\) 0 0
\(611\) −6.35410 + 4.61653i −0.257059 + 0.186765i
\(612\) −1.45309 + 2.00000i −0.0587375 + 0.0808452i
\(613\) −18.7966 + 25.8713i −0.759188 + 1.04493i 0.238093 + 0.971242i \(0.423478\pi\)
−0.997281 + 0.0736905i \(0.976522\pi\)
\(614\) 2.38197 1.73060i 0.0961283 0.0698413i
\(615\) 0 0
\(616\) 2.23607 + 1.62460i 0.0900937 + 0.0654569i
\(617\) −9.28605 + 3.01722i −0.373842 + 0.121469i −0.489911 0.871772i \(-0.662971\pi\)
0.116069 + 0.993241i \(0.462971\pi\)
\(618\) 7.14590i 0.287450i
\(619\) −12.1976 37.5402i −0.490261 1.50887i −0.824213 0.566279i \(-0.808382\pi\)
0.333952 0.942590i \(-0.391618\pi\)
\(620\) 0 0
\(621\) −12.7254 + 39.1648i −0.510654 + 1.57163i
\(622\) −17.3435 5.63525i −0.695412 0.225953i
\(623\) −8.50651 11.7082i −0.340806 0.469079i
\(624\) 9.00000 0.360288
\(625\) 0 0
\(626\) −13.1246 −0.524565
\(627\) −2.62866 3.61803i −0.104978 0.144490i
\(628\) −14.1271 4.59017i −0.563732 0.183168i
\(629\) 1.00000 3.07768i 0.0398726 0.122715i
\(630\) 0 0
\(631\) −1.78115 5.48183i −0.0709066 0.218228i 0.909323 0.416090i \(-0.136600\pi\)
−0.980230 + 0.197862i \(0.936600\pi\)
\(632\) 6.90983i 0.274858i
\(633\) 12.5352 4.07295i 0.498231 0.161885i
\(634\) −11.8262 8.59226i −0.469680 0.341242i
\(635\) 0 0
\(636\) 7.16312 5.20431i 0.284036 0.206364i
\(637\) 12.5025 17.2082i 0.495367 0.681814i
\(638\) −0.383516 + 0.527864i −0.0151835 + 0.0208983i
\(639\) 7.09017 5.15131i 0.280483 0.203783i
\(640\) 0 0
\(641\) −8.16312 5.93085i −0.322424 0.234255i 0.414785 0.909919i \(-0.363857\pi\)
−0.737209 + 0.675665i \(0.763857\pi\)
\(642\) −6.12261 + 1.98936i −0.241640 + 0.0785137i
\(643\) 22.8328i 0.900438i −0.892918 0.450219i \(-0.851346\pi\)
0.892918 0.450219i \(-0.148654\pi\)
\(644\) −6.66312 20.5070i −0.262564 0.808088i
\(645\) 0 0
\(646\) 0.854102 2.62866i 0.0336042 0.103423i
\(647\) 29.0462 + 9.43769i 1.14193 + 0.371034i 0.818096 0.575082i \(-0.195030\pi\)
0.323829 + 0.946116i \(0.395030\pi\)
\(648\) −1.31433 1.80902i −0.0516317 0.0710649i
\(649\) −3.16718 −0.124323
\(650\) 0 0
\(651\) 4.85410 0.190247
\(652\) 10.4616 + 14.3992i 0.409709 + 0.563916i
\(653\) −7.52270 2.44427i −0.294386 0.0956518i 0.158101 0.987423i \(-0.449463\pi\)
−0.452487 + 0.891771i \(0.649463\pi\)
\(654\) −1.90983 + 5.87785i −0.0746803 + 0.229842i
\(655\) 0 0
\(656\) −3.00000 9.23305i −0.117130 0.360490i
\(657\) 18.0000i 0.702247i
\(658\) 1.53884 0.500000i 0.0599903 0.0194920i
\(659\) 19.7984 + 14.3844i 0.771235 + 0.560335i 0.902336 0.431034i \(-0.141851\pi\)
−0.131101 + 0.991369i \(0.541851\pi\)
\(660\) 0 0
\(661\) 32.9164 23.9152i 1.28030 0.930192i 0.280738 0.959784i \(-0.409421\pi\)
0.999562 + 0.0295922i \(0.00942086\pi\)
\(662\) 6.22088 8.56231i 0.241781 0.332783i
\(663\) −2.17963 + 3.00000i −0.0846497 + 0.116510i
\(664\) 3.19098 2.31838i 0.123834 0.0899708i
\(665\) 0 0
\(666\) 4.23607 + 3.07768i 0.164144 + 0.119258i
\(667\) 10.8249 3.51722i 0.419142 0.136187i
\(668\) 9.00000i 0.348220i
\(669\) −6.85410 21.0948i −0.264995 0.815570i
\(670\) 0 0
\(671\) 1.11146 3.42071i 0.0429073 0.132055i
\(672\) −8.64527 2.80902i −0.333498 0.108360i
\(673\) −5.98385 8.23607i −0.230661 0.317477i 0.677961 0.735098i \(-0.262864\pi\)
−0.908621 + 0.417621i \(0.862864\pi\)
\(674\) −0.708204 −0.0272790
\(675\) 0 0
\(676\) −17.0902 −0.657314
\(677\) −4.92680 6.78115i −0.189352 0.260621i 0.703777 0.710421i \(-0.251495\pi\)
−0.893129 + 0.449800i \(0.851495\pi\)
\(678\) −5.96361 1.93769i −0.229031 0.0744167i
\(679\) 1.42705 4.39201i 0.0547652 0.168550i
\(680\) 0 0
\(681\) 5.94427 + 18.2946i 0.227785 + 0.701050i
\(682\) 1.41641i 0.0542371i
\(683\) −4.30625 + 1.39919i −0.164774 + 0.0535384i −0.390242 0.920712i \(-0.627609\pi\)
0.225468 + 0.974251i \(0.427609\pi\)
\(684\) −15.3262 11.1352i −0.586013 0.425764i
\(685\) 0 0
\(686\) −9.20820 + 6.69015i −0.351571 + 0.255431i
\(687\) 4.87380 6.70820i 0.185947 0.255934i
\(688\) −2.02063 + 2.78115i −0.0770356 + 0.106030i
\(689\) −21.4894 + 15.6129i −0.818679 + 0.594805i
\(690\) 0 0
\(691\) −2.20820 1.60435i −0.0840040 0.0610325i 0.544991 0.838442i \(-0.316533\pi\)
−0.628995 + 0.777410i \(0.716533\pi\)
\(692\) −25.9888 + 8.44427i −0.987946 + 0.321003i
\(693\) 2.47214i 0.0939087i
\(694\) 5.93769 + 18.2743i 0.225392 + 0.693685i
\(695\) 0 0
\(696\) 0.954915 2.93893i 0.0361960 0.111400i
\(697\) 3.80423 + 1.23607i 0.144095 + 0.0468194i
\(698\) 3.01217 + 4.14590i 0.114012 + 0.156925i
\(699\) −14.9443 −0.565244
\(700\) 0 0
\(701\) 35.0132 1.32243 0.661214 0.750197i \(-0.270041\pi\)
0.661214 + 0.750197i \(0.270041\pi\)
\(702\) −8.81678 12.1353i −0.332768 0.458016i
\(703\) 23.5847 + 7.66312i 0.889512 + 0.289020i
\(704\) −0.0557281 + 0.171513i −0.00210033 + 0.00646416i
\(705\) 0 0
\(706\) 4.60081 + 14.1598i 0.173154 + 0.532913i
\(707\) 12.0902i 0.454698i
\(708\) 6.37988 2.07295i 0.239771 0.0779062i
\(709\) 27.1353 + 19.7149i 1.01909 + 0.740409i 0.966095 0.258186i \(-0.0831247\pi\)
0.0529906 + 0.998595i \(0.483125\pi\)
\(710\) 0 0
\(711\) 5.00000 3.63271i 0.187515 0.136237i
\(712\) −11.7557 + 16.1803i −0.440564 + 0.606384i
\(713\) 14.5231 19.9894i 0.543895 0.748607i
\(714\) 0.618034 0.449028i 0.0231293 0.0168044i
\(715\) 0 0
\(716\) −12.3992 9.00854i −0.463379 0.336665i
\(717\) 28.0297 9.10739i 1.04679 0.340122i
\(718\) 17.7639i 0.662944i
\(719\) 11.3435 + 34.9116i 0.423040 + 1.30198i 0.904859 + 0.425712i \(0.139976\pi\)
−0.481819 + 0.876271i \(0.660024\pi\)
\(720\) 0 0
\(721\) 5.78115 17.7926i 0.215301 0.662630i
\(722\) 8.97578 + 2.91641i 0.334044 + 0.108537i
\(723\) 6.74315 + 9.28115i 0.250781 + 0.345170i
\(724\) 22.1803 0.824326
\(725\) 0 0
\(726\) −6.43769 −0.238925
\(727\) −2.60841 3.59017i −0.0967406 0.133152i 0.757903 0.652368i \(-0.226224\pi\)
−0.854643 + 0.519216i \(0.826224\pi\)
\(728\) 16.7027 + 5.42705i 0.619045 + 0.201140i
\(729\) −4.01722 + 12.3637i −0.148786 + 0.457916i
\(730\) 0 0
\(731\) −0.437694 1.34708i −0.0161887 0.0498237i
\(732\) 7.61803i 0.281571i
\(733\) 25.6583 8.33688i 0.947710 0.307930i 0.205925 0.978568i \(-0.433980\pi\)
0.741785 + 0.670638i \(0.233980\pi\)
\(734\) −2.71885 1.97536i −0.100354 0.0729118i
\(735\) 0 0
\(736\) −37.4336 + 27.1971i −1.37982 + 1.00250i
\(737\) −4.14725 + 5.70820i −0.152766 + 0.210264i
\(738\) −3.80423 + 5.23607i −0.140035 + 0.192742i
\(739\) −25.0623 + 18.2088i −0.921932 + 0.669823i −0.944004 0.329934i \(-0.892974\pi\)
0.0220723 + 0.999756i \(0.492974\pi\)
\(740\) 0 0
\(741\) −22.9894 16.7027i −0.844535 0.613591i
\(742\) 5.20431 1.69098i 0.191056 0.0620779i
\(743\) 16.3607i 0.600215i 0.953905 + 0.300108i \(0.0970226\pi\)
−0.953905 + 0.300108i \(0.902977\pi\)
\(744\) −2.07295 6.37988i −0.0759980 0.233898i
\(745\) 0 0
\(746\) 1.00658 3.09793i 0.0368534 0.113423i
\(747\) 3.35520 + 1.09017i 0.122760 + 0.0398872i
\(748\) −0.555029 0.763932i −0.0202939 0.0279321i
\(749\) 16.8541 0.615835
\(750\) 0 0
\(751\) −40.8885 −1.49204 −0.746022 0.665921i \(-0.768039\pi\)
−0.746022 + 0.665921i \(0.768039\pi\)
\(752\) 1.76336 + 2.42705i 0.0643030 + 0.0885054i
\(753\) 6.48588 + 2.10739i 0.236359 + 0.0767976i
\(754\) −1.28115 + 3.94298i −0.0466568 + 0.143595i
\(755\) 0 0
\(756\) −4.04508 12.4495i −0.147118 0.452784i
\(757\) 3.58359i 0.130248i 0.997877 + 0.0651239i \(0.0207443\pi\)
−0.997877 + 0.0651239i \(0.979256\pi\)
\(758\) −20.3355 + 6.60739i −0.738617 + 0.239991i
\(759\) −5.09017 3.69822i −0.184761 0.134237i
\(760\) 0 0
\(761\) −30.2984 + 22.0131i −1.09832 + 0.797973i −0.980784 0.195096i \(-0.937498\pi\)
−0.117531 + 0.993069i \(0.537498\pi\)
\(762\) −5.77185 + 7.94427i −0.209092 + 0.287791i
\(763\) 9.51057 13.0902i 0.344306 0.473896i
\(764\) 31.6525 22.9969i 1.14515 0.831998i
\(765\) 0 0
\(766\) 5.68034 + 4.12701i 0.205239 + 0.149115i
\(767\) −19.1396 + 6.21885i −0.691092 + 0.224550i
\(768\) 6.56231i 0.236797i
\(769\) 4.14590 + 12.7598i 0.149505 + 0.460129i 0.997563 0.0697749i \(-0.0222281\pi\)
−0.848058 + 0.529904i \(0.822228\pi\)
\(770\) 0 0
\(771\) 4.98936 15.3557i 0.179687 0.553021i
\(772\) 8.78402 + 2.85410i 0.316144 + 0.102721i
\(773\) 19.4904 + 26.8262i 0.701021 + 0.964873i 0.999944 + 0.0105954i \(0.00337269\pi\)
−0.298923 + 0.954277i \(0.596627\pi\)
\(774\) 2.29180 0.0823769
\(775\) 0 0
\(776\) −6.38197 −0.229099
\(777\) 4.02874 + 5.54508i 0.144530 + 0.198929i
\(778\) −8.81678 2.86475i −0.316097 0.102706i
\(779\) −9.47214 + 29.1522i −0.339374 + 1.04449i
\(780\) 0 0
\(781\) 1.03444 + 3.18368i 0.0370152 + 0.113921i
\(782\) 3.88854i 0.139054i
\(783\) 6.57164 2.13525i 0.234851 0.0763078i
\(784\) −6.57295 4.77553i −0.234748 0.170555i
\(785\) 0 0
\(786\) 8.89919 6.46564i 0.317423 0.230622i
\(787\) −20.0907 + 27.6525i −0.716156 + 0.985704i 0.283487 + 0.958976i \(0.408509\pi\)
−0.999643 + 0.0267281i \(0.991491\pi\)
\(788\) −9.23305 + 12.7082i −0.328914 + 0.452711i
\(789\) −17.8713 + 12.9843i −0.636236 + 0.462252i
\(790\) 0 0
\(791\) 13.2812 + 9.64932i 0.472223 + 0.343090i
\(792\) 3.24920 1.05573i 0.115455 0.0375137i
\(793\) 22.8541i 0.811573i
\(794\) 0.00657781 + 0.0202444i 0.000233438 + 0.000718447i
\(795\) 0 0
\(796\) −1.28115 + 3.94298i −0.0454093 + 0.139755i
\(797\) 13.5393 + 4.39919i 0.479587 + 0.155827i 0.538827 0.842417i \(-0.318868\pi\)
−0.0592400 + 0.998244i \(0.518868\pi\)
\(798\) 3.44095 + 4.73607i 0.121808 + 0.167655i
\(799\) −1.23607 −0.0437289
\(800\) 0 0
\(801\) −17.8885 −0.632061
\(802\) 8.20875 + 11.2984i 0.289861 + 0.398959i
\(803\) −6.53888 2.12461i −0.230752 0.0749759i
\(804\) 4.61803 14.2128i 0.162866 0.501248i
\(805\) 0 0
\(806\) 2.78115 + 8.55951i 0.0979619 + 0.301496i
\(807\) 17.2361i 0.606738i
\(808\) 15.8904 5.16312i 0.559024 0.181638i
\(809\) −12.9271 9.39205i −0.454491 0.330207i 0.336875 0.941549i \(-0.390630\pi\)
−0.791366 + 0.611342i \(0.790630\pi\)
\(810\) 0 0
\(811\) 1.04508 0.759299i 0.0366979 0.0266626i −0.569285 0.822140i \(-0.692780\pi\)
0.605983 + 0.795478i \(0.292780\pi\)
\(812\) −2.12663 + 2.92705i −0.0746300 + 0.102719i
\(813\) 4.70228 6.47214i 0.164916 0.226988i
\(814\) −1.61803 + 1.17557i −0.0567121 + 0.0412037i
\(815\) 0 0
\(816\) 1.14590 + 0.832544i 0.0401145 + 0.0291449i
\(817\) 10.3229 3.35410i 0.361151 0.117345i
\(818\) 17.5623i 0.614052i
\(819\) 4.85410 + 14.9394i 0.169616 + 0.522025i
\(820\) 0 0
\(821\) 6.08359 18.7234i 0.212319 0.653450i −0.787014 0.616935i \(-0.788374\pi\)
0.999333 0.0365154i \(-0.0116258\pi\)
\(822\) 3.49396 + 1.13525i 0.121866 + 0.0395966i
\(823\) 20.1562 + 27.7426i 0.702601 + 0.967048i 0.999925 + 0.0122710i \(0.00390607\pi\)
−0.297323 + 0.954777i \(0.596094\pi\)
\(824\) −25.8541 −0.900670
\(825\) 0 0
\(826\) 4.14590 0.144254
\(827\) 17.6538 + 24.2984i 0.613883 + 0.844937i 0.996890 0.0788082i \(-0.0251115\pi\)
−0.383007 + 0.923745i \(0.625111\pi\)
\(828\) −25.3480 8.23607i −0.880904 0.286223i
\(829\) 9.00658 27.7194i 0.312811 0.962734i −0.663835 0.747879i \(-0.731072\pi\)
0.976646 0.214855i \(-0.0689279\pi\)
\(830\) 0 0
\(831\) −3.48936 10.7391i −0.121044 0.372537i
\(832\) 1.14590i 0.0397269i
\(833\) 3.18368 1.03444i 0.110308 0.0358413i
\(834\) 2.50000 + 1.81636i 0.0865679 + 0.0628953i
\(835\) 0 0
\(836\) 5.85410 4.25325i 0.202468 0.147102i
\(837\) 8.81678 12.1353i 0.304752 0.419456i
\(838\) 0.191758 0.263932i 0.00662416 0.00911738i
\(839\) 3.35410 2.43690i 0.115796 0.0841311i −0.528380 0.849008i \(-0.677200\pi\)
0.644176 + 0.764877i \(0.277200\pi\)
\(840\) 0 0
\(841\) 21.9164 + 15.9232i 0.755738 + 0.549076i
\(842\) −18.8091 + 6.11146i −0.648205 + 0.210615i
\(843\) 1.09017i 0.0375474i
\(844\) 6.59017 + 20.2825i 0.226843 + 0.698151i
\(845\) 0 0
\(846\) 0.618034 1.90211i 0.0212484 0.0653960i
\(847\) 16.0292 + 5.20820i 0.550770 + 0.178956i
\(848\) 5.96361 + 8.20820i 0.204791 + 0.281871i
\(849\) 23.1459 0.794365
\(850\) 0 0
\(851\) 34.8885 1.19596
\(852\) −4.16750 5.73607i −0.142776 0.196514i
\(853\) −44.9897 14.6180i −1.54042 0.500512i −0.588926 0.808187i \(-0.700449\pi\)
−0.951491 + 0.307675i \(0.900449\pi\)
\(854\) −1.45492 + 4.47777i −0.0497862 + 0.153226i
\(855\) 0 0
\(856\) −7.19756 22.1518i −0.246008 0.757133i
\(857\) 40.6869i 1.38984i −0.719088 0.694919i \(-0.755440\pi\)
0.719088 0.694919i \(-0.244560\pi\)
\(858\) 2.17963 0.708204i 0.0744113 0.0241777i
\(859\) −22.9894 16.7027i −0.784387 0.569890i 0.121906 0.992542i \(-0.461099\pi\)
−0.906292 + 0.422651i \(0.861099\pi\)
\(860\) 0 0
\(861\) −6.85410 + 4.97980i −0.233587 + 0.169711i
\(862\) 8.65778 11.9164i 0.294885 0.405874i
\(863\) 24.4297 33.6246i 0.831597 1.14460i −0.156027 0.987753i \(-0.549869\pi\)
0.987624 0.156842i \(-0.0501314\pi\)
\(864\) −22.7254 + 16.5110i −0.773135 + 0.561715i
\(865\) 0 0
\(866\) −10.0729 7.31843i −0.342293 0.248690i
\(867\) 15.6129 5.07295i 0.530243 0.172286i
\(868\) 7.85410i 0.266586i
\(869\) 0.729490 + 2.24514i 0.0247463 + 0.0761612i
\(870\) 0 0
\(871\) −13.8541 + 42.6385i −0.469428 + 1.44475i
\(872\) −21.2663 6.90983i −0.720167 0.233996i
\(873\) −3.35520 4.61803i −0.113556 0.156297i
\(874\) 29.7984 1.00795
\(875\) 0 0
\(876\) 14.5623 0.492015
\(877\) −17.9516 24.7082i −0.606181 0.834337i 0.390075 0.920783i \(-0.372449\pi\)
−0.996257 + 0.0864462i \(0.972449\pi\)
\(878\) −3.51420 1.14183i −0.118598 0.0385350i
\(879\) 8.79837 27.0786i 0.296762 0.913339i
\(880\) 0 0
\(881\) 1.34752 + 4.14725i 0.0453992 + 0.139725i 0.971187 0.238320i \(-0.0765967\pi\)
−0.925787 + 0.378044i \(0.876597\pi\)
\(882\) 5.41641i 0.182380i
\(883\) −45.0957 + 14.6525i −1.51759 + 0.493095i −0.945090 0.326809i \(-0.894026\pi\)
−0.572500 + 0.819904i \(0.694026\pi\)
\(884\) −4.85410 3.52671i −0.163261 0.118616i
\(885\) 0 0
\(886\) −6.02786 + 4.37950i −0.202510 + 0.147132i
\(887\) −3.46120 + 4.76393i −0.116216 + 0.159957i −0.863162 0.504927i \(-0.831519\pi\)
0.746946 + 0.664885i \(0.231519\pi\)
\(888\) 5.56758 7.66312i 0.186836 0.257157i
\(889\) 20.7984 15.1109i 0.697555 0.506803i
\(890\) 0 0
\(891\) 0.618034 + 0.449028i 0.0207049 + 0.0150430i
\(892\) 34.1320 11.0902i 1.14283 0.371326i
\(893\) 9.47214i 0.316973i
\(894\) −2.66312 8.19624i −0.0890680 0.274123i
\(895\) 0 0
\(896\) 5.69098 17.5150i 0.190122 0.585137i
\(897\) −38.0220 12.3541i −1.26952 0.412491i
\(898\) 7.38394 + 10.1631i 0.246405 + 0.339148i
\(899\) −4.14590 −0.138273
\(900\) 0 0
\(901\) −4.18034 −0.139267
\(902\) −1.45309 2.00000i −0.0483824 0.0665927i
\(903\) 2.85317 + 0.927051i 0.0949475 + 0.0308503i
\(904\) 7.01064 21.5765i 0.233171 0.717625i
\(905\) 0 0
\(906\) −1.06231 3.26944i −0.0352927 0.108620i
\(907\) 47.2492i 1.56888i 0.620202 + 0.784442i \(0.287051\pi\)
−0.620202 + 0.784442i \(0.712949\pi\)
\(908\) −29.6013 + 9.61803i −0.982352 + 0.319186i
\(909\) 12.0902 + 8.78402i 0.401006 + 0.291348i
\(910\) 0 0
\(911\) 28.9336 21.0215i 0.958614 0.696474i 0.00578548 0.999983i \(-0.498158\pi\)
0.952828 + 0.303510i \(0.0981584\pi\)
\(912\) −6.37988 + 8.78115i −0.211259 + 0.290773i
\(913\) −0.792055 + 1.09017i −0.0262132 + 0.0360794i
\(914\) 2.70820 1.96763i 0.0895794 0.0650833i
\(915\) 0 0
\(916\) 10.8541 + 7.88597i 0.358630 + 0.260560i
\(917\) −27.3889 + 8.89919i −0.904461 + 0.293877i
\(918\) 2.36068i 0.0779140i
\(919\) 0.551663 + 1.69784i 0.0181977 + 0.0560067i 0.959743 0.280880i \(-0.0906262\pi\)
−0.941545 + 0.336886i \(0.890626\pi\)
\(920\) 0 0
\(921\) 1.47214 4.53077i 0.0485085 0.149294i
\(922\) 13.6251 + 4.42705i 0.448718 + 0.145797i
\(923\) 12.5025 + 17.2082i 0.411525 + 0.566415i
\(924\) 2.00000 0.0657952
\(925\) 0 0
\(926\) 9.96556 0.327489
\(927\) −13.5923 18.7082i −0.446430 0.614458i
\(928\) 7.38394 + 2.39919i 0.242390 + 0.0787572i
\(929\) 11.3197 34.8383i 0.371386 1.14301i −0.574499 0.818506i \(-0.694803\pi\)
0.945885 0.324503i \(-0.105197\pi\)
\(930\) 0 0
\(931\) 7.92705 + 24.3970i 0.259799 + 0.799578i
\(932\) 24.1803i 0.792053i
\(933\) −28.0624 + 9.11803i −0.918722 + 0.298511i
\(934\) −14.2254 10.3354i −0.465470 0.338184i
\(935\) 0 0
\(936\) 17.5623 12.7598i 0.574042 0.417066i
\(937\) 30.1360 41.4787i 0.984502 1.35505i 0.0501333 0.998743i \(-0.484035\pi\)
0.934369 0.356308i \(-0.115965\pi\)
\(938\) 5.42882 7.47214i 0.177257 0.243974i
\(939\) −17.1803 + 12.4822i −0.560659 + 0.407343i
\(940\) 0 0
\(941\) 15.8435 + 11.5109i 0.516482 + 0.375246i 0.815277 0.579071i \(-0.196585\pi\)
−0.298795 + 0.954317i \(0.596585\pi\)
\(942\) 5.39607 1.75329i 0.175813 0.0571252i
\(943\) 43.1246i 1.40433i
\(944\) 2.37539 + 7.31069i 0.0773123 + 0.237943i
\(945\) 0 0
\(946\) −0.270510 + 0.832544i −0.00879503 + 0.0270683i
\(947\) −27.2501 8.85410i −0.885510 0.287720i −0.169267 0.985570i \(-0.554140\pi\)
−0.716243 + 0.697851i \(0.754140\pi\)
\(948\) −2.93893 4.04508i −0.0954519 0.131378i
\(949\) −43.6869 −1.41814
\(950\) 0 0
\(951\) −23.6525 −0.766984
\(952\) 1.62460 + 2.23607i 0.0526535 + 0.0724714i
\(953\) −33.0422 10.7361i −1.07034 0.347775i −0.279721 0.960081i \(-0.590242\pi\)
−0.790621 + 0.612306i \(0.790242\pi\)
\(954\) 2.09017 6.43288i 0.0676718 0.208272i
\(955\) 0 0
\(956\) 14.7361 + 45.3530i 0.476598 + 1.46682i
\(957\) 1.05573i 0.0341268i
\(958\) −2.43690 + 0.791796i −0.0787326 + 0.0255818i
\(959\) −7.78115 5.65334i −0.251267 0.182556i
\(960\) 0 0
\(961\) 17.7984 12.9313i 0.574141 0.417138i
\(962\) −7.46969 + 10.2812i −0.240833 + 0.331478i
\(963\) 12.2452 16.8541i 0.394597 0.543116i
\(964\) −15.0172 + 10.9106i −0.483672 + 0.351408i
\(965\) 0 0
\(966\) 6.66312 + 4.84104i 0.214382 + 0.155758i
\(967\) −37.9363 + 12.3262i −1.21995 + 0.396385i −0.847063 0.531493i \(-0.821631\pi\)
−0.372885 + 0.927878i \(0.621631\pi\)
\(968\) 23.2918i 0.748627i
\(969\) −1.38197 4.25325i −0.0443951 0.136634i
\(970\) 0 0
\(971\) 1.04508 3.21644i 0.0335384 0.103220i −0.932886 0.360172i \(-0.882718\pi\)
0.966424 + 0.256951i \(0.0827180\pi\)
\(972\) −24.6215 8.00000i −0.789734 0.256600i
\(973\) −4.75528 6.54508i −0.152447 0.209826i
\(974\) 5.92299 0.189785
\(975\) 0 0
\(976\) −8.72949 −0.279424
\(977\) 19.7804 + 27.2254i 0.632832 + 0.871019i 0.998208 0.0598416i \(-0.0190595\pi\)
−0.365376 + 0.930860i \(0.619060\pi\)
\(978\) −6.46564 2.10081i −0.206748 0.0671766i
\(979\) 2.11146 6.49839i 0.0674824 0.207690i
\(980\) 0 0
\(981\) −6.18034 19.0211i −0.197323 0.607298i
\(982\) 23.0213i 0.734639i
\(983\) 7.02067 2.28115i 0.223924 0.0727575i −0.194906 0.980822i \(-0.562440\pi\)
0.418830 + 0.908064i \(0.362440\pi\)
\(984\) 9.47214 + 6.88191i 0.301961 + 0.219387i
\(985\) 0 0
\(986\) −0.527864 + 0.383516i −0.0168106 + 0.0122136i
\(987\) 1.53884 2.11803i 0.0489819 0.0674178i
\(988\) 27.0256 37.1976i 0.859799 1.18341i
\(989\) 12.3541 8.97578i 0.392838 0.285413i
\(990\) 0 0
\(991\) −23.7533 17.2578i −0.754548 0.548211i 0.142685 0.989768i \(-0.454426\pi\)
−0.897233 + 0.441557i \(0.854426\pi\)
\(992\) 16.0292 5.20820i 0.508928 0.165361i
\(993\) 17.1246i 0.543433i
\(994\) −1.35410 4.16750i −0.0429495 0.132185i
\(995\) 0 0
\(996\) 0.881966 2.71441i 0.0279462 0.0860094i
\(997\) −10.3556 3.36475i −0.327966 0.106563i 0.140406 0.990094i \(-0.455159\pi\)
−0.468372 + 0.883531i \(0.655159\pi\)
\(998\) −4.56352 6.28115i −0.144456 0.198826i
\(999\) 21.1803 0.670116
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 125.2.e.a.74.1 8
5.2 odd 4 125.2.d.a.51.1 4
5.3 odd 4 25.2.d.a.11.1 4
5.4 even 2 inner 125.2.e.a.74.2 8
15.8 even 4 225.2.h.b.136.1 4
20.3 even 4 400.2.u.b.161.1 4
25.2 odd 20 625.2.d.b.126.1 4
25.3 odd 20 625.2.a.b.1.2 2
25.4 even 10 625.2.b.a.624.2 4
25.6 even 5 625.2.e.c.124.2 8
25.8 odd 20 625.2.d.h.501.1 4
25.9 even 10 inner 125.2.e.a.49.1 8
25.11 even 5 625.2.e.c.499.1 8
25.12 odd 20 125.2.d.a.76.1 4
25.13 odd 20 25.2.d.a.16.1 yes 4
25.14 even 10 625.2.e.c.499.2 8
25.16 even 5 inner 125.2.e.a.49.2 8
25.17 odd 20 625.2.d.b.501.1 4
25.19 even 10 625.2.e.c.124.1 8
25.21 even 5 625.2.b.a.624.3 4
25.22 odd 20 625.2.a.c.1.1 2
25.23 odd 20 625.2.d.h.126.1 4
75.38 even 20 225.2.h.b.91.1 4
75.47 even 20 5625.2.a.d.1.2 2
75.53 even 20 5625.2.a.f.1.1 2
100.3 even 20 10000.2.a.c.1.2 2
100.47 even 20 10000.2.a.l.1.1 2
100.63 even 20 400.2.u.b.241.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.2.d.a.11.1 4 5.3 odd 4
25.2.d.a.16.1 yes 4 25.13 odd 20
125.2.d.a.51.1 4 5.2 odd 4
125.2.d.a.76.1 4 25.12 odd 20
125.2.e.a.49.1 8 25.9 even 10 inner
125.2.e.a.49.2 8 25.16 even 5 inner
125.2.e.a.74.1 8 1.1 even 1 trivial
125.2.e.a.74.2 8 5.4 even 2 inner
225.2.h.b.91.1 4 75.38 even 20
225.2.h.b.136.1 4 15.8 even 4
400.2.u.b.161.1 4 20.3 even 4
400.2.u.b.241.1 4 100.63 even 20
625.2.a.b.1.2 2 25.3 odd 20
625.2.a.c.1.1 2 25.22 odd 20
625.2.b.a.624.2 4 25.4 even 10
625.2.b.a.624.3 4 25.21 even 5
625.2.d.b.126.1 4 25.2 odd 20
625.2.d.b.501.1 4 25.17 odd 20
625.2.d.h.126.1 4 25.23 odd 20
625.2.d.h.501.1 4 25.8 odd 20
625.2.e.c.124.1 8 25.19 even 10
625.2.e.c.124.2 8 25.6 even 5
625.2.e.c.499.1 8 25.11 even 5
625.2.e.c.499.2 8 25.14 even 10
5625.2.a.d.1.2 2 75.47 even 20
5625.2.a.f.1.1 2 75.53 even 20
10000.2.a.c.1.2 2 100.3 even 20
10000.2.a.l.1.1 2 100.47 even 20