Properties

Label 625.2.d.b.126.1
Level $625$
Weight $2$
Character 625.126
Analytic conductor $4.991$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [625,2,Mod(126,625)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(625, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("625.126");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 625 = 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 625.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.99065012633\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 25)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 126.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 625.126
Dual form 625.2.d.b.501.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.190983 - 0.587785i) q^{2} +(0.809017 - 0.587785i) q^{3} +(1.30902 - 0.951057i) q^{4} +(-0.500000 - 0.363271i) q^{6} +1.61803 q^{7} +(-1.80902 - 1.31433i) q^{8} +(-0.618034 + 1.90211i) q^{9} +(-0.236068 - 0.726543i) q^{11} +(0.500000 - 1.53884i) q^{12} +(1.50000 - 4.61653i) q^{13} +(-0.309017 - 0.951057i) q^{14} +(0.572949 - 1.76336i) q^{16} +(-0.618034 - 0.449028i) q^{17} +1.23607 q^{18} +(4.73607 + 3.44095i) q^{19} +(1.30902 - 0.951057i) q^{21} +(-0.381966 + 0.277515i) q^{22} +(-2.54508 - 7.83297i) q^{23} -2.23607 q^{24} -3.00000 q^{26} +(1.54508 + 4.75528i) q^{27} +(2.11803 - 1.53884i) q^{28} +(1.11803 - 0.812299i) q^{29} +(2.42705 + 1.76336i) q^{31} -5.61803 q^{32} +(-0.618034 - 0.449028i) q^{33} +(-0.145898 + 0.449028i) q^{34} +(1.00000 + 3.07768i) q^{36} +(-1.30902 + 4.02874i) q^{37} +(1.11803 - 3.44095i) q^{38} +(-1.50000 - 4.61653i) q^{39} +(-1.61803 + 4.97980i) q^{41} +(-0.809017 - 0.587785i) q^{42} -1.85410 q^{43} +(-1.00000 - 0.726543i) q^{44} +(-4.11803 + 2.99193i) q^{46} +(-1.30902 + 0.951057i) q^{47} +(-0.572949 - 1.76336i) q^{48} -4.38197 q^{49} -0.763932 q^{51} +(-2.42705 - 7.46969i) q^{52} +(4.42705 - 3.21644i) q^{53} +(2.50000 - 1.81636i) q^{54} +(-2.92705 - 2.12663i) q^{56} +5.85410 q^{57} +(-0.690983 - 0.502029i) q^{58} +(-1.28115 + 3.94298i) q^{59} +(-1.45492 - 4.47777i) q^{61} +(0.572949 - 1.76336i) q^{62} +(-1.00000 + 3.07768i) q^{63} +(-0.0729490 - 0.224514i) q^{64} +(-0.145898 + 0.449028i) q^{66} +(7.47214 + 5.42882i) q^{67} -1.23607 q^{68} +(-6.66312 - 4.84104i) q^{69} +(3.54508 - 2.57565i) q^{71} +(3.61803 - 2.62866i) q^{72} +(2.78115 + 8.55951i) q^{73} +2.61803 q^{74} +9.47214 q^{76} +(-0.381966 - 1.17557i) q^{77} +(-2.42705 + 1.76336i) q^{78} +(-2.50000 + 1.81636i) q^{79} +(-0.809017 - 0.587785i) q^{81} +3.23607 q^{82} +(-1.42705 - 1.03681i) q^{83} +(0.809017 - 2.48990i) q^{84} +(0.354102 + 1.08981i) q^{86} +(0.427051 - 1.31433i) q^{87} +(-0.527864 + 1.62460i) q^{88} +(2.76393 + 8.50651i) q^{89} +(2.42705 - 7.46969i) q^{91} +(-10.7812 - 7.83297i) q^{92} +3.00000 q^{93} +(0.809017 + 0.587785i) q^{94} +(-4.54508 + 3.30220i) q^{96} +(2.30902 - 1.67760i) q^{97} +(0.836881 + 2.57565i) q^{98} +1.52786 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} + q^{3} + 3 q^{4} - 2 q^{6} + 2 q^{7} - 5 q^{8} + 2 q^{9} + 8 q^{11} + 2 q^{12} + 6 q^{13} + q^{14} + 9 q^{16} + 2 q^{17} - 4 q^{18} + 10 q^{19} + 3 q^{21} - 6 q^{22} + q^{23} - 12 q^{26}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/625\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.190983 0.587785i −0.135045 0.415627i 0.860552 0.509363i \(-0.170119\pi\)
−0.995597 + 0.0937362i \(0.970119\pi\)
\(3\) 0.809017 0.587785i 0.467086 0.339358i −0.329218 0.944254i \(-0.606785\pi\)
0.796305 + 0.604896i \(0.206785\pi\)
\(4\) 1.30902 0.951057i 0.654508 0.475528i
\(5\) 0 0
\(6\) −0.500000 0.363271i −0.204124 0.148305i
\(7\) 1.61803 0.611559 0.305780 0.952102i \(-0.401083\pi\)
0.305780 + 0.952102i \(0.401083\pi\)
\(8\) −1.80902 1.31433i −0.639584 0.464685i
\(9\) −0.618034 + 1.90211i −0.206011 + 0.634038i
\(10\) 0 0
\(11\) −0.236068 0.726543i −0.0711772 0.219061i 0.909140 0.416491i \(-0.136740\pi\)
−0.980317 + 0.197430i \(0.936740\pi\)
\(12\) 0.500000 1.53884i 0.144338 0.444225i
\(13\) 1.50000 4.61653i 0.416025 1.28039i −0.495306 0.868719i \(-0.664944\pi\)
0.911331 0.411675i \(-0.135056\pi\)
\(14\) −0.309017 0.951057i −0.0825883 0.254181i
\(15\) 0 0
\(16\) 0.572949 1.76336i 0.143237 0.440839i
\(17\) −0.618034 0.449028i −0.149895 0.108905i 0.510310 0.859991i \(-0.329531\pi\)
−0.660205 + 0.751085i \(0.729531\pi\)
\(18\) 1.23607 0.291344
\(19\) 4.73607 + 3.44095i 1.08653 + 0.789409i 0.978810 0.204772i \(-0.0656454\pi\)
0.107719 + 0.994181i \(0.465645\pi\)
\(20\) 0 0
\(21\) 1.30902 0.951057i 0.285651 0.207538i
\(22\) −0.381966 + 0.277515i −0.0814354 + 0.0591663i
\(23\) −2.54508 7.83297i −0.530687 1.63329i −0.752788 0.658263i \(-0.771292\pi\)
0.222101 0.975024i \(-0.428708\pi\)
\(24\) −2.23607 −0.456435
\(25\) 0 0
\(26\) −3.00000 −0.588348
\(27\) 1.54508 + 4.75528i 0.297352 + 0.915155i
\(28\) 2.11803 1.53884i 0.400271 0.290814i
\(29\) 1.11803 0.812299i 0.207614 0.150840i −0.479120 0.877750i \(-0.659044\pi\)
0.686733 + 0.726909i \(0.259044\pi\)
\(30\) 0 0
\(31\) 2.42705 + 1.76336i 0.435911 + 0.316708i 0.784008 0.620750i \(-0.213172\pi\)
−0.348097 + 0.937459i \(0.613172\pi\)
\(32\) −5.61803 −0.993137
\(33\) −0.618034 0.449028i −0.107586 0.0781657i
\(34\) −0.145898 + 0.449028i −0.0250213 + 0.0770077i
\(35\) 0 0
\(36\) 1.00000 + 3.07768i 0.166667 + 0.512947i
\(37\) −1.30902 + 4.02874i −0.215201 + 0.662321i 0.783938 + 0.620839i \(0.213208\pi\)
−0.999139 + 0.0414819i \(0.986792\pi\)
\(38\) 1.11803 3.44095i 0.181369 0.558197i
\(39\) −1.50000 4.61653i −0.240192 0.739236i
\(40\) 0 0
\(41\) −1.61803 + 4.97980i −0.252694 + 0.777714i 0.741581 + 0.670864i \(0.234076\pi\)
−0.994275 + 0.106850i \(0.965924\pi\)
\(42\) −0.809017 0.587785i −0.124834 0.0906972i
\(43\) −1.85410 −0.282748 −0.141374 0.989956i \(-0.545152\pi\)
−0.141374 + 0.989956i \(0.545152\pi\)
\(44\) −1.00000 0.726543i −0.150756 0.109530i
\(45\) 0 0
\(46\) −4.11803 + 2.99193i −0.607171 + 0.441136i
\(47\) −1.30902 + 0.951057i −0.190940 + 0.138726i −0.679148 0.734001i \(-0.737651\pi\)
0.488208 + 0.872727i \(0.337651\pi\)
\(48\) −0.572949 1.76336i −0.0826981 0.254518i
\(49\) −4.38197 −0.625995
\(50\) 0 0
\(51\) −0.763932 −0.106972
\(52\) −2.42705 7.46969i −0.336571 1.03586i
\(53\) 4.42705 3.21644i 0.608102 0.441812i −0.240643 0.970614i \(-0.577358\pi\)
0.848746 + 0.528801i \(0.177358\pi\)
\(54\) 2.50000 1.81636i 0.340207 0.247175i
\(55\) 0 0
\(56\) −2.92705 2.12663i −0.391144 0.284182i
\(57\) 5.85410 0.775395
\(58\) −0.690983 0.502029i −0.0907305 0.0659196i
\(59\) −1.28115 + 3.94298i −0.166792 + 0.513333i −0.999164 0.0408847i \(-0.986982\pi\)
0.832372 + 0.554217i \(0.186982\pi\)
\(60\) 0 0
\(61\) −1.45492 4.47777i −0.186283 0.573319i 0.813685 0.581306i \(-0.197458\pi\)
−0.999968 + 0.00798614i \(0.997458\pi\)
\(62\) 0.572949 1.76336i 0.0727646 0.223946i
\(63\) −1.00000 + 3.07768i −0.125988 + 0.387752i
\(64\) −0.0729490 0.224514i −0.00911863 0.0280642i
\(65\) 0 0
\(66\) −0.145898 + 0.449028i −0.0179588 + 0.0552715i
\(67\) 7.47214 + 5.42882i 0.912867 + 0.663236i 0.941738 0.336347i \(-0.109191\pi\)
−0.0288716 + 0.999583i \(0.509191\pi\)
\(68\) −1.23607 −0.149895
\(69\) −6.66312 4.84104i −0.802145 0.582793i
\(70\) 0 0
\(71\) 3.54508 2.57565i 0.420724 0.305674i −0.357205 0.934026i \(-0.616270\pi\)
0.777929 + 0.628352i \(0.216270\pi\)
\(72\) 3.61803 2.62866i 0.426389 0.309790i
\(73\) 2.78115 + 8.55951i 0.325509 + 1.00181i 0.971210 + 0.238224i \(0.0765653\pi\)
−0.645701 + 0.763590i \(0.723435\pi\)
\(74\) 2.61803 0.304340
\(75\) 0 0
\(76\) 9.47214 1.08653
\(77\) −0.381966 1.17557i −0.0435291 0.133969i
\(78\) −2.42705 + 1.76336i −0.274809 + 0.199661i
\(79\) −2.50000 + 1.81636i −0.281272 + 0.204356i −0.719472 0.694521i \(-0.755616\pi\)
0.438200 + 0.898877i \(0.355616\pi\)
\(80\) 0 0
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 3.23607 0.357364
\(83\) −1.42705 1.03681i −0.156639 0.113805i 0.506705 0.862120i \(-0.330863\pi\)
−0.663344 + 0.748315i \(0.730863\pi\)
\(84\) 0.809017 2.48990i 0.0882710 0.271670i
\(85\) 0 0
\(86\) 0.354102 + 1.08981i 0.0381838 + 0.117518i
\(87\) 0.427051 1.31433i 0.0457847 0.140911i
\(88\) −0.527864 + 1.62460i −0.0562705 + 0.173183i
\(89\) 2.76393 + 8.50651i 0.292976 + 0.901688i 0.983894 + 0.178754i \(0.0572068\pi\)
−0.690918 + 0.722934i \(0.742793\pi\)
\(90\) 0 0
\(91\) 2.42705 7.46969i 0.254424 0.783037i
\(92\) −10.7812 7.83297i −1.12401 0.816643i
\(93\) 3.00000 0.311086
\(94\) 0.809017 + 0.587785i 0.0834437 + 0.0606254i
\(95\) 0 0
\(96\) −4.54508 + 3.30220i −0.463881 + 0.337029i
\(97\) 2.30902 1.67760i 0.234445 0.170334i −0.464360 0.885647i \(-0.653716\pi\)
0.698805 + 0.715312i \(0.253716\pi\)
\(98\) 0.836881 + 2.57565i 0.0845378 + 0.260180i
\(99\) 1.52786 0.153556
\(100\) 0 0
\(101\) −7.47214 −0.743505 −0.371753 0.928332i \(-0.621243\pi\)
−0.371753 + 0.928332i \(0.621243\pi\)
\(102\) 0.145898 + 0.449028i 0.0144461 + 0.0444604i
\(103\) −9.35410 + 6.79615i −0.921687 + 0.669645i −0.943943 0.330107i \(-0.892915\pi\)
0.0222563 + 0.999752i \(0.492915\pi\)
\(104\) −8.78115 + 6.37988i −0.861063 + 0.625599i
\(105\) 0 0
\(106\) −2.73607 1.98787i −0.265750 0.193079i
\(107\) −10.4164 −1.00699 −0.503496 0.863998i \(-0.667953\pi\)
−0.503496 + 0.863998i \(0.667953\pi\)
\(108\) 6.54508 + 4.75528i 0.629801 + 0.457577i
\(109\) 3.09017 9.51057i 0.295985 0.910947i −0.686904 0.726748i \(-0.741031\pi\)
0.982889 0.184199i \(-0.0589691\pi\)
\(110\) 0 0
\(111\) 1.30902 + 4.02874i 0.124246 + 0.382391i
\(112\) 0.927051 2.85317i 0.0875981 0.269599i
\(113\) −3.13525 + 9.64932i −0.294940 + 0.907732i 0.688302 + 0.725425i \(0.258357\pi\)
−0.983242 + 0.182307i \(0.941643\pi\)
\(114\) −1.11803 3.44095i −0.104713 0.322275i
\(115\) 0 0
\(116\) 0.690983 2.12663i 0.0641562 0.197452i
\(117\) 7.85410 + 5.70634i 0.726112 + 0.527551i
\(118\) 2.56231 0.235879
\(119\) −1.00000 0.726543i −0.0916698 0.0666020i
\(120\) 0 0
\(121\) 8.42705 6.12261i 0.766096 0.556601i
\(122\) −2.35410 + 1.71036i −0.213130 + 0.154848i
\(123\) 1.61803 + 4.97980i 0.145893 + 0.449013i
\(124\) 4.85410 0.435911
\(125\) 0 0
\(126\) 2.00000 0.178174
\(127\) 4.90983 + 15.1109i 0.435677 + 1.34088i 0.892391 + 0.451262i \(0.149026\pi\)
−0.456714 + 0.889613i \(0.650974\pi\)
\(128\) −9.20820 + 6.69015i −0.813898 + 0.591331i
\(129\) −1.50000 + 1.08981i −0.132068 + 0.0959528i
\(130\) 0 0
\(131\) 14.3992 + 10.4616i 1.25806 + 0.914036i 0.998661 0.0517333i \(-0.0164746\pi\)
0.259402 + 0.965769i \(0.416475\pi\)
\(132\) −1.23607 −0.107586
\(133\) 7.66312 + 5.56758i 0.664477 + 0.482771i
\(134\) 1.76393 5.42882i 0.152381 0.468979i
\(135\) 0 0
\(136\) 0.527864 + 1.62460i 0.0452640 + 0.139308i
\(137\) −1.83688 + 5.65334i −0.156935 + 0.482997i −0.998352 0.0573898i \(-0.981722\pi\)
0.841417 + 0.540387i \(0.181722\pi\)
\(138\) −1.57295 + 4.84104i −0.133898 + 0.412097i
\(139\) 1.54508 + 4.75528i 0.131052 + 0.403338i 0.994955 0.100321i \(-0.0319869\pi\)
−0.863903 + 0.503659i \(0.831987\pi\)
\(140\) 0 0
\(141\) −0.500000 + 1.53884i −0.0421076 + 0.129594i
\(142\) −2.19098 1.59184i −0.183863 0.133584i
\(143\) −3.70820 −0.310096
\(144\) 3.00000 + 2.17963i 0.250000 + 0.181636i
\(145\) 0 0
\(146\) 4.50000 3.26944i 0.372423 0.270581i
\(147\) −3.54508 + 2.57565i −0.292394 + 0.212436i
\(148\) 2.11803 + 6.51864i 0.174101 + 0.535829i
\(149\) 13.9443 1.14236 0.571180 0.820825i \(-0.306486\pi\)
0.571180 + 0.820825i \(0.306486\pi\)
\(150\) 0 0
\(151\) −5.56231 −0.452654 −0.226327 0.974051i \(-0.572672\pi\)
−0.226327 + 0.974051i \(0.572672\pi\)
\(152\) −4.04508 12.4495i −0.328100 1.00979i
\(153\) 1.23607 0.898056i 0.0999302 0.0726035i
\(154\) −0.618034 + 0.449028i −0.0498026 + 0.0361837i
\(155\) 0 0
\(156\) −6.35410 4.61653i −0.508735 0.369618i
\(157\) 9.18034 0.732671 0.366335 0.930483i \(-0.380612\pi\)
0.366335 + 0.930483i \(0.380612\pi\)
\(158\) 1.54508 + 1.12257i 0.122920 + 0.0893069i
\(159\) 1.69098 5.20431i 0.134104 0.412729i
\(160\) 0 0
\(161\) −4.11803 12.6740i −0.324547 0.998852i
\(162\) −0.190983 + 0.587785i −0.0150050 + 0.0461808i
\(163\) −3.39919 + 10.4616i −0.266245 + 0.819417i 0.725159 + 0.688581i \(0.241766\pi\)
−0.991404 + 0.130836i \(0.958234\pi\)
\(164\) 2.61803 + 8.05748i 0.204434 + 0.629183i
\(165\) 0 0
\(166\) −0.336881 + 1.03681i −0.0261470 + 0.0804723i
\(167\) −4.50000 3.26944i −0.348220 0.252997i 0.399902 0.916558i \(-0.369044\pi\)
−0.748122 + 0.663561i \(0.769044\pi\)
\(168\) −3.61803 −0.279137
\(169\) −8.54508 6.20837i −0.657314 0.477567i
\(170\) 0 0
\(171\) −9.47214 + 6.88191i −0.724352 + 0.526273i
\(172\) −2.42705 + 1.76336i −0.185061 + 0.134455i
\(173\) 5.21885 + 16.0620i 0.396782 + 1.22117i 0.927565 + 0.373661i \(0.121898\pi\)
−0.530784 + 0.847507i \(0.678102\pi\)
\(174\) −0.854102 −0.0647493
\(175\) 0 0
\(176\) −1.41641 −0.106766
\(177\) 1.28115 + 3.94298i 0.0962974 + 0.296373i
\(178\) 4.47214 3.24920i 0.335201 0.243538i
\(179\) 7.66312 5.56758i 0.572768 0.416141i −0.263341 0.964703i \(-0.584825\pi\)
0.836110 + 0.548562i \(0.184825\pi\)
\(180\) 0 0
\(181\) −11.0902 8.05748i −0.824326 0.598908i 0.0936225 0.995608i \(-0.470155\pi\)
−0.917948 + 0.396700i \(0.870155\pi\)
\(182\) −4.85410 −0.359810
\(183\) −3.80902 2.76741i −0.281571 0.204573i
\(184\) −5.69098 + 17.5150i −0.419545 + 1.29123i
\(185\) 0 0
\(186\) −0.572949 1.76336i −0.0420107 0.129296i
\(187\) −0.180340 + 0.555029i −0.0131878 + 0.0405877i
\(188\) −0.809017 + 2.48990i −0.0590036 + 0.181594i
\(189\) 2.50000 + 7.69421i 0.181848 + 0.559671i
\(190\) 0 0
\(191\) −7.47214 + 22.9969i −0.540665 + 1.66400i 0.190415 + 0.981704i \(0.439016\pi\)
−0.731080 + 0.682292i \(0.760984\pi\)
\(192\) −0.190983 0.138757i −0.0137830 0.0100139i
\(193\) 5.70820 0.410886 0.205443 0.978669i \(-0.434137\pi\)
0.205443 + 0.978669i \(0.434137\pi\)
\(194\) −1.42705 1.03681i −0.102456 0.0744389i
\(195\) 0 0
\(196\) −5.73607 + 4.16750i −0.409719 + 0.297678i
\(197\) −7.85410 + 5.70634i −0.559582 + 0.406560i −0.831306 0.555815i \(-0.812406\pi\)
0.271724 + 0.962375i \(0.412406\pi\)
\(198\) −0.291796 0.898056i −0.0207370 0.0638221i
\(199\) 2.56231 0.181637 0.0908185 0.995867i \(-0.471052\pi\)
0.0908185 + 0.995867i \(0.471052\pi\)
\(200\) 0 0
\(201\) 9.23607 0.651462
\(202\) 1.42705 + 4.39201i 0.100407 + 0.309021i
\(203\) 1.80902 1.31433i 0.126968 0.0922477i
\(204\) −1.00000 + 0.726543i −0.0700140 + 0.0508682i
\(205\) 0 0
\(206\) 5.78115 + 4.20025i 0.402792 + 0.292646i
\(207\) 16.4721 1.14489
\(208\) −7.28115 5.29007i −0.504857 0.366800i
\(209\) 1.38197 4.25325i 0.0955926 0.294204i
\(210\) 0 0
\(211\) 4.07295 + 12.5352i 0.280393 + 0.862962i 0.987742 + 0.156097i \(0.0498912\pi\)
−0.707348 + 0.706865i \(0.750109\pi\)
\(212\) 2.73607 8.42075i 0.187914 0.578340i
\(213\) 1.35410 4.16750i 0.0927815 0.285552i
\(214\) 1.98936 + 6.12261i 0.135990 + 0.418533i
\(215\) 0 0
\(216\) 3.45492 10.6331i 0.235077 0.723493i
\(217\) 3.92705 + 2.85317i 0.266586 + 0.193686i
\(218\) −6.18034 −0.418585
\(219\) 7.28115 + 5.29007i 0.492015 + 0.357470i
\(220\) 0 0
\(221\) −3.00000 + 2.17963i −0.201802 + 0.146618i
\(222\) 2.11803 1.53884i 0.142153 0.103280i
\(223\) −6.85410 21.0948i −0.458985 1.41261i −0.866393 0.499363i \(-0.833567\pi\)
0.407408 0.913246i \(-0.366433\pi\)
\(224\) −9.09017 −0.607363
\(225\) 0 0
\(226\) 6.27051 0.417108
\(227\) −5.94427 18.2946i −0.394535 1.21425i −0.929323 0.369268i \(-0.879608\pi\)
0.534788 0.844986i \(-0.320392\pi\)
\(228\) 7.66312 5.56758i 0.507502 0.368722i
\(229\) −6.70820 + 4.87380i −0.443291 + 0.322069i −0.786941 0.617028i \(-0.788336\pi\)
0.343650 + 0.939098i \(0.388336\pi\)
\(230\) 0 0
\(231\) −1.00000 0.726543i −0.0657952 0.0478030i
\(232\) −3.09017 −0.202880
\(233\) 12.0902 + 8.78402i 0.792053 + 0.575460i 0.908572 0.417728i \(-0.137174\pi\)
−0.116519 + 0.993188i \(0.537174\pi\)
\(234\) 1.85410 5.70634i 0.121206 0.373035i
\(235\) 0 0
\(236\) 2.07295 + 6.37988i 0.134937 + 0.415295i
\(237\) −0.954915 + 2.93893i −0.0620284 + 0.190904i
\(238\) −0.236068 + 0.726543i −0.0153020 + 0.0470948i
\(239\) −9.10739 28.0297i −0.589108 1.81309i −0.582106 0.813113i \(-0.697771\pi\)
−0.00700219 0.999975i \(-0.502229\pi\)
\(240\) 0 0
\(241\) 3.54508 10.9106i 0.228359 0.702817i −0.769574 0.638557i \(-0.779532\pi\)
0.997933 0.0642594i \(-0.0204685\pi\)
\(242\) −5.20820 3.78398i −0.334796 0.243244i
\(243\) −16.0000 −1.02640
\(244\) −6.16312 4.47777i −0.394553 0.286660i
\(245\) 0 0
\(246\) 2.61803 1.90211i 0.166920 0.121274i
\(247\) 22.9894 16.7027i 1.46278 1.06277i
\(248\) −2.07295 6.37988i −0.131632 0.405123i
\(249\) −1.76393 −0.111785
\(250\) 0 0
\(251\) −6.81966 −0.430453 −0.215227 0.976564i \(-0.569049\pi\)
−0.215227 + 0.976564i \(0.569049\pi\)
\(252\) 1.61803 + 4.97980i 0.101927 + 0.313698i
\(253\) −5.09017 + 3.69822i −0.320016 + 0.232505i
\(254\) 7.94427 5.77185i 0.498468 0.362158i
\(255\) 0 0
\(256\) 5.30902 + 3.85723i 0.331814 + 0.241077i
\(257\) −16.1459 −1.00715 −0.503577 0.863951i \(-0.667983\pi\)
−0.503577 + 0.863951i \(0.667983\pi\)
\(258\) 0.927051 + 0.673542i 0.0577157 + 0.0419329i
\(259\) −2.11803 + 6.51864i −0.131608 + 0.405048i
\(260\) 0 0
\(261\) 0.854102 + 2.62866i 0.0528676 + 0.162710i
\(262\) 3.39919 10.4616i 0.210002 0.646321i
\(263\) 6.82624 21.0090i 0.420924 1.29547i −0.485920 0.874003i \(-0.661515\pi\)
0.906844 0.421467i \(-0.138485\pi\)
\(264\) 0.527864 + 1.62460i 0.0324878 + 0.0999871i
\(265\) 0 0
\(266\) 1.80902 5.56758i 0.110918 0.341370i
\(267\) 7.23607 + 5.25731i 0.442840 + 0.321742i
\(268\) 14.9443 0.912867
\(269\) 13.9443 + 10.1311i 0.850197 + 0.617704i 0.925200 0.379479i \(-0.123897\pi\)
−0.0750032 + 0.997183i \(0.523897\pi\)
\(270\) 0 0
\(271\) 6.47214 4.70228i 0.393154 0.285643i −0.373593 0.927593i \(-0.621874\pi\)
0.766747 + 0.641950i \(0.221874\pi\)
\(272\) −1.14590 + 0.832544i −0.0694803 + 0.0504804i
\(273\) −2.42705 7.46969i −0.146892 0.452086i
\(274\) 3.67376 0.221940
\(275\) 0 0
\(276\) −13.3262 −0.802145
\(277\) 3.48936 + 10.7391i 0.209655 + 0.645252i 0.999490 + 0.0319326i \(0.0101662\pi\)
−0.789835 + 0.613320i \(0.789834\pi\)
\(278\) 2.50000 1.81636i 0.149940 0.108938i
\(279\) −4.85410 + 3.52671i −0.290607 + 0.211139i
\(280\) 0 0
\(281\) 0.881966 + 0.640786i 0.0526137 + 0.0382261i 0.613781 0.789476i \(-0.289648\pi\)
−0.561168 + 0.827702i \(0.689648\pi\)
\(282\) 1.00000 0.0595491
\(283\) −18.7254 13.6048i −1.11311 0.808722i −0.129960 0.991519i \(-0.541485\pi\)
−0.983151 + 0.182797i \(0.941485\pi\)
\(284\) 2.19098 6.74315i 0.130011 0.400132i
\(285\) 0 0
\(286\) 0.708204 + 2.17963i 0.0418770 + 0.128884i
\(287\) −2.61803 + 8.05748i −0.154538 + 0.475618i
\(288\) 3.47214 10.6861i 0.204598 0.629687i
\(289\) −5.07295 15.6129i −0.298409 0.918408i
\(290\) 0 0
\(291\) 0.881966 2.71441i 0.0517018 0.159122i
\(292\) 11.7812 + 8.55951i 0.689440 + 0.500907i
\(293\) 28.4721 1.66336 0.831680 0.555255i \(-0.187379\pi\)
0.831680 + 0.555255i \(0.187379\pi\)
\(294\) 2.19098 + 1.59184i 0.127781 + 0.0928381i
\(295\) 0 0
\(296\) 7.66312 5.56758i 0.445410 0.323609i
\(297\) 3.09017 2.24514i 0.179310 0.130276i
\(298\) −2.66312 8.19624i −0.154270 0.474795i
\(299\) −39.9787 −2.31203
\(300\) 0 0
\(301\) −3.00000 −0.172917
\(302\) 1.06231 + 3.26944i 0.0611288 + 0.188135i
\(303\) −6.04508 + 4.39201i −0.347281 + 0.252314i
\(304\) 8.78115 6.37988i 0.503634 0.365911i
\(305\) 0 0
\(306\) −0.763932 0.555029i −0.0436711 0.0317289i
\(307\) −4.76393 −0.271892 −0.135946 0.990716i \(-0.543407\pi\)
−0.135946 + 0.990716i \(0.543407\pi\)
\(308\) −1.61803 1.17557i −0.0921960 0.0669843i
\(309\) −3.57295 + 10.9964i −0.203258 + 0.625564i
\(310\) 0 0
\(311\) −9.11803 28.0624i −0.517036 1.59127i −0.779546 0.626345i \(-0.784550\pi\)
0.262510 0.964929i \(-0.415450\pi\)
\(312\) −3.35410 + 10.3229i −0.189889 + 0.584417i
\(313\) 6.56231 20.1967i 0.370923 1.14159i −0.575265 0.817967i \(-0.695101\pi\)
0.946188 0.323618i \(-0.104899\pi\)
\(314\) −1.75329 5.39607i −0.0989438 0.304518i
\(315\) 0 0
\(316\) −1.54508 + 4.75528i −0.0869178 + 0.267506i
\(317\) −19.1353 13.9026i −1.07474 0.780846i −0.0979842 0.995188i \(-0.531239\pi\)
−0.976759 + 0.214341i \(0.931239\pi\)
\(318\) −3.38197 −0.189651
\(319\) −0.854102 0.620541i −0.0478205 0.0347436i
\(320\) 0 0
\(321\) −8.42705 + 6.12261i −0.470352 + 0.341731i
\(322\) −6.66312 + 4.84104i −0.371321 + 0.269781i
\(323\) −1.38197 4.25325i −0.0768946 0.236657i
\(324\) −1.61803 −0.0898908
\(325\) 0 0
\(326\) 6.79837 0.376527
\(327\) −3.09017 9.51057i −0.170887 0.525935i
\(328\) 9.47214 6.88191i 0.523011 0.379990i
\(329\) −2.11803 + 1.53884i −0.116771 + 0.0848391i
\(330\) 0 0
\(331\) −13.8541 10.0656i −0.761490 0.553255i 0.137877 0.990449i \(-0.455972\pi\)
−0.899367 + 0.437194i \(0.855972\pi\)
\(332\) −2.85410 −0.156639
\(333\) −6.85410 4.97980i −0.375602 0.272891i
\(334\) −1.06231 + 3.26944i −0.0581268 + 0.178896i
\(335\) 0 0
\(336\) −0.927051 2.85317i −0.0505748 0.155653i
\(337\) −0.354102 + 1.08981i −0.0192892 + 0.0593659i −0.960238 0.279183i \(-0.909936\pi\)
0.940949 + 0.338549i \(0.109936\pi\)
\(338\) −2.01722 + 6.20837i −0.109722 + 0.337691i
\(339\) 3.13525 + 9.64932i 0.170284 + 0.524079i
\(340\) 0 0
\(341\) 0.708204 2.17963i 0.0383514 0.118033i
\(342\) 5.85410 + 4.25325i 0.316554 + 0.229990i
\(343\) −18.4164 −0.994393
\(344\) 3.35410 + 2.43690i 0.180841 + 0.131389i
\(345\) 0 0
\(346\) 8.44427 6.13512i 0.453967 0.329826i
\(347\) −25.1525 + 18.2743i −1.35026 + 0.981018i −0.351257 + 0.936279i \(0.614246\pi\)
−0.998999 + 0.0447390i \(0.985754\pi\)
\(348\) −0.690983 2.12663i −0.0370406 0.113999i
\(349\) 8.29180 0.443850 0.221925 0.975064i \(-0.428766\pi\)
0.221925 + 0.975064i \(0.428766\pi\)
\(350\) 0 0
\(351\) 24.2705 1.29546
\(352\) 1.32624 + 4.08174i 0.0706887 + 0.217558i
\(353\) 19.4894 14.1598i 1.03731 0.753653i 0.0675544 0.997716i \(-0.478480\pi\)
0.969759 + 0.244063i \(0.0784804\pi\)
\(354\) 2.07295 1.50609i 0.110176 0.0800475i
\(355\) 0 0
\(356\) 11.7082 + 8.50651i 0.620534 + 0.450844i
\(357\) −1.23607 −0.0654197
\(358\) −4.73607 3.44095i −0.250309 0.181860i
\(359\) −8.88197 + 27.3359i −0.468772 + 1.44273i 0.385403 + 0.922748i \(0.374062\pi\)
−0.854176 + 0.519984i \(0.825938\pi\)
\(360\) 0 0
\(361\) 4.71885 + 14.5231i 0.248360 + 0.764375i
\(362\) −2.61803 + 8.05748i −0.137601 + 0.423492i
\(363\) 3.21885 9.90659i 0.168946 0.519961i
\(364\) −3.92705 12.0862i −0.205833 0.633490i
\(365\) 0 0
\(366\) −0.899187 + 2.76741i −0.0470013 + 0.144655i
\(367\) −4.39919 3.19620i −0.229636 0.166840i 0.467018 0.884248i \(-0.345328\pi\)
−0.696653 + 0.717408i \(0.745328\pi\)
\(368\) −15.2705 −0.796030
\(369\) −8.47214 6.15537i −0.441042 0.320436i
\(370\) 0 0
\(371\) 7.16312 5.20431i 0.371891 0.270194i
\(372\) 3.92705 2.85317i 0.203608 0.147930i
\(373\) −1.62868 5.01255i −0.0843297 0.259540i 0.899997 0.435897i \(-0.143569\pi\)
−0.984326 + 0.176357i \(0.943569\pi\)
\(374\) 0.360680 0.0186503
\(375\) 0 0
\(376\) 3.61803 0.186586
\(377\) −2.07295 6.37988i −0.106762 0.328581i
\(378\) 4.04508 2.93893i 0.208057 0.151162i
\(379\) 27.9894 20.3355i 1.43772 1.04456i 0.449203 0.893430i \(-0.351708\pi\)
0.988513 0.151133i \(-0.0482921\pi\)
\(380\) 0 0
\(381\) 12.8541 + 9.33905i 0.658536 + 0.478454i
\(382\) 14.9443 0.764615
\(383\) −9.19098 6.67764i −0.469637 0.341211i 0.327663 0.944795i \(-0.393739\pi\)
−0.797300 + 0.603583i \(0.793739\pi\)
\(384\) −3.51722 + 10.8249i −0.179487 + 0.552406i
\(385\) 0 0
\(386\) −1.09017 3.35520i −0.0554882 0.170775i
\(387\) 1.14590 3.52671i 0.0582493 0.179273i
\(388\) 1.42705 4.39201i 0.0724475 0.222971i
\(389\) 4.63525 + 14.2658i 0.235017 + 0.723307i 0.997119 + 0.0758507i \(0.0241672\pi\)
−0.762102 + 0.647456i \(0.775833\pi\)
\(390\) 0 0
\(391\) −1.94427 + 5.98385i −0.0983261 + 0.302616i
\(392\) 7.92705 + 5.75934i 0.400377 + 0.290891i
\(393\) 17.7984 0.897809
\(394\) 4.85410 + 3.52671i 0.244546 + 0.177673i
\(395\) 0 0
\(396\) 2.00000 1.45309i 0.100504 0.0730203i
\(397\) −0.0278640 + 0.0202444i −0.00139846 + 0.00101604i −0.588484 0.808509i \(-0.700275\pi\)
0.587086 + 0.809525i \(0.300275\pi\)
\(398\) −0.489357 1.50609i −0.0245292 0.0754933i
\(399\) 9.47214 0.474200
\(400\) 0 0
\(401\) −22.5967 −1.12843 −0.564214 0.825629i \(-0.690821\pi\)
−0.564214 + 0.825629i \(0.690821\pi\)
\(402\) −1.76393 5.42882i −0.0879769 0.270765i
\(403\) 11.7812 8.55951i 0.586861 0.426379i
\(404\) −9.78115 + 7.10642i −0.486631 + 0.353558i
\(405\) 0 0
\(406\) −1.11803 0.812299i −0.0554871 0.0403137i
\(407\) 3.23607 0.160406
\(408\) 1.38197 + 1.00406i 0.0684175 + 0.0497082i
\(409\) 8.78115 27.0256i 0.434200 1.33633i −0.459704 0.888072i \(-0.652045\pi\)
0.893904 0.448258i \(-0.147955\pi\)
\(410\) 0 0
\(411\) 1.83688 + 5.65334i 0.0906067 + 0.278859i
\(412\) −5.78115 + 17.7926i −0.284817 + 0.876576i
\(413\) −2.07295 + 6.37988i −0.102003 + 0.313933i
\(414\) −3.14590 9.68208i −0.154612 0.475848i
\(415\) 0 0
\(416\) −8.42705 + 25.9358i −0.413170 + 1.27161i
\(417\) 4.04508 + 2.93893i 0.198089 + 0.143920i
\(418\) −2.76393 −0.135188
\(419\) 0.427051 + 0.310271i 0.0208628 + 0.0151577i 0.598168 0.801371i \(-0.295896\pi\)
−0.577305 + 0.816529i \(0.695896\pi\)
\(420\) 0 0
\(421\) −25.8885 + 18.8091i −1.26173 + 0.916701i −0.998841 0.0481252i \(-0.984675\pi\)
−0.262889 + 0.964826i \(0.584675\pi\)
\(422\) 6.59017 4.78804i 0.320804 0.233078i
\(423\) −1.00000 3.07768i −0.0486217 0.149642i
\(424\) −12.2361 −0.594236
\(425\) 0 0
\(426\) −2.70820 −0.131213
\(427\) −2.35410 7.24518i −0.113923 0.350619i
\(428\) −13.6353 + 9.90659i −0.659085 + 0.478853i
\(429\) −3.00000 + 2.17963i −0.144841 + 0.105233i
\(430\) 0 0
\(431\) −19.2812 14.0086i −0.928740 0.674769i 0.0169437 0.999856i \(-0.494606\pi\)
−0.945684 + 0.325087i \(0.894606\pi\)
\(432\) 9.27051 0.446028
\(433\) 16.2984 + 11.8415i 0.783250 + 0.569064i 0.905953 0.423379i \(-0.139156\pi\)
−0.122703 + 0.992443i \(0.539156\pi\)
\(434\) 0.927051 2.85317i 0.0444999 0.136957i
\(435\) 0 0
\(436\) −5.00000 15.3884i −0.239457 0.736972i
\(437\) 14.8992 45.8550i 0.712725 2.19354i
\(438\) 1.71885 5.29007i 0.0821297 0.252769i
\(439\) 1.84752 + 5.68609i 0.0881775 + 0.271382i 0.985416 0.170164i \(-0.0544299\pi\)
−0.897238 + 0.441547i \(0.854430\pi\)
\(440\) 0 0
\(441\) 2.70820 8.33499i 0.128962 0.396905i
\(442\) 1.85410 + 1.34708i 0.0881906 + 0.0640742i
\(443\) −12.0557 −0.572785 −0.286392 0.958112i \(-0.592456\pi\)
−0.286392 + 0.958112i \(0.592456\pi\)
\(444\) 5.54508 + 4.02874i 0.263158 + 0.191196i
\(445\) 0 0
\(446\) −11.0902 + 8.05748i −0.525135 + 0.381533i
\(447\) 11.2812 8.19624i 0.533580 0.387669i
\(448\) −0.118034 0.363271i −0.00557658 0.0171630i
\(449\) 20.3262 0.959254 0.479627 0.877472i \(-0.340772\pi\)
0.479627 + 0.877472i \(0.340772\pi\)
\(450\) 0 0
\(451\) 4.00000 0.188353
\(452\) 5.07295 + 15.6129i 0.238611 + 0.734371i
\(453\) −4.50000 + 3.26944i −0.211428 + 0.153612i
\(454\) −9.61803 + 6.98791i −0.451397 + 0.327959i
\(455\) 0 0
\(456\) −10.5902 7.69421i −0.495930 0.360314i
\(457\) −5.41641 −0.253369 −0.126684 0.991943i \(-0.540434\pi\)
−0.126684 + 0.991943i \(0.540434\pi\)
\(458\) 4.14590 + 3.01217i 0.193725 + 0.140750i
\(459\) 1.18034 3.63271i 0.0550935 0.169561i
\(460\) 0 0
\(461\) 7.16312 + 22.0458i 0.333620 + 1.02678i 0.967398 + 0.253261i \(0.0815032\pi\)
−0.633778 + 0.773515i \(0.718497\pi\)
\(462\) −0.236068 + 0.726543i −0.0109829 + 0.0338018i
\(463\) −4.98278 + 15.3354i −0.231569 + 0.712697i 0.765989 + 0.642854i \(0.222250\pi\)
−0.997558 + 0.0698431i \(0.977750\pi\)
\(464\) −0.791796 2.43690i −0.0367582 0.113130i
\(465\) 0 0
\(466\) 2.85410 8.78402i 0.132214 0.406912i
\(467\) −23.0172 16.7230i −1.06511 0.773848i −0.0900830 0.995934i \(-0.528713\pi\)
−0.975027 + 0.222087i \(0.928713\pi\)
\(468\) 15.7082 0.726112
\(469\) 12.0902 + 8.78402i 0.558272 + 0.405608i
\(470\) 0 0
\(471\) 7.42705 5.39607i 0.342220 0.248638i
\(472\) 7.50000 5.44907i 0.345215 0.250814i
\(473\) 0.437694 + 1.34708i 0.0201252 + 0.0619390i
\(474\) 1.90983 0.0877214
\(475\) 0 0
\(476\) −2.00000 −0.0916698
\(477\) 3.38197 + 10.4086i 0.154850 + 0.476578i
\(478\) −14.7361 + 10.7064i −0.674012 + 0.489698i
\(479\) 3.35410 2.43690i 0.153253 0.111345i −0.508516 0.861052i \(-0.669806\pi\)
0.661769 + 0.749708i \(0.269806\pi\)
\(480\) 0 0
\(481\) 16.6353 + 12.0862i 0.758502 + 0.551084i
\(482\) −7.09017 −0.322948
\(483\) −10.7812 7.83297i −0.490559 0.356412i
\(484\) 5.20820 16.0292i 0.236737 0.728600i
\(485\) 0 0
\(486\) 3.05573 + 9.40456i 0.138611 + 0.426600i
\(487\) 2.96149 9.11454i 0.134198 0.413019i −0.861266 0.508154i \(-0.830328\pi\)
0.995464 + 0.0951346i \(0.0303282\pi\)
\(488\) −3.25329 + 10.0126i −0.147269 + 0.453249i
\(489\) 3.39919 + 10.4616i 0.153717 + 0.473091i
\(490\) 0 0
\(491\) 11.5106 35.4261i 0.519468 1.59876i −0.255534 0.966800i \(-0.582251\pi\)
0.775002 0.631958i \(-0.217749\pi\)
\(492\) 6.85410 + 4.97980i 0.309007 + 0.224507i
\(493\) −1.05573 −0.0475476
\(494\) −14.2082 10.3229i −0.639257 0.464448i
\(495\) 0 0
\(496\) 4.50000 3.26944i 0.202056 0.146802i
\(497\) 5.73607 4.16750i 0.257298 0.186938i
\(498\) 0.336881 + 1.03681i 0.0150960 + 0.0464607i
\(499\) −12.5623 −0.562366 −0.281183 0.959654i \(-0.590727\pi\)
−0.281183 + 0.959654i \(0.590727\pi\)
\(500\) 0 0
\(501\) −5.56231 −0.248506
\(502\) 1.30244 + 4.00850i 0.0581307 + 0.178908i
\(503\) −8.56231 + 6.22088i −0.381774 + 0.277375i −0.762076 0.647487i \(-0.775820\pi\)
0.380302 + 0.924862i \(0.375820\pi\)
\(504\) 5.85410 4.25325i 0.260762 0.189455i
\(505\) 0 0
\(506\) 3.14590 + 2.28563i 0.139852 + 0.101609i
\(507\) −10.5623 −0.469088
\(508\) 20.7984 + 15.1109i 0.922779 + 0.670438i
\(509\) −1.44427 + 4.44501i −0.0640162 + 0.197022i −0.977949 0.208844i \(-0.933030\pi\)
0.913933 + 0.405866i \(0.133030\pi\)
\(510\) 0 0
\(511\) 4.50000 + 13.8496i 0.199068 + 0.612669i
\(512\) −5.78115 + 17.7926i −0.255493 + 0.786327i
\(513\) −9.04508 + 27.8379i −0.399350 + 1.22907i
\(514\) 3.08359 + 9.49032i 0.136011 + 0.418600i
\(515\) 0 0
\(516\) −0.927051 + 2.85317i −0.0408111 + 0.125604i
\(517\) 1.00000 + 0.726543i 0.0439799 + 0.0319533i
\(518\) 4.23607 0.186122
\(519\) 13.6631 + 9.92684i 0.599744 + 0.435740i
\(520\) 0 0
\(521\) 12.4271 9.02878i 0.544439 0.395558i −0.281292 0.959622i \(-0.590763\pi\)
0.825731 + 0.564064i \(0.190763\pi\)
\(522\) 1.38197 1.00406i 0.0604870 0.0439464i
\(523\) 6.13525 + 18.8824i 0.268276 + 0.825669i 0.990921 + 0.134449i \(0.0429264\pi\)
−0.722645 + 0.691220i \(0.757074\pi\)
\(524\) 28.7984 1.25806
\(525\) 0 0
\(526\) −13.6525 −0.595276
\(527\) −0.708204 2.17963i −0.0308498 0.0949461i
\(528\) −1.14590 + 0.832544i −0.0498688 + 0.0362318i
\(529\) −36.2705 + 26.3521i −1.57698 + 1.14574i
\(530\) 0 0
\(531\) −6.70820 4.87380i −0.291111 0.211505i
\(532\) 15.3262 0.664477
\(533\) 20.5623 + 14.9394i 0.890652 + 0.647097i
\(534\) 1.70820 5.25731i 0.0739212 0.227506i
\(535\) 0 0
\(536\) −6.38197 19.6417i −0.275659 0.848391i
\(537\) 2.92705 9.00854i 0.126312 0.388747i
\(538\) 3.29180 10.1311i 0.141919 0.436783i
\(539\) 1.03444 + 3.18368i 0.0445566 + 0.137131i
\(540\) 0 0
\(541\) −4.05573 + 12.4822i −0.174369 + 0.536654i −0.999604 0.0281362i \(-0.991043\pi\)
0.825235 + 0.564790i \(0.191043\pi\)
\(542\) −4.00000 2.90617i −0.171815 0.124831i
\(543\) −13.7082 −0.588275
\(544\) 3.47214 + 2.52265i 0.148867 + 0.108158i
\(545\) 0 0
\(546\) −3.92705 + 2.85317i −0.168062 + 0.122104i
\(547\) −28.0795 + 20.4010i −1.20059 + 0.872283i −0.994343 0.106217i \(-0.966126\pi\)
−0.206251 + 0.978499i \(0.566126\pi\)
\(548\) 2.97214 + 9.14729i 0.126963 + 0.390753i
\(549\) 9.41641 0.401882
\(550\) 0 0
\(551\) 8.09017 0.344653
\(552\) 5.69098 + 17.5150i 0.242224 + 0.745490i
\(553\) −4.04508 + 2.93893i −0.172015 + 0.124976i
\(554\) 5.64590 4.10199i 0.239871 0.174277i
\(555\) 0 0
\(556\) 6.54508 + 4.75528i 0.277573 + 0.201669i
\(557\) −9.23607 −0.391345 −0.195672 0.980669i \(-0.562689\pi\)
−0.195672 + 0.980669i \(0.562689\pi\)
\(558\) 3.00000 + 2.17963i 0.127000 + 0.0922710i
\(559\) −2.78115 + 8.55951i −0.117630 + 0.362029i
\(560\) 0 0
\(561\) 0.180340 + 0.555029i 0.00761396 + 0.0234333i
\(562\) 0.208204 0.640786i 0.00878255 0.0270299i
\(563\) −2.97214 + 9.14729i −0.125261 + 0.385512i −0.993948 0.109847i \(-0.964964\pi\)
0.868688 + 0.495360i \(0.164964\pi\)
\(564\) 0.809017 + 2.48990i 0.0340658 + 0.104844i
\(565\) 0 0
\(566\) −4.42047 + 13.6048i −0.185806 + 0.571853i
\(567\) −1.30902 0.951057i −0.0549735 0.0399406i
\(568\) −9.79837 −0.411131
\(569\) −23.8435 17.3233i −0.999570 0.726230i −0.0375739 0.999294i \(-0.511963\pi\)
−0.961996 + 0.273064i \(0.911963\pi\)
\(570\) 0 0
\(571\) −25.9894 + 18.8824i −1.08762 + 0.790203i −0.978996 0.203880i \(-0.934645\pi\)
−0.108625 + 0.994083i \(0.534645\pi\)
\(572\) −4.85410 + 3.52671i −0.202960 + 0.147459i
\(573\) 7.47214 + 22.9969i 0.312153 + 0.960708i
\(574\) 5.23607 0.218549
\(575\) 0 0
\(576\) 0.472136 0.0196723
\(577\) −11.6738 35.9281i −0.485985 1.49571i −0.830549 0.556945i \(-0.811973\pi\)
0.344564 0.938763i \(-0.388027\pi\)
\(578\) −8.20820 + 5.96361i −0.341416 + 0.248053i
\(579\) 4.61803 3.35520i 0.191919 0.139437i
\(580\) 0 0
\(581\) −2.30902 1.67760i −0.0957942 0.0695985i
\(582\) −1.76393 −0.0731173
\(583\) −3.38197 2.45714i −0.140067 0.101764i
\(584\) 6.21885 19.1396i 0.257338 0.792004i
\(585\) 0 0
\(586\) −5.43769 16.7355i −0.224629 0.691337i
\(587\) −5.78115 + 17.7926i −0.238614 + 0.734378i 0.758008 + 0.652246i \(0.226173\pi\)
−0.996621 + 0.0821320i \(0.973827\pi\)
\(588\) −2.19098 + 6.74315i −0.0903546 + 0.278083i
\(589\) 5.42705 + 16.7027i 0.223618 + 0.688225i
\(590\) 0 0
\(591\) −3.00000 + 9.23305i −0.123404 + 0.379797i
\(592\) 6.35410 + 4.61653i 0.261152 + 0.189738i
\(593\) 22.0902 0.907135 0.453567 0.891222i \(-0.350151\pi\)
0.453567 + 0.891222i \(0.350151\pi\)
\(594\) −1.90983 1.38757i −0.0783613 0.0569328i
\(595\) 0 0
\(596\) 18.2533 13.2618i 0.747684 0.543224i
\(597\) 2.07295 1.50609i 0.0848402 0.0616400i
\(598\) 7.63525 + 23.4989i 0.312229 + 0.960941i
\(599\) −0.527864 −0.0215679 −0.0107840 0.999942i \(-0.503433\pi\)
−0.0107840 + 0.999942i \(0.503433\pi\)
\(600\) 0 0
\(601\) 36.2705 1.47950 0.739752 0.672879i \(-0.234943\pi\)
0.739752 + 0.672879i \(0.234943\pi\)
\(602\) 0.572949 + 1.76336i 0.0233517 + 0.0718690i
\(603\) −14.9443 + 10.8576i −0.608578 + 0.442158i
\(604\) −7.28115 + 5.29007i −0.296266 + 0.215250i
\(605\) 0 0
\(606\) 3.73607 + 2.71441i 0.151767 + 0.110265i
\(607\) 15.4377 0.626597 0.313298 0.949655i \(-0.398566\pi\)
0.313298 + 0.949655i \(0.398566\pi\)
\(608\) −26.6074 19.3314i −1.07907 0.783992i
\(609\) 0.690983 2.12663i 0.0280000 0.0861753i
\(610\) 0 0
\(611\) 2.42705 + 7.46969i 0.0981880 + 0.302192i
\(612\) 0.763932 2.35114i 0.0308801 0.0950392i
\(613\) −9.88197 + 30.4136i −0.399129 + 1.22839i 0.526570 + 0.850132i \(0.323478\pi\)
−0.925699 + 0.378261i \(0.876522\pi\)
\(614\) 0.909830 + 2.80017i 0.0367178 + 0.113006i
\(615\) 0 0
\(616\) −0.854102 + 2.62866i −0.0344127 + 0.105912i
\(617\) 7.89919 + 5.73910i 0.318009 + 0.231047i 0.735326 0.677714i \(-0.237029\pi\)
−0.417316 + 0.908761i \(0.637029\pi\)
\(618\) 7.14590 0.287450
\(619\) −31.9336 23.2011i −1.28352 0.932533i −0.283868 0.958863i \(-0.591618\pi\)
−0.999653 + 0.0263310i \(0.991618\pi\)
\(620\) 0 0
\(621\) 33.3156 24.2052i 1.33691 0.971321i
\(622\) −14.7533 + 10.7189i −0.591553 + 0.429788i
\(623\) 4.47214 + 13.7638i 0.179172 + 0.551436i
\(624\) −9.00000 −0.360288
\(625\) 0 0
\(626\) −13.1246 −0.524565
\(627\) −1.38197 4.25325i −0.0551904 0.169859i
\(628\) 12.0172 8.73102i 0.479539 0.348406i
\(629\) 2.61803 1.90211i 0.104388 0.0758422i
\(630\) 0 0
\(631\) 4.66312 + 3.38795i 0.185636 + 0.134872i 0.676722 0.736239i \(-0.263400\pi\)
−0.491086 + 0.871111i \(0.663400\pi\)
\(632\) 6.90983 0.274858
\(633\) 10.6631 + 7.74721i 0.423821 + 0.307924i
\(634\) −4.51722 + 13.9026i −0.179402 + 0.552142i
\(635\) 0 0
\(636\) −2.73607 8.42075i −0.108492 0.333905i
\(637\) −6.57295 + 20.2295i −0.260430 + 0.801520i
\(638\) −0.201626 + 0.620541i −0.00798245 + 0.0245675i
\(639\) 2.70820 + 8.33499i 0.107135 + 0.329727i
\(640\) 0 0
\(641\) 3.11803 9.59632i 0.123155 0.379032i −0.870405 0.492336i \(-0.836143\pi\)
0.993560 + 0.113304i \(0.0361433\pi\)
\(642\) 5.20820 + 3.78398i 0.205551 + 0.149342i
\(643\) −22.8328 −0.900438 −0.450219 0.892918i \(-0.648654\pi\)
−0.450219 + 0.892918i \(0.648654\pi\)
\(644\) −17.4443 12.6740i −0.687401 0.499426i
\(645\) 0 0
\(646\) −2.23607 + 1.62460i −0.0879769 + 0.0639190i
\(647\) 24.7082 17.9516i 0.971380 0.705749i 0.0156141 0.999878i \(-0.495030\pi\)
0.955766 + 0.294129i \(0.0950297\pi\)
\(648\) 0.690983 + 2.12663i 0.0271444 + 0.0835418i
\(649\) 3.16718 0.124323
\(650\) 0 0
\(651\) 4.85410 0.190247
\(652\) 5.50000 + 16.9273i 0.215397 + 0.662923i
\(653\) 6.39919 4.64928i 0.250420 0.181940i −0.455493 0.890239i \(-0.650537\pi\)
0.705913 + 0.708299i \(0.250537\pi\)
\(654\) −5.00000 + 3.63271i −0.195515 + 0.142050i
\(655\) 0 0
\(656\) 7.85410 + 5.70634i 0.306651 + 0.222795i
\(657\) −18.0000 −0.702247
\(658\) 1.30902 + 0.951057i 0.0510308 + 0.0370760i
\(659\) 7.56231 23.2744i 0.294586 0.906641i −0.688775 0.724975i \(-0.741851\pi\)
0.983360 0.181666i \(-0.0581489\pi\)
\(660\) 0 0
\(661\) −12.5729 38.6956i −0.489031 1.50508i −0.826057 0.563587i \(-0.809421\pi\)
0.337025 0.941496i \(-0.390579\pi\)
\(662\) −3.27051 + 10.0656i −0.127112 + 0.391210i
\(663\) −1.14590 + 3.52671i −0.0445030 + 0.136966i
\(664\) 1.21885 + 3.75123i 0.0473004 + 0.145576i
\(665\) 0 0
\(666\) −1.61803 + 4.97980i −0.0626975 + 0.192963i
\(667\) −9.20820 6.69015i −0.356543 0.259044i
\(668\) −9.00000 −0.348220
\(669\) −17.9443 13.0373i −0.693766 0.504050i
\(670\) 0 0
\(671\) −2.90983 + 2.11412i −0.112333 + 0.0816145i
\(672\) −7.35410 + 5.34307i −0.283691 + 0.206113i
\(673\) 3.14590 + 9.68208i 0.121265 + 0.373217i 0.993202 0.116402i \(-0.0371360\pi\)
−0.871937 + 0.489619i \(0.837136\pi\)
\(674\) 0.708204 0.0272790
\(675\) 0 0
\(676\) −17.0902 −0.657314
\(677\) −2.59017 7.97172i −0.0995483 0.306378i 0.888864 0.458171i \(-0.151495\pi\)
−0.988412 + 0.151793i \(0.951495\pi\)
\(678\) 5.07295 3.68571i 0.194825 0.141549i
\(679\) 3.73607 2.71441i 0.143377 0.104170i
\(680\) 0 0
\(681\) −15.5623 11.3067i −0.596349 0.433273i
\(682\) −1.41641 −0.0542371
\(683\) −3.66312 2.66141i −0.140165 0.101836i 0.515493 0.856894i \(-0.327609\pi\)
−0.655658 + 0.755058i \(0.727609\pi\)
\(684\) −5.85410 + 18.0171i −0.223837 + 0.688900i
\(685\) 0 0
\(686\) 3.51722 + 10.8249i 0.134288 + 0.413296i
\(687\) −2.56231 + 7.88597i −0.0977581 + 0.300868i
\(688\) −1.06231 + 3.26944i −0.0405000 + 0.124646i
\(689\) −8.20820 25.2623i −0.312708 0.962415i
\(690\) 0 0
\(691\) 0.843459 2.59590i 0.0320867 0.0987527i −0.933731 0.357977i \(-0.883467\pi\)
0.965817 + 0.259224i \(0.0834668\pi\)
\(692\) 22.1074 + 16.0620i 0.840397 + 0.610584i
\(693\) 2.47214 0.0939087
\(694\) 15.5451 + 11.2942i 0.590083 + 0.428721i
\(695\) 0 0
\(696\) −2.50000 + 1.81636i −0.0947623 + 0.0688488i
\(697\) 3.23607 2.35114i 0.122575 0.0890558i
\(698\) −1.58359 4.87380i −0.0599398 0.184476i
\(699\) 14.9443 0.565244
\(700\) 0 0
\(701\) 35.0132 1.32243 0.661214 0.750197i \(-0.270041\pi\)
0.661214 + 0.750197i \(0.270041\pi\)
\(702\) −4.63525 14.2658i −0.174946 0.538430i
\(703\) −20.0623 + 14.5761i −0.756664 + 0.549749i
\(704\) −0.145898 + 0.106001i −0.00549874 + 0.00399507i
\(705\) 0 0
\(706\) −12.0451 8.75127i −0.453323 0.329358i
\(707\) −12.0902 −0.454698
\(708\) 5.42705 + 3.94298i 0.203961 + 0.148186i
\(709\) 10.3647 31.8994i 0.389256 1.19801i −0.544089 0.839027i \(-0.683125\pi\)
0.933345 0.358980i \(-0.116875\pi\)
\(710\) 0 0
\(711\) −1.90983 5.87785i −0.0716242 0.220437i
\(712\) 6.18034 19.0211i 0.231618 0.712847i
\(713\) 7.63525 23.4989i 0.285943 0.880041i
\(714\) 0.236068 + 0.726543i 0.00883462 + 0.0271902i
\(715\) 0 0
\(716\) 4.73607 14.5761i 0.176995 0.544735i
\(717\) −23.8435 17.3233i −0.890450 0.646950i
\(718\) 17.7639 0.662944
\(719\) 29.6976 + 21.5765i 1.10753 + 0.804669i 0.982273 0.187455i \(-0.0600238\pi\)
0.125259 + 0.992124i \(0.460024\pi\)
\(720\) 0 0
\(721\) −15.1353 + 10.9964i −0.563666 + 0.409528i
\(722\) 7.63525 5.54734i 0.284155 0.206451i
\(723\) −3.54508 10.9106i −0.131843 0.405771i
\(724\) −22.1803 −0.824326
\(725\) 0 0
\(726\) −6.43769 −0.238925
\(727\) −1.37132 4.22050i −0.0508596 0.156530i 0.922401 0.386234i \(-0.126224\pi\)
−0.973261 + 0.229704i \(0.926224\pi\)
\(728\) −14.2082 + 10.3229i −0.526591 + 0.382591i
\(729\) −10.5172 + 7.64121i −0.389527 + 0.283008i
\(730\) 0 0
\(731\) 1.14590 + 0.832544i 0.0423826 + 0.0307927i
\(732\) −7.61803 −0.281571
\(733\) 21.8262 + 15.8577i 0.806170 + 0.585717i 0.912718 0.408590i \(-0.133980\pi\)
−0.106547 + 0.994308i \(0.533980\pi\)
\(734\) −1.03851 + 3.19620i −0.0383320 + 0.117974i
\(735\) 0 0
\(736\) 14.2984 + 44.0059i 0.527045 + 1.62208i
\(737\) 2.18034 6.71040i 0.0803139 0.247181i
\(738\) −2.00000 + 6.15537i −0.0736210 + 0.226582i
\(739\) −9.57295 29.4625i −0.352147 1.08380i −0.957646 0.287950i \(-0.907026\pi\)
0.605499 0.795846i \(-0.292974\pi\)
\(740\) 0 0
\(741\) 8.78115 27.0256i 0.322584 0.992811i
\(742\) −4.42705 3.21644i −0.162522 0.118079i
\(743\) 16.3607 0.600215 0.300108 0.953905i \(-0.402977\pi\)
0.300108 + 0.953905i \(0.402977\pi\)
\(744\) −5.42705 3.94298i −0.198965 0.144557i
\(745\) 0 0
\(746\) −2.63525 + 1.91462i −0.0964835 + 0.0700994i
\(747\) 2.85410 2.07363i 0.104426 0.0758700i
\(748\) 0.291796 + 0.898056i 0.0106691 + 0.0328362i
\(749\) −16.8541 −0.615835
\(750\) 0 0
\(751\) −40.8885 −1.49204 −0.746022 0.665921i \(-0.768039\pi\)
−0.746022 + 0.665921i \(0.768039\pi\)
\(752\) 0.927051 + 2.85317i 0.0338061 + 0.104044i
\(753\) −5.51722 + 4.00850i −0.201059 + 0.146078i
\(754\) −3.35410 + 2.43690i −0.122149 + 0.0887466i
\(755\) 0 0
\(756\) 10.5902 + 7.69421i 0.385161 + 0.279836i
\(757\) −3.58359 −0.130248 −0.0651239 0.997877i \(-0.520744\pi\)
−0.0651239 + 0.997877i \(0.520744\pi\)
\(758\) −17.2984 12.5680i −0.628305 0.456490i
\(759\) −1.94427 + 5.98385i −0.0705726 + 0.217200i
\(760\) 0 0
\(761\) 11.5729 + 35.6179i 0.419519 + 1.29115i 0.908146 + 0.418654i \(0.137498\pi\)
−0.488627 + 0.872493i \(0.662502\pi\)
\(762\) 3.03444 9.33905i 0.109926 0.338318i
\(763\) 5.00000 15.3884i 0.181012 0.557098i
\(764\) 12.0902 + 37.2097i 0.437407 + 1.34620i
\(765\) 0 0
\(766\) −2.16970 + 6.67764i −0.0783943 + 0.241273i
\(767\) 16.2812 + 11.8290i 0.587878 + 0.427119i
\(768\) 6.56231 0.236797
\(769\) 10.8541 + 7.88597i 0.391409 + 0.284375i 0.766033 0.642802i \(-0.222228\pi\)
−0.374624 + 0.927177i \(0.622228\pi\)
\(770\) 0 0
\(771\) −13.0623 + 9.49032i −0.470427 + 0.341786i
\(772\) 7.47214 5.42882i 0.268928 0.195388i
\(773\) −10.2467 31.5361i −0.368549 1.13428i −0.947729 0.319076i \(-0.896627\pi\)
0.579180 0.815199i \(-0.303373\pi\)
\(774\) −2.29180 −0.0823769
\(775\) 0 0
\(776\) −6.38197 −0.229099
\(777\) 2.11803 + 6.51864i 0.0759840 + 0.233855i
\(778\) 7.50000 5.44907i 0.268888 0.195359i
\(779\) −24.7984 + 18.0171i −0.888494 + 0.645529i
\(780\) 0 0
\(781\) −2.70820 1.96763i −0.0969072 0.0704072i
\(782\) 3.88854 0.139054
\(783\) 5.59017 + 4.06150i 0.199776 + 0.145146i
\(784\) −2.51064 + 7.72696i −0.0896658 + 0.275963i
\(785\) 0 0
\(786\) −3.39919 10.4616i −0.121245 0.373154i
\(787\) 10.5623 32.5074i 0.376506 1.15876i −0.565952 0.824438i \(-0.691491\pi\)
0.942457 0.334327i \(-0.108509\pi\)
\(788\) −4.85410 + 14.9394i −0.172920 + 0.532194i
\(789\) −6.82624 21.0090i −0.243021 0.747940i
\(790\) 0 0
\(791\) −5.07295 + 15.6129i −0.180373 + 0.555132i
\(792\) −2.76393 2.00811i −0.0982120 0.0713552i
\(793\) −22.8541 −0.811573
\(794\) 0.0172209 + 0.0125117i 0.000611148 + 0.000444025i
\(795\) 0 0
\(796\) 3.35410 2.43690i 0.118883 0.0863735i
\(797\) 11.5172 8.36775i 0.407961 0.296401i −0.364815 0.931080i \(-0.618868\pi\)
0.772776 + 0.634679i \(0.218868\pi\)
\(798\) −1.80902 5.56758i −0.0640385 0.197090i
\(799\) 1.23607 0.0437289
\(800\) 0 0
\(801\) −17.8885 −0.632061
\(802\) 4.31559 + 13.2820i 0.152389 + 0.469005i
\(803\) 5.56231 4.04125i 0.196290 0.142613i
\(804\) 12.0902 8.78402i 0.426387 0.309789i
\(805\) 0 0
\(806\) −7.28115 5.29007i −0.256468 0.186335i
\(807\) 17.2361 0.606738
\(808\) 13.5172 + 9.82084i 0.475534 + 0.345496i
\(809\) −4.93769 + 15.1967i −0.173600 + 0.534286i −0.999567 0.0294328i \(-0.990630\pi\)
0.825967 + 0.563719i \(0.190630\pi\)
\(810\) 0 0
\(811\) −0.399187 1.22857i −0.0140173 0.0431410i 0.943803 0.330508i \(-0.107220\pi\)
−0.957821 + 0.287367i \(0.907220\pi\)
\(812\) 1.11803 3.44095i 0.0392353 0.120754i
\(813\) 2.47214 7.60845i 0.0867016 0.266840i
\(814\) −0.618034 1.90211i −0.0216621 0.0666690i
\(815\) 0 0
\(816\) −0.437694 + 1.34708i −0.0153224 + 0.0471574i
\(817\) −8.78115 6.37988i −0.307214 0.223204i
\(818\) −17.5623 −0.614052
\(819\) 12.7082 + 9.23305i 0.444061 + 0.322629i
\(820\) 0 0
\(821\) −15.9271 + 11.5717i −0.555858 + 0.403854i −0.829941 0.557852i \(-0.811626\pi\)
0.274083 + 0.961706i \(0.411626\pi\)
\(822\) 2.97214 2.15938i 0.103665 0.0753171i
\(823\) −10.5967 32.6134i −0.369379 1.13683i −0.947193 0.320664i \(-0.896094\pi\)
0.577814 0.816169i \(-0.303906\pi\)
\(824\) 25.8541 0.900670
\(825\) 0 0
\(826\) 4.14590 0.144254
\(827\) 9.28115 + 28.5645i 0.322737 + 0.993283i 0.972452 + 0.233105i \(0.0748885\pi\)
−0.649714 + 0.760178i \(0.725111\pi\)
\(828\) 21.5623 15.6659i 0.749342 0.544429i
\(829\) 23.5795 17.1315i 0.818951 0.595003i −0.0974610 0.995239i \(-0.531072\pi\)
0.916412 + 0.400237i \(0.131072\pi\)
\(830\) 0 0
\(831\) 9.13525 + 6.63715i 0.316898 + 0.230240i
\(832\) −1.14590 −0.0397269
\(833\) 2.70820 + 1.96763i 0.0938337 + 0.0681742i
\(834\) 0.954915 2.93893i 0.0330660 0.101767i
\(835\) 0 0
\(836\) −2.23607 6.88191i −0.0773360 0.238016i
\(837\) −4.63525 + 14.2658i −0.160218 + 0.493100i
\(838\) 0.100813 0.310271i 0.00348253 0.0107181i
\(839\) 1.28115 + 3.94298i 0.0442303 + 0.136127i 0.970733 0.240161i \(-0.0772003\pi\)
−0.926503 + 0.376288i \(0.877200\pi\)
\(840\) 0 0
\(841\) −8.37132 + 25.7643i −0.288666 + 0.888424i
\(842\) 16.0000 + 11.6247i 0.551396 + 0.400613i
\(843\) 1.09017 0.0375474
\(844\) 17.2533 + 12.5352i 0.593883 + 0.431481i
\(845\) 0 0
\(846\) −1.61803 + 1.17557i −0.0556292 + 0.0404169i
\(847\) 13.6353 9.90659i 0.468513 0.340395i
\(848\) −3.13525 9.64932i −0.107665 0.331359i
\(849\) −23.1459 −0.794365
\(850\) 0 0
\(851\) 34.8885 1.19596
\(852\) −2.19098 6.74315i −0.0750618 0.231017i
\(853\) 38.2705 27.8052i 1.31036 0.952030i 0.310358 0.950620i \(-0.399551\pi\)
0.999999 0.00141065i \(-0.000449024\pi\)
\(854\) −3.80902 + 2.76741i −0.130342 + 0.0946989i
\(855\) 0 0
\(856\) 18.8435 + 13.6906i 0.644056 + 0.467934i
\(857\) 40.6869 1.38984 0.694919 0.719088i \(-0.255440\pi\)
0.694919 + 0.719088i \(0.255440\pi\)
\(858\) 1.85410 + 1.34708i 0.0632980 + 0.0459887i
\(859\) −8.78115 + 27.0256i −0.299609 + 0.922102i 0.682025 + 0.731329i \(0.261099\pi\)
−0.981634 + 0.190773i \(0.938901\pi\)
\(860\) 0 0
\(861\) 2.61803 + 8.05748i 0.0892224 + 0.274598i
\(862\) −4.55166 + 14.0086i −0.155030 + 0.477134i
\(863\) 12.8435 39.5281i 0.437196 1.34555i −0.453623 0.891194i \(-0.649869\pi\)
0.890819 0.454358i \(-0.150131\pi\)
\(864\) −8.68034 26.7153i −0.295311 0.908874i
\(865\) 0 0
\(866\) 3.84752 11.8415i 0.130744 0.402389i
\(867\) −13.2812 9.64932i −0.451052 0.327708i
\(868\) 7.85410 0.266586
\(869\) 1.90983 + 1.38757i 0.0647865 + 0.0470702i
\(870\) 0 0
\(871\) 36.2705 26.3521i 1.22898 0.892906i
\(872\) −18.0902 + 13.1433i −0.612610 + 0.445088i
\(873\) 1.76393 + 5.42882i 0.0597001 + 0.183738i
\(874\) −29.7984 −1.00795
\(875\) 0 0
\(876\) 14.5623 0.492015
\(877\) −9.43769 29.0462i −0.318688 0.980822i −0.974210 0.225645i \(-0.927551\pi\)
0.655521 0.755177i \(-0.272449\pi\)
\(878\) 2.98936 2.17189i 0.100886 0.0732979i
\(879\) 23.0344 16.7355i 0.776932 0.564474i
\(880\) 0 0
\(881\) −3.52786 2.56314i −0.118857 0.0863545i 0.526769 0.850009i \(-0.323403\pi\)
−0.645626 + 0.763654i \(0.723403\pi\)
\(882\) −5.41641 −0.182380
\(883\) −38.3607 27.8707i −1.29094 0.937923i −0.291116 0.956688i \(-0.594026\pi\)
−0.999824 + 0.0187653i \(0.994026\pi\)
\(884\) −1.85410 + 5.70634i −0.0623602 + 0.191925i
\(885\) 0 0
\(886\) 2.30244 + 7.08618i 0.0773520 + 0.238065i
\(887\) 1.81966 5.60034i 0.0610982 0.188041i −0.915849 0.401524i \(-0.868481\pi\)
0.976947 + 0.213483i \(0.0684807\pi\)
\(888\) 2.92705 9.00854i 0.0982254 0.302307i
\(889\) 7.94427 + 24.4500i 0.266442 + 0.820025i
\(890\) 0 0
\(891\) −0.236068 + 0.726543i −0.00790857 + 0.0243401i
\(892\) −29.0344 21.0948i −0.972145 0.706305i
\(893\) −9.47214 −0.316973
\(894\) −6.97214 5.06555i −0.233183 0.169417i
\(895\) 0 0
\(896\) −14.8992 + 10.8249i −0.497747 + 0.361634i
\(897\) −32.3435 + 23.4989i −1.07992 + 0.784605i
\(898\) −3.88197 11.9475i −0.129543 0.398692i
\(899\) 4.14590 0.138273
\(900\) 0 0
\(901\) −4.18034 −0.139267
\(902\) −0.763932 2.35114i −0.0254362 0.0782844i
\(903\) −2.42705 + 1.76336i −0.0807672 + 0.0586808i
\(904\) 18.3541 13.3350i 0.610448 0.443517i
\(905\) 0 0
\(906\) 2.78115 + 2.02063i 0.0923976 + 0.0671308i
\(907\) −47.2492 −1.56888 −0.784442 0.620202i \(-0.787051\pi\)
−0.784442 + 0.620202i \(0.787051\pi\)
\(908\) −25.1803 18.2946i −0.835639 0.607127i
\(909\) 4.61803 14.2128i 0.153171 0.471410i
\(910\) 0 0
\(911\) −11.0517 34.0135i −0.366158 1.12692i −0.949253 0.314514i \(-0.898158\pi\)
0.583095 0.812404i \(-0.301842\pi\)
\(912\) 3.35410 10.3229i 0.111065 0.341824i
\(913\) −0.416408 + 1.28157i −0.0137811 + 0.0424138i
\(914\) 1.03444 + 3.18368i 0.0342163 + 0.105307i
\(915\) 0 0
\(916\) −4.14590 + 12.7598i −0.136984 + 0.421594i
\(917\) 23.2984 + 16.9273i 0.769380 + 0.558987i
\(918\) −2.36068 −0.0779140
\(919\) 1.44427 + 1.04932i 0.0476421 + 0.0346140i 0.611351 0.791359i \(-0.290626\pi\)
−0.563709 + 0.825973i \(0.690626\pi\)
\(920\) 0 0
\(921\) −3.85410 + 2.80017i −0.126997 + 0.0922687i
\(922\) 11.5902 8.42075i 0.381702 0.277323i
\(923\) −6.57295 20.2295i −0.216351 0.665861i
\(924\) −2.00000 −0.0657952
\(925\) 0 0
\(926\) 9.96556 0.327489
\(927\) −7.14590 21.9928i −0.234702 0.722339i
\(928\) −6.28115 + 4.56352i −0.206189 + 0.149805i
\(929\) 29.6353 21.5313i 0.972301 0.706418i 0.0163263 0.999867i \(-0.494803\pi\)
0.955975 + 0.293449i \(0.0948029\pi\)
\(930\) 0 0
\(931\) −20.7533 15.0781i −0.680162 0.494166i
\(932\) 24.1803 0.792053
\(933\) −23.8713 17.3435i −0.781512 0.567802i
\(934\) −5.43363 + 16.7230i −0.177794 + 0.547193i
\(935\) 0 0
\(936\) −6.70820 20.6457i −0.219265 0.674827i
\(937\) −15.8435 + 48.7612i −0.517583 + 1.59296i 0.260949 + 0.965353i \(0.415965\pi\)
−0.778532 + 0.627605i \(0.784035\pi\)
\(938\) 2.85410 8.78402i 0.0931897 0.286809i
\(939\) −6.56231 20.1967i −0.214153 0.659094i
\(940\) 0 0
\(941\) −6.05166 + 18.6251i −0.197279 + 0.607161i 0.802664 + 0.596432i \(0.203415\pi\)
−0.999942 + 0.0107294i \(0.996585\pi\)
\(942\) −4.59017 3.33495i −0.149556 0.108659i
\(943\) 43.1246 1.40433
\(944\) 6.21885 + 4.51826i 0.202406 + 0.147057i
\(945\) 0 0
\(946\) 0.708204 0.514540i 0.0230257 0.0167291i
\(947\) −23.1803 + 16.8415i −0.753260 + 0.547275i −0.896836 0.442364i \(-0.854140\pi\)
0.143576 + 0.989639i \(0.454140\pi\)
\(948\) 1.54508 + 4.75528i 0.0501820 + 0.154444i
\(949\) 43.6869 1.41814
\(950\) 0 0
\(951\) −23.6525 −0.766984
\(952\) 0.854102 + 2.62866i 0.0276816 + 0.0851952i
\(953\) 28.1074 20.4212i 0.910488 0.661508i −0.0306505 0.999530i \(-0.509758\pi\)
0.941138 + 0.338022i \(0.109758\pi\)
\(954\) 5.47214 3.97574i 0.177167 0.128719i
\(955\) 0 0
\(956\) −38.5795 28.0297i −1.24775 0.906544i
\(957\) −1.05573 −0.0341268
\(958\) −2.07295 1.50609i −0.0669739 0.0486594i
\(959\) −2.97214 + 9.14729i −0.0959753 + 0.295382i
\(960\) 0 0
\(961\) −6.79837 20.9232i −0.219302 0.674943i
\(962\) 3.92705 12.0862i 0.126613 0.389675i
\(963\) 6.43769 19.8132i 0.207452 0.638471i
\(964\) −5.73607 17.6538i −0.184746 0.568591i
\(965\) 0 0
\(966\) −2.54508 + 7.83297i −0.0818868 + 0.252022i
\(967\) 32.2705 + 23.4459i 1.03775 + 0.753969i 0.969845 0.243723i \(-0.0783686\pi\)
0.0679046 + 0.997692i \(0.478369\pi\)
\(968\) −23.2918 −0.748627
\(969\) −3.61803 2.62866i −0.116228 0.0844446i
\(970\) 0 0
\(971\) −2.73607 + 1.98787i −0.0878046 + 0.0637938i −0.630821 0.775928i \(-0.717282\pi\)
0.543017 + 0.839722i \(0.317282\pi\)
\(972\) −20.9443 + 15.2169i −0.671788 + 0.488082i
\(973\) 2.50000 + 7.69421i 0.0801463 + 0.246665i
\(974\) −5.92299 −0.189785
\(975\) 0 0
\(976\) −8.72949 −0.279424
\(977\) 10.3992 + 32.0054i 0.332699 + 1.02394i 0.967844 + 0.251551i \(0.0809405\pi\)
−0.635145 + 0.772393i \(0.719060\pi\)
\(978\) 5.50000 3.99598i 0.175871 0.127777i
\(979\) 5.52786 4.01623i 0.176671 0.128359i
\(980\) 0 0
\(981\) 16.1803 + 11.7557i 0.516598 + 0.375331i
\(982\) −23.0213 −0.734639
\(983\) 5.97214 + 4.33901i 0.190482 + 0.138393i 0.678939 0.734195i \(-0.262440\pi\)
−0.488457 + 0.872588i \(0.662440\pi\)
\(984\) 3.61803 11.1352i 0.115339 0.354976i
\(985\) 0 0
\(986\) 0.201626 + 0.620541i 0.00642108 + 0.0197621i
\(987\) −0.809017 + 2.48990i −0.0257513 + 0.0792543i
\(988\) 14.2082 43.7284i 0.452023 1.39118i
\(989\) 4.71885 + 14.5231i 0.150051 + 0.461808i
\(990\) 0 0
\(991\) 9.07295 27.9237i 0.288212 0.887024i −0.697206 0.716871i \(-0.745574\pi\)
0.985418 0.170153i \(-0.0544264\pi\)
\(992\) −13.6353 9.90659i −0.432920 0.314535i
\(993\) −17.1246 −0.543433
\(994\) −3.54508 2.57565i −0.112443 0.0816948i
\(995\) 0 0
\(996\) −2.30902 + 1.67760i −0.0731640 + 0.0531568i
\(997\) −8.80902 + 6.40013i −0.278984 + 0.202694i −0.718474 0.695554i \(-0.755159\pi\)
0.439490 + 0.898248i \(0.355159\pi\)
\(998\) 2.39919 + 7.38394i 0.0759449 + 0.233734i
\(999\) −21.1803 −0.670116
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 625.2.d.b.126.1 4
5.2 odd 4 625.2.e.c.499.2 8
5.3 odd 4 625.2.e.c.499.1 8
5.4 even 2 625.2.d.h.126.1 4
25.2 odd 20 625.2.b.a.624.2 4
25.3 odd 20 625.2.e.c.124.2 8
25.4 even 10 625.2.d.h.501.1 4
25.6 even 5 125.2.d.a.76.1 4
25.8 odd 20 125.2.e.a.49.2 8
25.9 even 10 25.2.d.a.11.1 4
25.11 even 5 625.2.a.c.1.1 2
25.12 odd 20 125.2.e.a.74.2 8
25.13 odd 20 125.2.e.a.74.1 8
25.14 even 10 625.2.a.b.1.2 2
25.16 even 5 125.2.d.a.51.1 4
25.17 odd 20 125.2.e.a.49.1 8
25.19 even 10 25.2.d.a.16.1 yes 4
25.21 even 5 inner 625.2.d.b.501.1 4
25.22 odd 20 625.2.e.c.124.1 8
25.23 odd 20 625.2.b.a.624.3 4
75.11 odd 10 5625.2.a.d.1.2 2
75.14 odd 10 5625.2.a.f.1.1 2
75.44 odd 10 225.2.h.b.91.1 4
75.59 odd 10 225.2.h.b.136.1 4
100.11 odd 10 10000.2.a.l.1.1 2
100.19 odd 10 400.2.u.b.241.1 4
100.39 odd 10 10000.2.a.c.1.2 2
100.59 odd 10 400.2.u.b.161.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.2.d.a.11.1 4 25.9 even 10
25.2.d.a.16.1 yes 4 25.19 even 10
125.2.d.a.51.1 4 25.16 even 5
125.2.d.a.76.1 4 25.6 even 5
125.2.e.a.49.1 8 25.17 odd 20
125.2.e.a.49.2 8 25.8 odd 20
125.2.e.a.74.1 8 25.13 odd 20
125.2.e.a.74.2 8 25.12 odd 20
225.2.h.b.91.1 4 75.44 odd 10
225.2.h.b.136.1 4 75.59 odd 10
400.2.u.b.161.1 4 100.59 odd 10
400.2.u.b.241.1 4 100.19 odd 10
625.2.a.b.1.2 2 25.14 even 10
625.2.a.c.1.1 2 25.11 even 5
625.2.b.a.624.2 4 25.2 odd 20
625.2.b.a.624.3 4 25.23 odd 20
625.2.d.b.126.1 4 1.1 even 1 trivial
625.2.d.b.501.1 4 25.21 even 5 inner
625.2.d.h.126.1 4 5.4 even 2
625.2.d.h.501.1 4 25.4 even 10
625.2.e.c.124.1 8 25.22 odd 20
625.2.e.c.124.2 8 25.3 odd 20
625.2.e.c.499.1 8 5.3 odd 4
625.2.e.c.499.2 8 5.2 odd 4
5625.2.a.d.1.2 2 75.11 odd 10
5625.2.a.f.1.1 2 75.14 odd 10
10000.2.a.c.1.2 2 100.39 odd 10
10000.2.a.l.1.1 2 100.11 odd 10