Properties

Label 400.2.u.b.161.1
Level $400$
Weight $2$
Character 400.161
Analytic conductor $3.194$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,2,Mod(81,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.u (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 25)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 161.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 400.161
Dual form 400.2.u.b.241.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 + 0.951057i) q^{3} +(-1.80902 - 1.31433i) q^{5} +1.61803 q^{7} +(1.61803 + 1.17557i) q^{9} +(-0.618034 + 0.449028i) q^{11} +(3.92705 + 2.85317i) q^{13} +(1.80902 - 1.31433i) q^{15} +(-0.236068 - 0.726543i) q^{17} +(1.80902 + 5.56758i) q^{19} +(-0.500000 + 1.53884i) q^{21} +(6.66312 - 4.84104i) q^{23} +(1.54508 + 4.75528i) q^{25} +(-4.04508 + 2.93893i) q^{27} +(-0.427051 + 1.31433i) q^{29} +(0.927051 + 2.85317i) q^{31} +(-0.236068 - 0.726543i) q^{33} +(-2.92705 - 2.12663i) q^{35} +(-3.42705 - 2.48990i) q^{37} +(-3.92705 + 2.85317i) q^{39} +(4.23607 + 3.07768i) q^{41} -1.85410 q^{43} +(-1.38197 - 4.25325i) q^{45} +(0.500000 - 1.53884i) q^{47} -4.38197 q^{49} +0.763932 q^{51} +(1.69098 - 5.20431i) q^{53} +1.70820 q^{55} -5.85410 q^{57} +(-3.35410 - 2.43690i) q^{59} +(3.80902 - 2.76741i) q^{61} +(2.61803 + 1.90211i) q^{63} +(-3.35410 - 10.3229i) q^{65} +(-2.85410 - 8.78402i) q^{67} +(2.54508 + 7.83297i) q^{69} +(1.35410 - 4.16750i) q^{71} +(7.28115 - 5.29007i) q^{73} -5.00000 q^{75} +(-1.00000 + 0.726543i) q^{77} +(-0.954915 + 2.93893i) q^{79} +(0.309017 + 0.951057i) q^{81} +(0.545085 + 1.67760i) q^{83} +(-0.527864 + 1.62460i) q^{85} +(-1.11803 - 0.812299i) q^{87} +(-7.23607 + 5.25731i) q^{89} +(6.35410 + 4.61653i) q^{91} -3.00000 q^{93} +(4.04508 - 12.4495i) q^{95} +(0.881966 - 2.71441i) q^{97} -1.52786 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} - 5 q^{5} + 2 q^{7} + 2 q^{9} + 2 q^{11} + 9 q^{13} + 5 q^{15} + 8 q^{17} + 5 q^{19} - 2 q^{21} + 11 q^{23} - 5 q^{25} - 5 q^{27} + 5 q^{29} - 3 q^{31} + 8 q^{33} - 5 q^{35} - 7 q^{37} - 9 q^{39}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.309017 + 0.951057i −0.178411 + 0.549093i −0.999773 0.0213149i \(-0.993215\pi\)
0.821362 + 0.570408i \(0.193215\pi\)
\(4\) 0 0
\(5\) −1.80902 1.31433i −0.809017 0.587785i
\(6\) 0 0
\(7\) 1.61803 0.611559 0.305780 0.952102i \(-0.401083\pi\)
0.305780 + 0.952102i \(0.401083\pi\)
\(8\) 0 0
\(9\) 1.61803 + 1.17557i 0.539345 + 0.391857i
\(10\) 0 0
\(11\) −0.618034 + 0.449028i −0.186344 + 0.135387i −0.677046 0.735940i \(-0.736740\pi\)
0.490702 + 0.871327i \(0.336740\pi\)
\(12\) 0 0
\(13\) 3.92705 + 2.85317i 1.08917 + 0.791327i 0.979259 0.202615i \(-0.0649439\pi\)
0.109909 + 0.993942i \(0.464944\pi\)
\(14\) 0 0
\(15\) 1.80902 1.31433i 0.467086 0.339358i
\(16\) 0 0
\(17\) −0.236068 0.726543i −0.0572549 0.176212i 0.918339 0.395794i \(-0.129531\pi\)
−0.975594 + 0.219582i \(0.929531\pi\)
\(18\) 0 0
\(19\) 1.80902 + 5.56758i 0.415017 + 1.27729i 0.912236 + 0.409666i \(0.134355\pi\)
−0.497219 + 0.867625i \(0.665645\pi\)
\(20\) 0 0
\(21\) −0.500000 + 1.53884i −0.109109 + 0.335803i
\(22\) 0 0
\(23\) 6.66312 4.84104i 1.38936 1.00943i 0.393421 0.919359i \(-0.371292\pi\)
0.995936 0.0900679i \(-0.0287084\pi\)
\(24\) 0 0
\(25\) 1.54508 + 4.75528i 0.309017 + 0.951057i
\(26\) 0 0
\(27\) −4.04508 + 2.93893i −0.778477 + 0.565597i
\(28\) 0 0
\(29\) −0.427051 + 1.31433i −0.0793014 + 0.244065i −0.982846 0.184430i \(-0.940956\pi\)
0.903544 + 0.428495i \(0.140956\pi\)
\(30\) 0 0
\(31\) 0.927051 + 2.85317i 0.166503 + 0.512444i 0.999144 0.0413693i \(-0.0131720\pi\)
−0.832641 + 0.553814i \(0.813172\pi\)
\(32\) 0 0
\(33\) −0.236068 0.726543i −0.0410942 0.126475i
\(34\) 0 0
\(35\) −2.92705 2.12663i −0.494762 0.359466i
\(36\) 0 0
\(37\) −3.42705 2.48990i −0.563404 0.409337i 0.269299 0.963057i \(-0.413208\pi\)
−0.832703 + 0.553720i \(0.813208\pi\)
\(38\) 0 0
\(39\) −3.92705 + 2.85317i −0.628831 + 0.456873i
\(40\) 0 0
\(41\) 4.23607 + 3.07768i 0.661563 + 0.480653i 0.867190 0.497977i \(-0.165924\pi\)
−0.205628 + 0.978630i \(0.565924\pi\)
\(42\) 0 0
\(43\) −1.85410 −0.282748 −0.141374 0.989956i \(-0.545152\pi\)
−0.141374 + 0.989956i \(0.545152\pi\)
\(44\) 0 0
\(45\) −1.38197 4.25325i −0.206011 0.634038i
\(46\) 0 0
\(47\) 0.500000 1.53884i 0.0729325 0.224463i −0.907945 0.419089i \(-0.862349\pi\)
0.980877 + 0.194626i \(0.0623494\pi\)
\(48\) 0 0
\(49\) −4.38197 −0.625995
\(50\) 0 0
\(51\) 0.763932 0.106972
\(52\) 0 0
\(53\) 1.69098 5.20431i 0.232274 0.714867i −0.765197 0.643796i \(-0.777358\pi\)
0.997471 0.0710707i \(-0.0226416\pi\)
\(54\) 0 0
\(55\) 1.70820 0.230334
\(56\) 0 0
\(57\) −5.85410 −0.775395
\(58\) 0 0
\(59\) −3.35410 2.43690i −0.436667 0.317257i 0.347642 0.937627i \(-0.386982\pi\)
−0.784309 + 0.620370i \(0.786982\pi\)
\(60\) 0 0
\(61\) 3.80902 2.76741i 0.487695 0.354331i −0.316602 0.948558i \(-0.602542\pi\)
0.804297 + 0.594227i \(0.202542\pi\)
\(62\) 0 0
\(63\) 2.61803 + 1.90211i 0.329841 + 0.239644i
\(64\) 0 0
\(65\) −3.35410 10.3229i −0.416025 1.28039i
\(66\) 0 0
\(67\) −2.85410 8.78402i −0.348684 1.07314i −0.959582 0.281430i \(-0.909191\pi\)
0.610898 0.791709i \(-0.290809\pi\)
\(68\) 0 0
\(69\) 2.54508 + 7.83297i 0.306392 + 0.942978i
\(70\) 0 0
\(71\) 1.35410 4.16750i 0.160702 0.494591i −0.837992 0.545683i \(-0.816270\pi\)
0.998694 + 0.0510922i \(0.0162702\pi\)
\(72\) 0 0
\(73\) 7.28115 5.29007i 0.852194 0.619156i −0.0735557 0.997291i \(-0.523435\pi\)
0.925750 + 0.378136i \(0.123435\pi\)
\(74\) 0 0
\(75\) −5.00000 −0.577350
\(76\) 0 0
\(77\) −1.00000 + 0.726543i −0.113961 + 0.0827972i
\(78\) 0 0
\(79\) −0.954915 + 2.93893i −0.107436 + 0.330655i −0.990295 0.138985i \(-0.955616\pi\)
0.882858 + 0.469640i \(0.155616\pi\)
\(80\) 0 0
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 0 0
\(83\) 0.545085 + 1.67760i 0.0598308 + 0.184140i 0.976505 0.215495i \(-0.0691366\pi\)
−0.916674 + 0.399636i \(0.869137\pi\)
\(84\) 0 0
\(85\) −0.527864 + 1.62460i −0.0572549 + 0.176212i
\(86\) 0 0
\(87\) −1.11803 0.812299i −0.119866 0.0870876i
\(88\) 0 0
\(89\) −7.23607 + 5.25731i −0.767022 + 0.557274i −0.901056 0.433703i \(-0.857207\pi\)
0.134034 + 0.990977i \(0.457207\pi\)
\(90\) 0 0
\(91\) 6.35410 + 4.61653i 0.666091 + 0.483943i
\(92\) 0 0
\(93\) −3.00000 −0.311086
\(94\) 0 0
\(95\) 4.04508 12.4495i 0.415017 1.27729i
\(96\) 0 0
\(97\) 0.881966 2.71441i 0.0895501 0.275607i −0.896245 0.443559i \(-0.853716\pi\)
0.985795 + 0.167953i \(0.0537155\pi\)
\(98\) 0 0
\(99\) −1.52786 −0.153556
\(100\) 0 0
\(101\) −7.47214 −0.743505 −0.371753 0.928332i \(-0.621243\pi\)
−0.371753 + 0.928332i \(0.621243\pi\)
\(102\) 0 0
\(103\) 3.57295 10.9964i 0.352053 1.08351i −0.605645 0.795735i \(-0.707085\pi\)
0.957699 0.287773i \(-0.0929150\pi\)
\(104\) 0 0
\(105\) 2.92705 2.12663i 0.285651 0.207538i
\(106\) 0 0
\(107\) −10.4164 −1.00699 −0.503496 0.863998i \(-0.667953\pi\)
−0.503496 + 0.863998i \(0.667953\pi\)
\(108\) 0 0
\(109\) −8.09017 5.87785i −0.774898 0.562996i 0.128546 0.991704i \(-0.458969\pi\)
−0.903443 + 0.428707i \(0.858969\pi\)
\(110\) 0 0
\(111\) 3.42705 2.48990i 0.325281 0.236331i
\(112\) 0 0
\(113\) −8.20820 5.96361i −0.772163 0.561009i 0.130454 0.991454i \(-0.458357\pi\)
−0.902617 + 0.430445i \(0.858357\pi\)
\(114\) 0 0
\(115\) −18.4164 −1.71734
\(116\) 0 0
\(117\) 3.00000 + 9.23305i 0.277350 + 0.853596i
\(118\) 0 0
\(119\) −0.381966 1.17557i −0.0350148 0.107764i
\(120\) 0 0
\(121\) −3.21885 + 9.90659i −0.292622 + 0.900599i
\(122\) 0 0
\(123\) −4.23607 + 3.07768i −0.381953 + 0.277505i
\(124\) 0 0
\(125\) 3.45492 10.6331i 0.309017 0.951057i
\(126\) 0 0
\(127\) −12.8541 + 9.33905i −1.14062 + 0.828707i −0.987205 0.159455i \(-0.949026\pi\)
−0.153412 + 0.988162i \(0.549026\pi\)
\(128\) 0 0
\(129\) 0.572949 1.76336i 0.0504453 0.155255i
\(130\) 0 0
\(131\) 5.50000 + 16.9273i 0.480537 + 1.47894i 0.838342 + 0.545145i \(0.183525\pi\)
−0.357805 + 0.933797i \(0.616475\pi\)
\(132\) 0 0
\(133\) 2.92705 + 9.00854i 0.253808 + 0.781139i
\(134\) 0 0
\(135\) 11.1803 0.962250
\(136\) 0 0
\(137\) −4.80902 3.49396i −0.410862 0.298509i 0.363089 0.931755i \(-0.381722\pi\)
−0.773951 + 0.633246i \(0.781722\pi\)
\(138\) 0 0
\(139\) 4.04508 2.93893i 0.343100 0.249276i −0.402869 0.915258i \(-0.631987\pi\)
0.745968 + 0.665981i \(0.231987\pi\)
\(140\) 0 0
\(141\) 1.30902 + 0.951057i 0.110239 + 0.0800934i
\(142\) 0 0
\(143\) −3.70820 −0.310096
\(144\) 0 0
\(145\) 2.50000 1.81636i 0.207614 0.150840i
\(146\) 0 0
\(147\) 1.35410 4.16750i 0.111684 0.343729i
\(148\) 0 0
\(149\) 13.9443 1.14236 0.571180 0.820825i \(-0.306486\pi\)
0.571180 + 0.820825i \(0.306486\pi\)
\(150\) 0 0
\(151\) 5.56231 0.452654 0.226327 0.974051i \(-0.427328\pi\)
0.226327 + 0.974051i \(0.427328\pi\)
\(152\) 0 0
\(153\) 0.472136 1.45309i 0.0381699 0.117475i
\(154\) 0 0
\(155\) 2.07295 6.37988i 0.166503 0.512444i
\(156\) 0 0
\(157\) −9.18034 −0.732671 −0.366335 0.930483i \(-0.619388\pi\)
−0.366335 + 0.930483i \(0.619388\pi\)
\(158\) 0 0
\(159\) 4.42705 + 3.21644i 0.351088 + 0.255080i
\(160\) 0 0
\(161\) 10.7812 7.83297i 0.849674 0.617324i
\(162\) 0 0
\(163\) 8.89919 + 6.46564i 0.697038 + 0.506428i 0.878966 0.476884i \(-0.158234\pi\)
−0.181928 + 0.983312i \(0.558234\pi\)
\(164\) 0 0
\(165\) −0.527864 + 1.62460i −0.0410942 + 0.126475i
\(166\) 0 0
\(167\) 1.71885 + 5.29007i 0.133008 + 0.409358i 0.995275 0.0970971i \(-0.0309557\pi\)
−0.862267 + 0.506455i \(0.830956\pi\)
\(168\) 0 0
\(169\) 3.26393 + 10.0453i 0.251072 + 0.772719i
\(170\) 0 0
\(171\) −3.61803 + 11.1352i −0.276678 + 0.851527i
\(172\) 0 0
\(173\) 13.6631 9.92684i 1.03879 0.754723i 0.0687392 0.997635i \(-0.478102\pi\)
0.970049 + 0.242911i \(0.0781024\pi\)
\(174\) 0 0
\(175\) 2.50000 + 7.69421i 0.188982 + 0.581628i
\(176\) 0 0
\(177\) 3.35410 2.43690i 0.252110 0.183168i
\(178\) 0 0
\(179\) 2.92705 9.00854i 0.218778 0.673330i −0.780086 0.625673i \(-0.784825\pi\)
0.998864 0.0476570i \(-0.0151754\pi\)
\(180\) 0 0
\(181\) 4.23607 + 13.0373i 0.314864 + 0.969053i 0.975810 + 0.218619i \(0.0701553\pi\)
−0.660946 + 0.750434i \(0.729845\pi\)
\(182\) 0 0
\(183\) 1.45492 + 4.47777i 0.107550 + 0.331006i
\(184\) 0 0
\(185\) 2.92705 + 9.00854i 0.215201 + 0.662321i
\(186\) 0 0
\(187\) 0.472136 + 0.343027i 0.0345260 + 0.0250846i
\(188\) 0 0
\(189\) −6.54508 + 4.75528i −0.476085 + 0.345896i
\(190\) 0 0
\(191\) −19.5623 14.2128i −1.41548 1.02841i −0.992497 0.122267i \(-0.960984\pi\)
−0.422982 0.906138i \(-0.639016\pi\)
\(192\) 0 0
\(193\) −5.70820 −0.410886 −0.205443 0.978669i \(-0.565863\pi\)
−0.205443 + 0.978669i \(0.565863\pi\)
\(194\) 0 0
\(195\) 10.8541 0.777278
\(196\) 0 0
\(197\) −3.00000 + 9.23305i −0.213741 + 0.657828i 0.785499 + 0.618862i \(0.212406\pi\)
−0.999241 + 0.0389652i \(0.987594\pi\)
\(198\) 0 0
\(199\) −2.56231 −0.181637 −0.0908185 0.995867i \(-0.528948\pi\)
−0.0908185 + 0.995867i \(0.528948\pi\)
\(200\) 0 0
\(201\) 9.23607 0.651462
\(202\) 0 0
\(203\) −0.690983 + 2.12663i −0.0484975 + 0.149260i
\(204\) 0 0
\(205\) −3.61803 11.1352i −0.252694 0.777714i
\(206\) 0 0
\(207\) 16.4721 1.14489
\(208\) 0 0
\(209\) −3.61803 2.62866i −0.250265 0.181828i
\(210\) 0 0
\(211\) 10.6631 7.74721i 0.734079 0.533340i −0.156772 0.987635i \(-0.550109\pi\)
0.890851 + 0.454295i \(0.150109\pi\)
\(212\) 0 0
\(213\) 3.54508 + 2.57565i 0.242905 + 0.176481i
\(214\) 0 0
\(215\) 3.35410 + 2.43690i 0.228748 + 0.166195i
\(216\) 0 0
\(217\) 1.50000 + 4.61653i 0.101827 + 0.313390i
\(218\) 0 0
\(219\) 2.78115 + 8.55951i 0.187933 + 0.578398i
\(220\) 0 0
\(221\) 1.14590 3.52671i 0.0770814 0.237232i
\(222\) 0 0
\(223\) 17.9443 13.0373i 1.20164 0.873041i 0.207193 0.978300i \(-0.433567\pi\)
0.994445 + 0.105260i \(0.0335673\pi\)
\(224\) 0 0
\(225\) −3.09017 + 9.51057i −0.206011 + 0.634038i
\(226\) 0 0
\(227\) 15.5623 11.3067i 1.03291 0.750451i 0.0640182 0.997949i \(-0.479608\pi\)
0.968888 + 0.247498i \(0.0796084\pi\)
\(228\) 0 0
\(229\) 2.56231 7.88597i 0.169322 0.521119i −0.830007 0.557753i \(-0.811664\pi\)
0.999329 + 0.0366339i \(0.0116635\pi\)
\(230\) 0 0
\(231\) −0.381966 1.17557i −0.0251315 0.0773469i
\(232\) 0 0
\(233\) 4.61803 + 14.2128i 0.302537 + 0.931115i 0.980585 + 0.196096i \(0.0628265\pi\)
−0.678047 + 0.735018i \(0.737174\pi\)
\(234\) 0 0
\(235\) −2.92705 + 2.12663i −0.190940 + 0.138726i
\(236\) 0 0
\(237\) −2.50000 1.81636i −0.162392 0.117985i
\(238\) 0 0
\(239\) −23.8435 + 17.3233i −1.54231 + 1.12055i −0.593436 + 0.804881i \(0.702229\pi\)
−0.948869 + 0.315669i \(0.897771\pi\)
\(240\) 0 0
\(241\) −9.28115 6.74315i −0.597852 0.434365i 0.247264 0.968948i \(-0.420468\pi\)
−0.845116 + 0.534584i \(0.820468\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 0 0
\(245\) 7.92705 + 5.75934i 0.506441 + 0.367951i
\(246\) 0 0
\(247\) −8.78115 + 27.0256i −0.558731 + 1.71960i
\(248\) 0 0
\(249\) −1.76393 −0.111785
\(250\) 0 0
\(251\) 6.81966 0.430453 0.215227 0.976564i \(-0.430951\pi\)
0.215227 + 0.976564i \(0.430951\pi\)
\(252\) 0 0
\(253\) −1.94427 + 5.98385i −0.122235 + 0.376202i
\(254\) 0 0
\(255\) −1.38197 1.00406i −0.0865421 0.0628765i
\(256\) 0 0
\(257\) 16.1459 1.00715 0.503577 0.863951i \(-0.332017\pi\)
0.503577 + 0.863951i \(0.332017\pi\)
\(258\) 0 0
\(259\) −5.54508 4.02874i −0.344555 0.250334i
\(260\) 0 0
\(261\) −2.23607 + 1.62460i −0.138409 + 0.100560i
\(262\) 0 0
\(263\) −17.8713 12.9843i −1.10199 0.800645i −0.120609 0.992700i \(-0.538485\pi\)
−0.981384 + 0.192055i \(0.938485\pi\)
\(264\) 0 0
\(265\) −9.89919 + 7.19218i −0.608102 + 0.441812i
\(266\) 0 0
\(267\) −2.76393 8.50651i −0.169150 0.520590i
\(268\) 0 0
\(269\) −5.32624 16.3925i −0.324746 0.999467i −0.971555 0.236814i \(-0.923897\pi\)
0.646808 0.762652i \(-0.276103\pi\)
\(270\) 0 0
\(271\) 2.47214 7.60845i 0.150172 0.462181i −0.847468 0.530846i \(-0.821874\pi\)
0.997640 + 0.0686657i \(0.0218742\pi\)
\(272\) 0 0
\(273\) −6.35410 + 4.61653i −0.384568 + 0.279405i
\(274\) 0 0
\(275\) −3.09017 2.24514i −0.186344 0.135387i
\(276\) 0 0
\(277\) 9.13525 6.63715i 0.548884 0.398788i −0.278490 0.960439i \(-0.589834\pi\)
0.827374 + 0.561651i \(0.189834\pi\)
\(278\) 0 0
\(279\) −1.85410 + 5.70634i −0.111002 + 0.341630i
\(280\) 0 0
\(281\) −0.336881 1.03681i −0.0200966 0.0618511i 0.940505 0.339779i \(-0.110352\pi\)
−0.960602 + 0.277928i \(0.910352\pi\)
\(282\) 0 0
\(283\) 7.15248 + 22.0131i 0.425171 + 1.30854i 0.902831 + 0.429996i \(0.141485\pi\)
−0.477660 + 0.878545i \(0.658515\pi\)
\(284\) 0 0
\(285\) 10.5902 + 7.69421i 0.627308 + 0.455766i
\(286\) 0 0
\(287\) 6.85410 + 4.97980i 0.404585 + 0.293948i
\(288\) 0 0
\(289\) 13.2812 9.64932i 0.781244 0.567607i
\(290\) 0 0
\(291\) 2.30902 + 1.67760i 0.135357 + 0.0983426i
\(292\) 0 0
\(293\) −28.4721 −1.66336 −0.831680 0.555255i \(-0.812621\pi\)
−0.831680 + 0.555255i \(0.812621\pi\)
\(294\) 0 0
\(295\) 2.86475 + 8.81678i 0.166792 + 0.513333i
\(296\) 0 0
\(297\) 1.18034 3.63271i 0.0684903 0.210791i
\(298\) 0 0
\(299\) 39.9787 2.31203
\(300\) 0 0
\(301\) −3.00000 −0.172917
\(302\) 0 0
\(303\) 2.30902 7.10642i 0.132650 0.408253i
\(304\) 0 0
\(305\) −10.5279 −0.602824
\(306\) 0 0
\(307\) −4.76393 −0.271892 −0.135946 0.990716i \(-0.543407\pi\)
−0.135946 + 0.990716i \(0.543407\pi\)
\(308\) 0 0
\(309\) 9.35410 + 6.79615i 0.532136 + 0.386620i
\(310\) 0 0
\(311\) −23.8713 + 17.3435i −1.35362 + 0.983461i −0.354796 + 0.934944i \(0.615450\pi\)
−0.998822 + 0.0485178i \(0.984550\pi\)
\(312\) 0 0
\(313\) 17.1803 + 12.4822i 0.971090 + 0.705538i 0.955700 0.294343i \(-0.0951009\pi\)
0.0153904 + 0.999882i \(0.495101\pi\)
\(314\) 0 0
\(315\) −2.23607 6.88191i −0.125988 0.387752i
\(316\) 0 0
\(317\) −7.30902 22.4948i −0.410515 1.26344i −0.916201 0.400719i \(-0.868761\pi\)
0.505686 0.862718i \(-0.331239\pi\)
\(318\) 0 0
\(319\) −0.326238 1.00406i −0.0182658 0.0562164i
\(320\) 0 0
\(321\) 3.21885 9.90659i 0.179659 0.552932i
\(322\) 0 0
\(323\) 3.61803 2.62866i 0.201313 0.146262i
\(324\) 0 0
\(325\) −7.50000 + 23.0826i −0.416025 + 1.28039i
\(326\) 0 0
\(327\) 8.09017 5.87785i 0.447387 0.325046i
\(328\) 0 0
\(329\) 0.809017 2.48990i 0.0446026 0.137273i
\(330\) 0 0
\(331\) −5.29180 16.2865i −0.290863 0.895186i −0.984580 0.174937i \(-0.944028\pi\)
0.693716 0.720248i \(-0.255972\pi\)
\(332\) 0 0
\(333\) −2.61803 8.05748i −0.143467 0.441547i
\(334\) 0 0
\(335\) −6.38197 + 19.6417i −0.348684 + 1.07314i
\(336\) 0 0
\(337\) −0.927051 0.673542i −0.0504997 0.0366902i 0.562249 0.826968i \(-0.309936\pi\)
−0.612749 + 0.790278i \(0.709936\pi\)
\(338\) 0 0
\(339\) 8.20820 5.96361i 0.445808 0.323899i
\(340\) 0 0
\(341\) −1.85410 1.34708i −0.100405 0.0729487i
\(342\) 0 0
\(343\) −18.4164 −0.994393
\(344\) 0 0
\(345\) 5.69098 17.5150i 0.306392 0.942978i
\(346\) 0 0
\(347\) 9.60739 29.5685i 0.515752 1.58732i −0.266158 0.963929i \(-0.585754\pi\)
0.781910 0.623391i \(-0.214246\pi\)
\(348\) 0 0
\(349\) 8.29180 0.443850 0.221925 0.975064i \(-0.428766\pi\)
0.221925 + 0.975064i \(0.428766\pi\)
\(350\) 0 0
\(351\) −24.2705 −1.29546
\(352\) 0 0
\(353\) 7.44427 22.9111i 0.396219 1.21944i −0.531790 0.846876i \(-0.678480\pi\)
0.928008 0.372559i \(-0.121520\pi\)
\(354\) 0 0
\(355\) −7.92705 + 5.75934i −0.420724 + 0.305674i
\(356\) 0 0
\(357\) 1.23607 0.0654197
\(358\) 0 0
\(359\) −23.2533 16.8945i −1.22726 0.891658i −0.230580 0.973053i \(-0.574062\pi\)
−0.996682 + 0.0813956i \(0.974062\pi\)
\(360\) 0 0
\(361\) −12.3541 + 8.97578i −0.650216 + 0.472409i
\(362\) 0 0
\(363\) −8.42705 6.12261i −0.442305 0.321354i
\(364\) 0 0
\(365\) −20.1246 −1.05337
\(366\) 0 0
\(367\) 1.68034 + 5.17155i 0.0877130 + 0.269953i 0.985286 0.170913i \(-0.0546716\pi\)
−0.897573 + 0.440866i \(0.854672\pi\)
\(368\) 0 0
\(369\) 3.23607 + 9.95959i 0.168463 + 0.518476i
\(370\) 0 0
\(371\) 2.73607 8.42075i 0.142050 0.437184i
\(372\) 0 0
\(373\) −4.26393 + 3.09793i −0.220778 + 0.160405i −0.692677 0.721248i \(-0.743569\pi\)
0.471899 + 0.881653i \(0.343569\pi\)
\(374\) 0 0
\(375\) 9.04508 + 6.57164i 0.467086 + 0.339358i
\(376\) 0 0
\(377\) −5.42705 + 3.94298i −0.279507 + 0.203074i
\(378\) 0 0
\(379\) 10.6910 32.9035i 0.549159 1.69014i −0.161732 0.986835i \(-0.551708\pi\)
0.710891 0.703303i \(-0.248292\pi\)
\(380\) 0 0
\(381\) −4.90983 15.1109i −0.251538 0.774155i
\(382\) 0 0
\(383\) 3.51064 + 10.8046i 0.179385 + 0.552092i 0.999807 0.0196680i \(-0.00626093\pi\)
−0.820421 + 0.571760i \(0.806261\pi\)
\(384\) 0 0
\(385\) 2.76393 0.140863
\(386\) 0 0
\(387\) −3.00000 2.17963i −0.152499 0.110797i
\(388\) 0 0
\(389\) −12.1353 + 8.81678i −0.615282 + 0.447028i −0.851270 0.524727i \(-0.824167\pi\)
0.235988 + 0.971756i \(0.424167\pi\)
\(390\) 0 0
\(391\) −5.09017 3.69822i −0.257421 0.187027i
\(392\) 0 0
\(393\) −17.7984 −0.897809
\(394\) 0 0
\(395\) 5.59017 4.06150i 0.281272 0.204356i
\(396\) 0 0
\(397\) −0.0106431 + 0.0327561i −0.000534163 + 0.00164398i −0.951323 0.308195i \(-0.900275\pi\)
0.950789 + 0.309839i \(0.100275\pi\)
\(398\) 0 0
\(399\) −9.47214 −0.474200
\(400\) 0 0
\(401\) −22.5967 −1.12843 −0.564214 0.825629i \(-0.690821\pi\)
−0.564214 + 0.825629i \(0.690821\pi\)
\(402\) 0 0
\(403\) −4.50000 + 13.8496i −0.224161 + 0.689897i
\(404\) 0 0
\(405\) 0.690983 2.12663i 0.0343352 0.105673i
\(406\) 0 0
\(407\) 3.23607 0.160406
\(408\) 0 0
\(409\) −22.9894 16.7027i −1.13675 0.825898i −0.150087 0.988673i \(-0.547955\pi\)
−0.986663 + 0.162775i \(0.947955\pi\)
\(410\) 0 0
\(411\) 4.80902 3.49396i 0.237211 0.172344i
\(412\) 0 0
\(413\) −5.42705 3.94298i −0.267048 0.194022i
\(414\) 0 0
\(415\) 1.21885 3.75123i 0.0598308 0.184140i
\(416\) 0 0
\(417\) 1.54508 + 4.75528i 0.0756631 + 0.232867i
\(418\) 0 0
\(419\) 0.163119 + 0.502029i 0.00796888 + 0.0245257i 0.954962 0.296728i \(-0.0958956\pi\)
−0.946993 + 0.321254i \(0.895896\pi\)
\(420\) 0 0
\(421\) 9.88854 30.4338i 0.481938 1.48325i −0.354429 0.935083i \(-0.615325\pi\)
0.836367 0.548170i \(-0.184675\pi\)
\(422\) 0 0
\(423\) 2.61803 1.90211i 0.127293 0.0924839i
\(424\) 0 0
\(425\) 3.09017 2.24514i 0.149895 0.108905i
\(426\) 0 0
\(427\) 6.16312 4.47777i 0.298254 0.216694i
\(428\) 0 0
\(429\) 1.14590 3.52671i 0.0553245 0.170271i
\(430\) 0 0
\(431\) −7.36475 22.6664i −0.354747 1.09180i −0.956156 0.292858i \(-0.905394\pi\)
0.601409 0.798942i \(-0.294606\pi\)
\(432\) 0 0
\(433\) 6.22542 + 19.1599i 0.299175 + 0.920765i 0.981787 + 0.189985i \(0.0608438\pi\)
−0.682612 + 0.730781i \(0.739156\pi\)
\(434\) 0 0
\(435\) 0.954915 + 2.93893i 0.0457847 + 0.140911i
\(436\) 0 0
\(437\) 39.0066 + 28.3399i 1.86594 + 1.35568i
\(438\) 0 0
\(439\) 4.83688 3.51420i 0.230852 0.167724i −0.466346 0.884602i \(-0.654430\pi\)
0.697198 + 0.716879i \(0.254430\pi\)
\(440\) 0 0
\(441\) −7.09017 5.15131i −0.337627 0.245300i
\(442\) 0 0
\(443\) −12.0557 −0.572785 −0.286392 0.958112i \(-0.592456\pi\)
−0.286392 + 0.958112i \(0.592456\pi\)
\(444\) 0 0
\(445\) 20.0000 0.948091
\(446\) 0 0
\(447\) −4.30902 + 13.2618i −0.203810 + 0.627261i
\(448\) 0 0
\(449\) 20.3262 0.959254 0.479627 0.877472i \(-0.340772\pi\)
0.479627 + 0.877472i \(0.340772\pi\)
\(450\) 0 0
\(451\) −4.00000 −0.188353
\(452\) 0 0
\(453\) −1.71885 + 5.29007i −0.0807585 + 0.248549i
\(454\) 0 0
\(455\) −5.42705 16.7027i −0.254424 0.783037i
\(456\) 0 0
\(457\) 5.41641 0.253369 0.126684 0.991943i \(-0.459566\pi\)
0.126684 + 0.991943i \(0.459566\pi\)
\(458\) 0 0
\(459\) 3.09017 + 2.24514i 0.144237 + 0.104794i
\(460\) 0 0
\(461\) −18.7533 + 13.6251i −0.873428 + 0.634582i −0.931505 0.363730i \(-0.881503\pi\)
0.0580768 + 0.998312i \(0.481503\pi\)
\(462\) 0 0
\(463\) 13.0451 + 9.47781i 0.606257 + 0.440471i 0.848094 0.529846i \(-0.177750\pi\)
−0.241838 + 0.970317i \(0.577750\pi\)
\(464\) 0 0
\(465\) 5.42705 + 3.94298i 0.251673 + 0.182851i
\(466\) 0 0
\(467\) 8.79180 + 27.0584i 0.406836 + 1.25211i 0.919353 + 0.393435i \(0.128713\pi\)
−0.512517 + 0.858677i \(0.671287\pi\)
\(468\) 0 0
\(469\) −4.61803 14.2128i −0.213241 0.656288i
\(470\) 0 0
\(471\) 2.83688 8.73102i 0.130717 0.402304i
\(472\) 0 0
\(473\) 1.14590 0.832544i 0.0526884 0.0382804i
\(474\) 0 0
\(475\) −23.6803 + 17.2048i −1.08653 + 0.789409i
\(476\) 0 0
\(477\) 8.85410 6.43288i 0.405401 0.294541i
\(478\) 0 0
\(479\) 1.28115 3.94298i 0.0585374 0.180160i −0.917512 0.397708i \(-0.869806\pi\)
0.976050 + 0.217548i \(0.0698059\pi\)
\(480\) 0 0
\(481\) −6.35410 19.5559i −0.289722 0.891673i
\(482\) 0 0
\(483\) 4.11803 + 12.6740i 0.187377 + 0.576687i
\(484\) 0 0
\(485\) −5.16312 + 3.75123i −0.234445 + 0.170334i
\(486\) 0 0
\(487\) −7.75329 5.63309i −0.351335 0.255260i 0.398094 0.917345i \(-0.369672\pi\)
−0.749429 + 0.662085i \(0.769672\pi\)
\(488\) 0 0
\(489\) −8.89919 + 6.46564i −0.402435 + 0.292386i
\(490\) 0 0
\(491\) 30.1353 + 21.8945i 1.35999 + 0.988087i 0.998446 + 0.0557300i \(0.0177486\pi\)
0.361539 + 0.932357i \(0.382251\pi\)
\(492\) 0 0
\(493\) 1.05573 0.0475476
\(494\) 0 0
\(495\) 2.76393 + 2.00811i 0.124230 + 0.0902580i
\(496\) 0 0
\(497\) 2.19098 6.74315i 0.0982790 0.302472i
\(498\) 0 0
\(499\) 12.5623 0.562366 0.281183 0.959654i \(-0.409273\pi\)
0.281183 + 0.959654i \(0.409273\pi\)
\(500\) 0 0
\(501\) −5.56231 −0.248506
\(502\) 0 0
\(503\) 3.27051 10.0656i 0.145825 0.448803i −0.851291 0.524693i \(-0.824180\pi\)
0.997116 + 0.0758907i \(0.0241800\pi\)
\(504\) 0 0
\(505\) 13.5172 + 9.82084i 0.601508 + 0.437021i
\(506\) 0 0
\(507\) −10.5623 −0.469088
\(508\) 0 0
\(509\) 3.78115 + 2.74717i 0.167597 + 0.121766i 0.668422 0.743782i \(-0.266970\pi\)
−0.500825 + 0.865548i \(0.666970\pi\)
\(510\) 0 0
\(511\) 11.7812 8.55951i 0.521168 0.378650i
\(512\) 0 0
\(513\) −23.6803 17.2048i −1.04551 0.759609i
\(514\) 0 0
\(515\) −20.9164 + 15.1967i −0.921687 + 0.669645i
\(516\) 0 0
\(517\) 0.381966 + 1.17557i 0.0167988 + 0.0517015i
\(518\) 0 0
\(519\) 5.21885 + 16.0620i 0.229082 + 0.705042i
\(520\) 0 0
\(521\) −4.74671 + 14.6089i −0.207957 + 0.640026i 0.791622 + 0.611011i \(0.209237\pi\)
−0.999579 + 0.0290150i \(0.990763\pi\)
\(522\) 0 0
\(523\) −16.0623 + 11.6699i −0.702356 + 0.510291i −0.880699 0.473677i \(-0.842926\pi\)
0.178343 + 0.983968i \(0.442926\pi\)
\(524\) 0 0
\(525\) −8.09017 −0.353084
\(526\) 0 0
\(527\) 1.85410 1.34708i 0.0807660 0.0586799i
\(528\) 0 0
\(529\) 13.8541 42.6385i 0.602352 1.85385i
\(530\) 0 0
\(531\) −2.56231 7.88597i −0.111195 0.342222i
\(532\) 0 0
\(533\) 7.85410 + 24.1724i 0.340199 + 1.04702i
\(534\) 0 0
\(535\) 18.8435 + 13.6906i 0.814674 + 0.591895i
\(536\) 0 0
\(537\) 7.66312 + 5.56758i 0.330688 + 0.240259i
\(538\) 0 0
\(539\) 2.70820 1.96763i 0.116651 0.0847516i
\(540\) 0 0
\(541\) 10.6180 + 7.71445i 0.456505 + 0.331670i 0.792159 0.610315i \(-0.208957\pi\)
−0.335654 + 0.941985i \(0.608957\pi\)
\(542\) 0 0
\(543\) −13.7082 −0.588275
\(544\) 0 0
\(545\) 6.90983 + 21.2663i 0.295985 + 0.910947i
\(546\) 0 0
\(547\) 10.7254 33.0095i 0.458586 1.41138i −0.408287 0.912854i \(-0.633874\pi\)
0.866873 0.498529i \(-0.166126\pi\)
\(548\) 0 0
\(549\) 9.41641 0.401882
\(550\) 0 0
\(551\) −8.09017 −0.344653
\(552\) 0 0
\(553\) −1.54508 + 4.75528i −0.0657037 + 0.202215i
\(554\) 0 0
\(555\) −9.47214 −0.402070
\(556\) 0 0
\(557\) 9.23607 0.391345 0.195672 0.980669i \(-0.437311\pi\)
0.195672 + 0.980669i \(0.437311\pi\)
\(558\) 0 0
\(559\) −7.28115 5.29007i −0.307960 0.223746i
\(560\) 0 0
\(561\) −0.472136 + 0.343027i −0.0199336 + 0.0144826i
\(562\) 0 0
\(563\) 7.78115 + 5.65334i 0.327936 + 0.238260i 0.739555 0.673097i \(-0.235036\pi\)
−0.411618 + 0.911356i \(0.635036\pi\)
\(564\) 0 0
\(565\) 7.01064 + 21.5765i 0.294940 + 0.907732i
\(566\) 0 0
\(567\) 0.500000 + 1.53884i 0.0209980 + 0.0646253i
\(568\) 0 0
\(569\) 9.10739 + 28.0297i 0.381802 + 1.17506i 0.938774 + 0.344534i \(0.111963\pi\)
−0.556972 + 0.830531i \(0.688037\pi\)
\(570\) 0 0
\(571\) −9.92705 + 30.5523i −0.415434 + 1.27857i 0.496428 + 0.868078i \(0.334645\pi\)
−0.911862 + 0.410497i \(0.865355\pi\)
\(572\) 0 0
\(573\) 19.5623 14.2128i 0.817227 0.593750i
\(574\) 0 0
\(575\) 33.3156 + 24.2052i 1.38936 + 1.00943i
\(576\) 0 0
\(577\) −30.5623 + 22.2048i −1.27233 + 0.924399i −0.999293 0.0376062i \(-0.988027\pi\)
−0.273033 + 0.962005i \(0.588027\pi\)
\(578\) 0 0
\(579\) 1.76393 5.42882i 0.0733065 0.225614i
\(580\) 0 0
\(581\) 0.881966 + 2.71441i 0.0365901 + 0.112613i
\(582\) 0 0
\(583\) 1.29180 + 3.97574i 0.0535007 + 0.164658i
\(584\) 0 0
\(585\) 6.70820 20.6457i 0.277350 0.853596i
\(586\) 0 0
\(587\) 15.1353 + 10.9964i 0.624699 + 0.453870i 0.854560 0.519353i \(-0.173827\pi\)
−0.229861 + 0.973224i \(0.573827\pi\)
\(588\) 0 0
\(589\) −14.2082 + 10.3229i −0.585439 + 0.425346i
\(590\) 0 0
\(591\) −7.85410 5.70634i −0.323075 0.234727i
\(592\) 0 0
\(593\) −22.0902 −0.907135 −0.453567 0.891222i \(-0.649849\pi\)
−0.453567 + 0.891222i \(0.649849\pi\)
\(594\) 0 0
\(595\) −0.854102 + 2.62866i −0.0350148 + 0.107764i
\(596\) 0 0
\(597\) 0.791796 2.43690i 0.0324061 0.0997356i
\(598\) 0 0
\(599\) 0.527864 0.0215679 0.0107840 0.999942i \(-0.496567\pi\)
0.0107840 + 0.999942i \(0.496567\pi\)
\(600\) 0 0
\(601\) 36.2705 1.47950 0.739752 0.672879i \(-0.234943\pi\)
0.739752 + 0.672879i \(0.234943\pi\)
\(602\) 0 0
\(603\) 5.70820 17.5680i 0.232456 0.715426i
\(604\) 0 0
\(605\) 18.8435 13.6906i 0.766096 0.556601i
\(606\) 0 0
\(607\) 15.4377 0.626597 0.313298 0.949655i \(-0.398566\pi\)
0.313298 + 0.949655i \(0.398566\pi\)
\(608\) 0 0
\(609\) −1.80902 1.31433i −0.0733051 0.0532592i
\(610\) 0 0
\(611\) 6.35410 4.61653i 0.257059 0.186765i
\(612\) 0 0
\(613\) −25.8713 18.7966i −1.04493 0.759188i −0.0736905 0.997281i \(-0.523478\pi\)
−0.971242 + 0.238093i \(0.923478\pi\)
\(614\) 0 0
\(615\) 11.7082 0.472120
\(616\) 0 0
\(617\) 3.01722 + 9.28605i 0.121469 + 0.373842i 0.993241 0.116069i \(-0.0370293\pi\)
−0.871772 + 0.489911i \(0.837029\pi\)
\(618\) 0 0
\(619\) −12.1976 37.5402i −0.490261 1.50887i −0.824213 0.566279i \(-0.808382\pi\)
0.333952 0.942590i \(-0.391618\pi\)
\(620\) 0 0
\(621\) −12.7254 + 39.1648i −0.510654 + 1.57163i
\(622\) 0 0
\(623\) −11.7082 + 8.50651i −0.469079 + 0.340806i
\(624\) 0 0
\(625\) −20.2254 + 14.6946i −0.809017 + 0.587785i
\(626\) 0 0
\(627\) 3.61803 2.62866i 0.144490 0.104978i
\(628\) 0 0
\(629\) −1.00000 + 3.07768i −0.0398726 + 0.122715i
\(630\) 0 0
\(631\) 1.78115 + 5.48183i 0.0709066 + 0.218228i 0.980230 0.197862i \(-0.0633999\pi\)
−0.909323 + 0.416090i \(0.863400\pi\)
\(632\) 0 0
\(633\) 4.07295 + 12.5352i 0.161885 + 0.498231i
\(634\) 0 0
\(635\) 35.5279 1.40988
\(636\) 0 0
\(637\) −17.2082 12.5025i −0.681814 0.495367i
\(638\) 0 0
\(639\) 7.09017 5.15131i 0.280483 0.203783i
\(640\) 0 0
\(641\) −8.16312 5.93085i −0.322424 0.234255i 0.414785 0.909919i \(-0.363857\pi\)
−0.737209 + 0.675665i \(0.763857\pi\)
\(642\) 0 0
\(643\) −22.8328 −0.900438 −0.450219 0.892918i \(-0.648654\pi\)
−0.450219 + 0.892918i \(0.648654\pi\)
\(644\) 0 0
\(645\) −3.35410 + 2.43690i −0.132068 + 0.0959528i
\(646\) 0 0
\(647\) −9.43769 + 29.0462i −0.371034 + 1.14193i 0.575082 + 0.818096i \(0.304970\pi\)
−0.946116 + 0.323829i \(0.895030\pi\)
\(648\) 0 0
\(649\) 3.16718 0.124323
\(650\) 0 0
\(651\) −4.85410 −0.190247
\(652\) 0 0
\(653\) 2.44427 7.52270i 0.0956518 0.294386i −0.891771 0.452487i \(-0.850537\pi\)
0.987423 + 0.158101i \(0.0505371\pi\)
\(654\) 0 0
\(655\) 12.2984 37.8505i 0.480537 1.47894i
\(656\) 0 0
\(657\) 18.0000 0.702247
\(658\) 0 0
\(659\) 19.7984 + 14.3844i 0.771235 + 0.560335i 0.902336 0.431034i \(-0.141851\pi\)
−0.131101 + 0.991369i \(0.541851\pi\)
\(660\) 0 0
\(661\) 32.9164 23.9152i 1.28030 0.930192i 0.280738 0.959784i \(-0.409421\pi\)
0.999562 + 0.0295922i \(0.00942086\pi\)
\(662\) 0 0
\(663\) 3.00000 + 2.17963i 0.116510 + 0.0846497i
\(664\) 0 0
\(665\) 6.54508 20.1437i 0.253808 0.781139i
\(666\) 0 0
\(667\) 3.51722 + 10.8249i 0.136187 + 0.419142i
\(668\) 0 0
\(669\) 6.85410 + 21.0948i 0.264995 + 0.815570i
\(670\) 0 0
\(671\) −1.11146 + 3.42071i −0.0429073 + 0.132055i
\(672\) 0 0
\(673\) 8.23607 5.98385i 0.317477 0.230661i −0.417621 0.908621i \(-0.637136\pi\)
0.735098 + 0.677961i \(0.237136\pi\)
\(674\) 0 0
\(675\) −20.2254 14.6946i −0.778477 0.565597i
\(676\) 0 0
\(677\) −6.78115 + 4.92680i −0.260621 + 0.189352i −0.710421 0.703777i \(-0.751495\pi\)
0.449800 + 0.893129i \(0.351495\pi\)
\(678\) 0 0
\(679\) 1.42705 4.39201i 0.0547652 0.168550i
\(680\) 0 0
\(681\) 5.94427 + 18.2946i 0.227785 + 0.701050i
\(682\) 0 0
\(683\) 1.39919 + 4.30625i 0.0535384 + 0.164774i 0.974251 0.225468i \(-0.0723912\pi\)
−0.920712 + 0.390242i \(0.872391\pi\)
\(684\) 0 0
\(685\) 4.10739 + 12.6412i 0.156935 + 0.482997i
\(686\) 0 0
\(687\) 6.70820 + 4.87380i 0.255934 + 0.185947i
\(688\) 0 0
\(689\) 21.4894 15.6129i 0.818679 0.594805i
\(690\) 0 0
\(691\) 2.20820 + 1.60435i 0.0840040 + 0.0610325i 0.628995 0.777410i \(-0.283467\pi\)
−0.544991 + 0.838442i \(0.683467\pi\)
\(692\) 0 0
\(693\) −2.47214 −0.0939087
\(694\) 0 0
\(695\) −11.1803 −0.424094
\(696\) 0 0
\(697\) 1.23607 3.80423i 0.0468194 0.144095i
\(698\) 0 0
\(699\) −14.9443 −0.565244
\(700\) 0 0
\(701\) 35.0132 1.32243 0.661214 0.750197i \(-0.270041\pi\)
0.661214 + 0.750197i \(0.270041\pi\)
\(702\) 0 0
\(703\) 7.66312 23.5847i 0.289020 0.889512i
\(704\) 0 0
\(705\) −1.11803 3.44095i −0.0421076 0.129594i
\(706\) 0 0
\(707\) −12.0902 −0.454698
\(708\) 0 0
\(709\) −27.1353 19.7149i −1.01909 0.740409i −0.0529906 0.998595i \(-0.516875\pi\)
−0.966095 + 0.258186i \(0.916875\pi\)
\(710\) 0 0
\(711\) −5.00000 + 3.63271i −0.187515 + 0.136237i
\(712\) 0 0
\(713\) 19.9894 + 14.5231i 0.748607 + 0.543895i
\(714\) 0 0
\(715\) 6.70820 + 4.87380i 0.250873 + 0.182270i
\(716\) 0 0
\(717\) −9.10739 28.0297i −0.340122 1.04679i
\(718\) 0 0
\(719\) 11.3435 + 34.9116i 0.423040 + 1.30198i 0.904859 + 0.425712i \(0.139976\pi\)
−0.481819 + 0.876271i \(0.660024\pi\)
\(720\) 0 0
\(721\) 5.78115 17.7926i 0.215301 0.662630i
\(722\) 0 0
\(723\) 9.28115 6.74315i 0.345170 0.250781i
\(724\) 0 0
\(725\) −6.90983 −0.256625
\(726\) 0 0
\(727\) 3.59017 2.60841i 0.133152 0.0967406i −0.519216 0.854643i \(-0.673776\pi\)
0.652368 + 0.757903i \(0.273776\pi\)
\(728\) 0 0
\(729\) 4.01722 12.3637i 0.148786 0.457916i
\(730\) 0 0
\(731\) 0.437694 + 1.34708i 0.0161887 + 0.0498237i
\(732\) 0 0
\(733\) 8.33688 + 25.6583i 0.307930 + 0.947710i 0.978568 + 0.205925i \(0.0660204\pi\)
−0.670638 + 0.741785i \(0.733980\pi\)
\(734\) 0 0
\(735\) −7.92705 + 5.75934i −0.292394 + 0.212436i
\(736\) 0 0
\(737\) 5.70820 + 4.14725i 0.210264 + 0.152766i
\(738\) 0 0
\(739\) −25.0623 + 18.2088i −0.921932 + 0.669823i −0.944004 0.329934i \(-0.892974\pi\)
0.0220723 + 0.999756i \(0.492974\pi\)
\(740\) 0 0
\(741\) −22.9894 16.7027i −0.844535 0.613591i
\(742\) 0 0
\(743\) 16.3607 0.600215 0.300108 0.953905i \(-0.402977\pi\)
0.300108 + 0.953905i \(0.402977\pi\)
\(744\) 0 0
\(745\) −25.2254 18.3273i −0.924188 0.671462i
\(746\) 0 0
\(747\) −1.09017 + 3.35520i −0.0398872 + 0.122760i
\(748\) 0 0
\(749\) −16.8541 −0.615835
\(750\) 0 0
\(751\) 40.8885 1.49204 0.746022 0.665921i \(-0.231961\pi\)
0.746022 + 0.665921i \(0.231961\pi\)
\(752\) 0 0
\(753\) −2.10739 + 6.48588i −0.0767976 + 0.236359i
\(754\) 0 0
\(755\) −10.0623 7.31069i −0.366205 0.266063i
\(756\) 0 0
\(757\) 3.58359 0.130248 0.0651239 0.997877i \(-0.479256\pi\)
0.0651239 + 0.997877i \(0.479256\pi\)
\(758\) 0 0
\(759\) −5.09017 3.69822i −0.184761 0.134237i
\(760\) 0 0
\(761\) −30.2984 + 22.0131i −1.09832 + 0.797973i −0.980784 0.195096i \(-0.937498\pi\)
−0.117531 + 0.993069i \(0.537498\pi\)
\(762\) 0 0
\(763\) −13.0902 9.51057i −0.473896 0.344306i
\(764\) 0 0
\(765\) −2.76393 + 2.00811i −0.0999302 + 0.0726035i
\(766\) 0 0
\(767\) −6.21885 19.1396i −0.224550 0.691092i
\(768\) 0 0
\(769\) −4.14590 12.7598i −0.149505 0.460129i 0.848058 0.529904i \(-0.177772\pi\)
−0.997563 + 0.0697749i \(0.977772\pi\)
\(770\) 0 0
\(771\) −4.98936 + 15.3557i −0.179687 + 0.553021i
\(772\) 0 0
\(773\) −26.8262 + 19.4904i −0.964873 + 0.701021i −0.954277 0.298923i \(-0.903373\pi\)
−0.0105954 + 0.999944i \(0.503373\pi\)
\(774\) 0 0
\(775\) −12.1353 + 8.81678i −0.435911 + 0.316708i
\(776\) 0 0
\(777\) 5.54508 4.02874i 0.198929 0.144530i
\(778\) 0 0
\(779\) −9.47214 + 29.1522i −0.339374 + 1.04449i
\(780\) 0 0
\(781\) 1.03444 + 3.18368i 0.0370152 + 0.113921i
\(782\) 0 0
\(783\) −2.13525 6.57164i −0.0763078 0.234851i
\(784\) 0 0
\(785\) 16.6074 + 12.0660i 0.592743 + 0.430653i
\(786\) 0 0
\(787\) −27.6525 20.0907i −0.985704 0.716156i −0.0267281 0.999643i \(-0.508509\pi\)
−0.958976 + 0.283487i \(0.908509\pi\)
\(788\) 0 0
\(789\) 17.8713 12.9843i 0.636236 0.462252i
\(790\) 0 0
\(791\) −13.2812 9.64932i −0.472223 0.343090i
\(792\) 0 0
\(793\) 22.8541 0.811573
\(794\) 0 0
\(795\) −3.78115 11.6372i −0.134104 0.412729i
\(796\) 0 0
\(797\) 4.39919 13.5393i 0.155827 0.479587i −0.842417 0.538827i \(-0.818868\pi\)
0.998244 + 0.0592400i \(0.0188677\pi\)
\(798\) 0 0
\(799\) −1.23607 −0.0437289
\(800\) 0 0
\(801\) −17.8885 −0.632061
\(802\) 0 0
\(803\) −2.12461 + 6.53888i −0.0749759 + 0.230752i
\(804\) 0 0
\(805\) −29.7984 −1.05025
\(806\) 0 0
\(807\) 17.2361 0.606738
\(808\) 0 0
\(809\) 12.9271 + 9.39205i 0.454491 + 0.330207i 0.791366 0.611342i \(-0.209370\pi\)
−0.336875 + 0.941549i \(0.609370\pi\)
\(810\) 0 0
\(811\) −1.04508 + 0.759299i −0.0366979 + 0.0266626i −0.605983 0.795478i \(-0.707220\pi\)
0.569285 + 0.822140i \(0.307220\pi\)
\(812\) 0 0
\(813\) 6.47214 + 4.70228i 0.226988 + 0.164916i
\(814\) 0 0
\(815\) −7.60081 23.3929i −0.266245 0.819417i
\(816\) 0 0
\(817\) −3.35410 10.3229i −0.117345 0.361151i
\(818\) 0 0
\(819\) 4.85410 + 14.9394i 0.169616 + 0.522025i
\(820\) 0 0
\(821\) 6.08359 18.7234i 0.212319 0.653450i −0.787014 0.616935i \(-0.788374\pi\)
0.999333 0.0365154i \(-0.0116258\pi\)
\(822\) 0 0
\(823\) 27.7426 20.1562i 0.967048 0.702601i 0.0122710 0.999925i \(-0.496094\pi\)
0.954777 + 0.297323i \(0.0960939\pi\)
\(824\) 0 0
\(825\) 3.09017 2.24514i 0.107586 0.0781657i
\(826\) 0 0
\(827\) −24.2984 + 17.6538i −0.844937 + 0.613883i −0.923745 0.383007i \(-0.874889\pi\)
0.0788082 + 0.996890i \(0.474889\pi\)
\(828\) 0 0
\(829\) −9.00658 + 27.7194i −0.312811 + 0.962734i 0.663835 + 0.747879i \(0.268928\pi\)
−0.976646 + 0.214855i \(0.931072\pi\)
\(830\) 0 0
\(831\) 3.48936 + 10.7391i 0.121044 + 0.372537i
\(832\) 0 0
\(833\) 1.03444 + 3.18368i 0.0358413 + 0.110308i
\(834\) 0 0
\(835\) 3.84346 11.8290i 0.133008 0.409358i
\(836\) 0 0
\(837\) −12.1353 8.81678i −0.419456 0.304752i
\(838\) 0 0
\(839\) 3.35410 2.43690i 0.115796 0.0841311i −0.528380 0.849008i \(-0.677200\pi\)
0.644176 + 0.764877i \(0.277200\pi\)
\(840\) 0 0
\(841\) 21.9164 + 15.9232i 0.755738 + 0.549076i
\(842\) 0 0
\(843\) 1.09017 0.0375474
\(844\) 0 0
\(845\) 7.29837 22.4621i 0.251072 0.772719i
\(846\) 0 0
\(847\) −5.20820 + 16.0292i −0.178956 + 0.550770i
\(848\) 0 0
\(849\) −23.1459 −0.794365
\(850\) 0 0
\(851\) −34.8885 −1.19596
\(852\) 0 0
\(853\) 14.6180 44.9897i 0.500512 1.54042i −0.307675 0.951491i \(-0.599551\pi\)
0.808187 0.588926i \(-0.200449\pi\)
\(854\) 0 0
\(855\) 21.1803 15.3884i 0.724352 0.526273i
\(856\) 0 0
\(857\) −40.6869 −1.38984 −0.694919 0.719088i \(-0.744560\pi\)
−0.694919 + 0.719088i \(0.744560\pi\)
\(858\) 0 0
\(859\) −22.9894 16.7027i −0.784387 0.569890i 0.121906 0.992542i \(-0.461099\pi\)
−0.906292 + 0.422651i \(0.861099\pi\)
\(860\) 0 0
\(861\) −6.85410 + 4.97980i −0.233587 + 0.169711i
\(862\) 0 0
\(863\) −33.6246 24.4297i −1.14460 0.831597i −0.156842 0.987624i \(-0.550131\pi\)
−0.987753 + 0.156027i \(0.950131\pi\)
\(864\) 0 0
\(865\) −37.7639 −1.28401
\(866\) 0 0
\(867\) 5.07295 + 15.6129i 0.172286 + 0.530243i
\(868\) 0 0
\(869\) −0.729490 2.24514i −0.0247463 0.0761612i
\(870\) 0 0
\(871\) 13.8541 42.6385i 0.469428 1.44475i
\(872\) 0 0
\(873\) 4.61803 3.35520i 0.156297 0.113556i
\(874\) 0 0
\(875\) 5.59017 17.2048i 0.188982 0.581628i
\(876\) 0 0
\(877\) −24.7082 + 17.9516i −0.834337 + 0.606181i −0.920783 0.390075i \(-0.872449\pi\)
0.0864462 + 0.996257i \(0.472449\pi\)
\(878\) 0 0
\(879\) 8.79837 27.0786i 0.296762 0.913339i
\(880\) 0 0
\(881\) 1.34752 + 4.14725i 0.0453992 + 0.139725i 0.971187 0.238320i \(-0.0765967\pi\)
−0.925787 + 0.378044i \(0.876597\pi\)
\(882\) 0 0
\(883\) 14.6525 + 45.0957i 0.493095 + 1.51759i 0.819904 + 0.572500i \(0.194026\pi\)
−0.326809 + 0.945090i \(0.605974\pi\)
\(884\) 0 0
\(885\) −9.27051 −0.311625
\(886\) 0 0
\(887\) −4.76393 3.46120i −0.159957 0.116216i 0.504927 0.863162i \(-0.331519\pi\)
−0.664885 + 0.746946i \(0.731519\pi\)
\(888\) 0 0
\(889\) −20.7984 + 15.1109i −0.697555 + 0.506803i
\(890\) 0 0
\(891\) −0.618034 0.449028i −0.0207049 0.0150430i
\(892\) 0 0
\(893\) 9.47214 0.316973
\(894\) 0 0
\(895\) −17.1353 + 12.4495i −0.572768 + 0.416141i
\(896\) 0 0
\(897\) −12.3541 + 38.0220i −0.412491 + 1.26952i
\(898\) 0 0
\(899\) −4.14590 −0.138273
\(900\) 0 0
\(901\) −4.18034 −0.139267
\(902\) 0 0
\(903\) 0.927051 2.85317i 0.0308503 0.0949475i
\(904\) 0 0
\(905\) 9.47214 29.1522i 0.314864 0.969053i
\(906\) 0 0
\(907\) −47.2492 −1.56888 −0.784442 0.620202i \(-0.787051\pi\)
−0.784442 + 0.620202i \(0.787051\pi\)
\(908\) 0 0
\(909\) −12.0902 8.78402i −0.401006 0.291348i
\(910\) 0 0
\(911\) −28.9336 + 21.0215i −0.958614 + 0.696474i −0.952828 0.303510i \(-0.901842\pi\)
−0.00578548 + 0.999983i \(0.501842\pi\)
\(912\) 0 0
\(913\) −1.09017 0.792055i −0.0360794 0.0262132i
\(914\) 0 0
\(915\) 3.25329 10.0126i 0.107550 0.331006i
\(916\) 0 0
\(917\) 8.89919 + 27.3889i 0.293877 + 0.904461i
\(918\) 0 0
\(919\) 0.551663 + 1.69784i 0.0181977 + 0.0560067i 0.959743 0.280880i \(-0.0906262\pi\)
−0.941545 + 0.336886i \(0.890626\pi\)
\(920\) 0 0
\(921\) 1.47214 4.53077i 0.0485085 0.149294i
\(922\) 0 0
\(923\) 17.2082 12.5025i 0.566415 0.411525i
\(924\) 0 0
\(925\) 6.54508 20.1437i 0.215201 0.662321i
\(926\) 0 0
\(927\) 18.7082 13.5923i 0.614458 0.446430i
\(928\) 0 0
\(929\) −11.3197 + 34.8383i −0.371386 + 1.14301i 0.574499 + 0.818506i \(0.305197\pi\)
−0.945885 + 0.324503i \(0.894803\pi\)
\(930\) 0 0
\(931\) −7.92705 24.3970i −0.259799 0.799578i
\(932\) 0 0
\(933\) −9.11803 28.0624i −0.298511 0.918722i
\(934\) 0 0
\(935\) −0.403252 1.24108i −0.0131878 0.0405877i
\(936\) 0 0
\(937\) −41.4787 30.1360i −1.35505 0.984502i −0.998743 0.0501333i \(-0.984035\pi\)
−0.356308 0.934369i \(-0.615965\pi\)
\(938\) 0 0
\(939\) −17.1803 + 12.4822i −0.560659 + 0.407343i
\(940\) 0 0
\(941\) 15.8435 + 11.5109i 0.516482 + 0.375246i 0.815277 0.579071i \(-0.196585\pi\)
−0.298795 + 0.954317i \(0.596585\pi\)
\(942\) 0 0
\(943\) 43.1246 1.40433
\(944\) 0 0
\(945\) 18.0902 0.588473
\(946\) 0 0
\(947\) 8.85410 27.2501i 0.287720 0.885510i −0.697851 0.716243i \(-0.745860\pi\)
0.985570 0.169267i \(-0.0541399\pi\)
\(948\) 0 0
\(949\) 43.6869 1.41814
\(950\) 0 0
\(951\) 23.6525 0.766984
\(952\) 0 0
\(953\) 10.7361 33.0422i 0.347775 1.07034i −0.612306 0.790621i \(-0.709758\pi\)
0.960081 0.279721i \(-0.0902421\pi\)
\(954\) 0 0
\(955\) 16.7082 + 51.4226i 0.540665 + 1.66400i
\(956\) 0 0
\(957\) 1.05573 0.0341268
\(958\) 0 0
\(959\) −7.78115 5.65334i −0.251267 0.182556i
\(960\) 0 0
\(961\) 17.7984 12.9313i 0.574141 0.417138i
\(962\) 0 0
\(963\) −16.8541 12.2452i −0.543116 0.394597i
\(964\) 0 0
\(965\) 10.3262 + 7.50245i 0.332413 + 0.241512i
\(966\) 0 0
\(967\) −12.3262 37.9363i −0.396385 1.21995i −0.927878 0.372885i \(-0.878369\pi\)
0.531493 0.847063i \(-0.321631\pi\)
\(968\) 0 0
\(969\) 1.38197 + 4.25325i 0.0443951 + 0.136634i
\(970\) 0 0
\(971\) −1.04508 + 3.21644i −0.0335384 + 0.103220i −0.966424 0.256951i \(-0.917282\pi\)
0.932886 + 0.360172i \(0.117282\pi\)
\(972\) 0 0
\(973\) 6.54508 4.75528i 0.209826 0.152447i
\(974\) 0 0
\(975\) −19.6353 14.2658i −0.628831 0.456873i
\(976\) 0 0
\(977\) 27.2254 19.7804i 0.871019 0.632832i −0.0598416 0.998208i \(-0.519060\pi\)
0.930860 + 0.365376i \(0.119060\pi\)
\(978\) 0 0
\(979\) 2.11146 6.49839i 0.0674824 0.207690i
\(980\) 0 0
\(981\) −6.18034 19.0211i −0.197323 0.607298i
\(982\) 0 0
\(983\) −2.28115 7.02067i −0.0727575 0.223924i 0.908064 0.418830i \(-0.137560\pi\)
−0.980822 + 0.194906i \(0.937560\pi\)
\(984\) 0 0
\(985\) 17.5623 12.7598i 0.559582 0.406560i
\(986\) 0 0
\(987\) 2.11803 + 1.53884i 0.0674178 + 0.0489819i
\(988\) 0 0
\(989\) −12.3541 + 8.97578i −0.392838 + 0.285413i
\(990\) 0 0
\(991\) 23.7533 + 17.2578i 0.754548 + 0.548211i 0.897233 0.441557i \(-0.145574\pi\)
−0.142685 + 0.989768i \(0.545574\pi\)
\(992\) 0 0
\(993\) 17.1246 0.543433
\(994\) 0 0
\(995\) 4.63525 + 3.36771i 0.146947 + 0.106764i
\(996\) 0 0
\(997\) −3.36475 + 10.3556i −0.106563 + 0.327966i −0.990094 0.140406i \(-0.955159\pi\)
0.883531 + 0.468372i \(0.155159\pi\)
\(998\) 0 0
\(999\) 21.1803 0.670116
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.u.b.161.1 4
4.3 odd 2 25.2.d.a.11.1 4
12.11 even 2 225.2.h.b.136.1 4
20.3 even 4 125.2.e.a.74.2 8
20.7 even 4 125.2.e.a.74.1 8
20.19 odd 2 125.2.d.a.51.1 4
25.4 even 10 10000.2.a.l.1.1 2
25.16 even 5 inner 400.2.u.b.241.1 4
25.21 even 5 10000.2.a.c.1.2 2
100.3 even 20 625.2.b.a.624.2 4
100.11 odd 10 625.2.d.h.126.1 4
100.19 odd 10 625.2.d.b.501.1 4
100.23 even 20 625.2.e.c.499.2 8
100.27 even 20 625.2.e.c.499.1 8
100.31 odd 10 625.2.d.h.501.1 4
100.39 odd 10 625.2.d.b.126.1 4
100.47 even 20 625.2.b.a.624.3 4
100.59 odd 10 125.2.d.a.76.1 4
100.63 even 20 125.2.e.a.49.1 8
100.67 even 20 625.2.e.c.124.2 8
100.71 odd 10 625.2.a.b.1.2 2
100.79 odd 10 625.2.a.c.1.1 2
100.83 even 20 625.2.e.c.124.1 8
100.87 even 20 125.2.e.a.49.2 8
100.91 odd 10 25.2.d.a.16.1 yes 4
300.71 even 10 5625.2.a.f.1.1 2
300.179 even 10 5625.2.a.d.1.2 2
300.191 even 10 225.2.h.b.91.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.2.d.a.11.1 4 4.3 odd 2
25.2.d.a.16.1 yes 4 100.91 odd 10
125.2.d.a.51.1 4 20.19 odd 2
125.2.d.a.76.1 4 100.59 odd 10
125.2.e.a.49.1 8 100.63 even 20
125.2.e.a.49.2 8 100.87 even 20
125.2.e.a.74.1 8 20.7 even 4
125.2.e.a.74.2 8 20.3 even 4
225.2.h.b.91.1 4 300.191 even 10
225.2.h.b.136.1 4 12.11 even 2
400.2.u.b.161.1 4 1.1 even 1 trivial
400.2.u.b.241.1 4 25.16 even 5 inner
625.2.a.b.1.2 2 100.71 odd 10
625.2.a.c.1.1 2 100.79 odd 10
625.2.b.a.624.2 4 100.3 even 20
625.2.b.a.624.3 4 100.47 even 20
625.2.d.b.126.1 4 100.39 odd 10
625.2.d.b.501.1 4 100.19 odd 10
625.2.d.h.126.1 4 100.11 odd 10
625.2.d.h.501.1 4 100.31 odd 10
625.2.e.c.124.1 8 100.83 even 20
625.2.e.c.124.2 8 100.67 even 20
625.2.e.c.499.1 8 100.27 even 20
625.2.e.c.499.2 8 100.23 even 20
5625.2.a.d.1.2 2 300.179 even 10
5625.2.a.f.1.1 2 300.71 even 10
10000.2.a.c.1.2 2 25.21 even 5
10000.2.a.l.1.1 2 25.4 even 10