Properties

Label 126.2.e.c.121.3
Level $126$
Weight $2$
Character 126.121
Analytic conductor $1.006$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,2,Mod(25,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.3
Root \(0.500000 - 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 126.121
Dual form 126.2.e.c.25.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(1.71053 - 0.272169i) q^{3} +1.00000 q^{4} +(1.59097 + 2.75564i) q^{5} +(-1.71053 + 0.272169i) q^{6} +(-2.56238 - 0.658939i) q^{7} -1.00000 q^{8} +(2.85185 - 0.931107i) q^{9} +(-1.59097 - 2.75564i) q^{10} +(-1.59097 + 2.75564i) q^{11} +(1.71053 - 0.272169i) q^{12} +(2.85185 - 4.93955i) q^{13} +(2.56238 + 0.658939i) q^{14} +(3.47141 + 4.28061i) q^{15} +1.00000 q^{16} +(-0.760877 - 1.31788i) q^{17} +(-2.85185 + 0.931107i) q^{18} +(-0.641315 + 1.11079i) q^{19} +(1.59097 + 2.75564i) q^{20} +(-4.56238 - 0.429736i) q^{21} +(1.59097 - 2.75564i) q^{22} +(-1.11956 - 1.93914i) q^{23} +(-1.71053 + 0.272169i) q^{24} +(-2.56238 + 4.43818i) q^{25} +(-2.85185 + 4.93955i) q^{26} +(4.62476 - 2.36887i) q^{27} +(-2.56238 - 0.658939i) q^{28} +(-3.54063 - 6.13255i) q^{29} +(-3.47141 - 4.28061i) q^{30} -9.42107 q^{31} -1.00000 q^{32} +(-1.97141 + 5.14663i) q^{33} +(0.760877 + 1.31788i) q^{34} +(-2.26088 - 8.10936i) q^{35} +(2.85185 - 0.931107i) q^{36} +(0.500000 - 0.866025i) q^{37} +(0.641315 - 1.11079i) q^{38} +(3.53379 - 9.22544i) q^{39} +(-1.59097 - 2.75564i) q^{40} +(-2.80150 + 4.85235i) q^{41} +(4.56238 + 0.429736i) q^{42} +(3.41423 + 5.91362i) q^{43} +(-1.59097 + 2.75564i) q^{44} +(7.10301 + 6.37731i) q^{45} +(1.11956 + 1.93914i) q^{46} -5.82846 q^{47} +(1.71053 - 0.272169i) q^{48} +(6.13160 + 3.37690i) q^{49} +(2.56238 - 4.43818i) q^{50} +(-1.66019 - 2.04719i) q^{51} +(2.85185 - 4.93955i) q^{52} +(1.02859 + 1.78157i) q^{53} +(-4.62476 + 2.36887i) q^{54} -10.1248 q^{55} +(2.56238 + 0.658939i) q^{56} +(-0.794668 + 2.07459i) q^{57} +(3.54063 + 6.13255i) q^{58} -1.12476 q^{59} +(3.47141 + 4.28061i) q^{60} +3.12476 q^{61} +9.42107 q^{62} +(-7.92107 + 0.506659i) q^{63} +1.00000 q^{64} +18.1488 q^{65} +(1.97141 - 5.14663i) q^{66} +10.9669 q^{67} +(-0.760877 - 1.31788i) q^{68} +(-2.44282 - 3.01225i) q^{69} +(2.26088 + 8.10936i) q^{70} +8.69002 q^{71} +(-2.85185 + 0.931107i) q^{72} +(-2.48345 - 4.30146i) q^{73} +(-0.500000 + 0.866025i) q^{74} +(-3.17511 + 8.28905i) q^{75} +(-0.641315 + 1.11079i) q^{76} +(5.89248 - 6.01266i) q^{77} +(-3.53379 + 9.22544i) q^{78} -4.13844 q^{79} +(1.59097 + 2.75564i) q^{80} +(7.26608 - 5.31075i) q^{81} +(2.80150 - 4.85235i) q^{82} +(-4.03379 - 6.98673i) q^{83} +(-4.56238 - 0.429736i) q^{84} +(2.42107 - 4.19341i) q^{85} +(-3.41423 - 5.91362i) q^{86} +(-7.72545 - 9.52628i) q^{87} +(1.59097 - 2.75564i) q^{88} +(0.112725 - 0.195246i) q^{89} +(-7.10301 - 6.37731i) q^{90} +(-10.5624 + 10.7778i) q^{91} +(-1.11956 - 1.93914i) q^{92} +(-16.1150 + 2.56412i) q^{93} +5.82846 q^{94} -4.08126 q^{95} +(-1.71053 + 0.272169i) q^{96} +(7.42107 + 12.8537i) q^{97} +(-6.13160 - 3.37690i) q^{98} +(-1.97141 + 9.34004i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 2 q^{3} + 6 q^{4} + q^{5} - 2 q^{6} + 2 q^{7} - 6 q^{8} + 8 q^{9} - q^{10} - q^{11} + 2 q^{12} + 8 q^{13} - 2 q^{14} + 12 q^{15} + 6 q^{16} - 4 q^{17} - 8 q^{18} - 3 q^{19} + q^{20}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.71053 0.272169i 0.987577 0.157137i
\(4\) 1.00000 0.500000
\(5\) 1.59097 + 2.75564i 0.711504 + 1.23236i 0.964292 + 0.264840i \(0.0853191\pi\)
−0.252788 + 0.967522i \(0.581348\pi\)
\(6\) −1.71053 + 0.272169i −0.698322 + 0.111112i
\(7\) −2.56238 0.658939i −0.968489 0.249055i
\(8\) −1.00000 −0.353553
\(9\) 2.85185 0.931107i 0.950616 0.310369i
\(10\) −1.59097 2.75564i −0.503109 0.871411i
\(11\) −1.59097 + 2.75564i −0.479696 + 0.830858i −0.999729 0.0232884i \(-0.992586\pi\)
0.520033 + 0.854146i \(0.325920\pi\)
\(12\) 1.71053 0.272169i 0.493788 0.0785683i
\(13\) 2.85185 4.93955i 0.790960 1.36998i −0.134412 0.990925i \(-0.542915\pi\)
0.925373 0.379058i \(-0.123752\pi\)
\(14\) 2.56238 + 0.658939i 0.684825 + 0.176109i
\(15\) 3.47141 + 4.28061i 0.896314 + 1.10525i
\(16\) 1.00000 0.250000
\(17\) −0.760877 1.31788i −0.184540 0.319632i 0.758882 0.651229i \(-0.225746\pi\)
−0.943421 + 0.331596i \(0.892413\pi\)
\(18\) −2.85185 + 0.931107i −0.672187 + 0.219464i
\(19\) −0.641315 + 1.11079i −0.147128 + 0.254833i −0.930165 0.367142i \(-0.880336\pi\)
0.783037 + 0.621975i \(0.213670\pi\)
\(20\) 1.59097 + 2.75564i 0.355752 + 0.616181i
\(21\) −4.56238 0.429736i −0.995593 0.0937761i
\(22\) 1.59097 2.75564i 0.339196 0.587505i
\(23\) −1.11956 1.93914i −0.233445 0.404338i 0.725375 0.688354i \(-0.241666\pi\)
−0.958820 + 0.284016i \(0.908333\pi\)
\(24\) −1.71053 + 0.272169i −0.349161 + 0.0555562i
\(25\) −2.56238 + 4.43818i −0.512476 + 0.887635i
\(26\) −2.85185 + 4.93955i −0.559293 + 0.968725i
\(27\) 4.62476 2.36887i 0.890036 0.455890i
\(28\) −2.56238 0.658939i −0.484245 0.124528i
\(29\) −3.54063 6.13255i −0.657478 1.13879i −0.981266 0.192656i \(-0.938290\pi\)
0.323788 0.946130i \(-0.395043\pi\)
\(30\) −3.47141 4.28061i −0.633790 0.781528i
\(31\) −9.42107 −1.69207 −0.846037 0.533125i \(-0.821018\pi\)
−0.846037 + 0.533125i \(0.821018\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.97141 + 5.14663i −0.343178 + 0.895914i
\(34\) 0.760877 + 1.31788i 0.130489 + 0.226014i
\(35\) −2.26088 8.10936i −0.382158 1.37073i
\(36\) 2.85185 0.931107i 0.475308 0.155185i
\(37\) 0.500000 0.866025i 0.0821995 0.142374i −0.821995 0.569495i \(-0.807139\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 0.641315 1.11079i 0.104035 0.180194i
\(39\) 3.53379 9.22544i 0.565860 1.47725i
\(40\) −1.59097 2.75564i −0.251555 0.435706i
\(41\) −2.80150 + 4.85235i −0.437522 + 0.757810i −0.997498 0.0706992i \(-0.977477\pi\)
0.559976 + 0.828509i \(0.310810\pi\)
\(42\) 4.56238 + 0.429736i 0.703991 + 0.0663097i
\(43\) 3.41423 + 5.91362i 0.520665 + 0.901819i 0.999711 + 0.0240288i \(0.00764935\pi\)
−0.479046 + 0.877790i \(0.659017\pi\)
\(44\) −1.59097 + 2.75564i −0.239848 + 0.415429i
\(45\) 7.10301 + 6.37731i 1.05885 + 0.950674i
\(46\) 1.11956 + 1.93914i 0.165070 + 0.285910i
\(47\) −5.82846 −0.850168 −0.425084 0.905154i \(-0.639755\pi\)
−0.425084 + 0.905154i \(0.639755\pi\)
\(48\) 1.71053 0.272169i 0.246894 0.0392842i
\(49\) 6.13160 + 3.37690i 0.875943 + 0.482415i
\(50\) 2.56238 4.43818i 0.362375 0.627653i
\(51\) −1.66019 2.04719i −0.232473 0.286663i
\(52\) 2.85185 4.93955i 0.395480 0.684992i
\(53\) 1.02859 + 1.78157i 0.141288 + 0.244717i 0.927982 0.372626i \(-0.121542\pi\)
−0.786694 + 0.617343i \(0.788209\pi\)
\(54\) −4.62476 + 2.36887i −0.629351 + 0.322363i
\(55\) −10.1248 −1.36522
\(56\) 2.56238 + 0.658939i 0.342413 + 0.0880544i
\(57\) −0.794668 + 2.07459i −0.105256 + 0.274786i
\(58\) 3.54063 + 6.13255i 0.464907 + 0.805243i
\(59\) −1.12476 −0.146432 −0.0732159 0.997316i \(-0.523326\pi\)
−0.0732159 + 0.997316i \(0.523326\pi\)
\(60\) 3.47141 + 4.28061i 0.448157 + 0.552624i
\(61\) 3.12476 0.400085 0.200042 0.979787i \(-0.435892\pi\)
0.200042 + 0.979787i \(0.435892\pi\)
\(62\) 9.42107 1.19648
\(63\) −7.92107 + 0.506659i −0.997961 + 0.0638331i
\(64\) 1.00000 0.125000
\(65\) 18.1488 2.25109
\(66\) 1.97141 5.14663i 0.242664 0.633507i
\(67\) 10.9669 1.33982 0.669910 0.742442i \(-0.266333\pi\)
0.669910 + 0.742442i \(0.266333\pi\)
\(68\) −0.760877 1.31788i −0.0922699 0.159816i
\(69\) −2.44282 3.01225i −0.294081 0.362632i
\(70\) 2.26088 + 8.10936i 0.270226 + 0.969254i
\(71\) 8.69002 1.03132 0.515658 0.856794i \(-0.327548\pi\)
0.515658 + 0.856794i \(0.327548\pi\)
\(72\) −2.85185 + 0.931107i −0.336094 + 0.109732i
\(73\) −2.48345 4.30146i −0.290666 0.503448i 0.683302 0.730136i \(-0.260543\pi\)
−0.973967 + 0.226689i \(0.927210\pi\)
\(74\) −0.500000 + 0.866025i −0.0581238 + 0.100673i
\(75\) −3.17511 + 8.28905i −0.366630 + 0.957137i
\(76\) −0.641315 + 1.11079i −0.0735639 + 0.127416i
\(77\) 5.89248 6.01266i 0.671510 0.685206i
\(78\) −3.53379 + 9.22544i −0.400123 + 1.04458i
\(79\) −4.13844 −0.465610 −0.232805 0.972523i \(-0.574790\pi\)
−0.232805 + 0.972523i \(0.574790\pi\)
\(80\) 1.59097 + 2.75564i 0.177876 + 0.308090i
\(81\) 7.26608 5.31075i 0.807342 0.590084i
\(82\) 2.80150 4.85235i 0.309374 0.535852i
\(83\) −4.03379 6.98673i −0.442766 0.766893i 0.555127 0.831765i \(-0.312669\pi\)
−0.997894 + 0.0648718i \(0.979336\pi\)
\(84\) −4.56238 0.429736i −0.497797 0.0468881i
\(85\) 2.42107 4.19341i 0.262602 0.454839i
\(86\) −3.41423 5.91362i −0.368166 0.637682i
\(87\) −7.72545 9.52628i −0.828255 1.02132i
\(88\) 1.59097 2.75564i 0.169598 0.293753i
\(89\) 0.112725 0.195246i 0.0119488 0.0206960i −0.859989 0.510312i \(-0.829530\pi\)
0.871938 + 0.489616i \(0.162863\pi\)
\(90\) −7.10301 6.37731i −0.748723 0.672228i
\(91\) −10.5624 + 10.7778i −1.10724 + 1.12982i
\(92\) −1.11956 1.93914i −0.116722 0.202169i
\(93\) −16.1150 + 2.56412i −1.67105 + 0.265887i
\(94\) 5.82846 0.601160
\(95\) −4.08126 −0.418728
\(96\) −1.71053 + 0.272169i −0.174581 + 0.0277781i
\(97\) 7.42107 + 12.8537i 0.753495 + 1.30509i 0.946119 + 0.323819i \(0.104967\pi\)
−0.192624 + 0.981273i \(0.561700\pi\)
\(98\) −6.13160 3.37690i −0.619385 0.341119i
\(99\) −1.97141 + 9.34004i −0.198134 + 0.938710i
\(100\) −2.56238 + 4.43818i −0.256238 + 0.443818i
\(101\) −9.29467 + 16.0988i −0.924854 + 1.60189i −0.133058 + 0.991108i \(0.542480\pi\)
−0.791796 + 0.610786i \(0.790854\pi\)
\(102\) 1.66019 + 2.04719i 0.164383 + 0.202702i
\(103\) 0.141315 + 0.244765i 0.0139242 + 0.0241174i 0.872904 0.487893i \(-0.162234\pi\)
−0.858979 + 0.512010i \(0.828901\pi\)
\(104\) −2.85185 + 4.93955i −0.279647 + 0.484362i
\(105\) −6.07442 13.2560i −0.592803 1.29365i
\(106\) −1.02859 1.78157i −0.0999055 0.173041i
\(107\) 5.68878 9.85326i 0.549955 0.952550i −0.448322 0.893872i \(-0.647978\pi\)
0.998277 0.0586780i \(-0.0186885\pi\)
\(108\) 4.62476 2.36887i 0.445018 0.227945i
\(109\) −2.21053 3.82876i −0.211731 0.366728i 0.740526 0.672028i \(-0.234577\pi\)
−0.952256 + 0.305300i \(0.901243\pi\)
\(110\) 10.1248 0.965358
\(111\) 0.619562 1.61745i 0.0588062 0.153522i
\(112\) −2.56238 0.658939i −0.242122 0.0622638i
\(113\) −1.60752 + 2.78431i −0.151223 + 0.261926i −0.931677 0.363287i \(-0.881655\pi\)
0.780454 + 0.625213i \(0.214988\pi\)
\(114\) 0.794668 2.07459i 0.0744275 0.194303i
\(115\) 3.56238 6.17023i 0.332194 0.575377i
\(116\) −3.54063 6.13255i −0.328739 0.569393i
\(117\) 3.53379 16.7422i 0.326699 1.54782i
\(118\) 1.12476 0.103543
\(119\) 1.08126 + 3.87828i 0.0991186 + 0.355521i
\(120\) −3.47141 4.28061i −0.316895 0.390764i
\(121\) 0.437618 + 0.757977i 0.0397835 + 0.0689070i
\(122\) −3.12476 −0.282903
\(123\) −3.47141 + 9.06259i −0.313007 + 0.817146i
\(124\) −9.42107 −0.846037
\(125\) −0.396990 −0.0355079
\(126\) 7.92107 0.506659i 0.705665 0.0451368i
\(127\) 20.1053 1.78406 0.892030 0.451976i \(-0.149281\pi\)
0.892030 + 0.451976i \(0.149281\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 7.44966 + 9.18620i 0.655906 + 0.808800i
\(130\) −18.1488 −1.59176
\(131\) −3.18194 5.51129i −0.278008 0.481523i 0.692882 0.721051i \(-0.256341\pi\)
−0.970890 + 0.239528i \(0.923007\pi\)
\(132\) −1.97141 + 5.14663i −0.171589 + 0.447957i
\(133\) 2.37524 2.42368i 0.205959 0.210160i
\(134\) −10.9669 −0.947396
\(135\) 13.8856 + 8.97539i 1.19509 + 0.772479i
\(136\) 0.760877 + 1.31788i 0.0652446 + 0.113007i
\(137\) −1.37072 + 2.37416i −0.117109 + 0.202838i −0.918621 0.395140i \(-0.870696\pi\)
0.801512 + 0.597979i \(0.204029\pi\)
\(138\) 2.44282 + 3.01225i 0.207947 + 0.256420i
\(139\) −3.98345 + 6.89953i −0.337872 + 0.585211i −0.984032 0.177991i \(-0.943040\pi\)
0.646161 + 0.763202i \(0.276374\pi\)
\(140\) −2.26088 8.10936i −0.191079 0.685366i
\(141\) −9.96978 + 1.58632i −0.839607 + 0.133593i
\(142\) −8.69002 −0.729251
\(143\) 9.07442 + 15.7174i 0.758841 + 1.31435i
\(144\) 2.85185 0.931107i 0.237654 0.0775923i
\(145\) 11.2661 19.5134i 0.935597 1.62050i
\(146\) 2.48345 + 4.30146i 0.205532 + 0.355991i
\(147\) 11.4074 + 4.10748i 0.940866 + 0.338779i
\(148\) 0.500000 0.866025i 0.0410997 0.0711868i
\(149\) 11.6300 + 20.1437i 0.952764 + 1.65024i 0.739404 + 0.673262i \(0.235107\pi\)
0.213360 + 0.976974i \(0.431559\pi\)
\(150\) 3.17511 8.28905i 0.259246 0.676798i
\(151\) 4.06238 7.03625i 0.330592 0.572602i −0.652036 0.758188i \(-0.726085\pi\)
0.982628 + 0.185586i \(0.0594183\pi\)
\(152\) 0.641315 1.11079i 0.0520175 0.0900970i
\(153\) −3.39699 3.04993i −0.274630 0.246572i
\(154\) −5.89248 + 6.01266i −0.474829 + 0.484514i
\(155\) −14.9887 25.9611i −1.20392 2.08525i
\(156\) 3.53379 9.22544i 0.282930 0.738627i
\(157\) −11.2632 −0.898901 −0.449451 0.893305i \(-0.648380\pi\)
−0.449451 + 0.893305i \(0.648380\pi\)
\(158\) 4.13844 0.329236
\(159\) 2.24433 + 2.76748i 0.177987 + 0.219476i
\(160\) −1.59097 2.75564i −0.125777 0.217853i
\(161\) 1.59097 + 5.70653i 0.125386 + 0.449738i
\(162\) −7.26608 + 5.31075i −0.570877 + 0.417252i
\(163\) −1.99028 + 3.44727i −0.155891 + 0.270011i −0.933383 0.358881i \(-0.883158\pi\)
0.777492 + 0.628893i \(0.216492\pi\)
\(164\) −2.80150 + 4.85235i −0.218761 + 0.378905i
\(165\) −17.3187 + 2.75564i −1.34826 + 0.214527i
\(166\) 4.03379 + 6.98673i 0.313083 + 0.542276i
\(167\) 2.61956 4.53721i 0.202708 0.351100i −0.746692 0.665170i \(-0.768359\pi\)
0.949400 + 0.314070i \(0.101693\pi\)
\(168\) 4.56238 + 0.429736i 0.351995 + 0.0331549i
\(169\) −9.76608 16.9153i −0.751237 1.30118i
\(170\) −2.42107 + 4.19341i −0.185687 + 0.321620i
\(171\) −0.794668 + 3.76494i −0.0607698 + 0.287912i
\(172\) 3.41423 + 5.91362i 0.260333 + 0.450909i
\(173\) 2.55159 0.193994 0.0969968 0.995285i \(-0.469076\pi\)
0.0969968 + 0.995285i \(0.469076\pi\)
\(174\) 7.72545 + 9.52628i 0.585665 + 0.722185i
\(175\) 9.49028 9.68385i 0.717398 0.732030i
\(176\) −1.59097 + 2.75564i −0.119924 + 0.207714i
\(177\) −1.92395 + 0.306125i −0.144613 + 0.0230098i
\(178\) −0.112725 + 0.195246i −0.00844910 + 0.0146343i
\(179\) 3.51887 + 6.09487i 0.263013 + 0.455552i 0.967041 0.254620i \(-0.0819504\pi\)
−0.704028 + 0.710172i \(0.748617\pi\)
\(180\) 7.10301 + 6.37731i 0.529427 + 0.475337i
\(181\) −12.9669 −0.963822 −0.481911 0.876220i \(-0.660057\pi\)
−0.481911 + 0.876220i \(0.660057\pi\)
\(182\) 10.5624 10.7778i 0.782936 0.798904i
\(183\) 5.34501 0.850463i 0.395115 0.0628680i
\(184\) 1.11956 + 1.93914i 0.0825352 + 0.142955i
\(185\) 3.18194 0.233941
\(186\) 16.1150 2.56412i 1.18161 0.188010i
\(187\) 4.84213 0.354092
\(188\) −5.82846 −0.425084
\(189\) −13.4114 + 3.02252i −0.975532 + 0.219856i
\(190\) 4.08126 0.296085
\(191\) 1.98057 0.143309 0.0716545 0.997430i \(-0.477172\pi\)
0.0716545 + 0.997430i \(0.477172\pi\)
\(192\) 1.71053 0.272169i 0.123447 0.0196421i
\(193\) −4.54583 −0.327216 −0.163608 0.986525i \(-0.552313\pi\)
−0.163608 + 0.986525i \(0.552313\pi\)
\(194\) −7.42107 12.8537i −0.532802 0.922839i
\(195\) 31.0442 4.93955i 2.22312 0.353728i
\(196\) 6.13160 + 3.37690i 0.437971 + 0.241207i
\(197\) −21.8148 −1.55424 −0.777120 0.629353i \(-0.783320\pi\)
−0.777120 + 0.629353i \(0.783320\pi\)
\(198\) 1.97141 9.34004i 0.140102 0.663768i
\(199\) 6.14132 + 10.6371i 0.435346 + 0.754042i 0.997324 0.0731106i \(-0.0232926\pi\)
−0.561978 + 0.827152i \(0.689959\pi\)
\(200\) 2.56238 4.43818i 0.181188 0.313826i
\(201\) 18.7592 2.98485i 1.32317 0.210535i
\(202\) 9.29467 16.0988i 0.653971 1.13271i
\(203\) 5.03147 + 18.0470i 0.353140 + 1.26665i
\(204\) −1.66019 2.04719i −0.116237 0.143332i
\(205\) −17.8285 −1.24519
\(206\) −0.141315 0.244765i −0.00984589 0.0170536i
\(207\) −4.99837 4.48769i −0.347410 0.311916i
\(208\) 2.85185 4.93955i 0.197740 0.342496i
\(209\) −2.04063 3.53447i −0.141153 0.244485i
\(210\) 6.07442 + 13.2560i 0.419175 + 0.914751i
\(211\) −8.32846 + 14.4253i −0.573355 + 0.993080i 0.422863 + 0.906193i \(0.361025\pi\)
−0.996218 + 0.0868863i \(0.972308\pi\)
\(212\) 1.02859 + 1.78157i 0.0706438 + 0.122359i
\(213\) 14.8646 2.36515i 1.01850 0.162058i
\(214\) −5.68878 + 9.85326i −0.388877 + 0.673555i
\(215\) −10.8639 + 18.8168i −0.740911 + 1.28330i
\(216\) −4.62476 + 2.36887i −0.314675 + 0.161181i
\(217\) 24.1404 + 6.20790i 1.63876 + 0.421420i
\(218\) 2.21053 + 3.82876i 0.149716 + 0.259316i
\(219\) −5.41874 6.68187i −0.366165 0.451519i
\(220\) −10.1248 −0.682611
\(221\) −8.67962 −0.583854
\(222\) −0.619562 + 1.61745i −0.0415823 + 0.108556i
\(223\) −5.32846 9.22916i −0.356820 0.618031i 0.630608 0.776102i \(-0.282806\pi\)
−0.987428 + 0.158071i \(0.949472\pi\)
\(224\) 2.56238 + 0.658939i 0.171206 + 0.0440272i
\(225\) −3.17511 + 15.0429i −0.211674 + 1.00286i
\(226\) 1.60752 2.78431i 0.106931 0.185210i
\(227\) 7.25404 12.5644i 0.481468 0.833926i −0.518306 0.855195i \(-0.673437\pi\)
0.999774 + 0.0212688i \(0.00677059\pi\)
\(228\) −0.794668 + 2.07459i −0.0526282 + 0.137393i
\(229\) −5.12476 8.87635i −0.338654 0.586566i 0.645526 0.763738i \(-0.276638\pi\)
−0.984180 + 0.177173i \(0.943305\pi\)
\(230\) −3.56238 + 6.17023i −0.234896 + 0.406853i
\(231\) 8.44282 11.8886i 0.555497 0.782212i
\(232\) 3.54063 + 6.13255i 0.232454 + 0.402622i
\(233\) 0.540628 0.936396i 0.0354177 0.0613453i −0.847773 0.530359i \(-0.822057\pi\)
0.883191 + 0.469014i \(0.155390\pi\)
\(234\) −3.53379 + 16.7422i −0.231011 + 1.09447i
\(235\) −9.27292 16.0612i −0.604898 1.04771i
\(236\) −1.12476 −0.0732159
\(237\) −7.07893 + 1.12635i −0.459826 + 0.0731645i
\(238\) −1.08126 3.87828i −0.0700874 0.251391i
\(239\) −6.16019 + 10.6698i −0.398470 + 0.690170i −0.993537 0.113506i \(-0.963792\pi\)
0.595068 + 0.803676i \(0.297125\pi\)
\(240\) 3.47141 + 4.28061i 0.224079 + 0.276312i
\(241\) 6.50000 11.2583i 0.418702 0.725213i −0.577107 0.816668i \(-0.695819\pi\)
0.995809 + 0.0914555i \(0.0291519\pi\)
\(242\) −0.437618 0.757977i −0.0281312 0.0487246i
\(243\) 10.9834 11.0618i 0.704589 0.709616i
\(244\) 3.12476 0.200042
\(245\) 0.449657 + 22.2691i 0.0287275 + 1.42272i
\(246\) 3.47141 9.06259i 0.221329 0.577809i
\(247\) 3.65787 + 6.33561i 0.232744 + 0.403125i
\(248\) 9.42107 0.598238
\(249\) −8.80150 10.8532i −0.557773 0.687791i
\(250\) 0.396990 0.0251079
\(251\) 5.11109 0.322609 0.161305 0.986905i \(-0.448430\pi\)
0.161305 + 0.986905i \(0.448430\pi\)
\(252\) −7.92107 + 0.506659i −0.498980 + 0.0319165i
\(253\) 7.12476 0.447930
\(254\) −20.1053 −1.26152
\(255\) 3.00000 7.83191i 0.187867 0.490453i
\(256\) 1.00000 0.0625000
\(257\) −3.83009 6.63392i −0.238915 0.413813i 0.721488 0.692427i \(-0.243458\pi\)
−0.960403 + 0.278614i \(0.910125\pi\)
\(258\) −7.44966 9.18620i −0.463795 0.571908i
\(259\) −1.85185 + 1.88962i −0.115068 + 0.117415i
\(260\) 18.1488 1.12554
\(261\) −15.8074 14.1924i −0.978453 0.878487i
\(262\) 3.18194 + 5.51129i 0.196581 + 0.340488i
\(263\) 1.54746 2.68029i 0.0954208 0.165274i −0.814363 0.580355i \(-0.802914\pi\)
0.909784 + 0.415082i \(0.136247\pi\)
\(264\) 1.97141 5.14663i 0.121332 0.316753i
\(265\) −3.27292 + 5.66886i −0.201054 + 0.348235i
\(266\) −2.37524 + 2.42368i −0.145635 + 0.148605i
\(267\) 0.139680 0.364654i 0.00854830 0.0223165i
\(268\) 10.9669 0.669910
\(269\) −13.4451 23.2877i −0.819765 1.41987i −0.905855 0.423587i \(-0.860771\pi\)
0.0860906 0.996287i \(-0.472563\pi\)
\(270\) −13.8856 8.97539i −0.845053 0.546225i
\(271\) −11.1082 + 19.2400i −0.674776 + 1.16875i 0.301759 + 0.953384i \(0.402426\pi\)
−0.976534 + 0.215362i \(0.930907\pi\)
\(272\) −0.760877 1.31788i −0.0461349 0.0799080i
\(273\) −15.1339 + 21.3106i −0.915947 + 1.28977i
\(274\) 1.37072 2.37416i 0.0828084 0.143428i
\(275\) −8.15335 14.1220i −0.491666 0.851590i
\(276\) −2.44282 3.01225i −0.147040 0.181316i
\(277\) 7.31875 12.6764i 0.439741 0.761653i −0.557928 0.829889i \(-0.688404\pi\)
0.997669 + 0.0682357i \(0.0217370\pi\)
\(278\) 3.98345 6.89953i 0.238911 0.413807i
\(279\) −26.8675 + 8.77202i −1.60851 + 0.525167i
\(280\) 2.26088 + 8.10936i 0.135113 + 0.484627i
\(281\) 11.6992 + 20.2636i 0.697915 + 1.20882i 0.969188 + 0.246322i \(0.0792219\pi\)
−0.271273 + 0.962502i \(0.587445\pi\)
\(282\) 9.96978 1.58632i 0.593691 0.0944642i
\(283\) −26.1248 −1.55296 −0.776478 0.630144i \(-0.782996\pi\)
−0.776478 + 0.630144i \(0.782996\pi\)
\(284\) 8.69002 0.515658
\(285\) −6.98113 + 1.11079i −0.413526 + 0.0657975i
\(286\) −9.07442 15.7174i −0.536582 0.929387i
\(287\) 10.3759 10.5876i 0.612471 0.624963i
\(288\) −2.85185 + 0.931107i −0.168047 + 0.0548660i
\(289\) 7.34213 12.7169i 0.431890 0.748056i
\(290\) −11.2661 + 19.5134i −0.661567 + 1.14587i
\(291\) 16.1923 + 19.9668i 0.949212 + 1.17048i
\(292\) −2.48345 4.30146i −0.145333 0.251724i
\(293\) 12.9315 22.3980i 0.755465 1.30850i −0.189678 0.981846i \(-0.560745\pi\)
0.945143 0.326657i \(-0.105922\pi\)
\(294\) −11.4074 4.10748i −0.665293 0.239553i
\(295\) −1.78947 3.09945i −0.104187 0.180457i
\(296\) −0.500000 + 0.866025i −0.0290619 + 0.0503367i
\(297\) −0.830095 + 16.5130i −0.0481670 + 0.958182i
\(298\) −11.6300 20.1437i −0.673706 1.16689i
\(299\) −12.7713 −0.738582
\(300\) −3.17511 + 8.28905i −0.183315 + 0.478568i
\(301\) −4.85185 17.4027i −0.279656 1.00308i
\(302\) −4.06238 + 7.03625i −0.233764 + 0.404891i
\(303\) −11.5172 + 30.0673i −0.661648 + 1.72732i
\(304\) −0.641315 + 1.11079i −0.0367819 + 0.0637082i
\(305\) 4.97141 + 8.61073i 0.284662 + 0.493049i
\(306\) 3.39699 + 3.04993i 0.194193 + 0.174353i
\(307\) 3.53216 0.201591 0.100795 0.994907i \(-0.467861\pi\)
0.100795 + 0.994907i \(0.467861\pi\)
\(308\) 5.89248 6.01266i 0.335755 0.342603i
\(309\) 0.308342 + 0.380217i 0.0175409 + 0.0216298i
\(310\) 14.9887 + 25.9611i 0.851298 + 1.47449i
\(311\) 1.70370 0.0966078 0.0483039 0.998833i \(-0.484618\pi\)
0.0483039 + 0.998833i \(0.484618\pi\)
\(312\) −3.53379 + 9.22544i −0.200062 + 0.522288i
\(313\) −2.84213 −0.160647 −0.0803234 0.996769i \(-0.525595\pi\)
−0.0803234 + 0.996769i \(0.525595\pi\)
\(314\) 11.2632 0.635619
\(315\) −13.9984 21.0216i −0.788719 1.18443i
\(316\) −4.13844 −0.232805
\(317\) −24.9201 −1.39965 −0.699827 0.714313i \(-0.746739\pi\)
−0.699827 + 0.714313i \(0.746739\pi\)
\(318\) −2.24433 2.76748i −0.125855 0.155193i
\(319\) 22.5322 1.26156
\(320\) 1.59097 + 2.75564i 0.0889380 + 0.154045i
\(321\) 7.04910 18.4026i 0.393442 1.02713i
\(322\) −1.59097 5.70653i −0.0886614 0.318013i
\(323\) 1.95185 0.108604
\(324\) 7.26608 5.31075i 0.403671 0.295042i
\(325\) 14.6150 + 25.3140i 0.810697 + 1.40417i
\(326\) 1.99028 3.44727i 0.110232 0.190927i
\(327\) −4.82326 5.94758i −0.266727 0.328902i
\(328\) 2.80150 4.85235i 0.154687 0.267926i
\(329\) 14.9347 + 3.84060i 0.823379 + 0.211739i
\(330\) 17.3187 2.75564i 0.953366 0.151693i
\(331\) −7.17154 −0.394183 −0.197092 0.980385i \(-0.563150\pi\)
−0.197092 + 0.980385i \(0.563150\pi\)
\(332\) −4.03379 6.98673i −0.221383 0.383447i
\(333\) 0.619562 2.93533i 0.0339518 0.160855i
\(334\) −2.61956 + 4.53721i −0.143336 + 0.248265i
\(335\) 17.4480 + 30.2209i 0.953287 + 1.65114i
\(336\) −4.56238 0.429736i −0.248898 0.0234440i
\(337\) −10.9211 + 18.9158i −0.594908 + 1.03041i 0.398651 + 0.917103i \(0.369478\pi\)
−0.993560 + 0.113309i \(0.963855\pi\)
\(338\) 9.76608 + 16.9153i 0.531205 + 0.920073i
\(339\) −1.99192 + 5.20018i −0.108186 + 0.282435i
\(340\) 2.42107 4.19341i 0.131301 0.227420i
\(341\) 14.9887 25.9611i 0.811681 1.40587i
\(342\) 0.794668 3.76494i 0.0429707 0.203585i
\(343\) −13.4863 12.6933i −0.728193 0.685372i
\(344\) −3.41423 5.91362i −0.184083 0.318841i
\(345\) 4.41423 11.5239i 0.237654 0.620428i
\(346\) −2.55159 −0.137174
\(347\) −2.11109 −0.113329 −0.0566646 0.998393i \(-0.518047\pi\)
−0.0566646 + 0.998393i \(0.518047\pi\)
\(348\) −7.72545 9.52628i −0.414128 0.510662i
\(349\) 18.1082 + 31.3643i 0.969310 + 1.67889i 0.697559 + 0.716527i \(0.254269\pi\)
0.271751 + 0.962368i \(0.412397\pi\)
\(350\) −9.49028 + 9.68385i −0.507277 + 0.517623i
\(351\) 1.48796 29.5999i 0.0794215 1.57993i
\(352\) 1.59097 2.75564i 0.0847991 0.146876i
\(353\) 5.24433 9.08344i 0.279127 0.483463i −0.692041 0.721858i \(-0.743288\pi\)
0.971168 + 0.238396i \(0.0766215\pi\)
\(354\) 1.92395 0.306125i 0.102257 0.0162704i
\(355\) 13.8256 + 23.9466i 0.733786 + 1.27095i
\(356\) 0.112725 0.195246i 0.00597442 0.0103480i
\(357\) 2.90507 + 6.33963i 0.153753 + 0.335529i
\(358\) −3.51887 6.09487i −0.185978 0.322124i
\(359\) 16.2209 28.0955i 0.856108 1.48282i −0.0195047 0.999810i \(-0.506209\pi\)
0.875613 0.483013i \(-0.160458\pi\)
\(360\) −7.10301 6.37731i −0.374361 0.336114i
\(361\) 8.67743 + 15.0297i 0.456707 + 0.791039i
\(362\) 12.9669 0.681525
\(363\) 0.954858 + 1.17744i 0.0501171 + 0.0617995i
\(364\) −10.5624 + 10.7778i −0.553619 + 0.564911i
\(365\) 7.90219 13.6870i 0.413620 0.716410i
\(366\) −5.34501 + 0.850463i −0.279388 + 0.0444544i
\(367\) 9.05555 15.6847i 0.472696 0.818733i −0.526816 0.849979i \(-0.676614\pi\)
0.999512 + 0.0312465i \(0.00994768\pi\)
\(368\) −1.11956 1.93914i −0.0583612 0.101085i
\(369\) −3.47141 + 16.4467i −0.180714 + 0.856179i
\(370\) −3.18194 −0.165421
\(371\) −1.46169 5.24284i −0.0758874 0.272195i
\(372\) −16.1150 + 2.56412i −0.835526 + 0.132943i
\(373\) 5.83530 + 10.1070i 0.302140 + 0.523322i 0.976621 0.214971i \(-0.0689656\pi\)
−0.674480 + 0.738293i \(0.735632\pi\)
\(374\) −4.84213 −0.250381
\(375\) −0.679065 + 0.108048i −0.0350668 + 0.00557959i
\(376\) 5.82846 0.300580
\(377\) −40.3893 −2.08016
\(378\) 13.4114 3.02252i 0.689805 0.155462i
\(379\) 14.2690 0.732947 0.366474 0.930428i \(-0.380565\pi\)
0.366474 + 0.930428i \(0.380565\pi\)
\(380\) −4.08126 −0.209364
\(381\) 34.3908 5.47204i 1.76190 0.280341i
\(382\) −1.98057 −0.101335
\(383\) 0.824893 + 1.42876i 0.0421501 + 0.0730061i 0.886331 0.463053i \(-0.153246\pi\)
−0.844181 + 0.536059i \(0.819913\pi\)
\(384\) −1.71053 + 0.272169i −0.0872903 + 0.0138891i
\(385\) 25.9435 + 6.67160i 1.32220 + 0.340016i
\(386\) 4.54583 0.231377
\(387\) 15.2431 + 13.6857i 0.774849 + 0.695685i
\(388\) 7.42107 + 12.8537i 0.376748 + 0.652546i
\(389\) 16.0338 27.7713i 0.812946 1.40806i −0.0978483 0.995201i \(-0.531196\pi\)
0.910794 0.412862i \(-0.135471\pi\)
\(390\) −31.0442 + 4.93955i −1.57198 + 0.250124i
\(391\) −1.70370 + 2.95089i −0.0861596 + 0.149233i
\(392\) −6.13160 3.37690i −0.309693 0.170559i
\(393\) −6.94282 8.56122i −0.350219 0.431856i
\(394\) 21.8148 1.09901
\(395\) −6.58414 11.4041i −0.331284 0.573800i
\(396\) −1.97141 + 9.34004i −0.0990671 + 0.469355i
\(397\) −18.9669 + 32.8516i −0.951921 + 1.64878i −0.210660 + 0.977559i \(0.567561\pi\)
−0.741261 + 0.671217i \(0.765772\pi\)
\(398\) −6.14132 10.6371i −0.307836 0.533188i
\(399\) 3.40327 4.79225i 0.170377 0.239913i
\(400\) −2.56238 + 4.43818i −0.128119 + 0.221909i
\(401\) −5.30959 9.19647i −0.265148 0.459250i 0.702454 0.711729i \(-0.252087\pi\)
−0.967602 + 0.252479i \(0.918754\pi\)
\(402\) −18.7592 + 2.98485i −0.935626 + 0.148871i
\(403\) −26.8675 + 46.5358i −1.33836 + 2.31811i
\(404\) −9.29467 + 16.0988i −0.462427 + 0.800947i
\(405\) 26.1947 + 11.5735i 1.30162 + 0.575090i
\(406\) −5.03147 18.0470i −0.249708 0.895657i
\(407\) 1.59097 + 2.75564i 0.0788615 + 0.136592i
\(408\) 1.66019 + 2.04719i 0.0821916 + 0.101351i
\(409\) 5.54583 0.274224 0.137112 0.990556i \(-0.456218\pi\)
0.137112 + 0.990556i \(0.456218\pi\)
\(410\) 17.8285 0.880485
\(411\) −1.69850 + 4.43415i −0.0837806 + 0.218721i
\(412\) 0.141315 + 0.244765i 0.00696209 + 0.0120587i
\(413\) 2.88207 + 0.741150i 0.141818 + 0.0364696i
\(414\) 4.99837 + 4.48769i 0.245656 + 0.220558i
\(415\) 12.8353 22.2314i 0.630060 1.09130i
\(416\) −2.85185 + 4.93955i −0.139823 + 0.242181i
\(417\) −4.93598 + 12.8861i −0.241716 + 0.631033i
\(418\) 2.04063 + 3.53447i 0.0998104 + 0.172877i
\(419\) 2.77455 4.80566i 0.135546 0.234772i −0.790260 0.612772i \(-0.790055\pi\)
0.925806 + 0.378000i \(0.123388\pi\)
\(420\) −6.07442 13.2560i −0.296401 0.646826i
\(421\) −3.42107 5.92546i −0.166733 0.288789i 0.770537 0.637396i \(-0.219988\pi\)
−0.937269 + 0.348606i \(0.886655\pi\)
\(422\) 8.32846 14.4253i 0.405423 0.702213i
\(423\) −16.6219 + 5.42692i −0.808184 + 0.263866i
\(424\) −1.02859 1.78157i −0.0499527 0.0865207i
\(425\) 7.79863 0.378289
\(426\) −14.8646 + 2.36515i −0.720191 + 0.114592i
\(427\) −8.00684 2.05903i −0.387478 0.0996433i
\(428\) 5.68878 9.85326i 0.274978 0.476275i
\(429\) 19.7999 + 24.4153i 0.955947 + 1.17878i
\(430\) 10.8639 18.8168i 0.523903 0.907427i
\(431\) 16.5539 + 28.6722i 0.797374 + 1.38109i 0.921321 + 0.388803i \(0.127111\pi\)
−0.123947 + 0.992289i \(0.539555\pi\)
\(432\) 4.62476 2.36887i 0.222509 0.113972i
\(433\) −12.1111 −0.582022 −0.291011 0.956720i \(-0.593992\pi\)
−0.291011 + 0.956720i \(0.593992\pi\)
\(434\) −24.1404 6.20790i −1.15877 0.297989i
\(435\) 13.9601 36.4446i 0.669334 1.74739i
\(436\) −2.21053 3.82876i −0.105865 0.183364i
\(437\) 2.87197 0.137385
\(438\) 5.41874 + 6.68187i 0.258918 + 0.319272i
\(439\) −8.83422 −0.421634 −0.210817 0.977526i \(-0.567612\pi\)
−0.210817 + 0.977526i \(0.567612\pi\)
\(440\) 10.1248 0.482679
\(441\) 20.6307 + 3.92124i 0.982412 + 0.186726i
\(442\) 8.67962 0.412847
\(443\) 17.5185 0.832328 0.416164 0.909290i \(-0.363374\pi\)
0.416164 + 0.909290i \(0.363374\pi\)
\(444\) 0.619562 1.61745i 0.0294031 0.0767608i
\(445\) 0.717370 0.0340066
\(446\) 5.32846 + 9.22916i 0.252310 + 0.437014i
\(447\) 25.3759 + 31.2911i 1.20024 + 1.48002i
\(448\) −2.56238 0.658939i −0.121061 0.0311319i
\(449\) 31.2301 1.47384 0.736920 0.675980i \(-0.236280\pi\)
0.736920 + 0.675980i \(0.236280\pi\)
\(450\) 3.17511 15.0429i 0.149676 0.709127i
\(451\) −8.91423 15.4399i −0.419755 0.727036i
\(452\) −1.60752 + 2.78431i −0.0756115 + 0.130963i
\(453\) 5.03379 13.1414i 0.236508 0.617437i
\(454\) −7.25404 + 12.5644i −0.340449 + 0.589675i
\(455\) −46.5043 11.9590i −2.18015 0.560645i
\(456\) 0.794668 2.07459i 0.0372138 0.0971516i
\(457\) −32.1248 −1.50273 −0.751367 0.659885i \(-0.770605\pi\)
−0.751367 + 0.659885i \(0.770605\pi\)
\(458\) 5.12476 + 8.87635i 0.239464 + 0.414765i
\(459\) −6.64076 4.29245i −0.309964 0.200354i
\(460\) 3.56238 6.17023i 0.166097 0.287688i
\(461\) 1.23229 + 2.13438i 0.0573933 + 0.0994081i 0.893295 0.449472i \(-0.148388\pi\)
−0.835901 + 0.548880i \(0.815054\pi\)
\(462\) −8.44282 + 11.8886i −0.392796 + 0.553108i
\(463\) 15.1735 26.2812i 0.705171 1.22139i −0.261459 0.965215i \(-0.584204\pi\)
0.966630 0.256177i \(-0.0824631\pi\)
\(464\) −3.54063 6.13255i −0.164370 0.284696i
\(465\) −32.7044 40.3279i −1.51663 1.87016i
\(466\) −0.540628 + 0.936396i −0.0250441 + 0.0433777i
\(467\) −7.98181 + 13.8249i −0.369354 + 0.639740i −0.989465 0.144774i \(-0.953754\pi\)
0.620110 + 0.784515i \(0.287088\pi\)
\(468\) 3.53379 16.7422i 0.163350 0.773909i
\(469\) −28.1014 7.22651i −1.29760 0.333689i
\(470\) 9.27292 + 16.0612i 0.427728 + 0.740846i
\(471\) −19.2661 + 3.06549i −0.887734 + 0.141250i
\(472\) 1.12476 0.0517714
\(473\) −21.7278 −0.999044
\(474\) 7.07893 1.12635i 0.325146 0.0517351i
\(475\) −3.28659 5.69254i −0.150799 0.261192i
\(476\) 1.08126 + 3.87828i 0.0495593 + 0.177760i
\(477\) 4.59222 + 4.12304i 0.210263 + 0.188781i
\(478\) 6.16019 10.6698i 0.281761 0.488024i
\(479\) 11.5865 20.0683i 0.529399 0.916946i −0.470013 0.882659i \(-0.655751\pi\)
0.999412 0.0342863i \(-0.0109158\pi\)
\(480\) −3.47141 4.28061i −0.158447 0.195382i
\(481\) −2.85185 4.93955i −0.130033 0.225224i
\(482\) −6.50000 + 11.2583i −0.296067 + 0.512803i
\(483\) 4.27455 + 9.32820i 0.194499 + 0.424448i
\(484\) 0.437618 + 0.757977i 0.0198917 + 0.0344535i
\(485\) −23.6134 + 40.8996i −1.07223 + 1.85716i
\(486\) −10.9834 + 11.0618i −0.498219 + 0.501774i
\(487\) 1.70658 + 2.95588i 0.0773323 + 0.133943i 0.902098 0.431531i \(-0.142026\pi\)
−0.824766 + 0.565474i \(0.808693\pi\)
\(488\) −3.12476 −0.141451
\(489\) −2.46621 + 6.43837i −0.111526 + 0.291153i
\(490\) −0.449657 22.2691i −0.0203134 1.00601i
\(491\) −9.58414 + 16.6002i −0.432526 + 0.749157i −0.997090 0.0762323i \(-0.975711\pi\)
0.564564 + 0.825389i \(0.309044\pi\)
\(492\) −3.47141 + 9.06259i −0.156503 + 0.408573i
\(493\) −5.38796 + 9.33223i −0.242662 + 0.420302i
\(494\) −3.65787 6.33561i −0.164575 0.285053i
\(495\) −28.8743 + 9.42724i −1.29780 + 0.423723i
\(496\) −9.42107 −0.423018
\(497\) −22.2672 5.72619i −0.998819 0.256855i
\(498\) 8.80150 + 10.8532i 0.394405 + 0.486342i
\(499\) −20.5848 35.6540i −0.921503 1.59609i −0.797090 0.603860i \(-0.793629\pi\)
−0.124413 0.992231i \(-0.539705\pi\)
\(500\) −0.396990 −0.0177539
\(501\) 3.24596 8.47402i 0.145019 0.378591i
\(502\) −5.11109 −0.228119
\(503\) −26.4542 −1.17953 −0.589767 0.807574i \(-0.700780\pi\)
−0.589767 + 0.807574i \(0.700780\pi\)
\(504\) 7.92107 0.506659i 0.352832 0.0225684i
\(505\) −59.1502 −2.63215
\(506\) −7.12476 −0.316734
\(507\) −21.3090 26.2762i −0.946367 1.16697i
\(508\) 20.1053 0.892030
\(509\) −6.38564 11.0603i −0.283039 0.490237i 0.689093 0.724673i \(-0.258009\pi\)
−0.972132 + 0.234436i \(0.924676\pi\)
\(510\) −3.00000 + 7.83191i −0.132842 + 0.346803i
\(511\) 3.52915 + 12.6584i 0.156120 + 0.559975i
\(512\) −1.00000 −0.0441942
\(513\) −0.334608 + 6.65634i −0.0147733 + 0.293884i
\(514\) 3.83009 + 6.63392i 0.168938 + 0.292610i
\(515\) −0.449657 + 0.778828i −0.0198142 + 0.0343193i
\(516\) 7.44966 + 9.18620i 0.327953 + 0.404400i
\(517\) 9.27292 16.0612i 0.407822 0.706369i
\(518\) 1.85185 1.88962i 0.0813655 0.0830251i
\(519\) 4.36458 0.694462i 0.191584 0.0304835i
\(520\) −18.1488 −0.795879
\(521\) −3.40615 5.89962i −0.149226 0.258467i 0.781716 0.623635i \(-0.214345\pi\)
−0.930942 + 0.365168i \(0.881012\pi\)
\(522\) 15.8074 + 14.1924i 0.691871 + 0.621184i
\(523\) 14.7535 25.5538i 0.645125 1.11739i −0.339148 0.940733i \(-0.610139\pi\)
0.984273 0.176656i \(-0.0565280\pi\)
\(524\) −3.18194 5.51129i −0.139004 0.240762i
\(525\) 13.5978 19.1475i 0.593457 0.835665i
\(526\) −1.54746 + 2.68029i −0.0674727 + 0.116866i
\(527\) 7.16827 + 12.4158i 0.312255 + 0.540841i
\(528\) −1.97141 + 5.14663i −0.0857946 + 0.223978i
\(529\) 8.99316 15.5766i 0.391007 0.677244i
\(530\) 3.27292 5.66886i 0.142166 0.246239i
\(531\) −3.20765 + 1.04728i −0.139200 + 0.0454479i
\(532\) 2.37524 2.42368i 0.102980 0.105080i
\(533\) 15.9789 + 27.6763i 0.692125 + 1.19879i
\(534\) −0.139680 + 0.364654i −0.00604456 + 0.0157801i
\(535\) 36.2028 1.56518
\(536\) −10.9669 −0.473698
\(537\) 7.67799 + 9.46775i 0.331330 + 0.408564i
\(538\) 13.4451 + 23.2877i 0.579661 + 1.00400i
\(539\) −19.0607 + 11.5239i −0.821004 + 0.496371i
\(540\) 13.8856 + 8.97539i 0.597543 + 0.386239i
\(541\) 14.7008 25.4626i 0.632038 1.09472i −0.355097 0.934829i \(-0.615552\pi\)
0.987135 0.159892i \(-0.0511145\pi\)
\(542\) 11.1082 19.2400i 0.477139 0.826428i
\(543\) −22.1803 + 3.52918i −0.951848 + 0.151452i
\(544\) 0.760877 + 1.31788i 0.0326223 + 0.0565035i
\(545\) 7.03379 12.1829i 0.301295 0.521857i
\(546\) 15.1339 21.3106i 0.647672 0.912007i
\(547\) 17.6150 + 30.5102i 0.753165 + 1.30452i 0.946281 + 0.323344i \(0.104807\pi\)
−0.193116 + 0.981176i \(0.561859\pi\)
\(548\) −1.37072 + 2.37416i −0.0585544 + 0.101419i
\(549\) 8.91135 2.90949i 0.380327 0.124174i
\(550\) 8.15335 + 14.1220i 0.347660 + 0.602165i
\(551\) 9.08263 0.386933
\(552\) 2.44282 + 3.01225i 0.103973 + 0.128210i
\(553\) 10.6043 + 2.72698i 0.450939 + 0.115963i
\(554\) −7.31875 + 12.6764i −0.310944 + 0.538570i
\(555\) 5.44282 0.866025i 0.231035 0.0367607i
\(556\) −3.98345 + 6.89953i −0.168936 + 0.292605i
\(557\) −3.36909 5.83543i −0.142753 0.247255i 0.785779 0.618507i \(-0.212262\pi\)
−0.928532 + 0.371252i \(0.878929\pi\)
\(558\) 26.8675 8.77202i 1.13739 0.371349i
\(559\) 38.9475 1.64730
\(560\) −2.26088 8.10936i −0.0955395 0.342683i
\(561\) 8.28263 1.31788i 0.349693 0.0556408i
\(562\) −11.6992 20.2636i −0.493500 0.854768i
\(563\) −1.45993 −0.0615286 −0.0307643 0.999527i \(-0.509794\pi\)
−0.0307643 + 0.999527i \(0.509794\pi\)
\(564\) −9.96978 + 1.58632i −0.419803 + 0.0667963i
\(565\) −10.2301 −0.430383
\(566\) 26.1248 1.09811
\(567\) −22.1179 + 8.82028i −0.928866 + 0.370417i
\(568\) −8.69002 −0.364625
\(569\) 19.5653 0.820218 0.410109 0.912036i \(-0.365491\pi\)
0.410109 + 0.912036i \(0.365491\pi\)
\(570\) 6.98113 1.11079i 0.292407 0.0465259i
\(571\) −21.9259 −0.917569 −0.458785 0.888547i \(-0.651715\pi\)
−0.458785 + 0.888547i \(0.651715\pi\)
\(572\) 9.07442 + 15.7174i 0.379421 + 0.657176i
\(573\) 3.38783 0.539049i 0.141529 0.0225191i
\(574\) −10.3759 + 10.5876i −0.433083 + 0.441916i
\(575\) 11.4750 0.478540
\(576\) 2.85185 0.931107i 0.118827 0.0387961i
\(577\) 12.3655 + 21.4177i 0.514783 + 0.891631i 0.999853 + 0.0171554i \(0.00546099\pi\)
−0.485069 + 0.874476i \(0.661206\pi\)
\(578\) −7.34213 + 12.7169i −0.305392 + 0.528955i
\(579\) −7.77579 + 1.23723i −0.323151 + 0.0514176i
\(580\) 11.2661 19.5134i 0.467798 0.810251i
\(581\) 5.73229 + 20.5607i 0.237815 + 0.853001i
\(582\) −16.1923 19.9668i −0.671194 0.827652i
\(583\) −6.54583 −0.271101
\(584\) 2.48345 + 4.30146i 0.102766 + 0.177996i
\(585\) 51.7577 16.8985i 2.13992 0.698668i
\(586\) −12.9315 + 22.3980i −0.534194 + 0.925251i
\(587\) −18.0796 31.3148i −0.746226 1.29250i −0.949620 0.313404i \(-0.898531\pi\)
0.203394 0.979097i \(-0.434803\pi\)
\(588\) 11.4074 + 4.10748i 0.470433 + 0.169390i
\(589\) 6.04187 10.4648i 0.248951 0.431196i
\(590\) 1.78947 + 3.09945i 0.0736712 + 0.127602i
\(591\) −37.3149 + 5.93730i −1.53493 + 0.244228i
\(592\) 0.500000 0.866025i 0.0205499 0.0355934i
\(593\) −7.55391 + 13.0838i −0.310202 + 0.537285i −0.978406 0.206693i \(-0.933730\pi\)
0.668204 + 0.743978i \(0.267063\pi\)
\(594\) 0.830095 16.5130i 0.0340592 0.677537i
\(595\) −8.96690 + 9.14978i −0.367607 + 0.375105i
\(596\) 11.6300 + 20.1437i 0.476382 + 0.825118i
\(597\) 13.4000 + 16.5236i 0.548426 + 0.676265i
\(598\) 12.7713 0.522256
\(599\) −5.45417 −0.222851 −0.111426 0.993773i \(-0.535542\pi\)
−0.111426 + 0.993773i \(0.535542\pi\)
\(600\) 3.17511 8.28905i 0.129623 0.338399i
\(601\) −3.36840 5.83424i −0.137400 0.237984i 0.789112 0.614250i \(-0.210541\pi\)
−0.926512 + 0.376266i \(0.877208\pi\)
\(602\) 4.85185 + 17.4027i 0.197747 + 0.709282i
\(603\) 31.2759 10.2114i 1.27365 0.415839i
\(604\) 4.06238 7.03625i 0.165296 0.286301i
\(605\) −1.39248 + 2.41184i −0.0566122 + 0.0980553i
\(606\) 11.5172 30.0673i 0.467856 1.22140i
\(607\) −3.33530 5.77690i −0.135376 0.234477i 0.790365 0.612636i \(-0.209891\pi\)
−0.925741 + 0.378159i \(0.876557\pi\)
\(608\) 0.641315 1.11079i 0.0260088 0.0450485i
\(609\) 13.5183 + 29.5006i 0.547790 + 1.19542i
\(610\) −4.97141 8.61073i −0.201287 0.348638i
\(611\) −16.6219 + 28.7899i −0.672449 + 1.16472i
\(612\) −3.39699 3.04993i −0.137315 0.123286i
\(613\) 0.654988 + 1.13447i 0.0264547 + 0.0458209i 0.878950 0.476915i \(-0.158245\pi\)
−0.852495 + 0.522735i \(0.824912\pi\)
\(614\) −3.53216 −0.142546
\(615\) −30.4962 + 4.85235i −1.22972 + 0.195666i
\(616\) −5.89248 + 6.01266i −0.237415 + 0.242257i
\(617\) 17.2483 29.8749i 0.694390 1.20272i −0.275996 0.961159i \(-0.589008\pi\)
0.970386 0.241560i \(-0.0776589\pi\)
\(618\) −0.308342 0.380217i −0.0124033 0.0152946i
\(619\) 8.22421 14.2447i 0.330559 0.572545i −0.652063 0.758165i \(-0.726096\pi\)
0.982622 + 0.185620i \(0.0594295\pi\)
\(620\) −14.9887 25.9611i −0.601959 1.04262i
\(621\) −9.77128 6.31595i −0.392108 0.253450i
\(622\) −1.70370 −0.0683120
\(623\) −0.417500 + 0.426015i −0.0167268 + 0.0170679i
\(624\) 3.53379 9.22544i 0.141465 0.369313i
\(625\) 12.1803 + 21.0969i 0.487212 + 0.843877i
\(626\) 2.84213 0.113594
\(627\) −4.45254 5.49044i −0.177817 0.219267i
\(628\) −11.2632 −0.449451
\(629\) −1.52175 −0.0606763
\(630\) 13.9984 + 21.0216i 0.557708 + 0.837519i
\(631\) −30.0118 −1.19475 −0.597375 0.801962i \(-0.703790\pi\)
−0.597375 + 0.801962i \(0.703790\pi\)
\(632\) 4.13844 0.164618
\(633\) −10.3200 + 26.9417i −0.410183 + 1.07084i
\(634\) 24.9201 0.989704
\(635\) 31.9870 + 55.4031i 1.26937 + 2.19861i
\(636\) 2.24433 + 2.76748i 0.0889933 + 0.109738i
\(637\) 34.1668 20.6569i 1.35374 0.818456i
\(638\) −22.5322 −0.892057
\(639\) 24.7826 8.09134i 0.980386 0.320089i
\(640\) −1.59097 2.75564i −0.0628887 0.108926i
\(641\) −13.9497 + 24.1615i −0.550978 + 0.954322i 0.447226 + 0.894421i \(0.352412\pi\)
−0.998204 + 0.0599014i \(0.980921\pi\)
\(642\) −7.04910 + 18.4026i −0.278206 + 0.726294i
\(643\) 14.2524 24.6859i 0.562060 0.973516i −0.435257 0.900306i \(-0.643342\pi\)
0.997317 0.0732100i \(-0.0233243\pi\)
\(644\) 1.59097 + 5.70653i 0.0626931 + 0.224869i
\(645\) −13.4617 + 35.1436i −0.530054 + 1.38378i
\(646\) −1.95185 −0.0767944
\(647\) 8.35705 + 14.4748i 0.328550 + 0.569065i 0.982224 0.187711i \(-0.0601069\pi\)
−0.653675 + 0.756776i \(0.726774\pi\)
\(648\) −7.26608 + 5.31075i −0.285439 + 0.208626i
\(649\) 1.78947 3.09945i 0.0702427 0.121664i
\(650\) −14.6150 25.3140i −0.573249 0.992897i
\(651\) 42.9825 + 4.04857i 1.68462 + 0.158676i
\(652\) −1.99028 + 3.44727i −0.0779456 + 0.135006i
\(653\) −19.0825 33.0519i −0.746756 1.29342i −0.949370 0.314161i \(-0.898277\pi\)
0.202614 0.979259i \(-0.435056\pi\)
\(654\) 4.82326 + 5.94758i 0.188604 + 0.232569i
\(655\) 10.1248 17.5366i 0.395607 0.685212i
\(656\) −2.80150 + 4.85235i −0.109380 + 0.189452i
\(657\) −11.0875 9.95475i −0.432566 0.388372i
\(658\) −14.9347 3.84060i −0.582217 0.149722i
\(659\) 4.37072 + 7.57031i 0.170259 + 0.294898i 0.938510 0.345251i \(-0.112206\pi\)
−0.768251 + 0.640148i \(0.778873\pi\)
\(660\) −17.3187 + 2.75564i −0.674131 + 0.107263i
\(661\) −20.0837 −0.781167 −0.390584 0.920567i \(-0.627727\pi\)
−0.390584 + 0.920567i \(0.627727\pi\)
\(662\) 7.17154 0.278730
\(663\) −14.8468 + 2.36232i −0.576601 + 0.0917449i
\(664\) 4.03379 + 6.98673i 0.156541 + 0.271138i
\(665\) 10.4577 + 2.68930i 0.405534 + 0.104286i
\(666\) −0.619562 + 2.93533i −0.0240075 + 0.113742i
\(667\) −7.92790 + 13.7315i −0.306970 + 0.531687i
\(668\) 2.61956 4.53721i 0.101354 0.175550i
\(669\) −11.6264 14.3366i −0.449503 0.554283i
\(670\) −17.4480 30.2209i −0.674076 1.16753i
\(671\) −4.97141 + 8.61073i −0.191919 + 0.332414i
\(672\) 4.56238 + 0.429736i 0.175998 + 0.0165774i
\(673\) −17.0264 29.4906i −0.656319 1.13678i −0.981561 0.191148i \(-0.938779\pi\)
0.325242 0.945631i \(-0.394554\pi\)
\(674\) 10.9211 18.9158i 0.420664 0.728611i
\(675\) −1.33693 + 26.5955i −0.0514585 + 1.02366i
\(676\) −9.76608 16.9153i −0.375618 0.650590i
\(677\) −0.717370 −0.0275708 −0.0137854 0.999905i \(-0.504388\pi\)
−0.0137854 + 0.999905i \(0.504388\pi\)
\(678\) 1.99192 5.20018i 0.0764992 0.199712i
\(679\) −10.5458 37.8260i −0.404712 1.45163i
\(680\) −2.42107 + 4.19341i −0.0928437 + 0.160810i
\(681\) 8.98865 23.4661i 0.344446 0.899223i
\(682\) −14.9887 + 25.9611i −0.573945 + 0.994102i
\(683\) −10.5270 18.2332i −0.402803 0.697675i 0.591260 0.806481i \(-0.298631\pi\)
−0.994063 + 0.108806i \(0.965297\pi\)
\(684\) −0.794668 + 3.76494i −0.0303849 + 0.143956i
\(685\) −8.72313 −0.333294
\(686\) 13.4863 + 12.6933i 0.514910 + 0.484631i
\(687\) −11.1819 13.7885i −0.426618 0.526064i
\(688\) 3.41423 + 5.91362i 0.130166 + 0.225455i
\(689\) 11.7335 0.447012
\(690\) −4.41423 + 11.5239i −0.168047 + 0.438709i
\(691\) 5.84789 0.222464 0.111232 0.993794i \(-0.464520\pi\)
0.111232 + 0.993794i \(0.464520\pi\)
\(692\) 2.55159 0.0969968
\(693\) 11.2060 22.6337i 0.425681 0.859784i
\(694\) 2.11109 0.0801359
\(695\) −25.3502 −0.961588
\(696\) 7.72545 + 9.52628i 0.292832 + 0.361093i
\(697\) 8.52640 0.322960
\(698\) −18.1082 31.3643i −0.685406 1.18716i
\(699\) 0.669905 1.74888i 0.0253381 0.0661486i
\(700\) 9.49028 9.68385i 0.358699 0.366015i
\(701\) 10.2711 0.387935 0.193967 0.981008i \(-0.437864\pi\)
0.193967 + 0.981008i \(0.437864\pi\)
\(702\) −1.48796 + 29.5999i −0.0561595 + 1.11718i
\(703\) 0.641315 + 1.11079i 0.0241877 + 0.0418942i
\(704\) −1.59097 + 2.75564i −0.0599620 + 0.103857i
\(705\) −20.2330 24.9494i −0.762018 0.939647i
\(706\) −5.24433 + 9.08344i −0.197373 + 0.341860i
\(707\) 34.4246 35.1268i 1.29467 1.32108i
\(708\) −1.92395 + 0.306125i −0.0723063 + 0.0115049i
\(709\) 43.4854 1.63313 0.816564 0.577255i \(-0.195876\pi\)
0.816564 + 0.577255i \(0.195876\pi\)
\(710\) −13.8256 23.9466i −0.518865 0.898700i
\(711\) −11.8022 + 3.85333i −0.442617 + 0.144511i
\(712\) −0.112725 + 0.195246i −0.00422455 + 0.00731714i
\(713\) 10.5475 + 18.2687i 0.395006 + 0.684170i
\(714\) −2.90507 6.33963i −0.108720 0.237255i
\(715\) −28.8743 + 50.0117i −1.07984 + 1.87033i
\(716\) 3.51887 + 6.09487i 0.131507 + 0.227776i
\(717\) −7.63323 + 19.9276i −0.285068 + 0.744210i
\(718\) −16.2209 + 28.0955i −0.605360 + 1.04851i
\(719\) 25.4412 44.0654i 0.948796 1.64336i 0.200830 0.979626i \(-0.435636\pi\)
0.747966 0.663737i \(-0.231031\pi\)
\(720\) 7.10301 + 6.37731i 0.264714 + 0.237668i
\(721\) −0.200818 0.720299i −0.00747886 0.0268253i
\(722\) −8.67743 15.0297i −0.322941 0.559349i
\(723\) 8.05430 21.0268i 0.299543 0.781997i
\(724\) −12.9669 −0.481911
\(725\) 36.2898 1.34777
\(726\) −0.954858 1.17744i −0.0354381 0.0436989i
\(727\) 6.07210 + 10.5172i 0.225202 + 0.390061i 0.956380 0.292126i \(-0.0943626\pi\)
−0.731178 + 0.682186i \(0.761029\pi\)
\(728\) 10.5624 10.7778i 0.391468 0.399452i
\(729\) 15.7769 21.9110i 0.584329 0.811517i
\(730\) −7.90219 + 13.6870i −0.292473 + 0.506579i
\(731\) 5.19562 8.99907i 0.192167 0.332843i
\(732\) 5.34501 0.850463i 0.197557 0.0314340i
\(733\) 23.0848 + 39.9841i 0.852657 + 1.47685i 0.878801 + 0.477188i \(0.158344\pi\)
−0.0261440 + 0.999658i \(0.508323\pi\)
\(734\) −9.05555 + 15.6847i −0.334246 + 0.578932i
\(735\) 6.83009 + 37.9696i 0.251932 + 1.40053i
\(736\) 1.11956 + 1.93914i 0.0412676 + 0.0714776i
\(737\) −17.4480 + 30.2209i −0.642706 + 1.11320i
\(738\) 3.47141 16.4467i 0.127784 0.605410i
\(739\) −2.49604 4.32327i −0.0918184 0.159034i 0.816458 0.577405i \(-0.195935\pi\)
−0.908276 + 0.418371i \(0.862601\pi\)
\(740\) 3.18194 0.116971
\(741\) 7.98126 + 9.84172i 0.293199 + 0.361545i
\(742\) 1.46169 + 5.24284i 0.0536605 + 0.192471i
\(743\) −15.7060 + 27.2036i −0.576198 + 0.998004i 0.419712 + 0.907657i \(0.362131\pi\)
−0.995910 + 0.0903470i \(0.971202\pi\)
\(744\) 16.1150 2.56412i 0.590806 0.0940052i
\(745\) −37.0059 + 64.0961i −1.35579 + 2.34830i
\(746\) −5.83530 10.1070i −0.213645 0.370045i
\(747\) −18.0092 16.1692i −0.658921 0.591600i
\(748\) 4.84213 0.177046
\(749\) −21.0695 + 21.4992i −0.769863 + 0.785565i
\(750\) 0.679065 0.108048i 0.0247959 0.00394536i
\(751\) −1.64815 2.85468i −0.0601419 0.104169i 0.834387 0.551179i \(-0.185822\pi\)
−0.894529 + 0.447010i \(0.852489\pi\)
\(752\) −5.82846 −0.212542
\(753\) 8.74269 1.39108i 0.318601 0.0506937i
\(754\) 40.3893 1.47089
\(755\) 25.8525 0.940870
\(756\) −13.4114 + 3.02252i −0.487766 + 0.109928i
\(757\) −10.1384 −0.368488 −0.184244 0.982881i \(-0.558984\pi\)
−0.184244 + 0.982881i \(0.558984\pi\)
\(758\) −14.2690 −0.518272
\(759\) 12.1871 1.93914i 0.442365 0.0703862i
\(760\) 4.08126 0.148043
\(761\) −7.03379 12.1829i −0.254975 0.441629i 0.709914 0.704288i \(-0.248734\pi\)
−0.964889 + 0.262659i \(0.915400\pi\)
\(762\) −34.3908 + 5.47204i −1.24585 + 0.198231i
\(763\) 3.14132 + 11.2673i 0.113723 + 0.407905i
\(764\) 1.98057 0.0716545
\(765\) 3.00000 14.2132i 0.108465 0.513881i
\(766\) −0.824893 1.42876i −0.0298046 0.0516231i
\(767\) −3.20765 + 5.55582i −0.115822 + 0.200609i
\(768\) 1.71053 0.272169i 0.0617236 0.00982104i
\(769\) 11.3461 19.6520i 0.409151 0.708669i −0.585644 0.810568i \(-0.699158\pi\)
0.994795 + 0.101899i \(0.0324918\pi\)
\(770\) −25.9435 6.67160i −0.934939 0.240428i
\(771\) −8.35705 10.3051i −0.300972 0.371129i
\(772\) −4.54583 −0.163608
\(773\) 0.327772 + 0.567717i 0.0117891 + 0.0204194i 0.871860 0.489756i \(-0.162914\pi\)
−0.860071 + 0.510175i \(0.829581\pi\)
\(774\) −15.2431 13.6857i −0.547901 0.491924i
\(775\) 24.1404 41.8123i 0.867148 1.50194i
\(776\) −7.42107 12.8537i −0.266401 0.461420i
\(777\) −2.65335 + 3.73627i −0.0951885 + 0.134038i
\(778\) −16.0338 + 27.7713i −0.574839 + 0.995651i
\(779\) −3.59329 6.22377i −0.128743 0.222990i
\(780\) 31.0442 4.93955i 1.11156 0.176864i
\(781\) −13.8256 + 23.9466i −0.494718 + 0.856877i
\(782\) 1.70370 2.95089i 0.0609241 0.105524i
\(783\) −30.9018 19.9743i −1.10434 0.713823i
\(784\) 6.13160 + 3.37690i 0.218986 + 0.120604i
\(785\) −17.9194 31.0374i −0.639572 1.10777i
\(786\) 6.94282 + 8.56122i 0.247642 + 0.305368i
\(787\) 0.540073 0.0192515 0.00962576 0.999954i \(-0.496936\pi\)
0.00962576 + 0.999954i \(0.496936\pi\)
\(788\) −21.8148 −0.777120
\(789\) 1.91750 5.00589i 0.0682648 0.178215i
\(790\) 6.58414 + 11.4041i 0.234253 + 0.405738i
\(791\) 5.95378 6.07521i 0.211692 0.216010i
\(792\) 1.97141 9.34004i 0.0700510 0.331884i
\(793\) 8.91135 15.4349i 0.316451 0.548110i
\(794\) 18.9669 32.8516i 0.673110 1.16586i
\(795\) −4.05555 + 10.5876i −0.143835 + 0.375502i
\(796\) 6.14132 + 10.6371i 0.217673 + 0.377021i
\(797\) −12.5550 + 21.7459i −0.444721 + 0.770279i −0.998033 0.0626954i \(-0.980030\pi\)
0.553312 + 0.832974i \(0.313364\pi\)
\(798\) −3.40327 + 4.79225i −0.120474 + 0.169644i
\(799\) 4.43474 + 7.68119i 0.156890 + 0.271741i
\(800\) 2.56238 4.43818i 0.0905939 0.156913i
\(801\) 0.139680 0.661770i 0.00493536 0.0233825i
\(802\) 5.30959 + 9.19647i 0.187488 + 0.324739i
\(803\) 15.8044 0.557725
\(804\) 18.7592 2.98485i 0.661587 0.105267i
\(805\) −13.1940 + 13.4631i −0.465027 + 0.474511i
\(806\) 26.8675 46.5358i 0.946366 1.63915i
\(807\) −29.3365 36.1750i −1.03270 1.27342i
\(808\) 9.29467 16.0988i 0.326985 0.566355i
\(809\) −14.5865 25.2645i −0.512833 0.888252i −0.999889 0.0148817i \(-0.995263\pi\)
0.487057 0.873370i \(-0.338071\pi\)
\(810\) −26.1947 11.5735i −0.920387 0.406650i
\(811\) −15.4290 −0.541785 −0.270892 0.962610i \(-0.587319\pi\)
−0.270892 + 0.962610i \(0.587319\pi\)
\(812\) 5.03147 + 18.0470i 0.176570 + 0.633325i
\(813\) −13.7644 + 35.9339i −0.482740 + 1.26026i
\(814\) −1.59097 2.75564i −0.0557635 0.0965853i
\(815\) −12.6659 −0.443669
\(816\) −1.66019 2.04719i −0.0581183 0.0716658i
\(817\) −8.75839 −0.306417
\(818\) −5.54583 −0.193905
\(819\) −20.0870 + 40.5714i −0.701897 + 1.41768i
\(820\) −17.8285 −0.622597
\(821\) 8.48727 0.296208 0.148104 0.988972i \(-0.452683\pi\)
0.148104 + 0.988972i \(0.452683\pi\)
\(822\) 1.69850 4.43415i 0.0592418 0.154659i
\(823\) 29.0974 1.01427 0.507136 0.861866i \(-0.330704\pi\)
0.507136 + 0.861866i \(0.330704\pi\)
\(824\) −0.141315 0.244765i −0.00492294 0.00852679i
\(825\) −17.7902 21.9371i −0.619374 0.763752i
\(826\) −2.88207 0.741150i −0.100280 0.0257879i
\(827\) −25.9396 −0.902007 −0.451003 0.892522i \(-0.648934\pi\)
−0.451003 + 0.892522i \(0.648934\pi\)
\(828\) −4.99837 4.48769i −0.173705 0.155958i
\(829\) 3.10821 + 5.38358i 0.107953 + 0.186979i 0.914941 0.403588i \(-0.132237\pi\)
−0.806988 + 0.590568i \(0.798904\pi\)
\(830\) −12.8353 + 22.2314i −0.445520 + 0.771663i
\(831\) 9.06883 23.6754i 0.314594 0.821291i
\(832\) 2.85185 4.93955i 0.0988701 0.171248i
\(833\) −0.215047 10.6501i −0.00745093 0.369004i
\(834\) 4.93598 12.8861i 0.170919 0.446208i
\(835\) 16.6706 0.576910
\(836\) −2.04063 3.53447i −0.0705766 0.122242i
\(837\) −43.5702 + 22.3173i −1.50601 + 0.771399i
\(838\) −2.77455 + 4.80566i −0.0958452 + 0.166009i
\(839\) 21.2947 + 36.8834i 0.735174 + 1.27336i 0.954647 + 0.297740i \(0.0962327\pi\)
−0.219474 + 0.975618i \(0.570434\pi\)
\(840\) 6.07442 + 13.2560i 0.209587 + 0.457375i
\(841\) −10.5721 + 18.3114i −0.364555 + 0.631428i
\(842\) 3.42107 + 5.92546i 0.117898 + 0.204205i
\(843\) 25.5270 + 31.4774i 0.879195 + 1.08414i
\(844\) −8.32846 + 14.4253i −0.286677 + 0.496540i
\(845\) 31.0751 53.8237i 1.06902 1.85159i
\(846\) 16.6219 5.42692i 0.571472 0.186581i
\(847\) −0.621885 2.23059i −0.0213682 0.0766440i
\(848\) 1.02859 + 1.78157i 0.0353219 + 0.0611794i
\(849\) −44.6873 + 7.11034i −1.53366 + 0.244026i
\(850\) −7.79863 −0.267491
\(851\) −2.23912 −0.0767562
\(852\) 14.8646 2.36515i 0.509252 0.0810288i
\(853\) −10.6969 18.5275i −0.366254 0.634370i 0.622723 0.782442i \(-0.286026\pi\)
−0.988976 + 0.148073i \(0.952693\pi\)
\(854\) 8.00684 + 2.05903i 0.273988 + 0.0704585i
\(855\) −11.6391 + 3.80009i −0.398050 + 0.129960i
\(856\) −5.68878 + 9.85326i −0.194438 + 0.336777i
\(857\) 18.4218 31.9074i 0.629275 1.08994i −0.358422 0.933560i \(-0.616685\pi\)
0.987697 0.156377i \(-0.0499815\pi\)
\(858\) −19.7999 24.4153i −0.675956 0.833524i
\(859\) 8.81875 + 15.2745i 0.300892 + 0.521160i 0.976338 0.216249i \(-0.0693824\pi\)
−0.675446 + 0.737409i \(0.736049\pi\)
\(860\) −10.8639 + 18.8168i −0.370455 + 0.641648i
\(861\) 14.8668 20.9344i 0.506658 0.713441i
\(862\) −16.5539 28.6722i −0.563828 0.976579i
\(863\) −0.380438 + 0.658939i −0.0129503 + 0.0224305i −0.872428 0.488743i \(-0.837456\pi\)
0.859478 + 0.511173i \(0.170789\pi\)
\(864\) −4.62476 + 2.36887i −0.157338 + 0.0805907i
\(865\) 4.05950 + 7.03127i 0.138027 + 0.239070i
\(866\) 12.1111 0.411552
\(867\) 9.09781 23.7511i 0.308978 0.806628i
\(868\) 24.1404 + 6.20790i 0.819378 + 0.210710i
\(869\) 6.58414 11.4041i 0.223351 0.386856i
\(870\) −13.9601 + 36.4446i −0.473290 + 1.23559i
\(871\) 31.2759 54.1715i 1.05974 1.83553i
\(872\) 2.21053 + 3.82876i 0.0748581 + 0.129658i
\(873\) 33.1319 + 29.7469i 1.12134 + 1.00678i
\(874\) −2.87197 −0.0971457
\(875\) 1.01724 + 0.261592i 0.0343890 + 0.00884343i
\(876\) −5.41874 6.68187i −0.183082 0.225760i
\(877\) 20.7495 + 35.9392i 0.700662 + 1.21358i 0.968234 + 0.250044i \(0.0804451\pi\)
−0.267573 + 0.963538i \(0.586222\pi\)
\(878\) 8.83422 0.298140
\(879\) 16.0237 41.8320i 0.540466 1.41096i
\(880\) −10.1248 −0.341306
\(881\) 8.35486 0.281482 0.140741 0.990046i \(-0.455051\pi\)
0.140741 + 0.990046i \(0.455051\pi\)
\(882\) −20.6307 3.92124i −0.694670 0.132035i
\(883\) 35.6181 1.19864 0.599322 0.800508i \(-0.295437\pi\)
0.599322 + 0.800508i \(0.295437\pi\)
\(884\) −8.67962 −0.291927
\(885\) −3.90451 4.81467i −0.131249 0.161843i
\(886\) −17.5185 −0.588545
\(887\) 18.5550 + 32.1382i 0.623016 + 1.07909i 0.988921 + 0.148443i \(0.0474260\pi\)
−0.365905 + 0.930652i \(0.619241\pi\)
\(888\) −0.619562 + 1.61745i −0.0207911 + 0.0542781i
\(889\) −51.5175 13.2482i −1.72784 0.444330i
\(890\) −0.717370 −0.0240463
\(891\) 3.07442 + 28.4720i 0.102997 + 0.953847i
\(892\) −5.32846 9.22916i −0.178410 0.309015i
\(893\) 3.73788 6.47420i 0.125083 0.216651i
\(894\) −25.3759 31.2911i −0.848698 1.04653i
\(895\) −11.1969 + 19.3935i −0.374270 + 0.648254i
\(896\) 2.56238 + 0.658939i 0.0856032 + 0.0220136i
\(897\) −21.8457 + 3.47594i −0.729407 + 0.116058i
\(898\) −31.2301 −1.04216
\(899\) 33.3565 + 57.7751i 1.11250 + 1.92691i
\(900\) −3.17511 + 15.0429i −0.105837 + 0.501429i
\(901\) 1.56526 2.71111i 0.0521464 0.0903202i
\(902\) 8.91423 + 15.4399i 0.296811 + 0.514092i
\(903\) −13.0357 28.4474i −0.433802 0.946671i
\(904\) 1.60752 2.78431i 0.0534654 0.0926048i
\(905\) −20.6300 35.7321i −0.685763 1.18778i
\(906\) −5.03379 + 13.1414i −0.167237 + 0.436594i
\(907\) 24.0751 41.6993i 0.799401 1.38460i −0.120606 0.992700i \(-0.538484\pi\)
0.920007 0.391902i \(-0.128183\pi\)
\(908\) 7.25404 12.5644i 0.240734 0.416963i
\(909\) −11.5172 + 54.5658i −0.382003 + 1.80983i
\(910\) 46.5043 + 11.9590i 1.54160 + 0.396436i
\(911\) 17.4428 + 30.2119i 0.577906 + 1.00096i 0.995719 + 0.0924301i \(0.0294635\pi\)
−0.417813 + 0.908533i \(0.637203\pi\)
\(912\) −0.794668 + 2.07459i −0.0263141 + 0.0686965i
\(913\) 25.6706 0.849573
\(914\) 32.1248 1.06259
\(915\) 10.8473 + 13.3759i 0.358602 + 0.442193i
\(916\) −5.12476 8.87635i −0.169327 0.293283i
\(917\) 4.52175 + 16.2187i 0.149321 + 0.535590i
\(918\) 6.64076 + 4.29245i 0.219178 + 0.141672i
\(919\) −25.8675 + 44.8037i −0.853289 + 1.47794i 0.0249351 + 0.999689i \(0.492062\pi\)
−0.878224 + 0.478250i \(0.841271\pi\)
\(920\) −3.56238 + 6.17023i −0.117448 + 0.203426i
\(921\) 6.04187 0.961343i 0.199086 0.0316773i
\(922\) −1.23229 2.13438i −0.0405832 0.0702922i
\(923\) 24.7826 42.9248i 0.815730 1.41289i
\(924\) 8.44282 11.8886i 0.277748 0.391106i
\(925\) 2.56238 + 4.43818i 0.0842506 + 0.145926i
\(926\) −15.1735 + 26.2812i −0.498631 + 0.863655i
\(927\) 0.630912 + 0.566453i 0.0207219 + 0.0186048i
\(928\) 3.54063 + 6.13255i 0.116227 + 0.201311i
\(929\) −50.8285 −1.66763 −0.833814 0.552046i \(-0.813847\pi\)
−0.833814 + 0.552046i \(0.813847\pi\)
\(930\) 32.7044 + 40.3279i 1.07242 + 1.32240i
\(931\) −7.68332 + 4.64526i −0.251811 + 0.152242i
\(932\) 0.540628 0.936396i 0.0177089 0.0306727i
\(933\) 2.91423 0.463693i 0.0954076 0.0151806i
\(934\) 7.98181 13.8249i 0.261173 0.452365i
\(935\) 7.70370 + 13.3432i 0.251938 + 0.436369i
\(936\) −3.53379 + 16.7422i −0.115506 + 0.547236i
\(937\) 2.54583 0.0831686 0.0415843 0.999135i \(-0.486759\pi\)
0.0415843 + 0.999135i \(0.486759\pi\)
\(938\) 28.1014 + 7.22651i 0.917542 + 0.235954i
\(939\) −4.86156 + 0.773540i −0.158651 + 0.0252435i
\(940\) −9.27292 16.0612i −0.302449 0.523857i
\(941\) 1.15787 0.0377454 0.0188727 0.999822i \(-0.493992\pi\)
0.0188727 + 0.999822i \(0.493992\pi\)
\(942\) 19.2661 3.06549i 0.627723 0.0998791i
\(943\) 12.5458 0.408548
\(944\) −1.12476 −0.0366079
\(945\) −29.6661 32.1482i −0.965038 1.04578i
\(946\) 21.7278 0.706431
\(947\) 9.81479 0.318938 0.159469 0.987203i \(-0.449022\pi\)
0.159469 + 0.987203i \(0.449022\pi\)
\(948\) −7.07893 + 1.12635i −0.229913 + 0.0365822i
\(949\) −28.3297 −0.919620
\(950\) 3.28659 + 5.69254i 0.106631 + 0.184690i
\(951\) −42.6267 + 6.78248i −1.38227 + 0.219937i
\(952\) −1.08126 3.87828i −0.0350437 0.125696i
\(953\) 6.53791 0.211784 0.105892 0.994378i \(-0.466230\pi\)
0.105892 + 0.994378i \(0.466230\pi\)
\(954\) −4.59222 4.12304i −0.148678 0.133488i
\(955\) 3.15103 + 5.45774i 0.101965 + 0.176608i
\(956\) −6.16019 + 10.6698i −0.199235 + 0.345085i
\(957\) 38.5420 6.13255i 1.24589 0.198237i
\(958\) −11.5865 + 20.0683i −0.374341 + 0.648378i
\(959\) 5.07674 5.18029i 0.163937 0.167280i
\(960\) 3.47141 + 4.28061i 0.112039 + 0.138156i
\(961\) 57.7565 1.86311
\(962\) 2.85185 + 4.93955i 0.0919473 + 0.159257i
\(963\) 7.04910 33.3969i 0.227154 1.07620i
\(964\) 6.50000 11.2583i 0.209351 0.362606i
\(965\) −7.23229 12.5267i −0.232816 0.403248i
\(966\) −4.27455 9.32820i −0.137531 0.300130i
\(967\) 14.4445 25.0185i 0.464502 0.804542i −0.534677 0.845057i \(-0.679567\pi\)
0.999179 + 0.0405151i \(0.0128999\pi\)
\(968\) −0.437618 0.757977i −0.0140656 0.0243623i
\(969\) 3.33870 0.531232i 0.107254 0.0170656i
\(970\) 23.6134 40.8996i 0.758181 1.31321i
\(971\) 2.66827 4.62158i 0.0856289 0.148314i −0.820030 0.572320i \(-0.806043\pi\)
0.905659 + 0.424007i \(0.139377\pi\)
\(972\) 10.9834 11.0618i 0.352294 0.354808i
\(973\) 14.7535 15.0544i 0.472975 0.482622i
\(974\) −1.70658 2.95588i −0.0546822 0.0947124i
\(975\) 31.8892 + 39.3227i 1.02127 + 1.25933i
\(976\) 3.12476 0.100021
\(977\) −48.0722 −1.53797 −0.768983 0.639269i \(-0.779237\pi\)
−0.768983 + 0.639269i \(0.779237\pi\)
\(978\) 2.46621 6.43837i 0.0788606 0.205876i
\(979\) 0.358685 + 0.621261i 0.0114636 + 0.0198556i
\(980\) 0.449657 + 22.2691i 0.0143638 + 0.711359i
\(981\) −9.86909 8.86079i −0.315096 0.282903i
\(982\) 9.58414 16.6002i 0.305842 0.529734i
\(983\) −14.7313 + 25.5154i −0.469857 + 0.813816i −0.999406 0.0344634i \(-0.989028\pi\)
0.529549 + 0.848279i \(0.322361\pi\)
\(984\) 3.47141 9.06259i 0.110665 0.288905i
\(985\) −34.7067 60.1138i −1.10585 1.91538i
\(986\) 5.38796 9.33223i 0.171588 0.297199i
\(987\) 26.5917 + 2.50470i 0.846422 + 0.0797255i
\(988\) 3.65787 + 6.33561i 0.116372 + 0.201563i
\(989\) 7.64488 13.2413i 0.243093 0.421050i
\(990\) 28.8743 9.42724i 0.917685 0.299617i
\(991\) 15.4142 + 26.6982i 0.489649 + 0.848097i 0.999929 0.0119112i \(-0.00379153\pi\)
−0.510280 + 0.860008i \(0.670458\pi\)
\(992\) 9.42107 0.299119
\(993\) −12.2672 + 1.95187i −0.389286 + 0.0619407i
\(994\) 22.2672 + 5.72619i 0.706271 + 0.181624i
\(995\) −19.5413 + 33.8466i −0.619501 + 1.07301i
\(996\) −8.80150 10.8532i −0.278886 0.343896i
\(997\) −2.77292 + 4.80283i −0.0878191 + 0.152107i −0.906589 0.422015i \(-0.861323\pi\)
0.818770 + 0.574122i \(0.194656\pi\)
\(998\) 20.5848 + 35.6540i 0.651601 + 1.12861i
\(999\) 0.260877 5.18960i 0.00825377 0.164192i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.2.e.c.121.3 yes 6
3.2 odd 2 378.2.e.d.37.1 6
4.3 odd 2 1008.2.q.g.625.1 6
7.2 even 3 882.2.f.n.589.2 6
7.3 odd 6 882.2.h.p.67.3 6
7.4 even 3 126.2.h.d.67.1 yes 6
7.5 odd 6 882.2.f.o.589.2 6
7.6 odd 2 882.2.e.o.373.1 6
9.2 odd 6 378.2.h.c.289.3 6
9.4 even 3 1134.2.g.m.163.3 6
9.5 odd 6 1134.2.g.l.163.1 6
9.7 even 3 126.2.h.d.79.1 yes 6
12.11 even 2 3024.2.q.g.2305.1 6
21.2 odd 6 2646.2.f.l.1765.1 6
21.5 even 6 2646.2.f.m.1765.3 6
21.11 odd 6 378.2.h.c.361.3 6
21.17 even 6 2646.2.h.o.361.1 6
21.20 even 2 2646.2.e.p.1549.3 6
28.11 odd 6 1008.2.t.h.193.3 6
36.7 odd 6 1008.2.t.h.961.3 6
36.11 even 6 3024.2.t.h.289.3 6
63.2 odd 6 2646.2.f.l.883.1 6
63.4 even 3 1134.2.g.m.487.3 6
63.5 even 6 7938.2.a.bz.1.1 3
63.11 odd 6 378.2.e.d.235.1 6
63.16 even 3 882.2.f.n.295.2 6
63.20 even 6 2646.2.h.o.667.1 6
63.23 odd 6 7938.2.a.ca.1.3 3
63.25 even 3 inner 126.2.e.c.25.3 6
63.32 odd 6 1134.2.g.l.487.1 6
63.34 odd 6 882.2.h.p.79.3 6
63.38 even 6 2646.2.e.p.2125.3 6
63.40 odd 6 7938.2.a.bw.1.3 3
63.47 even 6 2646.2.f.m.883.3 6
63.52 odd 6 882.2.e.o.655.1 6
63.58 even 3 7938.2.a.bv.1.1 3
63.61 odd 6 882.2.f.o.295.2 6
84.11 even 6 3024.2.t.h.1873.3 6
252.11 even 6 3024.2.q.g.2881.1 6
252.151 odd 6 1008.2.q.g.529.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.c.25.3 6 63.25 even 3 inner
126.2.e.c.121.3 yes 6 1.1 even 1 trivial
126.2.h.d.67.1 yes 6 7.4 even 3
126.2.h.d.79.1 yes 6 9.7 even 3
378.2.e.d.37.1 6 3.2 odd 2
378.2.e.d.235.1 6 63.11 odd 6
378.2.h.c.289.3 6 9.2 odd 6
378.2.h.c.361.3 6 21.11 odd 6
882.2.e.o.373.1 6 7.6 odd 2
882.2.e.o.655.1 6 63.52 odd 6
882.2.f.n.295.2 6 63.16 even 3
882.2.f.n.589.2 6 7.2 even 3
882.2.f.o.295.2 6 63.61 odd 6
882.2.f.o.589.2 6 7.5 odd 6
882.2.h.p.67.3 6 7.3 odd 6
882.2.h.p.79.3 6 63.34 odd 6
1008.2.q.g.529.1 6 252.151 odd 6
1008.2.q.g.625.1 6 4.3 odd 2
1008.2.t.h.193.3 6 28.11 odd 6
1008.2.t.h.961.3 6 36.7 odd 6
1134.2.g.l.163.1 6 9.5 odd 6
1134.2.g.l.487.1 6 63.32 odd 6
1134.2.g.m.163.3 6 9.4 even 3
1134.2.g.m.487.3 6 63.4 even 3
2646.2.e.p.1549.3 6 21.20 even 2
2646.2.e.p.2125.3 6 63.38 even 6
2646.2.f.l.883.1 6 63.2 odd 6
2646.2.f.l.1765.1 6 21.2 odd 6
2646.2.f.m.883.3 6 63.47 even 6
2646.2.f.m.1765.3 6 21.5 even 6
2646.2.h.o.361.1 6 21.17 even 6
2646.2.h.o.667.1 6 63.20 even 6
3024.2.q.g.2305.1 6 12.11 even 2
3024.2.q.g.2881.1 6 252.11 even 6
3024.2.t.h.289.3 6 36.11 even 6
3024.2.t.h.1873.3 6 84.11 even 6
7938.2.a.bv.1.1 3 63.58 even 3
7938.2.a.bw.1.3 3 63.40 odd 6
7938.2.a.bz.1.1 3 63.5 even 6
7938.2.a.ca.1.3 3 63.23 odd 6