Properties

Label 1134.2.g.m.163.3
Level $1134$
Weight $2$
Character 1134.163
Analytic conductor $9.055$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(163,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.3
Root \(0.500000 + 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 1134.163
Dual form 1134.2.g.m.487.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(1.59097 - 2.75564i) q^{5} +(1.85185 - 1.88962i) q^{7} -1.00000 q^{8} +(-1.59097 - 2.75564i) q^{10} +(-1.59097 - 2.75564i) q^{11} -5.70370 q^{13} +(-0.710533 - 2.54856i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-0.760877 - 1.31788i) q^{17} +(-0.641315 + 1.11079i) q^{19} -3.18194 q^{20} -3.18194 q^{22} +(-1.11956 + 1.93914i) q^{23} +(-2.56238 - 4.43818i) q^{25} +(-2.85185 + 4.93955i) q^{26} +(-2.56238 - 0.658939i) q^{28} +7.08126 q^{29} +(4.71053 + 8.15888i) q^{31} +(0.500000 + 0.866025i) q^{32} -1.52175 q^{34} +(-2.26088 - 8.10936i) q^{35} +(0.500000 - 0.866025i) q^{37} +(0.641315 + 1.11079i) q^{38} +(-1.59097 + 2.75564i) q^{40} +5.60301 q^{41} -6.82846 q^{43} +(-1.59097 + 2.75564i) q^{44} +(1.11956 + 1.93914i) q^{46} +(2.91423 - 5.04759i) q^{47} +(-0.141315 - 6.99857i) q^{49} -5.12476 q^{50} +(2.85185 + 4.93955i) q^{52} +(1.02859 + 1.78157i) q^{53} -10.1248 q^{55} +(-1.85185 + 1.88962i) q^{56} +(3.54063 - 6.13255i) q^{58} +(0.562382 + 0.974074i) q^{59} +(-1.56238 + 2.70612i) q^{61} +9.42107 q^{62} +1.00000 q^{64} +(-9.07442 + 15.7174i) q^{65} +(-5.48345 - 9.49761i) q^{67} +(-0.760877 + 1.31788i) q^{68} +(-8.15335 - 2.09671i) q^{70} +8.69002 q^{71} +(-2.48345 - 4.30146i) q^{73} +(-0.500000 - 0.866025i) q^{74} +1.28263 q^{76} +(-8.15335 - 2.09671i) q^{77} +(2.06922 - 3.58399i) q^{79} +(1.59097 + 2.75564i) q^{80} +(2.80150 - 4.85235i) q^{82} +8.06758 q^{83} -4.84213 q^{85} +(-3.41423 + 5.91362i) q^{86} +(1.59097 + 2.75564i) q^{88} +(0.112725 - 0.195246i) q^{89} +(-10.5624 + 10.7778i) q^{91} +2.23912 q^{92} +(-2.91423 - 5.04759i) q^{94} +(2.04063 + 3.53447i) q^{95} -14.8421 q^{97} +(-6.13160 - 3.37690i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 3 q^{4} + q^{5} + 2 q^{7} - 6 q^{8} - q^{10} - q^{11} - 16 q^{13} + 4 q^{14} - 3 q^{16} - 4 q^{17} - 3 q^{19} - 2 q^{20} - 2 q^{22} - 7 q^{23} + 2 q^{25} - 8 q^{26} + 2 q^{28} + 10 q^{29}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.59097 2.75564i 0.711504 1.23236i −0.252788 0.967522i \(-0.581348\pi\)
0.964292 0.264840i \(-0.0853191\pi\)
\(6\) 0 0
\(7\) 1.85185 1.88962i 0.699933 0.714209i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.59097 2.75564i −0.503109 0.871411i
\(11\) −1.59097 2.75564i −0.479696 0.830858i 0.520033 0.854146i \(-0.325920\pi\)
−0.999729 + 0.0232884i \(0.992586\pi\)
\(12\) 0 0
\(13\) −5.70370 −1.58192 −0.790960 0.611867i \(-0.790419\pi\)
−0.790960 + 0.611867i \(0.790419\pi\)
\(14\) −0.710533 2.54856i −0.189898 0.681130i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.760877 1.31788i −0.184540 0.319632i 0.758882 0.651229i \(-0.225746\pi\)
−0.943421 + 0.331596i \(0.892413\pi\)
\(18\) 0 0
\(19\) −0.641315 + 1.11079i −0.147128 + 0.254833i −0.930165 0.367142i \(-0.880336\pi\)
0.783037 + 0.621975i \(0.213670\pi\)
\(20\) −3.18194 −0.711504
\(21\) 0 0
\(22\) −3.18194 −0.678393
\(23\) −1.11956 + 1.93914i −0.233445 + 0.404338i −0.958820 0.284016i \(-0.908333\pi\)
0.725375 + 0.688354i \(0.241666\pi\)
\(24\) 0 0
\(25\) −2.56238 4.43818i −0.512476 0.887635i
\(26\) −2.85185 + 4.93955i −0.559293 + 0.968725i
\(27\) 0 0
\(28\) −2.56238 0.658939i −0.484245 0.124528i
\(29\) 7.08126 1.31496 0.657478 0.753474i \(-0.271623\pi\)
0.657478 + 0.753474i \(0.271623\pi\)
\(30\) 0 0
\(31\) 4.71053 + 8.15888i 0.846037 + 1.46538i 0.884718 + 0.466127i \(0.154351\pi\)
−0.0386810 + 0.999252i \(0.512316\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −1.52175 −0.260979
\(35\) −2.26088 8.10936i −0.382158 1.37073i
\(36\) 0 0
\(37\) 0.500000 0.866025i 0.0821995 0.142374i −0.821995 0.569495i \(-0.807139\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 0.641315 + 1.11079i 0.104035 + 0.180194i
\(39\) 0 0
\(40\) −1.59097 + 2.75564i −0.251555 + 0.435706i
\(41\) 5.60301 0.875043 0.437522 0.899208i \(-0.355856\pi\)
0.437522 + 0.899208i \(0.355856\pi\)
\(42\) 0 0
\(43\) −6.82846 −1.04133 −0.520665 0.853761i \(-0.674316\pi\)
−0.520665 + 0.853761i \(0.674316\pi\)
\(44\) −1.59097 + 2.75564i −0.239848 + 0.415429i
\(45\) 0 0
\(46\) 1.11956 + 1.93914i 0.165070 + 0.285910i
\(47\) 2.91423 5.04759i 0.425084 0.736267i −0.571344 0.820711i \(-0.693578\pi\)
0.996428 + 0.0844432i \(0.0269112\pi\)
\(48\) 0 0
\(49\) −0.141315 6.99857i −0.0201879 0.999796i
\(50\) −5.12476 −0.724751
\(51\) 0 0
\(52\) 2.85185 + 4.93955i 0.395480 + 0.684992i
\(53\) 1.02859 + 1.78157i 0.141288 + 0.244717i 0.927982 0.372626i \(-0.121542\pi\)
−0.786694 + 0.617343i \(0.788209\pi\)
\(54\) 0 0
\(55\) −10.1248 −1.36522
\(56\) −1.85185 + 1.88962i −0.247464 + 0.252511i
\(57\) 0 0
\(58\) 3.54063 6.13255i 0.464907 0.805243i
\(59\) 0.562382 + 0.974074i 0.0732159 + 0.126814i 0.900309 0.435251i \(-0.143340\pi\)
−0.827093 + 0.562065i \(0.810007\pi\)
\(60\) 0 0
\(61\) −1.56238 + 2.70612i −0.200042 + 0.346484i −0.948542 0.316652i \(-0.897441\pi\)
0.748499 + 0.663135i \(0.230775\pi\)
\(62\) 9.42107 1.19648
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −9.07442 + 15.7174i −1.12554 + 1.94950i
\(66\) 0 0
\(67\) −5.48345 9.49761i −0.669910 1.16032i −0.977929 0.208938i \(-0.932999\pi\)
0.308019 0.951380i \(-0.400334\pi\)
\(68\) −0.760877 + 1.31788i −0.0922699 + 0.159816i
\(69\) 0 0
\(70\) −8.15335 2.09671i −0.974512 0.250604i
\(71\) 8.69002 1.03132 0.515658 0.856794i \(-0.327548\pi\)
0.515658 + 0.856794i \(0.327548\pi\)
\(72\) 0 0
\(73\) −2.48345 4.30146i −0.290666 0.503448i 0.683302 0.730136i \(-0.260543\pi\)
−0.973967 + 0.226689i \(0.927210\pi\)
\(74\) −0.500000 0.866025i −0.0581238 0.100673i
\(75\) 0 0
\(76\) 1.28263 0.147128
\(77\) −8.15335 2.09671i −0.929161 0.238942i
\(78\) 0 0
\(79\) 2.06922 3.58399i 0.232805 0.403231i −0.725827 0.687877i \(-0.758543\pi\)
0.958633 + 0.284646i \(0.0918762\pi\)
\(80\) 1.59097 + 2.75564i 0.177876 + 0.308090i
\(81\) 0 0
\(82\) 2.80150 4.85235i 0.309374 0.535852i
\(83\) 8.06758 0.885532 0.442766 0.896637i \(-0.353997\pi\)
0.442766 + 0.896637i \(0.353997\pi\)
\(84\) 0 0
\(85\) −4.84213 −0.525203
\(86\) −3.41423 + 5.91362i −0.368166 + 0.637682i
\(87\) 0 0
\(88\) 1.59097 + 2.75564i 0.169598 + 0.293753i
\(89\) 0.112725 0.195246i 0.0119488 0.0206960i −0.859989 0.510312i \(-0.829530\pi\)
0.871938 + 0.489616i \(0.162863\pi\)
\(90\) 0 0
\(91\) −10.5624 + 10.7778i −1.10724 + 1.12982i
\(92\) 2.23912 0.233445
\(93\) 0 0
\(94\) −2.91423 5.04759i −0.300580 0.520620i
\(95\) 2.04063 + 3.53447i 0.209364 + 0.362629i
\(96\) 0 0
\(97\) −14.8421 −1.50699 −0.753495 0.657453i \(-0.771634\pi\)
−0.753495 + 0.657453i \(0.771634\pi\)
\(98\) −6.13160 3.37690i −0.619385 0.341119i
\(99\) 0 0
\(100\) −2.56238 + 4.43818i −0.256238 + 0.443818i
\(101\) −9.29467 16.0988i −0.924854 1.60189i −0.791796 0.610786i \(-0.790854\pi\)
−0.133058 0.991108i \(-0.542480\pi\)
\(102\) 0 0
\(103\) 0.141315 0.244765i 0.0139242 0.0241174i −0.858979 0.512010i \(-0.828901\pi\)
0.872904 + 0.487893i \(0.162234\pi\)
\(104\) 5.70370 0.559293
\(105\) 0 0
\(106\) 2.05718 0.199811
\(107\) 5.68878 9.85326i 0.549955 0.952550i −0.448322 0.893872i \(-0.647978\pi\)
0.998277 0.0586780i \(-0.0186885\pi\)
\(108\) 0 0
\(109\) −2.21053 3.82876i −0.211731 0.366728i 0.740526 0.672028i \(-0.234577\pi\)
−0.952256 + 0.305300i \(0.901243\pi\)
\(110\) −5.06238 + 8.76830i −0.482679 + 0.836025i
\(111\) 0 0
\(112\) 0.710533 + 2.54856i 0.0671391 + 0.240816i
\(113\) 3.21505 0.302446 0.151223 0.988500i \(-0.451679\pi\)
0.151223 + 0.988500i \(0.451679\pi\)
\(114\) 0 0
\(115\) 3.56238 + 6.17023i 0.332194 + 0.575377i
\(116\) −3.54063 6.13255i −0.328739 0.569393i
\(117\) 0 0
\(118\) 1.12476 0.103543
\(119\) −3.89931 1.00274i −0.357449 0.0919212i
\(120\) 0 0
\(121\) 0.437618 0.757977i 0.0397835 0.0689070i
\(122\) 1.56238 + 2.70612i 0.141451 + 0.245001i
\(123\) 0 0
\(124\) 4.71053 8.15888i 0.423018 0.732689i
\(125\) −0.396990 −0.0355079
\(126\) 0 0
\(127\) 20.1053 1.78406 0.892030 0.451976i \(-0.149281\pi\)
0.892030 + 0.451976i \(0.149281\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 9.07442 + 15.7174i 0.795879 + 1.37850i
\(131\) −3.18194 + 5.51129i −0.278008 + 0.481523i −0.970890 0.239528i \(-0.923007\pi\)
0.692882 + 0.721051i \(0.256341\pi\)
\(132\) 0 0
\(133\) 0.911351 + 3.26886i 0.0790242 + 0.283446i
\(134\) −10.9669 −0.947396
\(135\) 0 0
\(136\) 0.760877 + 1.31788i 0.0652446 + 0.113007i
\(137\) −1.37072 2.37416i −0.117109 0.202838i 0.801512 0.597979i \(-0.204029\pi\)
−0.918621 + 0.395140i \(0.870696\pi\)
\(138\) 0 0
\(139\) 7.96690 0.675743 0.337872 0.941192i \(-0.390293\pi\)
0.337872 + 0.941192i \(0.390293\pi\)
\(140\) −5.89248 + 6.01266i −0.498005 + 0.508162i
\(141\) 0 0
\(142\) 4.34501 7.52578i 0.364625 0.631550i
\(143\) 9.07442 + 15.7174i 0.758841 + 1.31435i
\(144\) 0 0
\(145\) 11.2661 19.5134i 0.935597 1.62050i
\(146\) −4.96690 −0.411063
\(147\) 0 0
\(148\) −1.00000 −0.0821995
\(149\) 11.6300 20.1437i 0.952764 1.65024i 0.213360 0.976974i \(-0.431559\pi\)
0.739404 0.673262i \(-0.235107\pi\)
\(150\) 0 0
\(151\) 4.06238 + 7.03625i 0.330592 + 0.572602i 0.982628 0.185586i \(-0.0594183\pi\)
−0.652036 + 0.758188i \(0.726085\pi\)
\(152\) 0.641315 1.11079i 0.0520175 0.0900970i
\(153\) 0 0
\(154\) −5.89248 + 6.01266i −0.474829 + 0.484514i
\(155\) 29.9773 2.40783
\(156\) 0 0
\(157\) 5.63160 + 9.75422i 0.449451 + 0.778471i 0.998350 0.0574170i \(-0.0182864\pi\)
−0.548900 + 0.835888i \(0.684953\pi\)
\(158\) −2.06922 3.58399i −0.164618 0.285127i
\(159\) 0 0
\(160\) 3.18194 0.251555
\(161\) 1.59097 + 5.70653i 0.125386 + 0.449738i
\(162\) 0 0
\(163\) −1.99028 + 3.44727i −0.155891 + 0.270011i −0.933383 0.358881i \(-0.883158\pi\)
0.777492 + 0.628893i \(0.216492\pi\)
\(164\) −2.80150 4.85235i −0.218761 0.378905i
\(165\) 0 0
\(166\) 4.03379 6.98673i 0.313083 0.542276i
\(167\) −5.23912 −0.405416 −0.202708 0.979239i \(-0.564974\pi\)
−0.202708 + 0.979239i \(0.564974\pi\)
\(168\) 0 0
\(169\) 19.5322 1.50247
\(170\) −2.42107 + 4.19341i −0.185687 + 0.321620i
\(171\) 0 0
\(172\) 3.41423 + 5.91362i 0.260333 + 0.450909i
\(173\) −1.27579 + 2.20974i −0.0969968 + 0.168003i −0.910440 0.413641i \(-0.864257\pi\)
0.813443 + 0.581644i \(0.197590\pi\)
\(174\) 0 0
\(175\) −13.1316 3.37690i −0.992656 0.255270i
\(176\) 3.18194 0.239848
\(177\) 0 0
\(178\) −0.112725 0.195246i −0.00844910 0.0146343i
\(179\) 3.51887 + 6.09487i 0.263013 + 0.455552i 0.967041 0.254620i \(-0.0819504\pi\)
−0.704028 + 0.710172i \(0.748617\pi\)
\(180\) 0 0
\(181\) −12.9669 −0.963822 −0.481911 0.876220i \(-0.660057\pi\)
−0.481911 + 0.876220i \(0.660057\pi\)
\(182\) 4.05267 + 14.5362i 0.300404 + 1.07749i
\(183\) 0 0
\(184\) 1.11956 1.93914i 0.0825352 0.142955i
\(185\) −1.59097 2.75564i −0.116971 0.202599i
\(186\) 0 0
\(187\) −2.42107 + 4.19341i −0.177046 + 0.306653i
\(188\) −5.82846 −0.425084
\(189\) 0 0
\(190\) 4.08126 0.296085
\(191\) −0.990285 + 1.71522i −0.0716545 + 0.124109i −0.899627 0.436660i \(-0.856161\pi\)
0.827972 + 0.560769i \(0.189495\pi\)
\(192\) 0 0
\(193\) 2.27292 + 3.93680i 0.163608 + 0.283377i 0.936160 0.351574i \(-0.114353\pi\)
−0.772552 + 0.634951i \(0.781020\pi\)
\(194\) −7.42107 + 12.8537i −0.532802 + 0.922839i
\(195\) 0 0
\(196\) −5.99028 + 3.62167i −0.427877 + 0.258691i
\(197\) −21.8148 −1.55424 −0.777120 0.629353i \(-0.783320\pi\)
−0.777120 + 0.629353i \(0.783320\pi\)
\(198\) 0 0
\(199\) 6.14132 + 10.6371i 0.435346 + 0.754042i 0.997324 0.0731106i \(-0.0232926\pi\)
−0.561978 + 0.827152i \(0.689959\pi\)
\(200\) 2.56238 + 4.43818i 0.181188 + 0.313826i
\(201\) 0 0
\(202\) −18.5893 −1.30794
\(203\) 13.1134 13.3809i 0.920381 0.939153i
\(204\) 0 0
\(205\) 8.91423 15.4399i 0.622597 1.07837i
\(206\) −0.141315 0.244765i −0.00984589 0.0170536i
\(207\) 0 0
\(208\) 2.85185 4.93955i 0.197740 0.342496i
\(209\) 4.08126 0.282306
\(210\) 0 0
\(211\) 16.6569 1.14671 0.573355 0.819307i \(-0.305642\pi\)
0.573355 + 0.819307i \(0.305642\pi\)
\(212\) 1.02859 1.78157i 0.0706438 0.122359i
\(213\) 0 0
\(214\) −5.68878 9.85326i −0.388877 0.673555i
\(215\) −10.8639 + 18.8168i −0.740911 + 1.28330i
\(216\) 0 0
\(217\) 24.1404 + 6.20790i 1.63876 + 0.421420i
\(218\) −4.42107 −0.299432
\(219\) 0 0
\(220\) 5.06238 + 8.76830i 0.341306 + 0.591159i
\(221\) 4.33981 + 7.51677i 0.291927 + 0.505633i
\(222\) 0 0
\(223\) 10.6569 0.713640 0.356820 0.934173i \(-0.383861\pi\)
0.356820 + 0.934173i \(0.383861\pi\)
\(224\) 2.56238 + 0.658939i 0.171206 + 0.0440272i
\(225\) 0 0
\(226\) 1.60752 2.78431i 0.106931 0.185210i
\(227\) 7.25404 + 12.5644i 0.481468 + 0.833926i 0.999774 0.0212688i \(-0.00677059\pi\)
−0.518306 + 0.855195i \(0.673437\pi\)
\(228\) 0 0
\(229\) −5.12476 + 8.87635i −0.338654 + 0.586566i −0.984180 0.177173i \(-0.943305\pi\)
0.645526 + 0.763738i \(0.276638\pi\)
\(230\) 7.12476 0.469793
\(231\) 0 0
\(232\) −7.08126 −0.464907
\(233\) 0.540628 0.936396i 0.0354177 0.0613453i −0.847773 0.530359i \(-0.822057\pi\)
0.883191 + 0.469014i \(0.155390\pi\)
\(234\) 0 0
\(235\) −9.27292 16.0612i −0.604898 1.04771i
\(236\) 0.562382 0.974074i 0.0366079 0.0634068i
\(237\) 0 0
\(238\) −2.81806 + 2.87553i −0.182667 + 0.186393i
\(239\) 12.3204 0.796939 0.398470 0.917182i \(-0.369541\pi\)
0.398470 + 0.917182i \(0.369541\pi\)
\(240\) 0 0
\(241\) 6.50000 + 11.2583i 0.418702 + 0.725213i 0.995809 0.0914555i \(-0.0291519\pi\)
−0.577107 + 0.816668i \(0.695819\pi\)
\(242\) −0.437618 0.757977i −0.0281312 0.0487246i
\(243\) 0 0
\(244\) 3.12476 0.200042
\(245\) −19.5104 10.7451i −1.24647 0.686480i
\(246\) 0 0
\(247\) 3.65787 6.33561i 0.232744 0.403125i
\(248\) −4.71053 8.15888i −0.299119 0.518090i
\(249\) 0 0
\(250\) −0.198495 + 0.343803i −0.0125539 + 0.0217440i
\(251\) 5.11109 0.322609 0.161305 0.986905i \(-0.448430\pi\)
0.161305 + 0.986905i \(0.448430\pi\)
\(252\) 0 0
\(253\) 7.12476 0.447930
\(254\) 10.0527 17.4117i 0.630760 1.09251i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −3.83009 + 6.63392i −0.238915 + 0.413813i −0.960403 0.278614i \(-0.910125\pi\)
0.721488 + 0.692427i \(0.243458\pi\)
\(258\) 0 0
\(259\) −0.710533 2.54856i −0.0441504 0.158360i
\(260\) 18.1488 1.12554
\(261\) 0 0
\(262\) 3.18194 + 5.51129i 0.196581 + 0.340488i
\(263\) 1.54746 + 2.68029i 0.0954208 + 0.165274i 0.909784 0.415082i \(-0.136247\pi\)
−0.814363 + 0.580355i \(0.802914\pi\)
\(264\) 0 0
\(265\) 6.54583 0.402107
\(266\) 3.28659 + 0.845174i 0.201514 + 0.0518210i
\(267\) 0 0
\(268\) −5.48345 + 9.49761i −0.334955 + 0.580159i
\(269\) −13.4451 23.2877i −0.819765 1.41987i −0.905855 0.423587i \(-0.860771\pi\)
0.0860906 0.996287i \(-0.472563\pi\)
\(270\) 0 0
\(271\) −11.1082 + 19.2400i −0.674776 + 1.16875i 0.301759 + 0.953384i \(0.402426\pi\)
−0.976534 + 0.215362i \(0.930907\pi\)
\(272\) 1.52175 0.0922699
\(273\) 0 0
\(274\) −2.74145 −0.165617
\(275\) −8.15335 + 14.1220i −0.491666 + 0.851590i
\(276\) 0 0
\(277\) 7.31875 + 12.6764i 0.439741 + 0.761653i 0.997669 0.0682357i \(-0.0217370\pi\)
−0.557928 + 0.829889i \(0.688404\pi\)
\(278\) 3.98345 6.89953i 0.238911 0.413807i
\(279\) 0 0
\(280\) 2.26088 + 8.10936i 0.135113 + 0.484627i
\(281\) −23.3984 −1.39583 −0.697915 0.716181i \(-0.745889\pi\)
−0.697915 + 0.716181i \(0.745889\pi\)
\(282\) 0 0
\(283\) 13.0624 + 22.6247i 0.776478 + 1.34490i 0.933960 + 0.357377i \(0.116329\pi\)
−0.157482 + 0.987522i \(0.550338\pi\)
\(284\) −4.34501 7.52578i −0.257829 0.446573i
\(285\) 0 0
\(286\) 18.1488 1.07316
\(287\) 10.3759 10.5876i 0.612471 0.624963i
\(288\) 0 0
\(289\) 7.34213 12.7169i 0.431890 0.748056i
\(290\) −11.2661 19.5134i −0.661567 1.14587i
\(291\) 0 0
\(292\) −2.48345 + 4.30146i −0.145333 + 0.251724i
\(293\) −25.8629 −1.51093 −0.755465 0.655190i \(-0.772589\pi\)
−0.755465 + 0.655190i \(0.772589\pi\)
\(294\) 0 0
\(295\) 3.57893 0.208374
\(296\) −0.500000 + 0.866025i −0.0290619 + 0.0503367i
\(297\) 0 0
\(298\) −11.6300 20.1437i −0.673706 1.16689i
\(299\) 6.38564 11.0603i 0.369291 0.639631i
\(300\) 0 0
\(301\) −12.6453 + 12.9032i −0.728861 + 0.743727i
\(302\) 8.12476 0.467528
\(303\) 0 0
\(304\) −0.641315 1.11079i −0.0367819 0.0637082i
\(305\) 4.97141 + 8.61073i 0.284662 + 0.493049i
\(306\) 0 0
\(307\) 3.53216 0.201591 0.100795 0.994907i \(-0.467861\pi\)
0.100795 + 0.994907i \(0.467861\pi\)
\(308\) 2.26088 + 8.10936i 0.128825 + 0.462074i
\(309\) 0 0
\(310\) 14.9887 25.9611i 0.851298 1.47449i
\(311\) −0.851848 1.47544i −0.0483039 0.0836648i 0.840863 0.541249i \(-0.182048\pi\)
−0.889166 + 0.457584i \(0.848715\pi\)
\(312\) 0 0
\(313\) 1.42107 2.46136i 0.0803234 0.139124i −0.823065 0.567947i \(-0.807738\pi\)
0.903389 + 0.428822i \(0.141071\pi\)
\(314\) 11.2632 0.635619
\(315\) 0 0
\(316\) −4.13844 −0.232805
\(317\) 12.4601 21.5815i 0.699827 1.21214i −0.268700 0.963224i \(-0.586594\pi\)
0.968526 0.248911i \(-0.0800728\pi\)
\(318\) 0 0
\(319\) −11.2661 19.5134i −0.630779 1.09254i
\(320\) 1.59097 2.75564i 0.0889380 0.154045i
\(321\) 0 0
\(322\) 5.73749 + 1.47544i 0.319738 + 0.0822233i
\(323\) 1.95185 0.108604
\(324\) 0 0
\(325\) 14.6150 + 25.3140i 0.810697 + 1.40417i
\(326\) 1.99028 + 3.44727i 0.110232 + 0.190927i
\(327\) 0 0
\(328\) −5.60301 −0.309374
\(329\) −4.14132 14.8542i −0.228318 0.818936i
\(330\) 0 0
\(331\) 3.58577 6.21074i 0.197092 0.341373i −0.750492 0.660879i \(-0.770184\pi\)
0.947584 + 0.319506i \(0.103517\pi\)
\(332\) −4.03379 6.98673i −0.221383 0.383447i
\(333\) 0 0
\(334\) −2.61956 + 4.53721i −0.143336 + 0.248265i
\(335\) −34.8960 −1.90657
\(336\) 0 0
\(337\) 21.8421 1.18982 0.594908 0.803793i \(-0.297188\pi\)
0.594908 + 0.803793i \(0.297188\pi\)
\(338\) 9.76608 16.9153i 0.531205 0.920073i
\(339\) 0 0
\(340\) 2.42107 + 4.19341i 0.131301 + 0.227420i
\(341\) 14.9887 25.9611i 0.811681 1.40587i
\(342\) 0 0
\(343\) −13.4863 12.6933i −0.728193 0.685372i
\(344\) 6.82846 0.368166
\(345\) 0 0
\(346\) 1.27579 + 2.20974i 0.0685871 + 0.118796i
\(347\) 1.05555 + 1.82826i 0.0566646 + 0.0981460i 0.892966 0.450124i \(-0.148620\pi\)
−0.836302 + 0.548270i \(0.815287\pi\)
\(348\) 0 0
\(349\) −36.2164 −1.93862 −0.969310 0.245840i \(-0.920936\pi\)
−0.969310 + 0.245840i \(0.920936\pi\)
\(350\) −9.49028 + 9.68385i −0.507277 + 0.517623i
\(351\) 0 0
\(352\) 1.59097 2.75564i 0.0847991 0.146876i
\(353\) 5.24433 + 9.08344i 0.279127 + 0.483463i 0.971168 0.238396i \(-0.0766215\pi\)
−0.692041 + 0.721858i \(0.743288\pi\)
\(354\) 0 0
\(355\) 13.8256 23.9466i 0.733786 1.27095i
\(356\) −0.225450 −0.0119488
\(357\) 0 0
\(358\) 7.03775 0.371957
\(359\) 16.2209 28.0955i 0.856108 1.48282i −0.0195047 0.999810i \(-0.506209\pi\)
0.875613 0.483013i \(-0.160458\pi\)
\(360\) 0 0
\(361\) 8.67743 + 15.0297i 0.456707 + 0.791039i
\(362\) −6.48345 + 11.2297i −0.340762 + 0.590218i
\(363\) 0 0
\(364\) 14.6150 + 3.75839i 0.766037 + 0.196993i
\(365\) −15.8044 −0.827239
\(366\) 0 0
\(367\) 9.05555 + 15.6847i 0.472696 + 0.818733i 0.999512 0.0312465i \(-0.00994768\pi\)
−0.526816 + 0.849979i \(0.676614\pi\)
\(368\) −1.11956 1.93914i −0.0583612 0.101085i
\(369\) 0 0
\(370\) −3.18194 −0.165421
\(371\) 5.27128 + 1.35556i 0.273671 + 0.0703769i
\(372\) 0 0
\(373\) 5.83530 10.1070i 0.302140 0.523322i −0.674480 0.738293i \(-0.735632\pi\)
0.976621 + 0.214971i \(0.0689656\pi\)
\(374\) 2.42107 + 4.19341i 0.125190 + 0.216836i
\(375\) 0 0
\(376\) −2.91423 + 5.04759i −0.150290 + 0.260310i
\(377\) −40.3893 −2.08016
\(378\) 0 0
\(379\) 14.2690 0.732947 0.366474 0.930428i \(-0.380565\pi\)
0.366474 + 0.930428i \(0.380565\pi\)
\(380\) 2.04063 3.53447i 0.104682 0.181315i
\(381\) 0 0
\(382\) 0.990285 + 1.71522i 0.0506674 + 0.0877585i
\(383\) 0.824893 1.42876i 0.0421501 0.0730061i −0.844181 0.536059i \(-0.819913\pi\)
0.886331 + 0.463053i \(0.153246\pi\)
\(384\) 0 0
\(385\) −18.7495 + 19.1319i −0.955564 + 0.975054i
\(386\) 4.54583 0.231377
\(387\) 0 0
\(388\) 7.42107 + 12.8537i 0.376748 + 0.652546i
\(389\) 16.0338 + 27.7713i 0.812946 + 1.40806i 0.910794 + 0.412862i \(0.135471\pi\)
−0.0978483 + 0.995201i \(0.531196\pi\)
\(390\) 0 0
\(391\) 3.40739 0.172319
\(392\) 0.141315 + 6.99857i 0.00713749 + 0.353481i
\(393\) 0 0
\(394\) −10.9074 + 18.8922i −0.549507 + 0.951773i
\(395\) −6.58414 11.4041i −0.331284 0.573800i
\(396\) 0 0
\(397\) −18.9669 + 32.8516i −0.951921 + 1.64878i −0.210660 + 0.977559i \(0.567561\pi\)
−0.741261 + 0.671217i \(0.765772\pi\)
\(398\) 12.2826 0.615673
\(399\) 0 0
\(400\) 5.12476 0.256238
\(401\) −5.30959 + 9.19647i −0.265148 + 0.459250i −0.967602 0.252479i \(-0.918754\pi\)
0.702454 + 0.711729i \(0.252087\pi\)
\(402\) 0 0
\(403\) −26.8675 46.5358i −1.33836 2.31811i
\(404\) −9.29467 + 16.0988i −0.462427 + 0.800947i
\(405\) 0 0
\(406\) −5.03147 18.0470i −0.249708 0.895657i
\(407\) −3.18194 −0.157723
\(408\) 0 0
\(409\) −2.77292 4.80283i −0.137112 0.237485i 0.789290 0.614020i \(-0.210449\pi\)
−0.926402 + 0.376535i \(0.877115\pi\)
\(410\) −8.91423 15.4399i −0.440242 0.762522i
\(411\) 0 0
\(412\) −0.282630 −0.0139242
\(413\) 2.88207 + 0.741150i 0.141818 + 0.0364696i
\(414\) 0 0
\(415\) 12.8353 22.2314i 0.630060 1.09130i
\(416\) −2.85185 4.93955i −0.139823 0.242181i
\(417\) 0 0
\(418\) 2.04063 3.53447i 0.0998104 0.172877i
\(419\) −5.54910 −0.271091 −0.135546 0.990771i \(-0.543279\pi\)
−0.135546 + 0.990771i \(0.543279\pi\)
\(420\) 0 0
\(421\) 6.84213 0.333465 0.166733 0.986002i \(-0.446678\pi\)
0.166733 + 0.986002i \(0.446678\pi\)
\(422\) 8.32846 14.4253i 0.405423 0.702213i
\(423\) 0 0
\(424\) −1.02859 1.78157i −0.0499527 0.0865207i
\(425\) −3.89931 + 6.75381i −0.189144 + 0.327608i
\(426\) 0 0
\(427\) 2.22025 + 7.96364i 0.107445 + 0.385387i
\(428\) −11.3776 −0.549955
\(429\) 0 0
\(430\) 10.8639 + 18.8168i 0.523903 + 0.907427i
\(431\) 16.5539 + 28.6722i 0.797374 + 1.38109i 0.921321 + 0.388803i \(0.127111\pi\)
−0.123947 + 0.992289i \(0.539555\pi\)
\(432\) 0 0
\(433\) −12.1111 −0.582022 −0.291011 0.956720i \(-0.593992\pi\)
−0.291011 + 0.956720i \(0.593992\pi\)
\(434\) 17.4464 17.8022i 0.837453 0.854534i
\(435\) 0 0
\(436\) −2.21053 + 3.82876i −0.105865 + 0.183364i
\(437\) −1.43598 2.48720i −0.0686924 0.118979i
\(438\) 0 0
\(439\) 4.41711 7.65066i 0.210817 0.365146i −0.741153 0.671336i \(-0.765721\pi\)
0.951970 + 0.306190i \(0.0990542\pi\)
\(440\) 10.1248 0.482679
\(441\) 0 0
\(442\) 8.67962 0.412847
\(443\) −8.75924 + 15.1715i −0.416164 + 0.720817i −0.995550 0.0942360i \(-0.969959\pi\)
0.579386 + 0.815053i \(0.303292\pi\)
\(444\) 0 0
\(445\) −0.358685 0.621261i −0.0170033 0.0294506i
\(446\) 5.32846 9.22916i 0.252310 0.437014i
\(447\) 0 0
\(448\) 1.85185 1.88962i 0.0874916 0.0892761i
\(449\) 31.2301 1.47384 0.736920 0.675980i \(-0.236280\pi\)
0.736920 + 0.675980i \(0.236280\pi\)
\(450\) 0 0
\(451\) −8.91423 15.4399i −0.419755 0.727036i
\(452\) −1.60752 2.78431i −0.0756115 0.130963i
\(453\) 0 0
\(454\) 14.5081 0.680898
\(455\) 12.8954 + 46.2534i 0.604544 + 2.16839i
\(456\) 0 0
\(457\) 16.0624 27.8209i 0.751367 1.30140i −0.195794 0.980645i \(-0.562728\pi\)
0.947161 0.320760i \(-0.103938\pi\)
\(458\) 5.12476 + 8.87635i 0.239464 + 0.414765i
\(459\) 0 0
\(460\) 3.56238 6.17023i 0.166097 0.287688i
\(461\) −2.46457 −0.114787 −0.0573933 0.998352i \(-0.518279\pi\)
−0.0573933 + 0.998352i \(0.518279\pi\)
\(462\) 0 0
\(463\) −30.3469 −1.41034 −0.705171 0.709037i \(-0.749130\pi\)
−0.705171 + 0.709037i \(0.749130\pi\)
\(464\) −3.54063 + 6.13255i −0.164370 + 0.284696i
\(465\) 0 0
\(466\) −0.540628 0.936396i −0.0250441 0.0433777i
\(467\) −7.98181 + 13.8249i −0.369354 + 0.639740i −0.989465 0.144774i \(-0.953754\pi\)
0.620110 + 0.784515i \(0.287088\pi\)
\(468\) 0 0
\(469\) −28.1014 7.22651i −1.29760 0.333689i
\(470\) −18.5458 −0.855455
\(471\) 0 0
\(472\) −0.562382 0.974074i −0.0258857 0.0448354i
\(473\) 10.8639 + 18.8168i 0.499522 + 0.865198i
\(474\) 0 0
\(475\) 6.57318 0.301598
\(476\) 1.08126 + 3.87828i 0.0495593 + 0.177760i
\(477\) 0 0
\(478\) 6.16019 10.6698i 0.281761 0.488024i
\(479\) 11.5865 + 20.0683i 0.529399 + 0.916946i 0.999412 + 0.0342863i \(0.0109158\pi\)
−0.470013 + 0.882659i \(0.655751\pi\)
\(480\) 0 0
\(481\) −2.85185 + 4.93955i −0.130033 + 0.225224i
\(482\) 13.0000 0.592134
\(483\) 0 0
\(484\) −0.875237 −0.0397835
\(485\) −23.6134 + 40.8996i −1.07223 + 1.85716i
\(486\) 0 0
\(487\) 1.70658 + 2.95588i 0.0773323 + 0.133943i 0.902098 0.431531i \(-0.142026\pi\)
−0.824766 + 0.565474i \(0.808693\pi\)
\(488\) 1.56238 2.70612i 0.0707257 0.122500i
\(489\) 0 0
\(490\) −19.0607 + 11.5239i −0.861077 + 0.520599i
\(491\) 19.1683 0.865052 0.432526 0.901621i \(-0.357622\pi\)
0.432526 + 0.901621i \(0.357622\pi\)
\(492\) 0 0
\(493\) −5.38796 9.33223i −0.242662 0.420302i
\(494\) −3.65787 6.33561i −0.164575 0.285053i
\(495\) 0 0
\(496\) −9.42107 −0.423018
\(497\) 16.0926 16.4208i 0.721852 0.736575i
\(498\) 0 0
\(499\) −20.5848 + 35.6540i −0.921503 + 1.59609i −0.124413 + 0.992231i \(0.539705\pi\)
−0.797090 + 0.603860i \(0.793629\pi\)
\(500\) 0.198495 + 0.343803i 0.00887697 + 0.0153754i
\(501\) 0 0
\(502\) 2.55555 4.42633i 0.114060 0.197557i
\(503\) −26.4542 −1.17953 −0.589767 0.807574i \(-0.700780\pi\)
−0.589767 + 0.807574i \(0.700780\pi\)
\(504\) 0 0
\(505\) −59.1502 −2.63215
\(506\) 3.56238 6.17023i 0.158367 0.274300i
\(507\) 0 0
\(508\) −10.0527 17.4117i −0.446015 0.772521i
\(509\) −6.38564 + 11.0603i −0.283039 + 0.490237i −0.972132 0.234436i \(-0.924676\pi\)
0.689093 + 0.724673i \(0.258009\pi\)
\(510\) 0 0
\(511\) −12.7271 3.27288i −0.563013 0.144784i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 3.83009 + 6.63392i 0.168938 + 0.292610i
\(515\) −0.449657 0.778828i −0.0198142 0.0343193i
\(516\) 0 0
\(517\) −18.5458 −0.815645
\(518\) −2.56238 0.658939i −0.112585 0.0289521i
\(519\) 0 0
\(520\) 9.07442 15.7174i 0.397940 0.689252i
\(521\) −3.40615 5.89962i −0.149226 0.258467i 0.781716 0.623635i \(-0.214345\pi\)
−0.930942 + 0.365168i \(0.881012\pi\)
\(522\) 0 0
\(523\) 14.7535 25.5538i 0.645125 1.11739i −0.339148 0.940733i \(-0.610139\pi\)
0.984273 0.176656i \(-0.0565280\pi\)
\(524\) 6.36389 0.278008
\(525\) 0 0
\(526\) 3.09493 0.134945
\(527\) 7.16827 12.4158i 0.312255 0.540841i
\(528\) 0 0
\(529\) 8.99316 + 15.5766i 0.391007 + 0.677244i
\(530\) 3.27292 5.66886i 0.142166 0.246239i
\(531\) 0 0
\(532\) 2.37524 2.42368i 0.102980 0.105080i
\(533\) −31.9579 −1.38425
\(534\) 0 0
\(535\) −18.1014 31.3525i −0.782591 1.35549i
\(536\) 5.48345 + 9.49761i 0.236849 + 0.410234i
\(537\) 0 0
\(538\) −26.8903 −1.15932
\(539\) −19.0607 + 11.5239i −0.821004 + 0.496371i
\(540\) 0 0
\(541\) 14.7008 25.4626i 0.632038 1.09472i −0.355097 0.934829i \(-0.615552\pi\)
0.987135 0.159892i \(-0.0511145\pi\)
\(542\) 11.1082 + 19.2400i 0.477139 + 0.826428i
\(543\) 0 0
\(544\) 0.760877 1.31788i 0.0326223 0.0565035i
\(545\) −14.0676 −0.602589
\(546\) 0 0
\(547\) −35.2301 −1.50633 −0.753165 0.657832i \(-0.771474\pi\)
−0.753165 + 0.657832i \(0.771474\pi\)
\(548\) −1.37072 + 2.37416i −0.0585544 + 0.101419i
\(549\) 0 0
\(550\) 8.15335 + 14.1220i 0.347660 + 0.602165i
\(551\) −4.54132 + 7.86579i −0.193467 + 0.335094i
\(552\) 0 0
\(553\) −2.94050 10.5470i −0.125043 0.448506i
\(554\) 14.6375 0.621887
\(555\) 0 0
\(556\) −3.98345 6.89953i −0.168936 0.292605i
\(557\) −3.36909 5.83543i −0.142753 0.247255i 0.785779 0.618507i \(-0.212262\pi\)
−0.928532 + 0.371252i \(0.878929\pi\)
\(558\) 0 0
\(559\) 38.9475 1.64730
\(560\) 8.15335 + 2.09671i 0.344542 + 0.0886020i
\(561\) 0 0
\(562\) −11.6992 + 20.2636i −0.493500 + 0.854768i
\(563\) 0.729964 + 1.26433i 0.0307643 + 0.0532853i 0.880998 0.473121i \(-0.156873\pi\)
−0.850233 + 0.526406i \(0.823539\pi\)
\(564\) 0 0
\(565\) 5.11505 8.85952i 0.215192 0.372723i
\(566\) 26.1248 1.09811
\(567\) 0 0
\(568\) −8.69002 −0.364625
\(569\) −9.78263 + 16.9440i −0.410109 + 0.710330i −0.994901 0.100853i \(-0.967843\pi\)
0.584792 + 0.811183i \(0.301176\pi\)
\(570\) 0 0
\(571\) 10.9629 + 18.9884i 0.458785 + 0.794638i 0.998897 0.0469545i \(-0.0149516\pi\)
−0.540112 + 0.841593i \(0.681618\pi\)
\(572\) 9.07442 15.7174i 0.379421 0.657176i
\(573\) 0 0
\(574\) −3.98113 14.2796i −0.166169 0.596019i
\(575\) 11.4750 0.478540
\(576\) 0 0
\(577\) 12.3655 + 21.4177i 0.514783 + 0.891631i 0.999853 + 0.0171554i \(0.00546099\pi\)
−0.485069 + 0.874476i \(0.661206\pi\)
\(578\) −7.34213 12.7169i −0.305392 0.528955i
\(579\) 0 0
\(580\) −22.5322 −0.935597
\(581\) 14.9399 15.2447i 0.619813 0.632455i
\(582\) 0 0
\(583\) 3.27292 5.66886i 0.135550 0.234780i
\(584\) 2.48345 + 4.30146i 0.102766 + 0.177996i
\(585\) 0 0
\(586\) −12.9315 + 22.3980i −0.534194 + 0.925251i
\(587\) 36.1592 1.49245 0.746226 0.665693i \(-0.231864\pi\)
0.746226 + 0.665693i \(0.231864\pi\)
\(588\) 0 0
\(589\) −12.0837 −0.497902
\(590\) 1.78947 3.09945i 0.0736712 0.127602i
\(591\) 0 0
\(592\) 0.500000 + 0.866025i 0.0205499 + 0.0355934i
\(593\) −7.55391 + 13.0838i −0.310202 + 0.537285i −0.978406 0.206693i \(-0.933730\pi\)
0.668204 + 0.743978i \(0.267063\pi\)
\(594\) 0 0
\(595\) −8.96690 + 9.14978i −0.367607 + 0.375105i
\(596\) −23.2599 −0.952764
\(597\) 0 0
\(598\) −6.38564 11.0603i −0.261128 0.452287i
\(599\) 2.72708 + 4.72345i 0.111426 + 0.192995i 0.916345 0.400389i \(-0.131125\pi\)
−0.804920 + 0.593384i \(0.797792\pi\)
\(600\) 0 0
\(601\) 6.73680 0.274800 0.137400 0.990516i \(-0.456125\pi\)
0.137400 + 0.990516i \(0.456125\pi\)
\(602\) 4.85185 + 17.4027i 0.197747 + 0.709282i
\(603\) 0 0
\(604\) 4.06238 7.03625i 0.165296 0.286301i
\(605\) −1.39248 2.41184i −0.0566122 0.0980553i
\(606\) 0 0
\(607\) −3.33530 + 5.77690i −0.135376 + 0.234477i −0.925741 0.378159i \(-0.876557\pi\)
0.790365 + 0.612636i \(0.209891\pi\)
\(608\) −1.28263 −0.0520175
\(609\) 0 0
\(610\) 9.94282 0.402573
\(611\) −16.6219 + 28.7899i −0.672449 + 1.16472i
\(612\) 0 0
\(613\) 0.654988 + 1.13447i 0.0264547 + 0.0458209i 0.878950 0.476915i \(-0.158245\pi\)
−0.852495 + 0.522735i \(0.824912\pi\)
\(614\) 1.76608 3.05894i 0.0712731 0.123449i
\(615\) 0 0
\(616\) 8.15335 + 2.09671i 0.328508 + 0.0844787i
\(617\) −34.4966 −1.38878 −0.694390 0.719599i \(-0.744326\pi\)
−0.694390 + 0.719599i \(0.744326\pi\)
\(618\) 0 0
\(619\) 8.22421 + 14.2447i 0.330559 + 0.572545i 0.982622 0.185620i \(-0.0594295\pi\)
−0.652063 + 0.758165i \(0.726096\pi\)
\(620\) −14.9887 25.9611i −0.601959 1.04262i
\(621\) 0 0
\(622\) −1.70370 −0.0683120
\(623\) −0.160190 0.574573i −0.00641787 0.0230198i
\(624\) 0 0
\(625\) 12.1803 21.0969i 0.487212 0.843877i
\(626\) −1.42107 2.46136i −0.0567972 0.0983757i
\(627\) 0 0
\(628\) 5.63160 9.75422i 0.224725 0.389236i
\(629\) −1.52175 −0.0606763
\(630\) 0 0
\(631\) −30.0118 −1.19475 −0.597375 0.801962i \(-0.703790\pi\)
−0.597375 + 0.801962i \(0.703790\pi\)
\(632\) −2.06922 + 3.58399i −0.0823091 + 0.142564i
\(633\) 0 0
\(634\) −12.4601 21.5815i −0.494852 0.857109i
\(635\) 31.9870 55.4031i 1.26937 2.19861i
\(636\) 0 0
\(637\) 0.806018 + 39.9177i 0.0319356 + 1.58160i
\(638\) −22.5322 −0.892057
\(639\) 0 0
\(640\) −1.59097 2.75564i −0.0628887 0.108926i
\(641\) −13.9497 24.1615i −0.550978 0.954322i −0.998204 0.0599014i \(-0.980921\pi\)
0.447226 0.894421i \(-0.352412\pi\)
\(642\) 0 0
\(643\) −28.5048 −1.12412 −0.562060 0.827096i \(-0.689991\pi\)
−0.562060 + 0.827096i \(0.689991\pi\)
\(644\) 4.14652 4.23109i 0.163396 0.166728i
\(645\) 0 0
\(646\) 0.975923 1.69035i 0.0383972 0.0665059i
\(647\) 8.35705 + 14.4748i 0.328550 + 0.569065i 0.982224 0.187711i \(-0.0601069\pi\)
−0.653675 + 0.756776i \(0.726774\pi\)
\(648\) 0 0
\(649\) 1.78947 3.09945i 0.0702427 0.121664i
\(650\) 29.2301 1.14650
\(651\) 0 0
\(652\) 3.98057 0.155891
\(653\) −19.0825 + 33.0519i −0.746756 + 1.29342i 0.202614 + 0.979259i \(0.435056\pi\)
−0.949370 + 0.314161i \(0.898277\pi\)
\(654\) 0 0
\(655\) 10.1248 + 17.5366i 0.395607 + 0.685212i
\(656\) −2.80150 + 4.85235i −0.109380 + 0.189452i
\(657\) 0 0
\(658\) −14.9347 3.84060i −0.582217 0.149722i
\(659\) −8.74145 −0.340518 −0.170259 0.985399i \(-0.554461\pi\)
−0.170259 + 0.985399i \(0.554461\pi\)
\(660\) 0 0
\(661\) 10.0419 + 17.3930i 0.390584 + 0.676511i 0.992527 0.122028i \(-0.0389399\pi\)
−0.601943 + 0.798539i \(0.705607\pi\)
\(662\) −3.58577 6.21074i −0.139365 0.241387i
\(663\) 0 0
\(664\) −8.06758 −0.313083
\(665\) 10.4577 + 2.68930i 0.405534 + 0.104286i
\(666\) 0 0
\(667\) −7.92790 + 13.7315i −0.306970 + 0.531687i
\(668\) 2.61956 + 4.53721i 0.101354 + 0.175550i
\(669\) 0 0
\(670\) −17.4480 + 30.2209i −0.674076 + 1.16753i
\(671\) 9.94282 0.383838
\(672\) 0 0
\(673\) 34.0528 1.31264 0.656319 0.754483i \(-0.272112\pi\)
0.656319 + 0.754483i \(0.272112\pi\)
\(674\) 10.9211 18.9158i 0.420664 0.728611i
\(675\) 0 0
\(676\) −9.76608 16.9153i −0.375618 0.650590i
\(677\) 0.358685 0.621261i 0.0137854 0.0238770i −0.859050 0.511891i \(-0.828945\pi\)
0.872836 + 0.488014i \(0.162279\pi\)
\(678\) 0 0
\(679\) −27.4854 + 28.0460i −1.05479 + 1.07631i
\(680\) 4.84213 0.185687
\(681\) 0 0
\(682\) −14.9887 25.9611i −0.573945 0.994102i
\(683\) −10.5270 18.2332i −0.402803 0.697675i 0.591260 0.806481i \(-0.298631\pi\)
−0.994063 + 0.108806i \(0.965297\pi\)
\(684\) 0 0
\(685\) −8.72313 −0.333294
\(686\) −17.7359 + 5.33287i −0.677158 + 0.203610i
\(687\) 0 0
\(688\) 3.41423 5.91362i 0.130166 0.225455i
\(689\) −5.86677 10.1615i −0.223506 0.387124i
\(690\) 0 0
\(691\) −2.92395 + 5.06442i −0.111232 + 0.192660i −0.916267 0.400567i \(-0.868813\pi\)
0.805035 + 0.593227i \(0.202146\pi\)
\(692\) 2.55159 0.0969968
\(693\) 0 0
\(694\) 2.11109 0.0801359
\(695\) 12.6751 21.9539i 0.480794 0.832760i
\(696\) 0 0
\(697\) −4.26320 7.38408i −0.161480 0.279692i
\(698\) −18.1082 + 31.3643i −0.685406 + 1.18716i
\(699\) 0 0
\(700\) 3.64132 + 13.0608i 0.137629 + 0.493650i
\(701\) 10.2711 0.387935 0.193967 0.981008i \(-0.437864\pi\)
0.193967 + 0.981008i \(0.437864\pi\)
\(702\) 0 0
\(703\) 0.641315 + 1.11079i 0.0241877 + 0.0418942i
\(704\) −1.59097 2.75564i −0.0599620 0.103857i
\(705\) 0 0
\(706\) 10.4887 0.394746
\(707\) −47.6330 12.2492i −1.79142 0.460680i
\(708\) 0 0
\(709\) −21.7427 + 37.6594i −0.816564 + 1.41433i 0.0916356 + 0.995793i \(0.470790\pi\)
−0.908200 + 0.418538i \(0.862543\pi\)
\(710\) −13.8256 23.9466i −0.518865 0.898700i
\(711\) 0 0
\(712\) −0.112725 + 0.195246i −0.00422455 + 0.00731714i
\(713\) −21.0949 −0.790011
\(714\) 0 0
\(715\) 57.7486 2.15967
\(716\) 3.51887 6.09487i 0.131507 0.227776i
\(717\) 0 0
\(718\) −16.2209 28.0955i −0.605360 1.04851i
\(719\) 25.4412 44.0654i 0.948796 1.64336i 0.200830 0.979626i \(-0.435636\pi\)
0.747966 0.663737i \(-0.231031\pi\)
\(720\) 0 0
\(721\) −0.200818 0.720299i −0.00747886 0.0268253i
\(722\) 17.3549 0.645881
\(723\) 0 0
\(724\) 6.48345 + 11.2297i 0.240955 + 0.417347i
\(725\) −18.1449 31.4279i −0.673884 1.16720i
\(726\) 0 0
\(727\) −12.1442 −0.450403 −0.225202 0.974312i \(-0.572304\pi\)
−0.225202 + 0.974312i \(0.572304\pi\)
\(728\) 10.5624 10.7778i 0.391468 0.399452i
\(729\) 0 0
\(730\) −7.90219 + 13.6870i −0.292473 + 0.506579i
\(731\) 5.19562 + 8.99907i 0.192167 + 0.332843i
\(732\) 0 0
\(733\) 23.0848 39.9841i 0.852657 1.47685i −0.0261440 0.999658i \(-0.508323\pi\)
0.878801 0.477188i \(-0.158344\pi\)
\(734\) 18.1111 0.668493
\(735\) 0 0
\(736\) −2.23912 −0.0825352
\(737\) −17.4480 + 30.2209i −0.642706 + 1.11320i
\(738\) 0 0
\(739\) −2.49604 4.32327i −0.0918184 0.159034i 0.816458 0.577405i \(-0.195935\pi\)
−0.908276 + 0.418371i \(0.862601\pi\)
\(740\) −1.59097 + 2.75564i −0.0584853 + 0.101299i
\(741\) 0 0
\(742\) 3.80959 3.88728i 0.139854 0.142707i
\(743\) 31.4120 1.15240 0.576198 0.817310i \(-0.304536\pi\)
0.576198 + 0.817310i \(0.304536\pi\)
\(744\) 0 0
\(745\) −37.0059 64.0961i −1.35579 2.34830i
\(746\) −5.83530 10.1070i −0.213645 0.370045i
\(747\) 0 0
\(748\) 4.84213 0.177046
\(749\) −8.08414 28.9964i −0.295388 1.05950i
\(750\) 0 0
\(751\) −1.64815 + 2.85468i −0.0601419 + 0.104169i −0.894529 0.447010i \(-0.852489\pi\)
0.834387 + 0.551179i \(0.185822\pi\)
\(752\) 2.91423 + 5.04759i 0.106271 + 0.184067i
\(753\) 0 0
\(754\) −20.1947 + 34.9782i −0.735447 + 1.27383i
\(755\) 25.8525 0.940870
\(756\) 0 0
\(757\) −10.1384 −0.368488 −0.184244 0.982881i \(-0.558984\pi\)
−0.184244 + 0.982881i \(0.558984\pi\)
\(758\) 7.13448 12.3573i 0.259136 0.448837i
\(759\) 0 0
\(760\) −2.04063 3.53447i −0.0740214 0.128209i
\(761\) −7.03379 + 12.1829i −0.254975 + 0.441629i −0.964889 0.262659i \(-0.915400\pi\)
0.709914 + 0.704288i \(0.248734\pi\)
\(762\) 0 0
\(763\) −11.3285 2.91321i −0.410118 0.105465i
\(764\) 1.98057 0.0716545
\(765\) 0 0
\(766\) −0.824893 1.42876i −0.0298046 0.0516231i
\(767\) −3.20765 5.55582i −0.115822 0.200609i
\(768\) 0 0
\(769\) −22.6922 −0.818301 −0.409151 0.912467i \(-0.634175\pi\)
−0.409151 + 0.912467i \(0.634175\pi\)
\(770\) 7.19398 + 25.8035i 0.259253 + 0.929895i
\(771\) 0 0
\(772\) 2.27292 3.93680i 0.0818040 0.141689i
\(773\) 0.327772 + 0.567717i 0.0117891 + 0.0204194i 0.871860 0.489756i \(-0.162914\pi\)
−0.860071 + 0.510175i \(0.829581\pi\)
\(774\) 0 0
\(775\) 24.1404 41.8123i 0.867148 1.50194i
\(776\) 14.8421 0.532802
\(777\) 0 0
\(778\) 32.0676 1.14968
\(779\) −3.59329 + 6.22377i −0.128743 + 0.222990i
\(780\) 0 0
\(781\) −13.8256 23.9466i −0.494718 0.856877i
\(782\) 1.70370 2.95089i 0.0609241 0.105524i
\(783\) 0 0
\(784\) 6.13160 + 3.37690i 0.218986 + 0.120604i
\(785\) 35.8389 1.27914
\(786\) 0 0
\(787\) −0.270036 0.467717i −0.00962576 0.0166723i 0.861172 0.508313i \(-0.169731\pi\)
−0.870798 + 0.491641i \(0.836397\pi\)
\(788\) 10.9074 + 18.8922i 0.388560 + 0.673005i
\(789\) 0 0
\(790\) −13.1683 −0.468506
\(791\) 5.95378 6.07521i 0.211692 0.216010i
\(792\) 0 0
\(793\) 8.91135 15.4349i 0.316451 0.548110i
\(794\) 18.9669 + 32.8516i 0.673110 + 1.16586i
\(795\) 0 0
\(796\) 6.14132 10.6371i 0.217673 0.377021i
\(797\) 25.1100 0.889441 0.444721 0.895669i \(-0.353303\pi\)
0.444721 + 0.895669i \(0.353303\pi\)
\(798\) 0 0
\(799\) −8.86948 −0.313780
\(800\) 2.56238 4.43818i 0.0905939 0.156913i
\(801\) 0 0
\(802\) 5.30959 + 9.19647i 0.187488 + 0.324739i
\(803\) −7.90219 + 13.6870i −0.278862 + 0.483004i
\(804\) 0 0
\(805\) 18.2564 + 4.69478i 0.643452 + 0.165469i
\(806\) −53.7349 −1.89273
\(807\) 0 0
\(808\) 9.29467 + 16.0988i 0.326985 + 0.566355i
\(809\) −14.5865 25.2645i −0.512833 0.888252i −0.999889 0.0148817i \(-0.995263\pi\)
0.487057 0.873370i \(-0.338071\pi\)
\(810\) 0 0
\(811\) −15.4290 −0.541785 −0.270892 0.962610i \(-0.587319\pi\)
−0.270892 + 0.962610i \(0.587319\pi\)
\(812\) −18.1449 4.66611i −0.636761 0.163748i
\(813\) 0 0
\(814\) −1.59097 + 2.75564i −0.0557635 + 0.0965853i
\(815\) 6.33297 + 10.9690i 0.221834 + 0.384228i
\(816\) 0 0
\(817\) 4.37919 7.58499i 0.153209 0.265365i
\(818\) −5.54583 −0.193905
\(819\) 0 0
\(820\) −17.8285 −0.622597
\(821\) −4.24364 + 7.35019i −0.148104 + 0.256524i −0.930527 0.366224i \(-0.880650\pi\)
0.782423 + 0.622748i \(0.213984\pi\)
\(822\) 0 0
\(823\) −14.5487 25.1991i −0.507136 0.878385i −0.999966 0.00825976i \(-0.997371\pi\)
0.492830 0.870126i \(-0.335963\pi\)
\(824\) −0.141315 + 0.244765i −0.00492294 + 0.00852679i
\(825\) 0 0
\(826\) 2.08289 2.12537i 0.0724731 0.0739512i
\(827\) −25.9396 −0.902007 −0.451003 0.892522i \(-0.648934\pi\)
−0.451003 + 0.892522i \(0.648934\pi\)
\(828\) 0 0
\(829\) 3.10821 + 5.38358i 0.107953 + 0.186979i 0.914941 0.403588i \(-0.132237\pi\)
−0.806988 + 0.590568i \(0.798904\pi\)
\(830\) −12.8353 22.2314i −0.445520 0.771663i
\(831\) 0 0
\(832\) −5.70370 −0.197740
\(833\) −9.11574 + 5.51129i −0.315842 + 0.190955i
\(834\) 0 0
\(835\) −8.33530 + 14.4372i −0.288455 + 0.499618i
\(836\) −2.04063 3.53447i −0.0705766 0.122242i
\(837\) 0 0
\(838\) −2.77455 + 4.80566i −0.0958452 + 0.166009i
\(839\) −42.5893 −1.47035 −0.735174 0.677879i \(-0.762899\pi\)
−0.735174 + 0.677879i \(0.762899\pi\)
\(840\) 0 0
\(841\) 21.1442 0.729110
\(842\) 3.42107 5.92546i 0.117898 0.204205i
\(843\) 0 0
\(844\) −8.32846 14.4253i −0.286677 0.496540i
\(845\) 31.0751 53.8237i 1.06902 1.85159i
\(846\) 0 0
\(847\) −0.621885 2.23059i −0.0213682 0.0766440i
\(848\) −2.05718 −0.0706438
\(849\) 0 0
\(850\) 3.89931 + 6.75381i 0.133745 + 0.231654i
\(851\) 1.11956 + 1.93914i 0.0383781 + 0.0664728i
\(852\) 0 0
\(853\) 21.3937 0.732507 0.366254 0.930515i \(-0.380640\pi\)
0.366254 + 0.930515i \(0.380640\pi\)
\(854\) 8.00684 + 2.05903i 0.273988 + 0.0704585i
\(855\) 0 0
\(856\) −5.68878 + 9.85326i −0.194438 + 0.336777i
\(857\) 18.4218 + 31.9074i 0.629275 + 1.08994i 0.987697 + 0.156377i \(0.0499815\pi\)
−0.358422 + 0.933560i \(0.616685\pi\)
\(858\) 0 0
\(859\) 8.81875 15.2745i 0.300892 0.521160i −0.675446 0.737409i \(-0.736049\pi\)
0.976338 + 0.216249i \(0.0693824\pi\)
\(860\) 21.7278 0.740911
\(861\) 0 0
\(862\) 33.1078 1.12766
\(863\) −0.380438 + 0.658939i −0.0129503 + 0.0224305i −0.872428 0.488743i \(-0.837456\pi\)
0.859478 + 0.511173i \(0.170789\pi\)
\(864\) 0 0
\(865\) 4.05950 + 7.03127i 0.138027 + 0.239070i
\(866\) −6.05555 + 10.4885i −0.205776 + 0.356414i
\(867\) 0 0
\(868\) −6.69398 24.0101i −0.227209 0.814957i
\(869\) −13.1683 −0.446703
\(870\) 0 0
\(871\) 31.2759 + 54.1715i 1.05974 + 1.83553i
\(872\) 2.21053 + 3.82876i 0.0748581 + 0.129658i
\(873\) 0 0
\(874\) −2.87197 −0.0971457
\(875\) −0.735165 + 0.750160i −0.0248531 + 0.0253600i
\(876\) 0 0
\(877\) 20.7495 35.9392i 0.700662 1.21358i −0.267573 0.963538i \(-0.586222\pi\)
0.968234 0.250044i \(-0.0804451\pi\)
\(878\) −4.41711 7.65066i −0.149070 0.258197i
\(879\) 0 0
\(880\) 5.06238 8.76830i 0.170653 0.295579i
\(881\) 8.35486 0.281482 0.140741 0.990046i \(-0.455051\pi\)
0.140741 + 0.990046i \(0.455051\pi\)
\(882\) 0 0
\(883\) 35.6181 1.19864 0.599322 0.800508i \(-0.295437\pi\)
0.599322 + 0.800508i \(0.295437\pi\)
\(884\) 4.33981 7.51677i 0.145964 0.252816i
\(885\) 0 0
\(886\) 8.75924 + 15.1715i 0.294272 + 0.509695i
\(887\) 18.5550 32.1382i 0.623016 1.07909i −0.365905 0.930652i \(-0.619241\pi\)
0.988921 0.148443i \(-0.0474260\pi\)
\(888\) 0 0
\(889\) 37.2320 37.9914i 1.24872 1.27419i
\(890\) −0.717370 −0.0240463
\(891\) 0 0
\(892\) −5.32846 9.22916i −0.178410 0.309015i
\(893\) 3.73788 + 6.47420i 0.125083 + 0.216651i
\(894\) 0 0
\(895\) 22.3937 0.748540
\(896\) −0.710533 2.54856i −0.0237373 0.0851413i
\(897\) 0 0
\(898\) 15.6150 27.0461i 0.521081 0.902539i
\(899\) 33.3565 + 57.7751i 1.11250 + 1.92691i
\(900\) 0 0
\(901\) 1.56526 2.71111i 0.0521464 0.0903202i
\(902\) −17.8285 −0.593623
\(903\) 0 0
\(904\) −3.21505 −0.106931
\(905\) −20.6300 + 35.7321i −0.685763 + 1.18778i
\(906\) 0 0
\(907\) 24.0751 + 41.6993i 0.799401 + 1.38460i 0.920007 + 0.391902i \(0.128183\pi\)
−0.120606 + 0.992700i \(0.538484\pi\)
\(908\) 7.25404 12.5644i 0.240734 0.416963i
\(909\) 0 0
\(910\) 46.5043 + 11.9590i 1.54160 + 0.396436i
\(911\) −34.8856 −1.15581 −0.577906 0.816103i \(-0.696130\pi\)
−0.577906 + 0.816103i \(0.696130\pi\)
\(912\) 0 0
\(913\) −12.8353 22.2314i −0.424786 0.735751i
\(914\) −16.0624 27.8209i −0.531296 0.920232i
\(915\) 0 0
\(916\) 10.2495 0.338654
\(917\) 4.52175 + 16.2187i 0.149321 + 0.535590i
\(918\) 0 0
\(919\) −25.8675 + 44.8037i −0.853289 + 1.47794i 0.0249351 + 0.999689i \(0.492062\pi\)
−0.878224 + 0.478250i \(0.841271\pi\)
\(920\) −3.56238 6.17023i −0.117448 0.203426i
\(921\) 0 0
\(922\) −1.23229 + 2.13438i −0.0405832 + 0.0702922i
\(923\) −49.5653 −1.63146
\(924\) 0 0
\(925\) −5.12476 −0.168501
\(926\) −15.1735 + 26.2812i −0.498631 + 0.863655i
\(927\) 0 0
\(928\) 3.54063 + 6.13255i 0.116227 + 0.201311i
\(929\) 25.4142 44.0187i 0.833814 1.44421i −0.0611787 0.998127i \(-0.519486\pi\)
0.894993 0.446081i \(-0.147181\pi\)
\(930\) 0 0
\(931\) 7.86458 + 4.33132i 0.257751 + 0.141953i
\(932\) −1.08126 −0.0354177
\(933\) 0 0
\(934\) 7.98181 + 13.8249i 0.261173 + 0.452365i
\(935\) 7.70370 + 13.3432i 0.251938 + 0.436369i
\(936\) 0 0
\(937\) 2.54583 0.0831686 0.0415843 0.999135i \(-0.486759\pi\)
0.0415843 + 0.999135i \(0.486759\pi\)
\(938\) −20.3090 + 20.7232i −0.663113 + 0.676638i
\(939\) 0 0
\(940\) −9.27292 + 16.0612i −0.302449 + 0.523857i
\(941\) −0.578933 1.00274i −0.0188727 0.0326885i 0.856435 0.516255i \(-0.172674\pi\)
−0.875308 + 0.483567i \(0.839341\pi\)
\(942\) 0 0
\(943\) −6.27292 + 10.8650i −0.204274 + 0.353813i
\(944\) −1.12476 −0.0366079
\(945\) 0 0
\(946\) 21.7278 0.706431
\(947\) −4.90739 + 8.49985i −0.159469 + 0.276208i −0.934677 0.355497i \(-0.884311\pi\)
0.775208 + 0.631706i \(0.217645\pi\)
\(948\) 0 0
\(949\) 14.1648 + 24.5342i 0.459810 + 0.796414i
\(950\) 3.28659 5.69254i 0.106631 0.184690i
\(951\) 0 0
\(952\) 3.89931 + 1.00274i 0.126377 + 0.0324991i
\(953\) 6.53791 0.211784 0.105892 0.994378i \(-0.466230\pi\)
0.105892 + 0.994378i \(0.466230\pi\)
\(954\) 0 0
\(955\) 3.15103 + 5.45774i 0.101965 + 0.176608i
\(956\) −6.16019 10.6698i −0.199235 0.345085i
\(957\) 0 0
\(958\) 23.1729 0.748683
\(959\) −7.02463 1.80644i −0.226837 0.0583331i
\(960\) 0 0
\(961\) −28.8782 + 50.0186i −0.931556 + 1.61350i
\(962\) 2.85185 + 4.93955i 0.0919473 + 0.159257i
\(963\) 0 0
\(964\) 6.50000 11.2583i 0.209351 0.362606i
\(965\) 14.4646 0.465631
\(966\) 0 0
\(967\) −28.8889 −0.929005 −0.464502 0.885572i \(-0.653767\pi\)
−0.464502 + 0.885572i \(0.653767\pi\)
\(968\) −0.437618 + 0.757977i −0.0140656 + 0.0243623i
\(969\) 0 0
\(970\) 23.6134 + 40.8996i 0.758181 + 1.31321i
\(971\) 2.66827 4.62158i 0.0856289 0.148314i −0.820030 0.572320i \(-0.806043\pi\)
0.905659 + 0.424007i \(0.139377\pi\)
\(972\) 0 0
\(973\) 14.7535 15.0544i 0.472975 0.482622i
\(974\) 3.41315 0.109364
\(975\) 0 0
\(976\) −1.56238 2.70612i −0.0500106 0.0866209i
\(977\) 24.0361 + 41.6318i 0.768983 + 1.33192i 0.938115 + 0.346325i \(0.112571\pi\)
−0.169131 + 0.985594i \(0.554096\pi\)
\(978\) 0 0
\(979\) −0.717370 −0.0229272
\(980\) 0.449657 + 22.2691i 0.0143638 + 0.711359i
\(981\) 0 0
\(982\) 9.58414 16.6002i 0.305842 0.529734i
\(983\) −14.7313 25.5154i −0.469857 0.813816i 0.529549 0.848279i \(-0.322361\pi\)
−0.999406 + 0.0344634i \(0.989028\pi\)
\(984\) 0 0
\(985\) −34.7067 + 60.1138i −1.10585 + 1.91538i
\(986\) −10.7759 −0.343175
\(987\) 0 0
\(988\) −7.31573 −0.232744
\(989\) 7.64488 13.2413i 0.243093 0.421050i
\(990\) 0 0
\(991\) 15.4142 + 26.6982i 0.489649 + 0.848097i 0.999929 0.0119112i \(-0.00379153\pi\)
−0.510280 + 0.860008i \(0.670458\pi\)
\(992\) −4.71053 + 8.15888i −0.149560 + 0.259045i
\(993\) 0 0
\(994\) −6.17455 22.1470i −0.195845 0.702461i
\(995\) 39.0826 1.23900
\(996\) 0 0
\(997\) −2.77292 4.80283i −0.0878191 0.152107i 0.818770 0.574122i \(-0.194656\pi\)
−0.906589 + 0.422015i \(0.861323\pi\)
\(998\) 20.5848 + 35.6540i 0.651601 + 1.12861i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.g.m.163.3 6
3.2 odd 2 1134.2.g.l.163.1 6
7.2 even 3 7938.2.a.bv.1.1 3
7.4 even 3 inner 1134.2.g.m.487.3 6
7.5 odd 6 7938.2.a.bw.1.3 3
9.2 odd 6 378.2.e.d.37.1 6
9.4 even 3 126.2.h.d.79.1 yes 6
9.5 odd 6 378.2.h.c.289.3 6
9.7 even 3 126.2.e.c.121.3 yes 6
21.2 odd 6 7938.2.a.ca.1.3 3
21.5 even 6 7938.2.a.bz.1.1 3
21.11 odd 6 1134.2.g.l.487.1 6
36.7 odd 6 1008.2.q.g.625.1 6
36.11 even 6 3024.2.q.g.2305.1 6
36.23 even 6 3024.2.t.h.289.3 6
36.31 odd 6 1008.2.t.h.961.3 6
63.2 odd 6 2646.2.f.l.1765.1 6
63.4 even 3 126.2.e.c.25.3 6
63.5 even 6 2646.2.f.m.883.3 6
63.11 odd 6 378.2.h.c.361.3 6
63.13 odd 6 882.2.h.p.79.3 6
63.16 even 3 882.2.f.n.589.2 6
63.20 even 6 2646.2.e.p.1549.3 6
63.23 odd 6 2646.2.f.l.883.1 6
63.25 even 3 126.2.h.d.67.1 yes 6
63.31 odd 6 882.2.e.o.655.1 6
63.32 odd 6 378.2.e.d.235.1 6
63.34 odd 6 882.2.e.o.373.1 6
63.38 even 6 2646.2.h.o.361.1 6
63.40 odd 6 882.2.f.o.295.2 6
63.41 even 6 2646.2.h.o.667.1 6
63.47 even 6 2646.2.f.m.1765.3 6
63.52 odd 6 882.2.h.p.67.3 6
63.58 even 3 882.2.f.n.295.2 6
63.59 even 6 2646.2.e.p.2125.3 6
63.61 odd 6 882.2.f.o.589.2 6
252.11 even 6 3024.2.t.h.1873.3 6
252.67 odd 6 1008.2.q.g.529.1 6
252.95 even 6 3024.2.q.g.2881.1 6
252.151 odd 6 1008.2.t.h.193.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.c.25.3 6 63.4 even 3
126.2.e.c.121.3 yes 6 9.7 even 3
126.2.h.d.67.1 yes 6 63.25 even 3
126.2.h.d.79.1 yes 6 9.4 even 3
378.2.e.d.37.1 6 9.2 odd 6
378.2.e.d.235.1 6 63.32 odd 6
378.2.h.c.289.3 6 9.5 odd 6
378.2.h.c.361.3 6 63.11 odd 6
882.2.e.o.373.1 6 63.34 odd 6
882.2.e.o.655.1 6 63.31 odd 6
882.2.f.n.295.2 6 63.58 even 3
882.2.f.n.589.2 6 63.16 even 3
882.2.f.o.295.2 6 63.40 odd 6
882.2.f.o.589.2 6 63.61 odd 6
882.2.h.p.67.3 6 63.52 odd 6
882.2.h.p.79.3 6 63.13 odd 6
1008.2.q.g.529.1 6 252.67 odd 6
1008.2.q.g.625.1 6 36.7 odd 6
1008.2.t.h.193.3 6 252.151 odd 6
1008.2.t.h.961.3 6 36.31 odd 6
1134.2.g.l.163.1 6 3.2 odd 2
1134.2.g.l.487.1 6 21.11 odd 6
1134.2.g.m.163.3 6 1.1 even 1 trivial
1134.2.g.m.487.3 6 7.4 even 3 inner
2646.2.e.p.1549.3 6 63.20 even 6
2646.2.e.p.2125.3 6 63.59 even 6
2646.2.f.l.883.1 6 63.23 odd 6
2646.2.f.l.1765.1 6 63.2 odd 6
2646.2.f.m.883.3 6 63.5 even 6
2646.2.f.m.1765.3 6 63.47 even 6
2646.2.h.o.361.1 6 63.38 even 6
2646.2.h.o.667.1 6 63.41 even 6
3024.2.q.g.2305.1 6 36.11 even 6
3024.2.q.g.2881.1 6 252.95 even 6
3024.2.t.h.289.3 6 36.23 even 6
3024.2.t.h.1873.3 6 252.11 even 6
7938.2.a.bv.1.1 3 7.2 even 3
7938.2.a.bw.1.3 3 7.5 odd 6
7938.2.a.bz.1.1 3 21.5 even 6
7938.2.a.ca.1.3 3 21.2 odd 6