Properties

Label 7938.2.a.ca.1.3
Level $7938$
Weight $2$
Character 7938.1
Self dual yes
Analytic conductor $63.385$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7938,2,Mod(1,7938)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7938, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7938.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7938 = 2 \cdot 3^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7938.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3852491245\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.239123\) of defining polynomial
Character \(\chi\) \(=\) 7938.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +3.18194 q^{5} +1.00000 q^{8} +3.18194 q^{10} -3.18194 q^{11} -5.70370 q^{13} +1.00000 q^{16} -1.52175 q^{17} +1.28263 q^{19} +3.18194 q^{20} -3.18194 q^{22} -2.23912 q^{23} +5.12476 q^{25} -5.70370 q^{26} -7.08126 q^{29} -9.42107 q^{31} +1.00000 q^{32} -1.52175 q^{34} -1.00000 q^{37} +1.28263 q^{38} +3.18194 q^{40} -5.60301 q^{41} -6.82846 q^{43} -3.18194 q^{44} -2.23912 q^{46} +5.82846 q^{47} +5.12476 q^{50} -5.70370 q^{52} +2.05718 q^{53} -10.1248 q^{55} -7.08126 q^{58} +1.12476 q^{59} +3.12476 q^{61} -9.42107 q^{62} +1.00000 q^{64} -18.1488 q^{65} +10.9669 q^{67} -1.52175 q^{68} -8.69002 q^{71} +4.96690 q^{73} -1.00000 q^{74} +1.28263 q^{76} -4.13844 q^{79} +3.18194 q^{80} -5.60301 q^{82} -8.06758 q^{83} -4.84213 q^{85} -6.82846 q^{86} -3.18194 q^{88} +0.225450 q^{89} -2.23912 q^{92} +5.82846 q^{94} +4.08126 q^{95} -14.8421 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} + q^{5} + 3 q^{8} + q^{10} - q^{11} - 8 q^{13} + 3 q^{16} - 4 q^{17} + 3 q^{19} + q^{20} - q^{22} - 7 q^{23} - 2 q^{25} - 8 q^{26} - 5 q^{29} - 20 q^{31} + 3 q^{32} - 4 q^{34}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 3.18194 1.42301 0.711504 0.702682i \(-0.248014\pi\)
0.711504 + 0.702682i \(0.248014\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 3.18194 1.00622
\(11\) −3.18194 −0.959392 −0.479696 0.877435i \(-0.659253\pi\)
−0.479696 + 0.877435i \(0.659253\pi\)
\(12\) 0 0
\(13\) −5.70370 −1.58192 −0.790960 0.611867i \(-0.790419\pi\)
−0.790960 + 0.611867i \(0.790419\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.52175 −0.369079 −0.184540 0.982825i \(-0.559079\pi\)
−0.184540 + 0.982825i \(0.559079\pi\)
\(18\) 0 0
\(19\) 1.28263 0.294256 0.147128 0.989117i \(-0.452997\pi\)
0.147128 + 0.989117i \(0.452997\pi\)
\(20\) 3.18194 0.711504
\(21\) 0 0
\(22\) −3.18194 −0.678393
\(23\) −2.23912 −0.466889 −0.233445 0.972370i \(-0.575000\pi\)
−0.233445 + 0.972370i \(0.575000\pi\)
\(24\) 0 0
\(25\) 5.12476 1.02495
\(26\) −5.70370 −1.11859
\(27\) 0 0
\(28\) 0 0
\(29\) −7.08126 −1.31496 −0.657478 0.753474i \(-0.728377\pi\)
−0.657478 + 0.753474i \(0.728377\pi\)
\(30\) 0 0
\(31\) −9.42107 −1.69207 −0.846037 0.533125i \(-0.821018\pi\)
−0.846037 + 0.533125i \(0.821018\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −1.52175 −0.260979
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 −0.164399 −0.0821995 0.996616i \(-0.526194\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) 1.28263 0.208070
\(39\) 0 0
\(40\) 3.18194 0.503109
\(41\) −5.60301 −0.875043 −0.437522 0.899208i \(-0.644144\pi\)
−0.437522 + 0.899208i \(0.644144\pi\)
\(42\) 0 0
\(43\) −6.82846 −1.04133 −0.520665 0.853761i \(-0.674316\pi\)
−0.520665 + 0.853761i \(0.674316\pi\)
\(44\) −3.18194 −0.479696
\(45\) 0 0
\(46\) −2.23912 −0.330141
\(47\) 5.82846 0.850168 0.425084 0.905154i \(-0.360245\pi\)
0.425084 + 0.905154i \(0.360245\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 5.12476 0.724751
\(51\) 0 0
\(52\) −5.70370 −0.790960
\(53\) 2.05718 0.282575 0.141288 0.989969i \(-0.454876\pi\)
0.141288 + 0.989969i \(0.454876\pi\)
\(54\) 0 0
\(55\) −10.1248 −1.36522
\(56\) 0 0
\(57\) 0 0
\(58\) −7.08126 −0.929815
\(59\) 1.12476 0.146432 0.0732159 0.997316i \(-0.476674\pi\)
0.0732159 + 0.997316i \(0.476674\pi\)
\(60\) 0 0
\(61\) 3.12476 0.400085 0.200042 0.979787i \(-0.435892\pi\)
0.200042 + 0.979787i \(0.435892\pi\)
\(62\) −9.42107 −1.19648
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −18.1488 −2.25109
\(66\) 0 0
\(67\) 10.9669 1.33982 0.669910 0.742442i \(-0.266333\pi\)
0.669910 + 0.742442i \(0.266333\pi\)
\(68\) −1.52175 −0.184540
\(69\) 0 0
\(70\) 0 0
\(71\) −8.69002 −1.03132 −0.515658 0.856794i \(-0.672452\pi\)
−0.515658 + 0.856794i \(0.672452\pi\)
\(72\) 0 0
\(73\) 4.96690 0.581331 0.290666 0.956825i \(-0.406123\pi\)
0.290666 + 0.956825i \(0.406123\pi\)
\(74\) −1.00000 −0.116248
\(75\) 0 0
\(76\) 1.28263 0.147128
\(77\) 0 0
\(78\) 0 0
\(79\) −4.13844 −0.465610 −0.232805 0.972523i \(-0.574790\pi\)
−0.232805 + 0.972523i \(0.574790\pi\)
\(80\) 3.18194 0.355752
\(81\) 0 0
\(82\) −5.60301 −0.618749
\(83\) −8.06758 −0.885532 −0.442766 0.896637i \(-0.646003\pi\)
−0.442766 + 0.896637i \(0.646003\pi\)
\(84\) 0 0
\(85\) −4.84213 −0.525203
\(86\) −6.82846 −0.736332
\(87\) 0 0
\(88\) −3.18194 −0.339196
\(89\) 0.225450 0.0238977 0.0119488 0.999929i \(-0.496196\pi\)
0.0119488 + 0.999929i \(0.496196\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.23912 −0.233445
\(93\) 0 0
\(94\) 5.82846 0.601160
\(95\) 4.08126 0.418728
\(96\) 0 0
\(97\) −14.8421 −1.50699 −0.753495 0.657453i \(-0.771634\pi\)
−0.753495 + 0.657453i \(0.771634\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 5.12476 0.512476
\(101\) −18.5893 −1.84971 −0.924854 0.380322i \(-0.875813\pi\)
−0.924854 + 0.380322i \(0.875813\pi\)
\(102\) 0 0
\(103\) −0.282630 −0.0278484 −0.0139242 0.999903i \(-0.504432\pi\)
−0.0139242 + 0.999903i \(0.504432\pi\)
\(104\) −5.70370 −0.559293
\(105\) 0 0
\(106\) 2.05718 0.199811
\(107\) 11.3776 1.09991 0.549955 0.835194i \(-0.314645\pi\)
0.549955 + 0.835194i \(0.314645\pi\)
\(108\) 0 0
\(109\) 4.42107 0.423461 0.211731 0.977328i \(-0.432090\pi\)
0.211731 + 0.977328i \(0.432090\pi\)
\(110\) −10.1248 −0.965358
\(111\) 0 0
\(112\) 0 0
\(113\) −3.21505 −0.302446 −0.151223 0.988500i \(-0.548321\pi\)
−0.151223 + 0.988500i \(0.548321\pi\)
\(114\) 0 0
\(115\) −7.12476 −0.664388
\(116\) −7.08126 −0.657478
\(117\) 0 0
\(118\) 1.12476 0.103543
\(119\) 0 0
\(120\) 0 0
\(121\) −0.875237 −0.0795670
\(122\) 3.12476 0.282903
\(123\) 0 0
\(124\) −9.42107 −0.846037
\(125\) 0.396990 0.0355079
\(126\) 0 0
\(127\) 20.1053 1.78406 0.892030 0.451976i \(-0.149281\pi\)
0.892030 + 0.451976i \(0.149281\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −18.1488 −1.59176
\(131\) −6.36389 −0.556015 −0.278008 0.960579i \(-0.589674\pi\)
−0.278008 + 0.960579i \(0.589674\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 10.9669 0.947396
\(135\) 0 0
\(136\) −1.52175 −0.130489
\(137\) −2.74145 −0.234218 −0.117109 0.993119i \(-0.537363\pi\)
−0.117109 + 0.993119i \(0.537363\pi\)
\(138\) 0 0
\(139\) 7.96690 0.675743 0.337872 0.941192i \(-0.390293\pi\)
0.337872 + 0.941192i \(0.390293\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −8.69002 −0.729251
\(143\) 18.1488 1.51768
\(144\) 0 0
\(145\) −22.5322 −1.87119
\(146\) 4.96690 0.411063
\(147\) 0 0
\(148\) −1.00000 −0.0821995
\(149\) 23.2599 1.90553 0.952764 0.303712i \(-0.0982261\pi\)
0.952764 + 0.303712i \(0.0982261\pi\)
\(150\) 0 0
\(151\) −8.12476 −0.661184 −0.330592 0.943774i \(-0.607248\pi\)
−0.330592 + 0.943774i \(0.607248\pi\)
\(152\) 1.28263 0.104035
\(153\) 0 0
\(154\) 0 0
\(155\) −29.9773 −2.40783
\(156\) 0 0
\(157\) −11.2632 −0.898901 −0.449451 0.893305i \(-0.648380\pi\)
−0.449451 + 0.893305i \(0.648380\pi\)
\(158\) −4.13844 −0.329236
\(159\) 0 0
\(160\) 3.18194 0.251555
\(161\) 0 0
\(162\) 0 0
\(163\) 3.98057 0.311782 0.155891 0.987774i \(-0.450175\pi\)
0.155891 + 0.987774i \(0.450175\pi\)
\(164\) −5.60301 −0.437522
\(165\) 0 0
\(166\) −8.06758 −0.626166
\(167\) 5.23912 0.405416 0.202708 0.979239i \(-0.435026\pi\)
0.202708 + 0.979239i \(0.435026\pi\)
\(168\) 0 0
\(169\) 19.5322 1.50247
\(170\) −4.84213 −0.371375
\(171\) 0 0
\(172\) −6.82846 −0.520665
\(173\) −2.55159 −0.193994 −0.0969968 0.995285i \(-0.530924\pi\)
−0.0969968 + 0.995285i \(0.530924\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3.18194 −0.239848
\(177\) 0 0
\(178\) 0.225450 0.0168982
\(179\) 7.03775 0.526026 0.263013 0.964792i \(-0.415284\pi\)
0.263013 + 0.964792i \(0.415284\pi\)
\(180\) 0 0
\(181\) −12.9669 −0.963822 −0.481911 0.876220i \(-0.660057\pi\)
−0.481911 + 0.876220i \(0.660057\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −2.23912 −0.165070
\(185\) −3.18194 −0.233941
\(186\) 0 0
\(187\) 4.84213 0.354092
\(188\) 5.82846 0.425084
\(189\) 0 0
\(190\) 4.08126 0.296085
\(191\) −1.98057 −0.143309 −0.0716545 0.997430i \(-0.522828\pi\)
−0.0716545 + 0.997430i \(0.522828\pi\)
\(192\) 0 0
\(193\) −4.54583 −0.327216 −0.163608 0.986525i \(-0.552313\pi\)
−0.163608 + 0.986525i \(0.552313\pi\)
\(194\) −14.8421 −1.06560
\(195\) 0 0
\(196\) 0 0
\(197\) 21.8148 1.55424 0.777120 0.629353i \(-0.216680\pi\)
0.777120 + 0.629353i \(0.216680\pi\)
\(198\) 0 0
\(199\) −12.2826 −0.870693 −0.435346 0.900263i \(-0.643374\pi\)
−0.435346 + 0.900263i \(0.643374\pi\)
\(200\) 5.12476 0.362375
\(201\) 0 0
\(202\) −18.5893 −1.30794
\(203\) 0 0
\(204\) 0 0
\(205\) −17.8285 −1.24519
\(206\) −0.282630 −0.0196918
\(207\) 0 0
\(208\) −5.70370 −0.395480
\(209\) −4.08126 −0.282306
\(210\) 0 0
\(211\) 16.6569 1.14671 0.573355 0.819307i \(-0.305642\pi\)
0.573355 + 0.819307i \(0.305642\pi\)
\(212\) 2.05718 0.141288
\(213\) 0 0
\(214\) 11.3776 0.777754
\(215\) −21.7278 −1.48182
\(216\) 0 0
\(217\) 0 0
\(218\) 4.42107 0.299432
\(219\) 0 0
\(220\) −10.1248 −0.682611
\(221\) 8.67962 0.583854
\(222\) 0 0
\(223\) 10.6569 0.713640 0.356820 0.934173i \(-0.383861\pi\)
0.356820 + 0.934173i \(0.383861\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −3.21505 −0.213862
\(227\) 14.5081 0.962935 0.481468 0.876464i \(-0.340104\pi\)
0.481468 + 0.876464i \(0.340104\pi\)
\(228\) 0 0
\(229\) 10.2495 0.677308 0.338654 0.940911i \(-0.390028\pi\)
0.338654 + 0.940911i \(0.390028\pi\)
\(230\) −7.12476 −0.469793
\(231\) 0 0
\(232\) −7.08126 −0.464907
\(233\) 1.08126 0.0708355 0.0354177 0.999373i \(-0.488724\pi\)
0.0354177 + 0.999373i \(0.488724\pi\)
\(234\) 0 0
\(235\) 18.5458 1.20980
\(236\) 1.12476 0.0732159
\(237\) 0 0
\(238\) 0 0
\(239\) −12.3204 −0.796939 −0.398470 0.917182i \(-0.630459\pi\)
−0.398470 + 0.917182i \(0.630459\pi\)
\(240\) 0 0
\(241\) −13.0000 −0.837404 −0.418702 0.908124i \(-0.637515\pi\)
−0.418702 + 0.908124i \(0.637515\pi\)
\(242\) −0.875237 −0.0562623
\(243\) 0 0
\(244\) 3.12476 0.200042
\(245\) 0 0
\(246\) 0 0
\(247\) −7.31573 −0.465489
\(248\) −9.42107 −0.598238
\(249\) 0 0
\(250\) 0.396990 0.0251079
\(251\) −5.11109 −0.322609 −0.161305 0.986905i \(-0.551570\pi\)
−0.161305 + 0.986905i \(0.551570\pi\)
\(252\) 0 0
\(253\) 7.12476 0.447930
\(254\) 20.1053 1.26152
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −7.66019 −0.477830 −0.238915 0.971041i \(-0.576792\pi\)
−0.238915 + 0.971041i \(0.576792\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −18.1488 −1.12554
\(261\) 0 0
\(262\) −6.36389 −0.393162
\(263\) 3.09493 0.190842 0.0954208 0.995437i \(-0.469580\pi\)
0.0954208 + 0.995437i \(0.469580\pi\)
\(264\) 0 0
\(265\) 6.54583 0.402107
\(266\) 0 0
\(267\) 0 0
\(268\) 10.9669 0.669910
\(269\) −26.8903 −1.63953 −0.819765 0.572700i \(-0.805896\pi\)
−0.819765 + 0.572700i \(0.805896\pi\)
\(270\) 0 0
\(271\) 22.2164 1.34955 0.674776 0.738023i \(-0.264240\pi\)
0.674776 + 0.738023i \(0.264240\pi\)
\(272\) −1.52175 −0.0922699
\(273\) 0 0
\(274\) −2.74145 −0.165617
\(275\) −16.3067 −0.983331
\(276\) 0 0
\(277\) −14.6375 −0.879482 −0.439741 0.898125i \(-0.644930\pi\)
−0.439741 + 0.898125i \(0.644930\pi\)
\(278\) 7.96690 0.477823
\(279\) 0 0
\(280\) 0 0
\(281\) 23.3984 1.39583 0.697915 0.716181i \(-0.254111\pi\)
0.697915 + 0.716181i \(0.254111\pi\)
\(282\) 0 0
\(283\) −26.1248 −1.55296 −0.776478 0.630144i \(-0.782996\pi\)
−0.776478 + 0.630144i \(0.782996\pi\)
\(284\) −8.69002 −0.515658
\(285\) 0 0
\(286\) 18.1488 1.07316
\(287\) 0 0
\(288\) 0 0
\(289\) −14.6843 −0.863780
\(290\) −22.5322 −1.32313
\(291\) 0 0
\(292\) 4.96690 0.290666
\(293\) 25.8629 1.51093 0.755465 0.655190i \(-0.227411\pi\)
0.755465 + 0.655190i \(0.227411\pi\)
\(294\) 0 0
\(295\) 3.57893 0.208374
\(296\) −1.00000 −0.0581238
\(297\) 0 0
\(298\) 23.2599 1.34741
\(299\) 12.7713 0.738582
\(300\) 0 0
\(301\) 0 0
\(302\) −8.12476 −0.467528
\(303\) 0 0
\(304\) 1.28263 0.0735639
\(305\) 9.94282 0.569324
\(306\) 0 0
\(307\) 3.53216 0.201591 0.100795 0.994907i \(-0.467861\pi\)
0.100795 + 0.994907i \(0.467861\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −29.9773 −1.70260
\(311\) −1.70370 −0.0966078 −0.0483039 0.998833i \(-0.515382\pi\)
−0.0483039 + 0.998833i \(0.515382\pi\)
\(312\) 0 0
\(313\) −2.84213 −0.160647 −0.0803234 0.996769i \(-0.525595\pi\)
−0.0803234 + 0.996769i \(0.525595\pi\)
\(314\) −11.2632 −0.635619
\(315\) 0 0
\(316\) −4.13844 −0.232805
\(317\) 24.9201 1.39965 0.699827 0.714313i \(-0.253261\pi\)
0.699827 + 0.714313i \(0.253261\pi\)
\(318\) 0 0
\(319\) 22.5322 1.26156
\(320\) 3.18194 0.177876
\(321\) 0 0
\(322\) 0 0
\(323\) −1.95185 −0.108604
\(324\) 0 0
\(325\) −29.2301 −1.62139
\(326\) 3.98057 0.220463
\(327\) 0 0
\(328\) −5.60301 −0.309374
\(329\) 0 0
\(330\) 0 0
\(331\) −7.17154 −0.394183 −0.197092 0.980385i \(-0.563150\pi\)
−0.197092 + 0.980385i \(0.563150\pi\)
\(332\) −8.06758 −0.442766
\(333\) 0 0
\(334\) 5.23912 0.286672
\(335\) 34.8960 1.90657
\(336\) 0 0
\(337\) 21.8421 1.18982 0.594908 0.803793i \(-0.297188\pi\)
0.594908 + 0.803793i \(0.297188\pi\)
\(338\) 19.5322 1.06241
\(339\) 0 0
\(340\) −4.84213 −0.262602
\(341\) 29.9773 1.62336
\(342\) 0 0
\(343\) 0 0
\(344\) −6.82846 −0.368166
\(345\) 0 0
\(346\) −2.55159 −0.137174
\(347\) 2.11109 0.113329 0.0566646 0.998393i \(-0.481953\pi\)
0.0566646 + 0.998393i \(0.481953\pi\)
\(348\) 0 0
\(349\) −36.2164 −1.93862 −0.969310 0.245840i \(-0.920936\pi\)
−0.969310 + 0.245840i \(0.920936\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −3.18194 −0.169598
\(353\) 10.4887 0.558255 0.279127 0.960254i \(-0.409955\pi\)
0.279127 + 0.960254i \(0.409955\pi\)
\(354\) 0 0
\(355\) −27.6512 −1.46757
\(356\) 0.225450 0.0119488
\(357\) 0 0
\(358\) 7.03775 0.371957
\(359\) 32.4419 1.71222 0.856108 0.516796i \(-0.172876\pi\)
0.856108 + 0.516796i \(0.172876\pi\)
\(360\) 0 0
\(361\) −17.3549 −0.913414
\(362\) −12.9669 −0.681525
\(363\) 0 0
\(364\) 0 0
\(365\) 15.8044 0.827239
\(366\) 0 0
\(367\) −18.1111 −0.945391 −0.472696 0.881226i \(-0.656719\pi\)
−0.472696 + 0.881226i \(0.656719\pi\)
\(368\) −2.23912 −0.116722
\(369\) 0 0
\(370\) −3.18194 −0.165421
\(371\) 0 0
\(372\) 0 0
\(373\) −11.6706 −0.604280 −0.302140 0.953263i \(-0.597701\pi\)
−0.302140 + 0.953263i \(0.597701\pi\)
\(374\) 4.84213 0.250381
\(375\) 0 0
\(376\) 5.82846 0.300580
\(377\) 40.3893 2.08016
\(378\) 0 0
\(379\) 14.2690 0.732947 0.366474 0.930428i \(-0.380565\pi\)
0.366474 + 0.930428i \(0.380565\pi\)
\(380\) 4.08126 0.209364
\(381\) 0 0
\(382\) −1.98057 −0.101335
\(383\) 1.64979 0.0843001 0.0421501 0.999111i \(-0.486579\pi\)
0.0421501 + 0.999111i \(0.486579\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4.54583 −0.231377
\(387\) 0 0
\(388\) −14.8421 −0.753495
\(389\) 32.0676 1.62589 0.812946 0.582340i \(-0.197863\pi\)
0.812946 + 0.582340i \(0.197863\pi\)
\(390\) 0 0
\(391\) 3.40739 0.172319
\(392\) 0 0
\(393\) 0 0
\(394\) 21.8148 1.09901
\(395\) −13.1683 −0.662568
\(396\) 0 0
\(397\) 37.9338 1.90384 0.951921 0.306343i \(-0.0991054\pi\)
0.951921 + 0.306343i \(0.0991054\pi\)
\(398\) −12.2826 −0.615673
\(399\) 0 0
\(400\) 5.12476 0.256238
\(401\) −10.6192 −0.530296 −0.265148 0.964208i \(-0.585421\pi\)
−0.265148 + 0.964208i \(0.585421\pi\)
\(402\) 0 0
\(403\) 53.7349 2.67673
\(404\) −18.5893 −0.924854
\(405\) 0 0
\(406\) 0 0
\(407\) 3.18194 0.157723
\(408\) 0 0
\(409\) 5.54583 0.274224 0.137112 0.990556i \(-0.456218\pi\)
0.137112 + 0.990556i \(0.456218\pi\)
\(410\) −17.8285 −0.880485
\(411\) 0 0
\(412\) −0.282630 −0.0139242
\(413\) 0 0
\(414\) 0 0
\(415\) −25.6706 −1.26012
\(416\) −5.70370 −0.279647
\(417\) 0 0
\(418\) −4.08126 −0.199621
\(419\) 5.54910 0.271091 0.135546 0.990771i \(-0.456721\pi\)
0.135546 + 0.990771i \(0.456721\pi\)
\(420\) 0 0
\(421\) 6.84213 0.333465 0.166733 0.986002i \(-0.446678\pi\)
0.166733 + 0.986002i \(0.446678\pi\)
\(422\) 16.6569 0.810846
\(423\) 0 0
\(424\) 2.05718 0.0999055
\(425\) −7.79863 −0.378289
\(426\) 0 0
\(427\) 0 0
\(428\) 11.3776 0.549955
\(429\) 0 0
\(430\) −21.7278 −1.04781
\(431\) 33.1078 1.59475 0.797374 0.603486i \(-0.206222\pi\)
0.797374 + 0.603486i \(0.206222\pi\)
\(432\) 0 0
\(433\) −12.1111 −0.582022 −0.291011 0.956720i \(-0.593992\pi\)
−0.291011 + 0.956720i \(0.593992\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 4.42107 0.211731
\(437\) −2.87197 −0.137385
\(438\) 0 0
\(439\) −8.83422 −0.421634 −0.210817 0.977526i \(-0.567612\pi\)
−0.210817 + 0.977526i \(0.567612\pi\)
\(440\) −10.1248 −0.482679
\(441\) 0 0
\(442\) 8.67962 0.412847
\(443\) −17.5185 −0.832328 −0.416164 0.909290i \(-0.636626\pi\)
−0.416164 + 0.909290i \(0.636626\pi\)
\(444\) 0 0
\(445\) 0.717370 0.0340066
\(446\) 10.6569 0.504620
\(447\) 0 0
\(448\) 0 0
\(449\) −31.2301 −1.47384 −0.736920 0.675980i \(-0.763720\pi\)
−0.736920 + 0.675980i \(0.763720\pi\)
\(450\) 0 0
\(451\) 17.8285 0.839509
\(452\) −3.21505 −0.151223
\(453\) 0 0
\(454\) 14.5081 0.680898
\(455\) 0 0
\(456\) 0 0
\(457\) −32.1248 −1.50273 −0.751367 0.659885i \(-0.770605\pi\)
−0.751367 + 0.659885i \(0.770605\pi\)
\(458\) 10.2495 0.478929
\(459\) 0 0
\(460\) −7.12476 −0.332194
\(461\) 2.46457 0.114787 0.0573933 0.998352i \(-0.481721\pi\)
0.0573933 + 0.998352i \(0.481721\pi\)
\(462\) 0 0
\(463\) −30.3469 −1.41034 −0.705171 0.709037i \(-0.749130\pi\)
−0.705171 + 0.709037i \(0.749130\pi\)
\(464\) −7.08126 −0.328739
\(465\) 0 0
\(466\) 1.08126 0.0500882
\(467\) −15.9636 −0.738709 −0.369354 0.929289i \(-0.620421\pi\)
−0.369354 + 0.929289i \(0.620421\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 18.5458 0.855455
\(471\) 0 0
\(472\) 1.12476 0.0517714
\(473\) 21.7278 0.999044
\(474\) 0 0
\(475\) 6.57318 0.301598
\(476\) 0 0
\(477\) 0 0
\(478\) −12.3204 −0.563521
\(479\) 23.1729 1.05880 0.529399 0.848373i \(-0.322418\pi\)
0.529399 + 0.848373i \(0.322418\pi\)
\(480\) 0 0
\(481\) 5.70370 0.260066
\(482\) −13.0000 −0.592134
\(483\) 0 0
\(484\) −0.875237 −0.0397835
\(485\) −47.2268 −2.14446
\(486\) 0 0
\(487\) −3.41315 −0.154665 −0.0773323 0.997005i \(-0.524640\pi\)
−0.0773323 + 0.997005i \(0.524640\pi\)
\(488\) 3.12476 0.141451
\(489\) 0 0
\(490\) 0 0
\(491\) −19.1683 −0.865052 −0.432526 0.901621i \(-0.642378\pi\)
−0.432526 + 0.901621i \(0.642378\pi\)
\(492\) 0 0
\(493\) 10.7759 0.485323
\(494\) −7.31573 −0.329150
\(495\) 0 0
\(496\) −9.42107 −0.423018
\(497\) 0 0
\(498\) 0 0
\(499\) 41.1696 1.84301 0.921503 0.388371i \(-0.126962\pi\)
0.921503 + 0.388371i \(0.126962\pi\)
\(500\) 0.396990 0.0177539
\(501\) 0 0
\(502\) −5.11109 −0.228119
\(503\) 26.4542 1.17953 0.589767 0.807574i \(-0.299220\pi\)
0.589767 + 0.807574i \(0.299220\pi\)
\(504\) 0 0
\(505\) −59.1502 −2.63215
\(506\) 7.12476 0.316734
\(507\) 0 0
\(508\) 20.1053 0.892030
\(509\) −12.7713 −0.566077 −0.283039 0.959109i \(-0.591342\pi\)
−0.283039 + 0.959109i \(0.591342\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −7.66019 −0.337876
\(515\) −0.899313 −0.0396285
\(516\) 0 0
\(517\) −18.5458 −0.815645
\(518\) 0 0
\(519\) 0 0
\(520\) −18.1488 −0.795879
\(521\) −6.81230 −0.298452 −0.149226 0.988803i \(-0.547678\pi\)
−0.149226 + 0.988803i \(0.547678\pi\)
\(522\) 0 0
\(523\) −29.5070 −1.29025 −0.645125 0.764077i \(-0.723195\pi\)
−0.645125 + 0.764077i \(0.723195\pi\)
\(524\) −6.36389 −0.278008
\(525\) 0 0
\(526\) 3.09493 0.134945
\(527\) 14.3365 0.624510
\(528\) 0 0
\(529\) −17.9863 −0.782014
\(530\) 6.54583 0.284333
\(531\) 0 0
\(532\) 0 0
\(533\) 31.9579 1.38425
\(534\) 0 0
\(535\) 36.2028 1.56518
\(536\) 10.9669 0.473698
\(537\) 0 0
\(538\) −26.8903 −1.15932
\(539\) 0 0
\(540\) 0 0
\(541\) −29.4016 −1.26408 −0.632038 0.774938i \(-0.717781\pi\)
−0.632038 + 0.774938i \(0.717781\pi\)
\(542\) 22.2164 0.954277
\(543\) 0 0
\(544\) −1.52175 −0.0652446
\(545\) 14.0676 0.602589
\(546\) 0 0
\(547\) −35.2301 −1.50633 −0.753165 0.657832i \(-0.771474\pi\)
−0.753165 + 0.657832i \(0.771474\pi\)
\(548\) −2.74145 −0.117109
\(549\) 0 0
\(550\) −16.3067 −0.695320
\(551\) −9.08263 −0.386933
\(552\) 0 0
\(553\) 0 0
\(554\) −14.6375 −0.621887
\(555\) 0 0
\(556\) 7.96690 0.337872
\(557\) −6.73818 −0.285506 −0.142753 0.989758i \(-0.545595\pi\)
−0.142753 + 0.989758i \(0.545595\pi\)
\(558\) 0 0
\(559\) 38.9475 1.64730
\(560\) 0 0
\(561\) 0 0
\(562\) 23.3984 0.987001
\(563\) 1.45993 0.0615286 0.0307643 0.999527i \(-0.490206\pi\)
0.0307643 + 0.999527i \(0.490206\pi\)
\(564\) 0 0
\(565\) −10.2301 −0.430383
\(566\) −26.1248 −1.09811
\(567\) 0 0
\(568\) −8.69002 −0.364625
\(569\) −19.5653 −0.820218 −0.410109 0.912036i \(-0.634509\pi\)
−0.410109 + 0.912036i \(0.634509\pi\)
\(570\) 0 0
\(571\) −21.9259 −0.917569 −0.458785 0.888547i \(-0.651715\pi\)
−0.458785 + 0.888547i \(0.651715\pi\)
\(572\) 18.1488 0.758841
\(573\) 0 0
\(574\) 0 0
\(575\) −11.4750 −0.478540
\(576\) 0 0
\(577\) −24.7310 −1.02957 −0.514783 0.857320i \(-0.672128\pi\)
−0.514783 + 0.857320i \(0.672128\pi\)
\(578\) −14.6843 −0.610785
\(579\) 0 0
\(580\) −22.5322 −0.935597
\(581\) 0 0
\(582\) 0 0
\(583\) −6.54583 −0.271101
\(584\) 4.96690 0.205532
\(585\) 0 0
\(586\) 25.8629 1.06839
\(587\) −36.1592 −1.49245 −0.746226 0.665693i \(-0.768136\pi\)
−0.746226 + 0.665693i \(0.768136\pi\)
\(588\) 0 0
\(589\) −12.0837 −0.497902
\(590\) 3.57893 0.147342
\(591\) 0 0
\(592\) −1.00000 −0.0410997
\(593\) −15.1078 −0.620404 −0.310202 0.950671i \(-0.600397\pi\)
−0.310202 + 0.950671i \(0.600397\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 23.2599 0.952764
\(597\) 0 0
\(598\) 12.7713 0.522256
\(599\) 5.45417 0.222851 0.111426 0.993773i \(-0.464458\pi\)
0.111426 + 0.993773i \(0.464458\pi\)
\(600\) 0 0
\(601\) 6.73680 0.274800 0.137400 0.990516i \(-0.456125\pi\)
0.137400 + 0.990516i \(0.456125\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −8.12476 −0.330592
\(605\) −2.78495 −0.113224
\(606\) 0 0
\(607\) 6.67059 0.270751 0.135376 0.990794i \(-0.456776\pi\)
0.135376 + 0.990794i \(0.456776\pi\)
\(608\) 1.28263 0.0520175
\(609\) 0 0
\(610\) 9.94282 0.402573
\(611\) −33.2438 −1.34490
\(612\) 0 0
\(613\) −1.30998 −0.0529094 −0.0264547 0.999650i \(-0.508422\pi\)
−0.0264547 + 0.999650i \(0.508422\pi\)
\(614\) 3.53216 0.142546
\(615\) 0 0
\(616\) 0 0
\(617\) 34.4966 1.38878 0.694390 0.719599i \(-0.255674\pi\)
0.694390 + 0.719599i \(0.255674\pi\)
\(618\) 0 0
\(619\) −16.4484 −0.661118 −0.330559 0.943785i \(-0.607237\pi\)
−0.330559 + 0.943785i \(0.607237\pi\)
\(620\) −29.9773 −1.20392
\(621\) 0 0
\(622\) −1.70370 −0.0683120
\(623\) 0 0
\(624\) 0 0
\(625\) −24.3606 −0.974425
\(626\) −2.84213 −0.113594
\(627\) 0 0
\(628\) −11.2632 −0.449451
\(629\) 1.52175 0.0606763
\(630\) 0 0
\(631\) −30.0118 −1.19475 −0.597375 0.801962i \(-0.703790\pi\)
−0.597375 + 0.801962i \(0.703790\pi\)
\(632\) −4.13844 −0.164618
\(633\) 0 0
\(634\) 24.9201 0.989704
\(635\) 63.9740 2.53873
\(636\) 0 0
\(637\) 0 0
\(638\) 22.5322 0.892057
\(639\) 0 0
\(640\) 3.18194 0.125777
\(641\) −27.8993 −1.10196 −0.550978 0.834520i \(-0.685745\pi\)
−0.550978 + 0.834520i \(0.685745\pi\)
\(642\) 0 0
\(643\) −28.5048 −1.12412 −0.562060 0.827096i \(-0.689991\pi\)
−0.562060 + 0.827096i \(0.689991\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.95185 −0.0767944
\(647\) 16.7141 0.657099 0.328550 0.944487i \(-0.393440\pi\)
0.328550 + 0.944487i \(0.393440\pi\)
\(648\) 0 0
\(649\) −3.57893 −0.140485
\(650\) −29.2301 −1.14650
\(651\) 0 0
\(652\) 3.98057 0.155891
\(653\) −38.1650 −1.49351 −0.746756 0.665098i \(-0.768390\pi\)
−0.746756 + 0.665098i \(0.768390\pi\)
\(654\) 0 0
\(655\) −20.2495 −0.791214
\(656\) −5.60301 −0.218761
\(657\) 0 0
\(658\) 0 0
\(659\) 8.74145 0.340518 0.170259 0.985399i \(-0.445539\pi\)
0.170259 + 0.985399i \(0.445539\pi\)
\(660\) 0 0
\(661\) −20.0837 −0.781167 −0.390584 0.920567i \(-0.627727\pi\)
−0.390584 + 0.920567i \(0.627727\pi\)
\(662\) −7.17154 −0.278730
\(663\) 0 0
\(664\) −8.06758 −0.313083
\(665\) 0 0
\(666\) 0 0
\(667\) 15.8558 0.613939
\(668\) 5.23912 0.202708
\(669\) 0 0
\(670\) 34.8960 1.34815
\(671\) −9.94282 −0.383838
\(672\) 0 0
\(673\) 34.0528 1.31264 0.656319 0.754483i \(-0.272112\pi\)
0.656319 + 0.754483i \(0.272112\pi\)
\(674\) 21.8421 0.841328
\(675\) 0 0
\(676\) 19.5322 0.751237
\(677\) 0.717370 0.0275708 0.0137854 0.999905i \(-0.495612\pi\)
0.0137854 + 0.999905i \(0.495612\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −4.84213 −0.185687
\(681\) 0 0
\(682\) 29.9773 1.14789
\(683\) −21.0539 −0.805605 −0.402803 0.915287i \(-0.631964\pi\)
−0.402803 + 0.915287i \(0.631964\pi\)
\(684\) 0 0
\(685\) −8.72313 −0.333294
\(686\) 0 0
\(687\) 0 0
\(688\) −6.82846 −0.260333
\(689\) −11.7335 −0.447012
\(690\) 0 0
\(691\) 5.84789 0.222464 0.111232 0.993794i \(-0.464520\pi\)
0.111232 + 0.993794i \(0.464520\pi\)
\(692\) −2.55159 −0.0969968
\(693\) 0 0
\(694\) 2.11109 0.0801359
\(695\) 25.3502 0.961588
\(696\) 0 0
\(697\) 8.52640 0.322960
\(698\) −36.2164 −1.37081
\(699\) 0 0
\(700\) 0 0
\(701\) −10.2711 −0.387935 −0.193967 0.981008i \(-0.562136\pi\)
−0.193967 + 0.981008i \(0.562136\pi\)
\(702\) 0 0
\(703\) −1.28263 −0.0483753
\(704\) −3.18194 −0.119924
\(705\) 0 0
\(706\) 10.4887 0.394746
\(707\) 0 0
\(708\) 0 0
\(709\) 43.4854 1.63313 0.816564 0.577255i \(-0.195876\pi\)
0.816564 + 0.577255i \(0.195876\pi\)
\(710\) −27.6512 −1.03773
\(711\) 0 0
\(712\) 0.225450 0.00844910
\(713\) 21.0949 0.790011
\(714\) 0 0
\(715\) 57.7486 2.15967
\(716\) 7.03775 0.263013
\(717\) 0 0
\(718\) 32.4419 1.21072
\(719\) 50.8824 1.89759 0.948796 0.315889i \(-0.102303\pi\)
0.948796 + 0.315889i \(0.102303\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −17.3549 −0.645881
\(723\) 0 0
\(724\) −12.9669 −0.481911
\(725\) −36.2898 −1.34777
\(726\) 0 0
\(727\) −12.1442 −0.450403 −0.225202 0.974312i \(-0.572304\pi\)
−0.225202 + 0.974312i \(0.572304\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 15.8044 0.584946
\(731\) 10.3912 0.384334
\(732\) 0 0
\(733\) −46.1696 −1.70531 −0.852657 0.522470i \(-0.825011\pi\)
−0.852657 + 0.522470i \(0.825011\pi\)
\(734\) −18.1111 −0.668493
\(735\) 0 0
\(736\) −2.23912 −0.0825352
\(737\) −34.8960 −1.28541
\(738\) 0 0
\(739\) 4.99208 0.183637 0.0918184 0.995776i \(-0.470732\pi\)
0.0918184 + 0.995776i \(0.470732\pi\)
\(740\) −3.18194 −0.116971
\(741\) 0 0
\(742\) 0 0
\(743\) −31.4120 −1.15240 −0.576198 0.817310i \(-0.695464\pi\)
−0.576198 + 0.817310i \(0.695464\pi\)
\(744\) 0 0
\(745\) 74.0118 2.71158
\(746\) −11.6706 −0.427291
\(747\) 0 0
\(748\) 4.84213 0.177046
\(749\) 0 0
\(750\) 0 0
\(751\) 3.29630 0.120284 0.0601419 0.998190i \(-0.480845\pi\)
0.0601419 + 0.998190i \(0.480845\pi\)
\(752\) 5.82846 0.212542
\(753\) 0 0
\(754\) 40.3893 1.47089
\(755\) −25.8525 −0.940870
\(756\) 0 0
\(757\) −10.1384 −0.368488 −0.184244 0.982881i \(-0.558984\pi\)
−0.184244 + 0.982881i \(0.558984\pi\)
\(758\) 14.2690 0.518272
\(759\) 0 0
\(760\) 4.08126 0.148043
\(761\) −14.0676 −0.509950 −0.254975 0.966948i \(-0.582067\pi\)
−0.254975 + 0.966948i \(0.582067\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1.98057 −0.0716545
\(765\) 0 0
\(766\) 1.64979 0.0596092
\(767\) −6.41531 −0.231643
\(768\) 0 0
\(769\) −22.6922 −0.818301 −0.409151 0.912467i \(-0.634175\pi\)
−0.409151 + 0.912467i \(0.634175\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.54583 −0.163608
\(773\) 0.655544 0.0235783 0.0117891 0.999931i \(-0.496247\pi\)
0.0117891 + 0.999931i \(0.496247\pi\)
\(774\) 0 0
\(775\) −48.2807 −1.73430
\(776\) −14.8421 −0.532802
\(777\) 0 0
\(778\) 32.0676 1.14968
\(779\) −7.18659 −0.257486
\(780\) 0 0
\(781\) 27.6512 0.989436
\(782\) 3.40739 0.121848
\(783\) 0 0
\(784\) 0 0
\(785\) −35.8389 −1.27914
\(786\) 0 0
\(787\) 0.540073 0.0192515 0.00962576 0.999954i \(-0.496936\pi\)
0.00962576 + 0.999954i \(0.496936\pi\)
\(788\) 21.8148 0.777120
\(789\) 0 0
\(790\) −13.1683 −0.468506
\(791\) 0 0
\(792\) 0 0
\(793\) −17.8227 −0.632903
\(794\) 37.9338 1.34622
\(795\) 0 0
\(796\) −12.2826 −0.435346
\(797\) −25.1100 −0.889441 −0.444721 0.895669i \(-0.646697\pi\)
−0.444721 + 0.895669i \(0.646697\pi\)
\(798\) 0 0
\(799\) −8.86948 −0.313780
\(800\) 5.12476 0.181188
\(801\) 0 0
\(802\) −10.6192 −0.374976
\(803\) −15.8044 −0.557725
\(804\) 0 0
\(805\) 0 0
\(806\) 53.7349 1.89273
\(807\) 0 0
\(808\) −18.5893 −0.653971
\(809\) −29.1729 −1.02567 −0.512833 0.858489i \(-0.671404\pi\)
−0.512833 + 0.858489i \(0.671404\pi\)
\(810\) 0 0
\(811\) −15.4290 −0.541785 −0.270892 0.962610i \(-0.587319\pi\)
−0.270892 + 0.962610i \(0.587319\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 3.18194 0.111527
\(815\) 12.6659 0.443669
\(816\) 0 0
\(817\) −8.75839 −0.306417
\(818\) 5.54583 0.193905
\(819\) 0 0
\(820\) −17.8285 −0.622597
\(821\) −8.48727 −0.296208 −0.148104 0.988972i \(-0.547317\pi\)
−0.148104 + 0.988972i \(0.547317\pi\)
\(822\) 0 0
\(823\) 29.0974 1.01427 0.507136 0.861866i \(-0.330704\pi\)
0.507136 + 0.861866i \(0.330704\pi\)
\(824\) −0.282630 −0.00984589
\(825\) 0 0
\(826\) 0 0
\(827\) 25.9396 0.902007 0.451003 0.892522i \(-0.351066\pi\)
0.451003 + 0.892522i \(0.351066\pi\)
\(828\) 0 0
\(829\) −6.21642 −0.215905 −0.107953 0.994156i \(-0.534429\pi\)
−0.107953 + 0.994156i \(0.534429\pi\)
\(830\) −25.6706 −0.891039
\(831\) 0 0
\(832\) −5.70370 −0.197740
\(833\) 0 0
\(834\) 0 0
\(835\) 16.6706 0.576910
\(836\) −4.08126 −0.141153
\(837\) 0 0
\(838\) 5.54910 0.191690
\(839\) 42.5893 1.47035 0.735174 0.677879i \(-0.237101\pi\)
0.735174 + 0.677879i \(0.237101\pi\)
\(840\) 0 0
\(841\) 21.1442 0.729110
\(842\) 6.84213 0.235795
\(843\) 0 0
\(844\) 16.6569 0.573355
\(845\) 62.1502 2.13803
\(846\) 0 0
\(847\) 0 0
\(848\) 2.05718 0.0706438
\(849\) 0 0
\(850\) −7.79863 −0.267491
\(851\) 2.23912 0.0767562
\(852\) 0 0
\(853\) 21.3937 0.732507 0.366254 0.930515i \(-0.380640\pi\)
0.366254 + 0.930515i \(0.380640\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 11.3776 0.388877
\(857\) 36.8435 1.25855 0.629275 0.777183i \(-0.283352\pi\)
0.629275 + 0.777183i \(0.283352\pi\)
\(858\) 0 0
\(859\) −17.6375 −0.601783 −0.300892 0.953658i \(-0.597284\pi\)
−0.300892 + 0.953658i \(0.597284\pi\)
\(860\) −21.7278 −0.740911
\(861\) 0 0
\(862\) 33.1078 1.12766
\(863\) −0.760877 −0.0259005 −0.0129503 0.999916i \(-0.504122\pi\)
−0.0129503 + 0.999916i \(0.504122\pi\)
\(864\) 0 0
\(865\) −8.11901 −0.276054
\(866\) −12.1111 −0.411552
\(867\) 0 0
\(868\) 0 0
\(869\) 13.1683 0.446703
\(870\) 0 0
\(871\) −62.5519 −2.11949
\(872\) 4.42107 0.149716
\(873\) 0 0
\(874\) −2.87197 −0.0971457
\(875\) 0 0
\(876\) 0 0
\(877\) −41.4991 −1.40132 −0.700662 0.713494i \(-0.747112\pi\)
−0.700662 + 0.713494i \(0.747112\pi\)
\(878\) −8.83422 −0.298140
\(879\) 0 0
\(880\) −10.1248 −0.341306
\(881\) −8.35486 −0.281482 −0.140741 0.990046i \(-0.544949\pi\)
−0.140741 + 0.990046i \(0.544949\pi\)
\(882\) 0 0
\(883\) 35.6181 1.19864 0.599322 0.800508i \(-0.295437\pi\)
0.599322 + 0.800508i \(0.295437\pi\)
\(884\) 8.67962 0.291927
\(885\) 0 0
\(886\) −17.5185 −0.588545
\(887\) 37.1100 1.24603 0.623016 0.782209i \(-0.285907\pi\)
0.623016 + 0.782209i \(0.285907\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0.717370 0.0240463
\(891\) 0 0
\(892\) 10.6569 0.356820
\(893\) 7.47576 0.250167
\(894\) 0 0
\(895\) 22.3937 0.748540
\(896\) 0 0
\(897\) 0 0
\(898\) −31.2301 −1.04216
\(899\) 66.7130 2.22500
\(900\) 0 0
\(901\) −3.13052 −0.104293
\(902\) 17.8285 0.593623
\(903\) 0 0
\(904\) −3.21505 −0.106931
\(905\) −41.2599 −1.37153
\(906\) 0 0
\(907\) −48.1502 −1.59880 −0.799401 0.600798i \(-0.794850\pi\)
−0.799401 + 0.600798i \(0.794850\pi\)
\(908\) 14.5081 0.481468
\(909\) 0 0
\(910\) 0 0
\(911\) 34.8856 1.15581 0.577906 0.816103i \(-0.303870\pi\)
0.577906 + 0.816103i \(0.303870\pi\)
\(912\) 0 0
\(913\) 25.6706 0.849573
\(914\) −32.1248 −1.06259
\(915\) 0 0
\(916\) 10.2495 0.338654
\(917\) 0 0
\(918\) 0 0
\(919\) 51.7349 1.70658 0.853289 0.521439i \(-0.174605\pi\)
0.853289 + 0.521439i \(0.174605\pi\)
\(920\) −7.12476 −0.234896
\(921\) 0 0
\(922\) 2.46457 0.0811664
\(923\) 49.5653 1.63146
\(924\) 0 0
\(925\) −5.12476 −0.168501
\(926\) −30.3469 −0.997262
\(927\) 0 0
\(928\) −7.08126 −0.232454
\(929\) 50.8285 1.66763 0.833814 0.552046i \(-0.186153\pi\)
0.833814 + 0.552046i \(0.186153\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.08126 0.0354177
\(933\) 0 0
\(934\) −15.9636 −0.522346
\(935\) 15.4074 0.503876
\(936\) 0 0
\(937\) 2.54583 0.0831686 0.0415843 0.999135i \(-0.486759\pi\)
0.0415843 + 0.999135i \(0.486759\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 18.5458 0.604898
\(941\) −1.15787 −0.0377454 −0.0188727 0.999822i \(-0.506008\pi\)
−0.0188727 + 0.999822i \(0.506008\pi\)
\(942\) 0 0
\(943\) 12.5458 0.408548
\(944\) 1.12476 0.0366079
\(945\) 0 0
\(946\) 21.7278 0.706431
\(947\) −9.81479 −0.318938 −0.159469 0.987203i \(-0.550978\pi\)
−0.159469 + 0.987203i \(0.550978\pi\)
\(948\) 0 0
\(949\) −28.3297 −0.919620
\(950\) 6.57318 0.213262
\(951\) 0 0
\(952\) 0 0
\(953\) −6.53791 −0.211784 −0.105892 0.994378i \(-0.533770\pi\)
−0.105892 + 0.994378i \(0.533770\pi\)
\(954\) 0 0
\(955\) −6.30206 −0.203930
\(956\) −12.3204 −0.398470
\(957\) 0 0
\(958\) 23.1729 0.748683
\(959\) 0 0
\(960\) 0 0
\(961\) 57.7565 1.86311
\(962\) 5.70370 0.183895
\(963\) 0 0
\(964\) −13.0000 −0.418702
\(965\) −14.4646 −0.465631
\(966\) 0 0
\(967\) −28.8889 −0.929005 −0.464502 0.885572i \(-0.653767\pi\)
−0.464502 + 0.885572i \(0.653767\pi\)
\(968\) −0.875237 −0.0281312
\(969\) 0 0
\(970\) −47.2268 −1.51636
\(971\) 5.33654 0.171258 0.0856289 0.996327i \(-0.472710\pi\)
0.0856289 + 0.996327i \(0.472710\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −3.41315 −0.109364
\(975\) 0 0
\(976\) 3.12476 0.100021
\(977\) 48.0722 1.53797 0.768983 0.639269i \(-0.220763\pi\)
0.768983 + 0.639269i \(0.220763\pi\)
\(978\) 0 0
\(979\) −0.717370 −0.0229272
\(980\) 0 0
\(981\) 0 0
\(982\) −19.1683 −0.611684
\(983\) −29.4627 −0.939714 −0.469857 0.882743i \(-0.655694\pi\)
−0.469857 + 0.882743i \(0.655694\pi\)
\(984\) 0 0
\(985\) 69.4134 2.21170
\(986\) 10.7759 0.343175
\(987\) 0 0
\(988\) −7.31573 −0.232744
\(989\) 15.2898 0.486186
\(990\) 0 0
\(991\) −30.8285 −0.979298 −0.489649 0.871920i \(-0.662875\pi\)
−0.489649 + 0.871920i \(0.662875\pi\)
\(992\) −9.42107 −0.299119
\(993\) 0 0
\(994\) 0 0
\(995\) −39.0826 −1.23900
\(996\) 0 0
\(997\) 5.54583 0.175638 0.0878191 0.996136i \(-0.472010\pi\)
0.0878191 + 0.996136i \(0.472010\pi\)
\(998\) 41.1696 1.30320
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7938.2.a.ca.1.3 3
3.2 odd 2 7938.2.a.bv.1.1 3
7.2 even 3 1134.2.g.l.487.1 6
7.4 even 3 1134.2.g.l.163.1 6
7.6 odd 2 7938.2.a.bz.1.1 3
9.2 odd 6 882.2.f.n.589.2 6
9.4 even 3 2646.2.f.l.883.1 6
9.5 odd 6 882.2.f.n.295.2 6
9.7 even 3 2646.2.f.l.1765.1 6
21.2 odd 6 1134.2.g.m.487.3 6
21.11 odd 6 1134.2.g.m.163.3 6
21.20 even 2 7938.2.a.bw.1.3 3
63.2 odd 6 126.2.h.d.67.1 yes 6
63.4 even 3 378.2.h.c.289.3 6
63.5 even 6 882.2.e.o.655.1 6
63.11 odd 6 126.2.e.c.121.3 yes 6
63.13 odd 6 2646.2.f.m.883.3 6
63.16 even 3 378.2.h.c.361.3 6
63.20 even 6 882.2.f.o.589.2 6
63.23 odd 6 126.2.e.c.25.3 6
63.25 even 3 378.2.e.d.37.1 6
63.31 odd 6 2646.2.h.o.667.1 6
63.32 odd 6 126.2.h.d.79.1 yes 6
63.34 odd 6 2646.2.f.m.1765.3 6
63.38 even 6 882.2.e.o.373.1 6
63.40 odd 6 2646.2.e.p.2125.3 6
63.41 even 6 882.2.f.o.295.2 6
63.47 even 6 882.2.h.p.67.3 6
63.52 odd 6 2646.2.e.p.1549.3 6
63.58 even 3 378.2.e.d.235.1 6
63.59 even 6 882.2.h.p.79.3 6
63.61 odd 6 2646.2.h.o.361.1 6
252.11 even 6 1008.2.q.g.625.1 6
252.23 even 6 1008.2.q.g.529.1 6
252.67 odd 6 3024.2.t.h.289.3 6
252.79 odd 6 3024.2.t.h.1873.3 6
252.95 even 6 1008.2.t.h.961.3 6
252.151 odd 6 3024.2.q.g.2305.1 6
252.191 even 6 1008.2.t.h.193.3 6
252.247 odd 6 3024.2.q.g.2881.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.c.25.3 6 63.23 odd 6
126.2.e.c.121.3 yes 6 63.11 odd 6
126.2.h.d.67.1 yes 6 63.2 odd 6
126.2.h.d.79.1 yes 6 63.32 odd 6
378.2.e.d.37.1 6 63.25 even 3
378.2.e.d.235.1 6 63.58 even 3
378.2.h.c.289.3 6 63.4 even 3
378.2.h.c.361.3 6 63.16 even 3
882.2.e.o.373.1 6 63.38 even 6
882.2.e.o.655.1 6 63.5 even 6
882.2.f.n.295.2 6 9.5 odd 6
882.2.f.n.589.2 6 9.2 odd 6
882.2.f.o.295.2 6 63.41 even 6
882.2.f.o.589.2 6 63.20 even 6
882.2.h.p.67.3 6 63.47 even 6
882.2.h.p.79.3 6 63.59 even 6
1008.2.q.g.529.1 6 252.23 even 6
1008.2.q.g.625.1 6 252.11 even 6
1008.2.t.h.193.3 6 252.191 even 6
1008.2.t.h.961.3 6 252.95 even 6
1134.2.g.l.163.1 6 7.4 even 3
1134.2.g.l.487.1 6 7.2 even 3
1134.2.g.m.163.3 6 21.11 odd 6
1134.2.g.m.487.3 6 21.2 odd 6
2646.2.e.p.1549.3 6 63.52 odd 6
2646.2.e.p.2125.3 6 63.40 odd 6
2646.2.f.l.883.1 6 9.4 even 3
2646.2.f.l.1765.1 6 9.7 even 3
2646.2.f.m.883.3 6 63.13 odd 6
2646.2.f.m.1765.3 6 63.34 odd 6
2646.2.h.o.361.1 6 63.61 odd 6
2646.2.h.o.667.1 6 63.31 odd 6
3024.2.q.g.2305.1 6 252.151 odd 6
3024.2.q.g.2881.1 6 252.247 odd 6
3024.2.t.h.289.3 6 252.67 odd 6
3024.2.t.h.1873.3 6 252.79 odd 6
7938.2.a.bv.1.1 3 3.2 odd 2
7938.2.a.bw.1.3 3 21.20 even 2
7938.2.a.bz.1.1 3 7.6 odd 2
7938.2.a.ca.1.3 3 1.1 even 1 trivial