Properties

Label 126.3.i.a.65.6
Level $126$
Weight $3$
Character 126.65
Analytic conductor $3.433$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,3,Mod(65,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.65");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.i (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 65.6
Character \(\chi\) \(=\) 126.65
Dual form 126.3.i.a.95.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 0.707107i) q^{2} +(0.894073 - 2.86367i) q^{3} +(1.00000 - 1.73205i) q^{4} -3.35218i q^{5} +(0.929913 + 4.13948i) q^{6} +(-6.40395 - 2.82655i) q^{7} +2.82843i q^{8} +(-7.40127 - 5.12067i) q^{9} +O(q^{10})\) \(q+(-1.22474 + 0.707107i) q^{2} +(0.894073 - 2.86367i) q^{3} +(1.00000 - 1.73205i) q^{4} -3.35218i q^{5} +(0.929913 + 4.13948i) q^{6} +(-6.40395 - 2.82655i) q^{7} +2.82843i q^{8} +(-7.40127 - 5.12067i) q^{9} +(2.37035 + 4.10556i) q^{10} +14.1890i q^{11} +(-4.06596 - 4.41225i) q^{12} +(-8.31908 - 14.4091i) q^{13} +(9.84188 - 1.06647i) q^{14} +(-9.59954 - 2.99709i) q^{15} +(-2.00000 - 3.46410i) q^{16} +(-13.5532 + 7.82495i) q^{17} +(12.6855 + 1.03802i) q^{18} +(17.3162 - 29.9925i) q^{19} +(-5.80614 - 3.35218i) q^{20} +(-13.8199 + 15.8117i) q^{21} +(-10.0331 - 17.3779i) q^{22} -26.2640i q^{23} +(8.09970 + 2.52882i) q^{24} +13.7629 q^{25} +(20.3775 + 11.7650i) q^{26} +(-21.2812 + 16.6166i) q^{27} +(-11.2997 + 8.26542i) q^{28} +(18.2368 + 10.5290i) q^{29} +(13.8763 - 3.11723i) q^{30} +(16.8738 - 29.2264i) q^{31} +(4.89898 + 2.82843i) q^{32} +(40.6326 + 12.6860i) q^{33} +(11.0662 - 19.1671i) q^{34} +(-9.47510 + 21.4672i) q^{35} +(-16.2705 + 7.69871i) q^{36} +(-31.9815 + 55.3936i) q^{37} +48.9776i q^{38} +(-48.7008 + 10.9404i) q^{39} +9.48139 q^{40} +(5.44200 - 3.14194i) q^{41} +(5.74532 - 29.1375i) q^{42} +(0.0742627 - 0.128627i) q^{43} +(24.5760 + 14.1890i) q^{44} +(-17.1654 + 24.8104i) q^{45} +(18.5715 + 32.1667i) q^{46} +(36.3552 - 20.9897i) q^{47} +(-11.7082 + 2.63019i) q^{48} +(33.0212 + 36.2022i) q^{49} +(-16.8561 + 9.73185i) q^{50} +(10.2906 + 45.8081i) q^{51} -33.2763 q^{52} +(38.6074 - 22.2900i) q^{53} +(14.3143 - 35.3991i) q^{54} +47.5639 q^{55} +(7.99469 - 18.1131i) q^{56} +(-70.4069 - 76.4034i) q^{57} -29.7805 q^{58} +(35.9038 + 20.7290i) q^{59} +(-14.7907 + 13.6298i) q^{60} +(-7.99976 - 13.8560i) q^{61} +47.7264i q^{62} +(32.9235 + 53.7126i) q^{63} -8.00000 q^{64} +(-48.3018 + 27.8870i) q^{65} +(-58.7349 + 13.1945i) q^{66} +(42.6625 - 73.8936i) q^{67} +31.2998i q^{68} +(-75.2116 - 23.4819i) q^{69} +(-3.57501 - 32.9917i) q^{70} -56.4376i q^{71} +(14.4834 - 20.9339i) q^{72} +(4.42855 + 7.67047i) q^{73} -90.4573i q^{74} +(12.3050 - 39.4125i) q^{75} +(-34.6324 - 59.9850i) q^{76} +(40.1058 - 90.8654i) q^{77} +(51.9100 - 47.8358i) q^{78} +(-14.5704 - 25.2366i) q^{79} +(-11.6123 + 6.70435i) q^{80} +(28.5576 + 75.7989i) q^{81} +(-4.44338 + 7.69616i) q^{82} +(-48.8531 - 28.2054i) q^{83} +(13.5667 + 39.7485i) q^{84} +(26.2306 + 45.4328i) q^{85} +0.210047i q^{86} +(46.4567 - 42.8105i) q^{87} -40.1324 q^{88} +(5.43082 + 3.13549i) q^{89} +(3.47963 - 42.5241i) q^{90} +(12.5470 + 115.789i) q^{91} +(-45.4906 - 26.2640i) q^{92} +(-68.6083 - 74.4517i) q^{93} +(-29.6839 + 51.4141i) q^{94} +(-100.540 - 58.0469i) q^{95} +(12.4797 - 11.5003i) q^{96} +(-32.1934 + 55.7605i) q^{97} +(-66.0414 - 20.9889i) q^{98} +(72.6569 - 105.016i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 32 q^{4} + 8 q^{6} + 2 q^{7} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 32 q + 32 q^{4} + 8 q^{6} + 2 q^{7} + 4 q^{9} + 10 q^{13} + 36 q^{14} + 10 q^{15} - 64 q^{16} + 54 q^{17} + 24 q^{18} + 28 q^{19} + 16 q^{21} + 8 q^{24} - 160 q^{25} + 72 q^{26} - 126 q^{27} - 4 q^{28} + 36 q^{29} - 80 q^{30} - 8 q^{31} - 106 q^{33} + 90 q^{35} + 40 q^{36} + 22 q^{37} - 170 q^{39} + 72 q^{41} + 72 q^{42} + 16 q^{43} - 72 q^{44} - 250 q^{45} - 12 q^{46} - 108 q^{47} + 74 q^{49} - 288 q^{50} + 122 q^{51} + 40 q^{52} + 72 q^{53} + 8 q^{54} - 24 q^{55} - 282 q^{57} + 48 q^{58} - 90 q^{59} + 52 q^{60} - 62 q^{61} - 438 q^{63} - 256 q^{64} + 378 q^{65} + 224 q^{66} + 70 q^{67} + 218 q^{69} - 108 q^{70} + 48 q^{72} + 196 q^{73} + 166 q^{75} - 56 q^{76} + 630 q^{77} + 32 q^{78} - 38 q^{79} + 400 q^{81} + 184 q^{84} + 60 q^{85} - 98 q^{87} + 486 q^{89} + 296 q^{90} - 122 q^{91} + 252 q^{92} - 182 q^{93} + 168 q^{94} - 72 q^{95} - 16 q^{96} - 38 q^{97} - 288 q^{98} + 394 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 + 0.707107i −0.612372 + 0.353553i
\(3\) 0.894073 2.86367i 0.298024 0.954558i
\(4\) 1.00000 1.73205i 0.250000 0.433013i
\(5\) 3.35218i 0.670435i −0.942141 0.335218i \(-0.891190\pi\)
0.942141 0.335218i \(-0.108810\pi\)
\(6\) 0.929913 + 4.13948i 0.154986 + 0.689913i
\(7\) −6.40395 2.82655i −0.914850 0.403793i
\(8\) 2.82843i 0.353553i
\(9\) −7.40127 5.12067i −0.822363 0.568963i
\(10\) 2.37035 + 4.10556i 0.237035 + 0.410556i
\(11\) 14.1890i 1.28991i 0.764222 + 0.644953i \(0.223123\pi\)
−0.764222 + 0.644953i \(0.776877\pi\)
\(12\) −4.06596 4.41225i −0.338830 0.367688i
\(13\) −8.31908 14.4091i −0.639930 1.10839i −0.985448 0.169978i \(-0.945630\pi\)
0.345518 0.938412i \(-0.387703\pi\)
\(14\) 9.84188 1.06647i 0.702992 0.0761767i
\(15\) −9.59954 2.99709i −0.639970 0.199806i
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) −13.5532 + 7.82495i −0.797248 + 0.460291i −0.842508 0.538684i \(-0.818922\pi\)
0.0452601 + 0.998975i \(0.485588\pi\)
\(18\) 12.6855 + 1.03802i 0.704751 + 0.0576679i
\(19\) 17.3162 29.9925i 0.911378 1.57855i 0.0992583 0.995062i \(-0.468353\pi\)
0.812120 0.583491i \(-0.198314\pi\)
\(20\) −5.80614 3.35218i −0.290307 0.167609i
\(21\) −13.8199 + 15.8117i −0.658092 + 0.752938i
\(22\) −10.0331 17.3779i −0.456050 0.789903i
\(23\) 26.2640i 1.14191i −0.820980 0.570956i \(-0.806572\pi\)
0.820980 0.570956i \(-0.193428\pi\)
\(24\) 8.09970 + 2.52882i 0.337487 + 0.105367i
\(25\) 13.7629 0.550517
\(26\) 20.3775 + 11.7650i 0.783750 + 0.452499i
\(27\) −21.2812 + 16.6166i −0.788192 + 0.615429i
\(28\) −11.2997 + 8.26542i −0.403560 + 0.295194i
\(29\) 18.2368 + 10.5290i 0.628855 + 0.363069i 0.780308 0.625395i \(-0.215062\pi\)
−0.151454 + 0.988464i \(0.548395\pi\)
\(30\) 13.8763 3.11723i 0.462542 0.103908i
\(31\) 16.8738 29.2264i 0.544317 0.942785i −0.454332 0.890832i \(-0.650122\pi\)
0.998650 0.0519531i \(-0.0165446\pi\)
\(32\) 4.89898 + 2.82843i 0.153093 + 0.0883883i
\(33\) 40.6326 + 12.6860i 1.23129 + 0.384423i
\(34\) 11.0662 19.1671i 0.325475 0.563739i
\(35\) −9.47510 + 21.4672i −0.270717 + 0.613348i
\(36\) −16.2705 + 7.69871i −0.451959 + 0.213853i
\(37\) −31.9815 + 55.3936i −0.864365 + 1.49712i 0.00331203 + 0.999995i \(0.498946\pi\)
−0.867677 + 0.497129i \(0.834388\pi\)
\(38\) 48.9776i 1.28888i
\(39\) −48.7008 + 10.9404i −1.24874 + 0.280523i
\(40\) 9.48139 0.237035
\(41\) 5.44200 3.14194i 0.132732 0.0766328i −0.432164 0.901795i \(-0.642250\pi\)
0.564896 + 0.825162i \(0.308916\pi\)
\(42\) 5.74532 29.1375i 0.136793 0.693749i
\(43\) 0.0742627 0.128627i 0.00172704 0.00299132i −0.865161 0.501495i \(-0.832784\pi\)
0.866888 + 0.498504i \(0.166117\pi\)
\(44\) 24.5760 + 14.1890i 0.558545 + 0.322476i
\(45\) −17.1654 + 24.8104i −0.381453 + 0.551341i
\(46\) 18.5715 + 32.1667i 0.403727 + 0.699276i
\(47\) 36.3552 20.9897i 0.773516 0.446590i −0.0606115 0.998161i \(-0.519305\pi\)
0.834127 + 0.551572i \(0.185972\pi\)
\(48\) −11.7082 + 2.63019i −0.243921 + 0.0547957i
\(49\) 33.0212 + 36.2022i 0.673902 + 0.738820i
\(50\) −16.8561 + 9.73185i −0.337121 + 0.194637i
\(51\) 10.2906 + 45.8081i 0.201776 + 0.898197i
\(52\) −33.2763 −0.639930
\(53\) 38.6074 22.2900i 0.728442 0.420566i −0.0894100 0.995995i \(-0.528498\pi\)
0.817852 + 0.575429i \(0.195165\pi\)
\(54\) 14.3143 35.3991i 0.265080 0.655540i
\(55\) 47.5639 0.864798
\(56\) 7.99469 18.1131i 0.142762 0.323448i
\(57\) −70.4069 76.4034i −1.23521 1.34041i
\(58\) −29.7805 −0.513458
\(59\) 35.9038 + 20.7290i 0.608538 + 0.351340i 0.772393 0.635145i \(-0.219060\pi\)
−0.163855 + 0.986484i \(0.552393\pi\)
\(60\) −14.7907 + 13.6298i −0.246511 + 0.227163i
\(61\) −7.99976 13.8560i −0.131144 0.227147i 0.792974 0.609255i \(-0.208532\pi\)
−0.924118 + 0.382108i \(0.875198\pi\)
\(62\) 47.7264i 0.769781i
\(63\) 32.9235 + 53.7126i 0.522596 + 0.852580i
\(64\) −8.00000 −0.125000
\(65\) −48.3018 + 27.8870i −0.743104 + 0.429031i
\(66\) −58.7349 + 13.1945i −0.889922 + 0.199917i
\(67\) 42.6625 73.8936i 0.636753 1.10289i −0.349387 0.936978i \(-0.613610\pi\)
0.986141 0.165911i \(-0.0530564\pi\)
\(68\) 31.2998i 0.460291i
\(69\) −75.2116 23.4819i −1.09002 0.340318i
\(70\) −3.57501 32.9917i −0.0510716 0.471310i
\(71\) 56.4376i 0.794896i −0.917625 0.397448i \(-0.869896\pi\)
0.917625 0.397448i \(-0.130104\pi\)
\(72\) 14.4834 20.9339i 0.201159 0.290749i
\(73\) 4.42855 + 7.67047i 0.0606650 + 0.105075i 0.894763 0.446542i \(-0.147345\pi\)
−0.834098 + 0.551617i \(0.814011\pi\)
\(74\) 90.4573i 1.22240i
\(75\) 12.3050 39.4125i 0.164067 0.525500i
\(76\) −34.6324 59.9850i −0.455689 0.789276i
\(77\) 40.1058 90.8654i 0.520855 1.18007i
\(78\) 51.9100 47.8358i 0.665513 0.613280i
\(79\) −14.5704 25.2366i −0.184435 0.319451i 0.758951 0.651148i \(-0.225712\pi\)
−0.943386 + 0.331697i \(0.892379\pi\)
\(80\) −11.6123 + 6.70435i −0.145153 + 0.0838044i
\(81\) 28.5576 + 75.7989i 0.352562 + 0.935788i
\(82\) −4.44338 + 7.69616i −0.0541875 + 0.0938556i
\(83\) −48.8531 28.2054i −0.588592 0.339824i 0.175949 0.984399i \(-0.443701\pi\)
−0.764540 + 0.644576i \(0.777034\pi\)
\(84\) 13.5667 + 39.7485i 0.161509 + 0.473196i
\(85\) 26.2306 + 45.4328i 0.308595 + 0.534503i
\(86\) 0.210047i 0.00244240i
\(87\) 46.4567 42.8105i 0.533985 0.492075i
\(88\) −40.1324 −0.456050
\(89\) 5.43082 + 3.13549i 0.0610205 + 0.0352302i 0.530200 0.847873i \(-0.322117\pi\)
−0.469179 + 0.883103i \(0.655450\pi\)
\(90\) 3.47963 42.5241i 0.0386626 0.472490i
\(91\) 12.5470 + 115.789i 0.137879 + 1.27241i
\(92\) −45.4906 26.2640i −0.494463 0.285478i
\(93\) −68.6083 74.4517i −0.737724 0.800556i
\(94\) −29.6839 + 51.4141i −0.315787 + 0.546958i
\(95\) −100.540 58.0469i −1.05832 0.611020i
\(96\) 12.4797 11.5003i 0.129997 0.119794i
\(97\) −32.1934 + 55.7605i −0.331890 + 0.574851i −0.982883 0.184233i \(-0.941020\pi\)
0.650992 + 0.759084i \(0.274353\pi\)
\(98\) −66.0414 20.9889i −0.673892 0.214173i
\(99\) 72.6569 105.016i 0.733908 1.06077i
\(100\) 13.7629 23.8381i 0.137629 0.238381i
\(101\) 93.2173i 0.922943i 0.887155 + 0.461472i \(0.152678\pi\)
−0.887155 + 0.461472i \(0.847322\pi\)
\(102\) −44.9945 48.8267i −0.441123 0.478693i
\(103\) 129.105 1.25344 0.626721 0.779243i \(-0.284396\pi\)
0.626721 + 0.779243i \(0.284396\pi\)
\(104\) 40.7550 23.5299i 0.391875 0.226249i
\(105\) 53.0036 + 46.3268i 0.504796 + 0.441208i
\(106\) −31.5228 + 54.5991i −0.297385 + 0.515086i
\(107\) −92.8758 53.6219i −0.867998 0.501139i −0.00131550 0.999999i \(-0.500419\pi\)
−0.866682 + 0.498860i \(0.833752\pi\)
\(108\) 7.49957 + 53.4767i 0.0694404 + 0.495155i
\(109\) −16.5505 28.6662i −0.151839 0.262993i 0.780064 0.625699i \(-0.215186\pi\)
−0.931904 + 0.362706i \(0.881853\pi\)
\(110\) −58.2536 + 33.6328i −0.529579 + 0.305752i
\(111\) 130.035 + 141.110i 1.17149 + 1.27127i
\(112\) 3.01644 + 27.8370i 0.0269325 + 0.248545i
\(113\) −146.122 + 84.3635i −1.29311 + 0.746580i −0.979205 0.202874i \(-0.934972\pi\)
−0.313909 + 0.949453i \(0.601639\pi\)
\(114\) 140.256 + 43.7895i 1.23031 + 0.384118i
\(115\) −88.0416 −0.765579
\(116\) 36.4736 21.0580i 0.314427 0.181535i
\(117\) −12.2123 + 149.245i −0.104379 + 1.27560i
\(118\) −58.6306 −0.496869
\(119\) 108.912 11.8018i 0.915225 0.0991745i
\(120\) 8.47705 27.1516i 0.0706421 0.226263i
\(121\) −80.3266 −0.663856
\(122\) 19.5953 + 11.3134i 0.160618 + 0.0927326i
\(123\) −4.13196 18.3933i −0.0335931 0.149539i
\(124\) −33.7477 58.4527i −0.272159 0.471393i
\(125\) 129.940i 1.03952i
\(126\) −78.3035 42.5037i −0.621456 0.337331i
\(127\) 75.2845 0.592792 0.296396 0.955065i \(-0.404215\pi\)
0.296396 + 0.955065i \(0.404215\pi\)
\(128\) 9.79796 5.65685i 0.0765466 0.0441942i
\(129\) −0.301949 0.327666i −0.00234069 0.00254004i
\(130\) 39.4382 68.3090i 0.303371 0.525454i
\(131\) 156.493i 1.19461i 0.802015 + 0.597303i \(0.203761\pi\)
−0.802015 + 0.597303i \(0.796239\pi\)
\(132\) 62.6053 57.6917i 0.474283 0.437058i
\(133\) −195.667 + 143.125i −1.47118 + 1.07613i
\(134\) 120.668i 0.900505i
\(135\) 55.7017 + 71.3383i 0.412605 + 0.528432i
\(136\) −22.1323 38.3343i −0.162738 0.281870i
\(137\) 82.6934i 0.603601i −0.953371 0.301801i \(-0.902412\pi\)
0.953371 0.301801i \(-0.0975877\pi\)
\(138\) 108.719 24.4232i 0.787820 0.176980i
\(139\) 50.4535 + 87.3880i 0.362975 + 0.628690i 0.988449 0.151554i \(-0.0484279\pi\)
−0.625474 + 0.780245i \(0.715095\pi\)
\(140\) 27.7071 + 37.8785i 0.197908 + 0.270561i
\(141\) −27.6035 122.876i −0.195769 0.871461i
\(142\) 39.9074 + 69.1217i 0.281038 + 0.486772i
\(143\) 204.450 118.039i 1.42972 0.825449i
\(144\) −2.93597 + 35.8801i −0.0203887 + 0.249167i
\(145\) 35.2951 61.1329i 0.243415 0.421606i
\(146\) −10.8477 6.26291i −0.0742992 0.0428967i
\(147\) 133.195 62.1946i 0.906086 0.423093i
\(148\) 63.9630 + 110.787i 0.432182 + 0.748562i
\(149\) 120.298i 0.807370i −0.914898 0.403685i \(-0.867729\pi\)
0.914898 0.403685i \(-0.132271\pi\)
\(150\) 12.7983 + 56.9712i 0.0853221 + 0.379808i
\(151\) 73.7142 0.488174 0.244087 0.969753i \(-0.421512\pi\)
0.244087 + 0.969753i \(0.421512\pi\)
\(152\) 84.8316 + 48.9776i 0.558103 + 0.322221i
\(153\) 140.380 + 11.4869i 0.917516 + 0.0750779i
\(154\) 15.1322 + 139.646i 0.0982608 + 0.906793i
\(155\) −97.9719 56.5641i −0.632077 0.364930i
\(156\) −29.7515 + 95.2926i −0.190714 + 0.610850i
\(157\) 131.796 228.277i 0.839463 1.45399i −0.0508817 0.998705i \(-0.516203\pi\)
0.890344 0.455287i \(-0.150464\pi\)
\(158\) 35.6900 + 20.6056i 0.225886 + 0.130415i
\(159\) −29.3135 130.488i −0.184362 0.820679i
\(160\) 9.48139 16.4222i 0.0592587 0.102639i
\(161\) −74.2365 + 168.193i −0.461097 + 1.04468i
\(162\) −88.5736 72.6410i −0.546751 0.448401i
\(163\) −36.3832 + 63.0176i −0.223210 + 0.386611i −0.955781 0.294080i \(-0.904987\pi\)
0.732571 + 0.680691i \(0.238320\pi\)
\(164\) 12.5678i 0.0766328i
\(165\) 42.5256 136.208i 0.257731 0.825500i
\(166\) 79.7768 0.480583
\(167\) −172.653 + 99.6811i −1.03385 + 0.596893i −0.918085 0.396384i \(-0.870265\pi\)
−0.115764 + 0.993277i \(0.536932\pi\)
\(168\) −44.7222 39.0886i −0.266204 0.232670i
\(169\) −53.9143 + 93.3824i −0.319020 + 0.552558i
\(170\) −64.2516 37.0957i −0.377951 0.218210i
\(171\) −281.743 + 133.312i −1.64762 + 0.779603i
\(172\) −0.148525 0.257253i −0.000863519 0.00149566i
\(173\) −216.071 + 124.749i −1.24897 + 0.721090i −0.970903 0.239473i \(-0.923025\pi\)
−0.278062 + 0.960563i \(0.589692\pi\)
\(174\) −26.6260 + 85.2818i −0.153023 + 0.490125i
\(175\) −88.1370 38.9016i −0.503640 0.222295i
\(176\) 49.1520 28.3779i 0.279273 0.161238i
\(177\) 91.4618 84.2834i 0.516733 0.476177i
\(178\) −8.86850 −0.0498230
\(179\) −178.420 + 103.011i −0.996760 + 0.575479i −0.907288 0.420510i \(-0.861851\pi\)
−0.0894717 + 0.995989i \(0.528518\pi\)
\(180\) 25.8074 + 54.5417i 0.143375 + 0.303009i
\(181\) −68.0662 −0.376056 −0.188028 0.982164i \(-0.560210\pi\)
−0.188028 + 0.982164i \(0.560210\pi\)
\(182\) −97.2423 132.940i −0.534299 0.730441i
\(183\) −46.8314 + 10.5205i −0.255909 + 0.0574888i
\(184\) 74.2858 0.403727
\(185\) 185.689 + 107.208i 1.00372 + 0.579501i
\(186\) 136.673 + 42.6709i 0.734801 + 0.229413i
\(187\) −111.028 192.306i −0.593732 1.02837i
\(188\) 83.9588i 0.446590i
\(189\) 183.251 46.2594i 0.969584 0.244759i
\(190\) 164.181 0.864113
\(191\) 223.558 129.071i 1.17046 0.675765i 0.216671 0.976245i \(-0.430480\pi\)
0.953788 + 0.300480i \(0.0971467\pi\)
\(192\) −7.15258 + 22.9094i −0.0372530 + 0.119320i
\(193\) −79.8002 + 138.218i −0.413473 + 0.716156i −0.995267 0.0971803i \(-0.969018\pi\)
0.581794 + 0.813336i \(0.302351\pi\)
\(194\) 91.0566i 0.469364i
\(195\) 36.6741 + 163.254i 0.188072 + 0.837198i
\(196\) 95.7253 20.9922i 0.488394 0.107103i
\(197\) 173.797i 0.882219i −0.897453 0.441109i \(-0.854585\pi\)
0.897453 0.441109i \(-0.145415\pi\)
\(198\) −14.7285 + 179.994i −0.0743862 + 0.909063i
\(199\) 48.3082 + 83.6723i 0.242755 + 0.420464i 0.961498 0.274812i \(-0.0886156\pi\)
−0.718743 + 0.695276i \(0.755282\pi\)
\(200\) 38.9274i 0.194637i
\(201\) −173.464 188.238i −0.863004 0.936506i
\(202\) −65.9146 114.167i −0.326310 0.565185i
\(203\) −87.0267 118.974i −0.428703 0.586081i
\(204\) 89.6325 + 27.9843i 0.439375 + 0.137178i
\(205\) −10.5323 18.2426i −0.0513773 0.0889881i
\(206\) −158.120 + 91.2907i −0.767574 + 0.443159i
\(207\) −134.489 + 194.387i −0.649706 + 0.939067i
\(208\) −33.2763 + 57.6363i −0.159982 + 0.277098i
\(209\) 425.562 + 245.699i 2.03618 + 1.17559i
\(210\) −97.6739 19.2593i −0.465114 0.0917111i
\(211\) 8.68169 + 15.0371i 0.0411455 + 0.0712660i 0.885865 0.463944i \(-0.153566\pi\)
−0.844719 + 0.535210i \(0.820233\pi\)
\(212\) 89.1600i 0.420566i
\(213\) −161.619 50.4593i −0.758774 0.236898i
\(214\) 151.666 0.708717
\(215\) −0.431179 0.248942i −0.00200549 0.00115787i
\(216\) −46.9988 60.1923i −0.217587 0.278668i
\(217\) −190.669 + 139.469i −0.878659 + 0.642716i
\(218\) 40.5402 + 23.4059i 0.185964 + 0.107366i
\(219\) 25.9252 5.82397i 0.118380 0.0265934i
\(220\) 47.5639 82.3831i 0.216200 0.374469i
\(221\) 225.501 + 130.193i 1.02036 + 0.589108i
\(222\) −259.040 80.8754i −1.16685 0.364304i
\(223\) 147.273 255.085i 0.660418 1.14388i −0.320088 0.947388i \(-0.603713\pi\)
0.980506 0.196489i \(-0.0629541\pi\)
\(224\) −23.3781 31.9603i −0.104367 0.142680i
\(225\) −101.863 70.4753i −0.452725 0.313223i
\(226\) 119.308 206.648i 0.527912 0.914370i
\(227\) 224.271i 0.987976i −0.869469 0.493988i \(-0.835539\pi\)
0.869469 0.493988i \(-0.164461\pi\)
\(228\) −202.741 + 45.5449i −0.889217 + 0.199758i
\(229\) −103.470 −0.451833 −0.225916 0.974147i \(-0.572538\pi\)
−0.225916 + 0.974147i \(0.572538\pi\)
\(230\) 107.828 62.2548i 0.468819 0.270673i
\(231\) −224.352 196.090i −0.971219 0.848876i
\(232\) −29.7805 + 51.5814i −0.128364 + 0.222334i
\(233\) 187.439 + 108.218i 0.804457 + 0.464454i 0.845027 0.534723i \(-0.179584\pi\)
−0.0405700 + 0.999177i \(0.512917\pi\)
\(234\) −90.5750 191.422i −0.387073 0.818043i
\(235\) −70.3612 121.869i −0.299409 0.518592i
\(236\) 71.8075 41.4581i 0.304269 0.175670i
\(237\) −85.2965 + 19.1614i −0.359901 + 0.0808500i
\(238\) −125.044 + 91.4664i −0.525395 + 0.384313i
\(239\) −387.074 + 223.477i −1.61956 + 0.935052i −0.632524 + 0.774541i \(0.717981\pi\)
−0.987034 + 0.160511i \(0.948686\pi\)
\(240\) 8.81687 + 39.2480i 0.0367369 + 0.163533i
\(241\) −82.7511 −0.343365 −0.171683 0.985152i \(-0.554920\pi\)
−0.171683 + 0.985152i \(0.554920\pi\)
\(242\) 98.3796 56.7995i 0.406527 0.234709i
\(243\) 242.596 14.0099i 0.998337 0.0576538i
\(244\) −31.9991 −0.131144
\(245\) 121.356 110.693i 0.495331 0.451808i
\(246\) 18.0666 + 19.6053i 0.0734414 + 0.0796964i
\(247\) −576.219 −2.33287
\(248\) 82.6646 + 47.7264i 0.333325 + 0.192445i
\(249\) −124.449 + 114.682i −0.499796 + 0.460569i
\(250\) 91.8815 + 159.143i 0.367526 + 0.636574i
\(251\) 228.368i 0.909831i −0.890535 0.454916i \(-0.849669\pi\)
0.890535 0.454916i \(-0.150331\pi\)
\(252\) 125.956 3.31269i 0.499827 0.0131456i
\(253\) 372.659 1.47296
\(254\) −92.2044 + 53.2342i −0.363009 + 0.209584i
\(255\) 153.557 34.4958i 0.602183 0.135278i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 76.6580i 0.298280i −0.988816 0.149140i \(-0.952349\pi\)
0.988816 0.149140i \(-0.0476505\pi\)
\(258\) 0.601505 + 0.187797i 0.00233142 + 0.000727895i
\(259\) 361.381 264.340i 1.39529 1.02062i
\(260\) 111.548i 0.429031i
\(261\) −81.0598 171.313i −0.310574 0.656370i
\(262\) −110.658 191.665i −0.422357 0.731544i
\(263\) 354.445i 1.34770i 0.738869 + 0.673849i \(0.235360\pi\)
−0.738869 + 0.673849i \(0.764640\pi\)
\(264\) −35.8813 + 114.926i −0.135914 + 0.435327i
\(265\) −74.7200 129.419i −0.281962 0.488373i
\(266\) 138.438 313.650i 0.520442 1.17913i
\(267\) 13.8346 12.7488i 0.0518149 0.0477482i
\(268\) −85.3249 147.787i −0.318377 0.551445i
\(269\) 87.8658 50.7294i 0.326639 0.188585i −0.327709 0.944779i \(-0.606277\pi\)
0.654348 + 0.756194i \(0.272943\pi\)
\(270\) −118.664 47.9842i −0.439497 0.177719i
\(271\) −37.9220 + 65.6829i −0.139934 + 0.242372i −0.927471 0.373894i \(-0.878022\pi\)
0.787538 + 0.616267i \(0.211356\pi\)
\(272\) 54.2129 + 31.2998i 0.199312 + 0.115073i
\(273\) 342.801 + 67.5935i 1.25568 + 0.247595i
\(274\) 58.4731 + 101.278i 0.213405 + 0.369629i
\(275\) 195.281i 0.710114i
\(276\) −115.883 + 106.788i −0.419868 + 0.386914i
\(277\) 268.121 0.967946 0.483973 0.875083i \(-0.339193\pi\)
0.483973 + 0.875083i \(0.339193\pi\)
\(278\) −123.585 71.3520i −0.444551 0.256662i
\(279\) −274.546 + 129.907i −0.984037 + 0.465616i
\(280\) −60.7183 26.7996i −0.216851 0.0957130i
\(281\) 423.951 + 244.768i 1.50872 + 0.871060i 0.999948 + 0.0101594i \(0.00323390\pi\)
0.508773 + 0.860901i \(0.330099\pi\)
\(282\) 120.694 + 130.973i 0.427992 + 0.464443i
\(283\) 261.618 453.136i 0.924446 1.60119i 0.131997 0.991250i \(-0.457861\pi\)
0.792449 0.609938i \(-0.208806\pi\)
\(284\) −97.7528 56.4376i −0.344200 0.198724i
\(285\) −256.118 + 236.016i −0.898658 + 0.828127i
\(286\) −166.933 + 289.136i −0.583680 + 1.01096i
\(287\) −43.7312 + 4.73875i −0.152374 + 0.0165113i
\(288\) −21.7752 46.0200i −0.0756084 0.159792i
\(289\) −22.0403 + 38.1749i −0.0762639 + 0.132093i
\(290\) 99.8296i 0.344240i
\(291\) 130.897 + 142.045i 0.449817 + 0.488128i
\(292\) 17.7142 0.0606650
\(293\) 64.1639 37.0450i 0.218989 0.126434i −0.386493 0.922292i \(-0.626314\pi\)
0.605482 + 0.795859i \(0.292980\pi\)
\(294\) −119.151 + 170.355i −0.405276 + 0.579440i
\(295\) 69.4874 120.356i 0.235551 0.407985i
\(296\) −156.677 90.4573i −0.529313 0.305599i
\(297\) −235.772 301.958i −0.793845 1.01669i
\(298\) 85.0636 + 147.334i 0.285448 + 0.494411i
\(299\) −378.440 + 218.492i −1.26569 + 0.730744i
\(300\) −55.9594 60.7255i −0.186531 0.202418i
\(301\) −0.839145 + 0.613812i −0.00278786 + 0.00203924i
\(302\) −90.2811 + 52.1238i −0.298944 + 0.172596i
\(303\) 266.944 + 83.3430i 0.881003 + 0.275059i
\(304\) −138.529 −0.455689
\(305\) −46.4477 + 26.8166i −0.152288 + 0.0879233i
\(306\) −180.052 + 85.1951i −0.588405 + 0.278415i
\(307\) −159.112 −0.518280 −0.259140 0.965840i \(-0.583439\pi\)
−0.259140 + 0.965840i \(0.583439\pi\)
\(308\) −117.278 160.331i −0.380772 0.520554i
\(309\) 115.429 369.714i 0.373556 1.19648i
\(310\) 159.987 0.516088
\(311\) 386.729 + 223.278i 1.24350 + 0.717936i 0.969805 0.243880i \(-0.0784204\pi\)
0.273696 + 0.961816i \(0.411754\pi\)
\(312\) −30.9441 137.747i −0.0991798 0.441496i
\(313\) 98.1534 + 170.007i 0.313589 + 0.543152i 0.979137 0.203203i \(-0.0651352\pi\)
−0.665548 + 0.746355i \(0.731802\pi\)
\(314\) 372.774i 1.18718i
\(315\) 180.054 110.366i 0.571600 0.350367i
\(316\) −58.2815 −0.184435
\(317\) 295.123 170.389i 0.930987 0.537506i 0.0438635 0.999038i \(-0.486033\pi\)
0.887124 + 0.461532i \(0.152700\pi\)
\(318\) 128.170 + 139.087i 0.403052 + 0.437380i
\(319\) −149.396 + 258.761i −0.468325 + 0.811163i
\(320\) 26.8174i 0.0838044i
\(321\) −236.593 + 218.024i −0.737051 + 0.679203i
\(322\) −28.0099 258.487i −0.0869872 0.802755i
\(323\) 541.993i 1.67800i
\(324\) 159.845 + 26.3357i 0.493349 + 0.0812831i
\(325\) −114.495 198.311i −0.352292 0.610187i
\(326\) 102.907i 0.315667i
\(327\) −96.8881 + 21.7654i −0.296294 + 0.0665610i
\(328\) 8.88676 + 15.3923i 0.0270938 + 0.0469278i
\(329\) −292.146 + 31.6571i −0.887981 + 0.0962223i
\(330\) 44.2303 + 196.890i 0.134031 + 0.596635i
\(331\) 281.789 + 488.072i 0.851326 + 1.47454i 0.880012 + 0.474951i \(0.157534\pi\)
−0.0286868 + 0.999588i \(0.509133\pi\)
\(332\) −97.7062 + 56.4107i −0.294296 + 0.169912i
\(333\) 520.356 246.216i 1.56263 0.739388i
\(334\) 140.970 244.168i 0.422067 0.731041i
\(335\) −247.704 143.012i −0.739416 0.426902i
\(336\) 82.4132 + 16.2502i 0.245277 + 0.0483638i
\(337\) 303.340 + 525.401i 0.900119 + 1.55905i 0.827338 + 0.561704i \(0.189854\pi\)
0.0727808 + 0.997348i \(0.476813\pi\)
\(338\) 152.493i 0.451162i
\(339\) 110.946 + 493.873i 0.327275 + 1.45685i
\(340\) 104.922 0.308595
\(341\) 414.692 + 239.422i 1.21610 + 0.702118i
\(342\) 250.798 362.496i 0.733327 1.05993i
\(343\) −109.139 325.173i −0.318189 0.948027i
\(344\) 0.363811 + 0.210047i 0.00105759 + 0.000610600i
\(345\) −78.7155 + 252.122i −0.228161 + 0.730790i
\(346\) 176.421 305.570i 0.509888 0.883152i
\(347\) −45.3661 26.1921i −0.130738 0.0754816i 0.433205 0.901296i \(-0.357383\pi\)
−0.563943 + 0.825814i \(0.690716\pi\)
\(348\) −27.6933 123.276i −0.0795785 0.354241i
\(349\) −4.33946 + 7.51616i −0.0124340 + 0.0215363i −0.872175 0.489193i \(-0.837291\pi\)
0.859741 + 0.510729i \(0.170625\pi\)
\(350\) 135.453 14.6778i 0.387008 0.0419365i
\(351\) 416.470 + 168.408i 1.18652 + 0.479794i
\(352\) −40.1324 + 69.5114i −0.114013 + 0.197476i
\(353\) 120.078i 0.340163i 0.985430 + 0.170082i \(0.0544031\pi\)
−0.985430 + 0.170082i \(0.945597\pi\)
\(354\) −52.4200 + 167.899i −0.148079 + 0.474291i
\(355\) −189.189 −0.532926
\(356\) 10.8616 6.27097i 0.0305102 0.0176151i
\(357\) 63.5786 322.440i 0.178091 0.903192i
\(358\) 145.679 252.324i 0.406925 0.704816i
\(359\) −101.066 58.3503i −0.281520 0.162536i 0.352591 0.935777i \(-0.385301\pi\)
−0.634111 + 0.773242i \(0.718634\pi\)
\(360\) −70.1743 48.5510i −0.194929 0.134864i
\(361\) −419.200 726.076i −1.16122 2.01129i
\(362\) 83.3637 48.1301i 0.230287 0.132956i
\(363\) −71.8178 + 230.029i −0.197845 + 0.633690i
\(364\) 213.100 + 94.0573i 0.585440 + 0.258399i
\(365\) 25.7128 14.8453i 0.0704459 0.0406720i
\(366\) 49.9175 45.9997i 0.136387 0.125682i
\(367\) 296.598 0.808169 0.404085 0.914722i \(-0.367590\pi\)
0.404085 + 0.914722i \(0.367590\pi\)
\(368\) −90.9812 + 52.5280i −0.247231 + 0.142739i
\(369\) −56.3666 4.61233i −0.152755 0.0124995i
\(370\) −303.229 −0.819538
\(371\) −310.244 + 33.6183i −0.836237 + 0.0906153i
\(372\) −197.562 + 44.3814i −0.531082 + 0.119305i
\(373\) −416.106 −1.11557 −0.557783 0.829987i \(-0.688348\pi\)
−0.557783 + 0.829987i \(0.688348\pi\)
\(374\) 271.962 + 157.017i 0.727171 + 0.419832i
\(375\) −372.106 116.176i −0.992283 0.309802i
\(376\) 59.3679 + 102.828i 0.157893 + 0.273479i
\(377\) 350.367i 0.929355i
\(378\) −191.726 + 186.234i −0.507211 + 0.492683i
\(379\) 315.897 0.833501 0.416750 0.909021i \(-0.363169\pi\)
0.416750 + 0.909021i \(0.363169\pi\)
\(380\) −201.080 + 116.094i −0.529159 + 0.305510i
\(381\) 67.3098 215.590i 0.176666 0.565854i
\(382\) −182.534 + 316.158i −0.477838 + 0.827640i
\(383\) 402.775i 1.05163i −0.850598 0.525816i \(-0.823760\pi\)
0.850598 0.525816i \(-0.176240\pi\)
\(384\) −7.43931 33.1158i −0.0193732 0.0862391i
\(385\) −304.597 134.442i −0.791161 0.349200i
\(386\) 225.709i 0.584739i
\(387\) −1.20829 + 0.571727i −0.00312220 + 0.00147733i
\(388\) 64.3867 + 111.521i 0.165945 + 0.287425i
\(389\) 363.489i 0.934420i 0.884146 + 0.467210i \(0.154741\pi\)
−0.884146 + 0.467210i \(0.845259\pi\)
\(390\) −160.354 174.011i −0.411165 0.446183i
\(391\) 205.515 + 355.962i 0.525613 + 0.910388i
\(392\) −102.395 + 93.3981i −0.261212 + 0.238260i
\(393\) 448.146 + 139.916i 1.14032 + 0.356022i
\(394\) 122.893 + 212.857i 0.311911 + 0.540246i
\(395\) −84.5977 + 48.8425i −0.214171 + 0.123652i
\(396\) −109.237 230.862i −0.275850 0.582984i
\(397\) 32.4146 56.1437i 0.0816489 0.141420i −0.822309 0.569041i \(-0.807315\pi\)
0.903958 + 0.427621i \(0.140648\pi\)
\(398\) −118.330 68.3181i −0.297313 0.171654i
\(399\) 234.924 + 688.292i 0.588782 + 1.72504i
\(400\) −27.5258 47.6761i −0.0688146 0.119190i
\(401\) 496.964i 1.23931i −0.784874 0.619656i \(-0.787272\pi\)
0.784874 0.619656i \(-0.212728\pi\)
\(402\) 345.553 + 107.886i 0.859585 + 0.268372i
\(403\) −561.500 −1.39330
\(404\) 161.457 + 93.2173i 0.399646 + 0.230736i
\(405\) 254.091 95.7300i 0.627385 0.236370i
\(406\) 190.713 + 84.1762i 0.469737 + 0.207331i
\(407\) −785.977 453.784i −1.93115 1.11495i
\(408\) −129.565 + 29.1061i −0.317561 + 0.0713385i
\(409\) −246.997 + 427.811i −0.603905 + 1.04599i 0.388319 + 0.921525i \(0.373056\pi\)
−0.992224 + 0.124469i \(0.960277\pi\)
\(410\) 25.7989 + 14.8950i 0.0629241 + 0.0363292i
\(411\) −236.807 73.9339i −0.576173 0.179888i
\(412\) 129.105 223.616i 0.313361 0.542757i
\(413\) −171.334 234.232i −0.414853 0.567147i
\(414\) 27.2626 333.173i 0.0658517 0.804765i
\(415\) −94.5493 + 163.764i −0.227830 + 0.394613i
\(416\) 94.1197i 0.226249i
\(417\) 295.360 66.3511i 0.708297 0.159115i
\(418\) −694.941 −1.66254
\(419\) 229.187 132.321i 0.546987 0.315803i −0.200919 0.979608i \(-0.564393\pi\)
0.747906 + 0.663805i \(0.231060\pi\)
\(420\) 133.244 45.4781i 0.317248 0.108281i
\(421\) −41.2156 + 71.3876i −0.0978994 + 0.169567i −0.910815 0.412815i \(-0.864546\pi\)
0.812916 + 0.582382i \(0.197879\pi\)
\(422\) −21.2657 12.2778i −0.0503927 0.0290942i
\(423\) −376.556 30.8126i −0.890204 0.0728430i
\(424\) 63.0456 + 109.198i 0.148693 + 0.257543i
\(425\) −186.532 + 107.694i −0.438898 + 0.253398i
\(426\) 233.622 52.4821i 0.548409 0.123197i
\(427\) 12.0654 + 111.345i 0.0282562 + 0.260761i
\(428\) −185.752 + 107.244i −0.433999 + 0.250569i
\(429\) −155.233 691.013i −0.361848 1.61075i
\(430\) 0.704113 0.00163747
\(431\) 409.848 236.626i 0.950924 0.549016i 0.0575561 0.998342i \(-0.481669\pi\)
0.893368 + 0.449326i \(0.148336\pi\)
\(432\) 100.124 + 40.4871i 0.231768 + 0.0937200i
\(433\) 140.867 0.325328 0.162664 0.986681i \(-0.447991\pi\)
0.162664 + 0.986681i \(0.447991\pi\)
\(434\) 134.901 305.638i 0.310832 0.704235i
\(435\) −143.508 155.731i −0.329904 0.358002i
\(436\) −66.2018 −0.151839
\(437\) −787.723 454.792i −1.80257 1.04071i
\(438\) −27.6336 + 25.4647i −0.0630903 + 0.0581387i
\(439\) 127.577 + 220.970i 0.290609 + 0.503349i 0.973954 0.226746i \(-0.0728088\pi\)
−0.683345 + 0.730096i \(0.739475\pi\)
\(440\) 134.531i 0.305752i
\(441\) −59.0195 437.033i −0.133831 0.991004i
\(442\) −368.241 −0.833124
\(443\) 403.897 233.190i 0.911732 0.526388i 0.0307437 0.999527i \(-0.490212\pi\)
0.880988 + 0.473139i \(0.156879\pi\)
\(444\) 374.446 84.1175i 0.843347 0.189454i
\(445\) 10.5107 18.2051i 0.0236196 0.0409103i
\(446\) 416.551i 0.933972i
\(447\) −344.495 107.555i −0.770681 0.240616i
\(448\) 51.2316 + 22.6124i 0.114356 + 0.0504741i
\(449\) 383.226i 0.853509i −0.904367 0.426755i \(-0.859657\pi\)
0.904367 0.426755i \(-0.140343\pi\)
\(450\) 174.590 + 14.2862i 0.387977 + 0.0317471i
\(451\) 44.5809 + 77.2164i 0.0988490 + 0.171212i
\(452\) 337.454i 0.746580i
\(453\) 65.9059 211.094i 0.145488 0.465990i
\(454\) 158.583 + 274.674i 0.349302 + 0.605009i
\(455\) 388.146 42.0598i 0.853069 0.0924392i
\(456\) 216.101 199.141i 0.473907 0.436712i
\(457\) 241.747 + 418.718i 0.528987 + 0.916233i 0.999429 + 0.0338015i \(0.0107614\pi\)
−0.470441 + 0.882431i \(0.655905\pi\)
\(458\) 126.724 73.1641i 0.276690 0.159747i
\(459\) 158.405 391.732i 0.345108 0.853447i
\(460\) −88.0416 + 152.492i −0.191395 + 0.331505i
\(461\) −391.665 226.128i −0.849599 0.490516i 0.0109166 0.999940i \(-0.496525\pi\)
−0.860516 + 0.509424i \(0.829858\pi\)
\(462\) 413.430 + 81.5201i 0.894871 + 0.176451i
\(463\) −157.167 272.221i −0.339454 0.587951i 0.644876 0.764287i \(-0.276909\pi\)
−0.984330 + 0.176336i \(0.943575\pi\)
\(464\) 84.2321i 0.181535i
\(465\) −249.575 + 229.987i −0.536721 + 0.494596i
\(466\) −306.086 −0.656837
\(467\) −258.779 149.406i −0.554130 0.319927i 0.196656 0.980473i \(-0.436992\pi\)
−0.750786 + 0.660545i \(0.770325\pi\)
\(468\) 246.287 + 170.397i 0.526255 + 0.364096i
\(469\) −482.072 + 352.623i −1.02787 + 0.751862i
\(470\) 172.349 + 99.5058i 0.366700 + 0.211714i
\(471\) −535.876 581.516i −1.13774 1.23464i
\(472\) −58.6306 + 101.551i −0.124217 + 0.215151i
\(473\) 1.82508 + 1.05371i 0.00385852 + 0.00222772i
\(474\) 90.9173 83.7816i 0.191809 0.176754i
\(475\) 238.321 412.784i 0.501729 0.869019i
\(476\) 88.4705 200.442i 0.185862 0.421098i
\(477\) −399.884 32.7214i −0.838330 0.0685983i
\(478\) 316.045 547.406i 0.661182 1.14520i
\(479\) 503.953i 1.05209i −0.850456 0.526047i \(-0.823674\pi\)
0.850456 0.526047i \(-0.176326\pi\)
\(480\) −38.5509 41.8343i −0.0803144 0.0871548i
\(481\) 1064.23 2.21253
\(482\) 101.349 58.5138i 0.210267 0.121398i
\(483\) 415.278 + 362.966i 0.859790 + 0.751483i
\(484\) −80.3266 + 139.130i −0.165964 + 0.287458i
\(485\) 186.919 + 107.918i 0.385400 + 0.222511i
\(486\) −287.211 + 188.700i −0.590970 + 0.388271i
\(487\) 146.436 + 253.634i 0.300690 + 0.520810i 0.976292 0.216456i \(-0.0694498\pi\)
−0.675603 + 0.737266i \(0.736116\pi\)
\(488\) 39.1907 22.6267i 0.0803088 0.0463663i
\(489\) 147.933 + 160.532i 0.302521 + 0.328287i
\(490\) −70.3586 + 221.382i −0.143589 + 0.451801i
\(491\) −370.452 + 213.881i −0.754485 + 0.435602i −0.827312 0.561743i \(-0.810131\pi\)
0.0728274 + 0.997345i \(0.476798\pi\)
\(492\) −35.9900 11.2365i −0.0731504 0.0228384i
\(493\) −329.556 −0.668471
\(494\) 705.721 407.448i 1.42859 0.824794i
\(495\) −352.033 243.559i −0.711178 0.492038i
\(496\) −134.991 −0.272159
\(497\) −159.524 + 361.424i −0.320973 + 0.727211i
\(498\) 71.3262 228.455i 0.143225 0.458745i
\(499\) 206.391 0.413609 0.206804 0.978382i \(-0.433694\pi\)
0.206804 + 0.978382i \(0.433694\pi\)
\(500\) −225.063 129.940i −0.450126 0.259880i
\(501\) 131.090 + 583.543i 0.261657 + 1.16476i
\(502\) 161.480 + 279.692i 0.321674 + 0.557156i
\(503\) 415.249i 0.825546i 0.910834 + 0.412773i \(0.135440\pi\)
−0.910834 + 0.412773i \(0.864560\pi\)
\(504\) −151.922 + 93.1219i −0.301433 + 0.184766i
\(505\) 312.481 0.618774
\(506\) −456.412 + 263.510i −0.902000 + 0.520770i
\(507\) 219.213 + 237.884i 0.432374 + 0.469199i
\(508\) 75.2845 130.397i 0.148198 0.256686i
\(509\) 384.889i 0.756168i −0.925771 0.378084i \(-0.876583\pi\)
0.925771 0.378084i \(-0.123417\pi\)
\(510\) −163.676 + 150.830i −0.320933 + 0.295744i
\(511\) −6.67923 61.6388i −0.0130709 0.120624i
\(512\) 22.6274i 0.0441942i
\(513\) 129.864 + 926.012i 0.253146 + 1.80509i
\(514\) 54.2054 + 93.8865i 0.105458 + 0.182659i
\(515\) 432.781i 0.840352i
\(516\) −0.869483 + 0.195325i −0.00168504 + 0.000378537i
\(517\) 297.822 + 515.843i 0.576058 + 0.997762i
\(518\) −255.682 + 579.284i −0.493595 + 1.11831i
\(519\) 164.056 + 730.291i 0.316101 + 1.40711i
\(520\) −78.8765 136.618i −0.151685 0.262727i
\(521\) −191.141 + 110.355i −0.366874 + 0.211815i −0.672092 0.740468i \(-0.734604\pi\)
0.305218 + 0.952282i \(0.401271\pi\)
\(522\) 220.414 + 152.496i 0.422249 + 0.292138i
\(523\) 389.796 675.146i 0.745308 1.29091i −0.204743 0.978816i \(-0.565636\pi\)
0.950051 0.312095i \(-0.101031\pi\)
\(524\) 271.055 + 156.493i 0.517280 + 0.298652i
\(525\) −190.202 + 217.615i −0.362290 + 0.414505i
\(526\) −250.630 434.104i −0.476483 0.825293i
\(527\) 528.148i 1.00218i
\(528\) −37.3197 166.127i −0.0706812 0.314635i
\(529\) −160.798 −0.303965
\(530\) 183.026 + 105.670i 0.345332 + 0.199377i
\(531\) −159.587 337.272i −0.300540 0.635164i
\(532\) 52.2333 + 482.031i 0.0981829 + 0.906074i
\(533\) −90.5450 52.2762i −0.169878 0.0980791i
\(534\) −7.92908 + 25.3965i −0.0148485 + 0.0475590i
\(535\) −179.750 + 311.336i −0.335981 + 0.581936i
\(536\) 209.003 + 120.668i 0.389930 + 0.225126i
\(537\) 135.469 + 603.036i 0.252270 + 1.12297i
\(538\) −71.7422 + 124.261i −0.133350 + 0.230969i
\(539\) −513.672 + 468.537i −0.953009 + 0.869270i
\(540\) 179.263 25.1399i 0.331969 0.0465553i
\(541\) 108.437 187.818i 0.200437 0.347168i −0.748232 0.663437i \(-0.769097\pi\)
0.948669 + 0.316269i \(0.102430\pi\)
\(542\) 107.260i 0.197896i
\(543\) −60.8561 + 194.920i −0.112074 + 0.358968i
\(544\) −88.5292 −0.162738
\(545\) −96.0943 + 55.4801i −0.176320 + 0.101798i
\(546\) −467.640 + 159.612i −0.856483 + 0.292330i
\(547\) −330.752 + 572.879i −0.604665 + 1.04731i 0.387440 + 0.921895i \(0.373360\pi\)
−0.992104 + 0.125415i \(0.959974\pi\)
\(548\) −143.229 82.6934i −0.261367 0.150900i
\(549\) −11.7435 + 143.516i −0.0213908 + 0.261414i
\(550\) −138.085 239.170i −0.251063 0.434854i
\(551\) 631.583 364.644i 1.14625 0.661787i
\(552\) 66.4169 212.730i 0.120320 0.385381i
\(553\) 21.9754 + 202.798i 0.0397385 + 0.366724i
\(554\) −328.380 + 189.590i −0.592744 + 0.342221i
\(555\) 473.027 435.902i 0.852301 0.785408i
\(556\) 201.814 0.362975
\(557\) −159.762 + 92.2387i −0.286826 + 0.165599i −0.636510 0.771269i \(-0.719622\pi\)
0.349684 + 0.936868i \(0.386289\pi\)
\(558\) 244.391 353.236i 0.437977 0.633040i
\(559\) −2.47119 −0.00442073
\(560\) 93.3147 10.1117i 0.166633 0.0180565i
\(561\) −649.969 + 146.012i −1.15859 + 0.260272i
\(562\) −692.308 −1.23187
\(563\) 903.991 + 521.919i 1.60567 + 0.927033i 0.990324 + 0.138774i \(0.0443160\pi\)
0.615344 + 0.788259i \(0.289017\pi\)
\(564\) −240.431 75.0653i −0.426296 0.133094i
\(565\) 282.801 + 489.826i 0.500533 + 0.866949i
\(566\) 739.968i 1.30736i
\(567\) 31.3681 566.132i 0.0553230 0.998469i
\(568\) 159.630 0.281038
\(569\) 65.6788 37.9197i 0.115428 0.0666427i −0.441174 0.897421i \(-0.645438\pi\)
0.556603 + 0.830779i \(0.312105\pi\)
\(570\) 146.790 470.162i 0.257526 0.824846i
\(571\) 385.418 667.564i 0.674988 1.16911i −0.301484 0.953471i \(-0.597482\pi\)
0.976472 0.215643i \(-0.0691846\pi\)
\(572\) 472.157i 0.825449i
\(573\) −169.741 755.596i −0.296232 1.31867i
\(574\) 50.2088 36.7264i 0.0874717 0.0639832i
\(575\) 361.469i 0.628642i
\(576\) 59.2101 + 40.9653i 0.102795 + 0.0711204i
\(577\) 435.383 + 754.105i 0.754563 + 1.30694i 0.945591 + 0.325357i \(0.105484\pi\)
−0.191028 + 0.981585i \(0.561182\pi\)
\(578\) 62.3393i 0.107853i
\(579\) 324.464 + 352.099i 0.560388 + 0.608116i
\(580\) −70.5902 122.266i −0.121707 0.210803i
\(581\) 233.129 + 318.712i 0.401255 + 0.548557i
\(582\) −260.756 81.4112i −0.448035 0.139882i
\(583\) 316.272 + 547.799i 0.542491 + 0.939621i
\(584\) −21.6954 + 12.5258i −0.0371496 + 0.0214483i
\(585\) 500.295 + 40.9378i 0.855204 + 0.0699791i
\(586\) −52.3896 + 90.7414i −0.0894020 + 0.154849i
\(587\) 520.453 + 300.484i 0.886633 + 0.511898i 0.872840 0.488007i \(-0.162276\pi\)
0.0137932 + 0.999905i \(0.495609\pi\)
\(588\) 25.4704 292.895i 0.0433171 0.498120i
\(589\) −584.381 1012.18i −0.992158 1.71847i
\(590\) 196.540i 0.333119i
\(591\) −497.698 155.387i −0.842129 0.262922i
\(592\) 255.852 0.432182
\(593\) 288.796 + 166.736i 0.487008 + 0.281174i 0.723332 0.690500i \(-0.242609\pi\)
−0.236324 + 0.971674i \(0.575943\pi\)
\(594\) 502.277 + 203.106i 0.845584 + 0.341929i
\(595\) −39.5616 365.091i −0.0664901 0.613599i
\(596\) −208.362 120.298i −0.349601 0.201842i
\(597\) 282.801 63.5299i 0.473704 0.106415i
\(598\) 308.995 535.195i 0.516714 0.894975i
\(599\) −355.388 205.183i −0.593302 0.342543i 0.173100 0.984904i \(-0.444622\pi\)
−0.766402 + 0.642361i \(0.777955\pi\)
\(600\) 111.475 + 34.8039i 0.185792 + 0.0580065i
\(601\) 204.315 353.884i 0.339958 0.588825i −0.644466 0.764633i \(-0.722920\pi\)
0.984424 + 0.175808i \(0.0562538\pi\)
\(602\) 0.593707 1.34513i 0.000986225 0.00223443i
\(603\) −694.141 + 328.446i −1.15115 + 0.544686i
\(604\) 73.7142 127.677i 0.122043 0.211385i
\(605\) 269.269i 0.445073i
\(606\) −385.871 + 86.6840i −0.636750 + 0.143043i
\(607\) −228.162 −0.375885 −0.187942 0.982180i \(-0.560182\pi\)
−0.187942 + 0.982180i \(0.560182\pi\)
\(608\) 169.663 97.9551i 0.279051 0.161110i
\(609\) −418.512 + 142.844i −0.687213 + 0.234556i
\(610\) 37.9244 65.6870i 0.0621712 0.107684i
\(611\) −604.885 349.230i −0.989991 0.571572i
\(612\) 160.276 231.658i 0.261889 0.378527i
\(613\) −59.5738 103.185i −0.0971840 0.168328i 0.813334 0.581797i \(-0.197650\pi\)
−0.910518 + 0.413469i \(0.864317\pi\)
\(614\) 194.872 112.509i 0.317381 0.183240i
\(615\) −61.6574 + 13.8510i −0.100256 + 0.0225220i
\(616\) 257.006 + 113.436i 0.417218 + 0.184150i
\(617\) 1004.18 579.761i 1.62751 0.939645i 0.642682 0.766133i \(-0.277822\pi\)
0.984832 0.173512i \(-0.0555116\pi\)
\(618\) 120.056 + 534.425i 0.194265 + 0.864766i
\(619\) −765.830 −1.23721 −0.618603 0.785704i \(-0.712301\pi\)
−0.618603 + 0.785704i \(0.712301\pi\)
\(620\) −195.944 + 113.128i −0.316038 + 0.182465i
\(621\) 436.418 + 558.929i 0.702766 + 0.900047i
\(622\) −631.526 −1.01531
\(623\) −25.9161 35.4300i −0.0415989 0.0568700i
\(624\) 135.300 + 146.824i 0.216827 + 0.235294i
\(625\) −91.5094 −0.146415
\(626\) −240.426 138.810i −0.384067 0.221741i
\(627\) 1084.08 999.000i 1.72900 1.59330i
\(628\) −263.591 456.554i −0.419731 0.726996i
\(629\) 1001.01i 1.59144i
\(630\) −142.480 + 262.487i −0.226159 + 0.416646i
\(631\) −562.217 −0.890994 −0.445497 0.895283i \(-0.646973\pi\)
−0.445497 + 0.895283i \(0.646973\pi\)
\(632\) 71.3800 41.2113i 0.112943 0.0652077i
\(633\) 50.8235 11.4173i 0.0802899 0.0180367i
\(634\) −240.967 + 417.367i −0.380074 + 0.658307i
\(635\) 252.367i 0.397428i
\(636\) −255.325 79.7155i −0.401455 0.125339i
\(637\) 246.934 776.974i 0.387652 1.21974i
\(638\) 422.555i 0.662312i
\(639\) −288.998 + 417.710i −0.452266 + 0.653693i
\(640\) −18.9628 32.8445i −0.0296293 0.0513195i
\(641\) 702.181i 1.09545i 0.836660 + 0.547723i \(0.184505\pi\)
−0.836660 + 0.547723i \(0.815495\pi\)
\(642\) 135.600 434.321i 0.211215 0.676512i
\(643\) 110.674 + 191.694i 0.172122 + 0.298124i 0.939161 0.343476i \(-0.111604\pi\)
−0.767040 + 0.641600i \(0.778271\pi\)
\(644\) 217.083 + 296.775i 0.337085 + 0.460831i
\(645\) −1.09839 + 1.01219i −0.00170294 + 0.00156928i
\(646\) −383.247 663.803i −0.593262 1.02756i
\(647\) −501.744 + 289.682i −0.775494 + 0.447731i −0.834831 0.550507i \(-0.814435\pi\)
0.0593372 + 0.998238i \(0.481101\pi\)
\(648\) −214.392 + 80.7730i −0.330851 + 0.124650i
\(649\) −294.124 + 509.437i −0.453195 + 0.784957i
\(650\) 280.454 + 161.920i 0.431468 + 0.249108i
\(651\) 228.923 + 670.710i 0.351648 + 1.03028i
\(652\) 72.7665 + 126.035i 0.111605 + 0.193306i
\(653\) 1069.79i 1.63827i 0.573602 + 0.819134i \(0.305545\pi\)
−0.573602 + 0.819134i \(0.694455\pi\)
\(654\) 103.273 95.1673i 0.157909 0.145516i
\(655\) 524.594 0.800906
\(656\) −21.7680 12.5678i −0.0331830 0.0191582i
\(657\) 6.50104 79.4483i 0.00989504 0.120926i
\(658\) 335.419 245.350i 0.509755 0.372873i
\(659\) 740.124 + 427.311i 1.12310 + 0.648423i 0.942191 0.335076i \(-0.108762\pi\)
0.180911 + 0.983499i \(0.442095\pi\)
\(660\) −193.393 209.864i −0.293019 0.317976i
\(661\) 590.335 1022.49i 0.893094 1.54688i 0.0569477 0.998377i \(-0.481863\pi\)
0.836146 0.548507i \(-0.184803\pi\)
\(662\) −690.239 398.509i −1.04266 0.601978i
\(663\) 574.444 529.359i 0.866431 0.798429i
\(664\) 79.7768 138.177i 0.120146 0.208099i
\(665\) 479.782 + 655.911i 0.721477 + 0.986333i
\(666\) −463.202 + 669.499i −0.695498 + 1.00525i
\(667\) 276.534 478.971i 0.414594 0.718097i
\(668\) 398.724i 0.596893i
\(669\) −598.807 649.807i −0.895077 0.971310i
\(670\) 404.499 0.603730
\(671\) 196.602 113.508i 0.292999 0.169163i
\(672\) −112.426 + 38.3725i −0.167300 + 0.0571020i
\(673\) 232.243 402.257i 0.345086 0.597707i −0.640283 0.768139i \(-0.721183\pi\)
0.985369 + 0.170432i \(0.0545163\pi\)
\(674\) −743.029 428.988i −1.10242 0.636480i
\(675\) −292.891 + 228.693i −0.433913 + 0.338804i
\(676\) 107.829 + 186.765i 0.159510 + 0.276279i
\(677\) −158.446 + 91.4789i −0.234042 + 0.135124i −0.612435 0.790521i \(-0.709810\pi\)
0.378394 + 0.925645i \(0.376477\pi\)
\(678\) −485.101 526.417i −0.715489 0.776427i
\(679\) 363.775 266.092i 0.535751 0.391888i
\(680\) −128.503 + 74.1914i −0.188975 + 0.109105i
\(681\) −642.238 200.514i −0.943081 0.294441i
\(682\) −677.188 −0.992945
\(683\) −878.043 + 506.938i −1.28557 + 0.742223i −0.977861 0.209258i \(-0.932895\pi\)
−0.307708 + 0.951481i \(0.599562\pi\)
\(684\) −50.8398 + 621.306i −0.0743272 + 0.908342i
\(685\) −277.203 −0.404676
\(686\) 363.600 + 321.082i 0.530029 + 0.468049i
\(687\) −92.5094 + 296.304i −0.134657 + 0.431301i
\(688\) −0.594101 −0.000863519
\(689\) −642.357 370.865i −0.932303 0.538265i
\(690\) −81.8710 364.446i −0.118654 0.528182i
\(691\) −501.204 868.111i −0.725331 1.25631i −0.958837 0.283955i \(-0.908353\pi\)
0.233506 0.972355i \(-0.424980\pi\)
\(692\) 498.995i 0.721090i
\(693\) −762.126 + 467.151i −1.09975 + 0.674099i
\(694\) 74.0825 0.106747
\(695\) 292.940 169.129i 0.421496 0.243351i
\(696\) 121.086 + 131.399i 0.173975 + 0.188792i
\(697\) −49.1711 + 85.1668i −0.0705468 + 0.122191i
\(698\) 12.2738i 0.0175843i
\(699\) 477.484 440.009i 0.683096 0.629483i
\(700\) −155.517 + 113.756i −0.222167 + 0.162509i
\(701\) 77.0590i 0.109927i −0.998488 0.0549636i \(-0.982496\pi\)
0.998488 0.0549636i \(-0.0175043\pi\)
\(702\) −629.151 + 88.2321i −0.896227 + 0.125687i
\(703\) 1107.59 + 1918.41i 1.57553 + 2.72889i
\(704\) 113.512i 0.161238i
\(705\) −411.902 + 92.5317i −0.584258 + 0.131251i
\(706\) −84.9077 147.064i −0.120266 0.208306i
\(707\) 263.483 596.959i 0.372678 0.844355i
\(708\) −54.5214 242.700i −0.0770076 0.342796i
\(709\) −453.117 784.822i −0.639093 1.10694i −0.985632 0.168907i \(-0.945976\pi\)
0.346539 0.938036i \(-0.387357\pi\)
\(710\) 231.708 133.777i 0.326349 0.188418i
\(711\) −21.3891 + 261.393i −0.0300831 + 0.367642i
\(712\) −8.86850 + 15.3607i −0.0124558 + 0.0215740i
\(713\) −767.601 443.175i −1.07658 0.621563i
\(714\) 150.132 + 439.863i 0.210268 + 0.616055i
\(715\) −395.688 685.352i −0.553410 0.958534i
\(716\) 412.043i 0.575479i
\(717\) 293.894 + 1308.26i 0.409894 + 1.82463i
\(718\) 165.040 0.229860
\(719\) −20.7034 11.9531i −0.0287947 0.0166246i 0.485534 0.874218i \(-0.338625\pi\)
−0.514328 + 0.857593i \(0.671959\pi\)
\(720\) 120.276 + 9.84189i 0.167050 + 0.0136693i
\(721\) −826.780 364.921i −1.14671 0.506131i
\(722\) 1026.83 + 592.838i 1.42220 + 0.821106i
\(723\) −73.9854 + 236.972i −0.102331 + 0.327762i
\(724\) −68.0662 + 117.894i −0.0940141 + 0.162837i
\(725\) 250.991 + 144.910i 0.346195 + 0.199876i
\(726\) −74.6968 332.510i −0.102888 0.458003i
\(727\) 185.455 321.217i 0.255096 0.441839i −0.709826 0.704377i \(-0.751226\pi\)
0.964921 + 0.262539i \(0.0845597\pi\)
\(728\) −327.502 + 35.4883i −0.449865 + 0.0487477i
\(729\) 176.778 707.241i 0.242494 0.970153i
\(730\) −20.9944 + 36.3633i −0.0287594 + 0.0498128i
\(731\) 2.32441i 0.00317976i
\(732\) −28.6095 + 91.6349i −0.0390840 + 0.125184i
\(733\) −619.897 −0.845698 −0.422849 0.906200i \(-0.638970\pi\)
−0.422849 + 0.906200i \(0.638970\pi\)
\(734\) −363.257 + 209.726i −0.494900 + 0.285731i
\(735\) −208.487 446.492i −0.283656 0.607472i
\(736\) 74.2858 128.667i 0.100932 0.174819i
\(737\) 1048.47 + 605.336i 1.42262 + 0.821352i
\(738\) 72.2961 34.2083i 0.0979622 0.0463527i
\(739\) −304.105 526.725i −0.411508 0.712754i 0.583546 0.812080i \(-0.301665\pi\)
−0.995055 + 0.0993262i \(0.968331\pi\)
\(740\) 371.378 214.415i 0.501862 0.289750i
\(741\) −515.182 + 1650.10i −0.695252 + 2.22686i
\(742\) 356.198 260.549i 0.480051 0.351145i
\(743\) 723.866 417.924i 0.974248 0.562482i 0.0737195 0.997279i \(-0.476513\pi\)
0.900529 + 0.434797i \(0.143180\pi\)
\(744\) 210.581 194.054i 0.283039 0.260825i
\(745\) −403.260 −0.541289
\(746\) 509.624 294.232i 0.683142 0.394412i
\(747\) 217.145 + 458.916i 0.290689 + 0.614345i
\(748\) −444.112 −0.593732
\(749\) 443.207 + 605.910i 0.591732 + 0.808959i
\(750\) 537.884 120.833i 0.717179 0.161111i
\(751\) 1043.24 1.38913 0.694566 0.719429i \(-0.255597\pi\)
0.694566 + 0.719429i \(0.255597\pi\)
\(752\) −145.421 83.9588i −0.193379 0.111647i
\(753\) −653.971 204.177i −0.868487 0.271152i
\(754\) 247.747 + 429.110i 0.328577 + 0.569112i
\(755\) 247.103i 0.327289i
\(756\) 103.128 363.660i 0.136412 0.481032i
\(757\) 441.367 0.583047 0.291524 0.956564i \(-0.405838\pi\)
0.291524 + 0.956564i \(0.405838\pi\)
\(758\) −386.893 + 223.373i −0.510413 + 0.294687i
\(759\) 333.184 1067.17i 0.438978 1.40603i
\(760\) 164.181 284.371i 0.216028 0.374172i
\(761\) 297.170i 0.390499i 0.980754 + 0.195249i \(0.0625517\pi\)
−0.980754 + 0.195249i \(0.937448\pi\)
\(762\) 70.0081 + 311.639i 0.0918741 + 0.408975i
\(763\) 24.9618 + 230.358i 0.0327153 + 0.301911i
\(764\) 516.285i 0.675765i
\(765\) 38.5062 470.578i 0.0503349 0.615135i
\(766\) 284.805 + 493.297i 0.371808 + 0.643990i
\(767\) 689.787i 0.899331i
\(768\) 32.5277 + 35.2980i 0.0423537 + 0.0459610i
\(769\) −79.6447 137.949i −0.103569 0.179387i 0.809584 0.587005i \(-0.199693\pi\)
−0.913153 + 0.407618i \(0.866360\pi\)
\(770\) 468.118 50.7257i 0.607946 0.0658775i
\(771\) −219.524 68.5378i −0.284726 0.0888947i
\(772\) 159.600 + 276.436i 0.206736 + 0.358078i
\(773\) −767.592 + 443.170i −0.993004 + 0.573311i −0.906171 0.422912i \(-0.861008\pi\)
−0.0868334 + 0.996223i \(0.527675\pi\)
\(774\) 1.07558 1.55461i 0.00138964 0.00200854i
\(775\) 232.233 402.240i 0.299656 0.519019i
\(776\) −157.715 91.0566i −0.203241 0.117341i
\(777\) −433.885 1271.22i −0.558410 1.63606i
\(778\) −257.026 445.182i −0.330367 0.572213i
\(779\) 217.626i 0.279366i
\(780\) 319.438 + 99.7321i 0.409535 + 0.127862i
\(781\) 800.791 1.02534
\(782\) −503.406 290.641i −0.643741 0.371664i
\(783\) −563.057 + 78.9630i −0.719102 + 0.100847i
\(784\) 59.3657 186.793i 0.0757215 0.238257i
\(785\) −765.224 441.802i −0.974808 0.562805i
\(786\) −647.801 + 145.525i −0.824174 + 0.185147i
\(787\) −494.657 + 856.771i −0.628535 + 1.08865i 0.359311 + 0.933218i \(0.383012\pi\)
−0.987846 + 0.155437i \(0.950322\pi\)
\(788\) −301.025 173.797i −0.382012 0.220555i
\(789\) 1015.01 + 316.899i 1.28646 + 0.401647i
\(790\) 69.0737 119.639i 0.0874351 0.151442i
\(791\) 1174.22 127.239i 1.48447 0.160858i
\(792\) 297.031 + 205.505i 0.375039 + 0.259476i
\(793\) −133.101 + 230.538i −0.167845 + 0.290717i
\(794\) 91.6824i 0.115469i
\(795\) −437.419 + 98.2640i −0.550212 + 0.123603i
\(796\) 193.233 0.242755
\(797\) −1020.06 + 588.934i −1.27988 + 0.738939i −0.976826 0.214034i \(-0.931340\pi\)
−0.303054 + 0.952973i \(0.598006\pi\)
\(798\) −774.418 676.866i −0.970449 0.848203i
\(799\) −328.487 + 568.956i −0.411123 + 0.712085i
\(800\) 67.4242 + 38.9274i 0.0842803 + 0.0486592i
\(801\) −24.1392 51.0160i −0.0301363 0.0636904i
\(802\) 351.407 + 608.654i 0.438163 + 0.758920i
\(803\) −108.836 + 62.8365i −0.135537 + 0.0782522i
\(804\) −499.501 + 112.210i −0.621270 + 0.139565i
\(805\) 563.814 + 248.854i 0.700390 + 0.309135i
\(806\) 687.694 397.040i 0.853218 0.492606i
\(807\) −66.7140 296.975i −0.0826691 0.367999i
\(808\) −263.658 −0.326310
\(809\) −240.690 + 138.963i −0.297516 + 0.171771i −0.641326 0.767268i \(-0.721616\pi\)
0.343810 + 0.939039i \(0.388282\pi\)
\(810\) −243.505 + 296.914i −0.300624 + 0.366561i
\(811\) −594.387 −0.732906 −0.366453 0.930437i \(-0.619428\pi\)
−0.366453 + 0.930437i \(0.619428\pi\)
\(812\) −293.097 + 31.7602i −0.360956 + 0.0391135i
\(813\) 154.189 + 167.322i 0.189655 + 0.205808i
\(814\) 1283.50 1.57678
\(815\) 211.246 + 121.963i 0.259198 + 0.149648i
\(816\) 138.103 127.264i 0.169243 0.155960i
\(817\) −2.57189 4.45465i −0.00314797 0.00545244i
\(818\) 698.613i 0.854050i
\(819\) 500.055 921.237i 0.610567 1.12483i
\(820\) −42.1294 −0.0513773
\(821\) −116.955 + 67.5240i −0.142454 + 0.0822460i −0.569533 0.821968i \(-0.692876\pi\)
0.427079 + 0.904214i \(0.359543\pi\)
\(822\) 342.307 76.8977i 0.416432 0.0935495i
\(823\) −191.577 + 331.820i −0.232778 + 0.403184i −0.958625 0.284673i \(-0.908115\pi\)
0.725846 + 0.687857i \(0.241448\pi\)
\(824\) 365.163i 0.443159i
\(825\) 559.223 + 174.596i 0.677846 + 0.211631i
\(826\) 375.467 + 165.722i 0.454561 + 0.200632i
\(827\) 1194.80i 1.44474i 0.691504 + 0.722372i \(0.256948\pi\)
−0.691504 + 0.722372i \(0.743052\pi\)
\(828\) 202.199 + 427.329i 0.244201 + 0.516098i
\(829\) 484.580 + 839.318i 0.584536 + 1.01245i 0.994933 + 0.100539i \(0.0320567\pi\)
−0.410397 + 0.911907i \(0.634610\pi\)
\(830\) 267.426i 0.322200i
\(831\) 239.720 767.812i 0.288471 0.923961i
\(832\) 66.5527 + 115.273i 0.0799912 + 0.138549i
\(833\) −730.824 232.267i −0.877340 0.278832i
\(834\) −314.823 + 290.114i −0.377486 + 0.347859i
\(835\) 334.149 + 578.762i 0.400178 + 0.693128i
\(836\) 851.125 491.397i 1.01809 0.587796i
\(837\) 126.547 + 902.357i 0.151191 + 1.07809i
\(838\) −187.131 + 324.120i −0.223306 + 0.386778i
\(839\) −766.287 442.416i −0.913334 0.527314i −0.0318317 0.999493i \(-0.510134\pi\)
−0.881502 + 0.472180i \(0.843467\pi\)
\(840\) −131.032 + 149.917i −0.155991 + 0.178472i
\(841\) −198.780 344.297i −0.236361 0.409390i
\(842\) 116.575i 0.138451i
\(843\) 1079.98 995.216i 1.28111 1.18057i
\(844\) 34.7268 0.0411455
\(845\) 313.034 + 180.730i 0.370455 + 0.213882i
\(846\) 482.973 228.528i 0.570890 0.270128i
\(847\) 514.408 + 227.047i 0.607329 + 0.268061i
\(848\) −154.430 89.1600i −0.182110 0.105142i
\(849\) −1063.73 1154.33i −1.25292 1.35963i
\(850\) 152.302 263.796i 0.179179 0.310348i
\(851\) 1454.86 + 839.962i 1.70958 + 0.987029i
\(852\) −249.017 + 229.473i −0.292274 + 0.269334i
\(853\) −91.3479 + 158.219i −0.107090 + 0.185486i −0.914590 0.404382i \(-0.867487\pi\)
0.807500 + 0.589867i \(0.200820\pi\)
\(854\) −93.5098 127.838i −0.109496 0.149693i
\(855\) 446.886 + 944.453i 0.522674 + 1.10462i
\(856\) 151.666 262.692i 0.177179 0.306884i
\(857\) 1205.39i 1.40652i −0.710934 0.703259i \(-0.751728\pi\)
0.710934 0.703259i \(-0.248272\pi\)
\(858\) 678.741 + 736.549i 0.791073 + 0.858449i
\(859\) −1037.49 −1.20778 −0.603892 0.797066i \(-0.706384\pi\)
−0.603892 + 0.797066i \(0.706384\pi\)
\(860\) −0.862359 + 0.497883i −0.00100274 + 0.000578934i
\(861\) −25.5286 + 129.469i −0.0296500 + 0.150370i
\(862\) −334.640 + 579.613i −0.388213 + 0.672405i
\(863\) 908.692 + 524.634i 1.05295 + 0.607919i 0.923473 0.383664i \(-0.125338\pi\)
0.129473 + 0.991583i \(0.458671\pi\)
\(864\) −151.255 + 21.2120i −0.175064 + 0.0245509i
\(865\) 418.179 + 724.308i 0.483444 + 0.837350i
\(866\) −172.526 + 99.6082i −0.199222 + 0.115021i
\(867\) 89.6148 + 97.2473i 0.103362 + 0.112165i
\(868\) 50.8990 + 469.718i 0.0586394 + 0.541150i
\(869\) 358.082 206.739i 0.412062 0.237904i
\(870\) 285.880 + 89.2549i 0.328597 + 0.102592i
\(871\) −1419.65 −1.62991
\(872\) 81.0804 46.8118i 0.0929821 0.0536832i
\(873\) 523.803 247.847i 0.600003 0.283903i
\(874\) 1286.35 1.47179
\(875\) −367.282 + 832.130i −0.419751 + 0.951006i
\(876\) 15.8378 50.7277i 0.0180796 0.0579083i
\(877\) −1065.07 −1.21445 −0.607224 0.794530i \(-0.707717\pi\)
−0.607224 + 0.794530i \(0.707717\pi\)
\(878\) −312.499 180.422i −0.355922 0.205491i
\(879\) −48.7178 216.865i −0.0554241 0.246718i
\(880\) −95.1278 164.766i −0.108100 0.187234i
\(881\) 963.331i 1.09345i 0.837312 + 0.546726i \(0.184126\pi\)
−0.837312 + 0.546726i \(0.815874\pi\)
\(882\) 381.313 + 493.521i 0.432327 + 0.559547i
\(883\) −1212.68 −1.37336 −0.686681 0.726959i \(-0.740933\pi\)
−0.686681 + 0.726959i \(0.740933\pi\)
\(884\) 451.001 260.386i 0.510182 0.294554i
\(885\) −282.533 306.596i −0.319246 0.346436i
\(886\) −329.781 + 571.197i −0.372213 + 0.644692i
\(887\) 467.361i 0.526901i −0.964673 0.263450i \(-0.915139\pi\)
0.964673 0.263450i \(-0.0848606\pi\)
\(888\) −399.121 + 367.796i −0.449460 + 0.414184i
\(889\) −482.119 212.796i −0.542316 0.239365i
\(890\) 29.7288i 0.0334031i
\(891\) −1075.51 + 405.202i −1.20708 + 0.454772i
\(892\) −294.546 510.169i −0.330209 0.571939i
\(893\) 1453.85i 1.62805i
\(894\) 497.971 111.867i 0.557015 0.125131i
\(895\) 345.310 + 598.095i 0.385822 + 0.668263i
\(896\) −78.7351 + 8.53179i −0.0878739 + 0.00952209i
\(897\) 287.338 + 1279.08i 0.320333 + 1.42595i
\(898\) 270.981 + 469.354i 0.301761 + 0.522665i
\(899\) 615.449 355.330i 0.684593 0.395250i
\(900\) −223.930 + 105.957i −0.248811 + 0.117730i
\(901\) −348.836 + 604.202i −0.387166 + 0.670591i
\(902\) −109.200 63.0469i −0.121065 0.0698968i
\(903\) 1.00750 + 2.95183i 0.00111573 + 0.00326892i
\(904\) −238.616 413.295i −0.263956 0.457185i
\(905\) 228.170i 0.252121i
\(906\) 68.5479 + 305.138i 0.0756599 + 0.336797i
\(907\) −1051.14 −1.15892 −0.579461 0.815000i \(-0.696737\pi\)
−0.579461 + 0.815000i \(0.696737\pi\)
\(908\) −388.448 224.271i −0.427806 0.246994i
\(909\) 477.334 689.926i 0.525120 0.758994i
\(910\) −445.639 + 325.973i −0.489714 + 0.358213i
\(911\) 1182.79 + 682.886i 1.29835 + 0.749601i 0.980118 0.198413i \(-0.0635788\pi\)
0.318228 + 0.948014i \(0.396912\pi\)
\(912\) −123.855 + 396.703i −0.135806 + 0.434982i
\(913\) 400.205 693.175i 0.438340 0.759228i
\(914\) −592.157 341.882i −0.647874 0.374050i
\(915\) 35.2664 + 156.987i 0.0385425 + 0.171571i
\(916\) −103.470 + 179.215i −0.112958 + 0.195649i
\(917\) 442.337 1002.18i 0.482374 1.09289i
\(918\) 82.9914 + 591.781i 0.0904045 + 0.644642i
\(919\) 87.7536 151.994i 0.0954881 0.165390i −0.814324 0.580410i \(-0.802892\pi\)
0.909812 + 0.415020i \(0.136225\pi\)
\(920\) 249.019i 0.270673i
\(921\) −142.258 + 455.645i −0.154460 + 0.494729i
\(922\) 639.586 0.693695
\(923\) −813.214 + 469.509i −0.881055 + 0.508677i
\(924\) −563.990 + 192.498i −0.610379 + 0.208331i
\(925\) −440.158 + 762.377i −0.475847 + 0.824191i
\(926\) 384.979 + 222.268i 0.415744 + 0.240030i
\(927\) −955.538 661.102i −1.03079 0.713162i
\(928\) 59.5611 + 103.163i 0.0641822 + 0.111167i
\(929\) −911.266 + 526.120i −0.980910 + 0.566329i −0.902545 0.430596i \(-0.858303\pi\)
−0.0783655 + 0.996925i \(0.524970\pi\)
\(930\) 143.040 458.152i 0.153807 0.492637i
\(931\) 1657.60 363.505i 1.78045 0.390446i
\(932\) 374.877 216.435i 0.402229 0.232227i
\(933\) 985.160 907.839i 1.05591 0.973032i
\(934\) 422.584 0.452446
\(935\) −644.644 + 372.185i −0.689458 + 0.398059i
\(936\) −422.128 34.5416i −0.450991 0.0369034i
\(937\) 1548.61 1.65274 0.826368 0.563131i \(-0.190403\pi\)
0.826368 + 0.563131i \(0.190403\pi\)
\(938\) 341.073 772.750i 0.363618 0.823827i
\(939\) 574.600 129.081i 0.611927 0.137467i
\(940\) −281.445 −0.299409
\(941\) −495.455 286.051i −0.526519 0.303986i 0.213079 0.977035i \(-0.431651\pi\)
−0.739598 + 0.673049i \(0.764984\pi\)
\(942\) 1067.50 + 333.287i 1.13323 + 0.353808i
\(943\) −82.5200 142.929i −0.0875079 0.151568i
\(944\) 165.832i 0.175670i
\(945\) −155.070 614.291i −0.164095 0.650043i
\(946\) −2.98034 −0.00315047
\(947\) −830.937 + 479.742i −0.877442 + 0.506591i −0.869814 0.493380i \(-0.835761\pi\)
−0.00762758 + 0.999971i \(0.502428\pi\)
\(948\) −52.1079 + 166.899i −0.0549662 + 0.176054i
\(949\) 73.6829 127.623i 0.0776427 0.134481i
\(950\) 674.074i 0.709551i
\(951\) −224.078 997.477i −0.235624 1.04887i
\(952\) 33.3804 + 308.049i 0.0350635 + 0.323581i
\(953\) 1308.52i 1.37305i −0.727104 0.686527i \(-0.759134\pi\)
0.727104 0.686527i \(-0.240866\pi\)
\(954\) 512.893 242.685i 0.537624 0.254387i
\(955\) −432.669 749.405i −0.453057 0.784717i
\(956\) 893.910i 0.935052i
\(957\) 607.437 + 659.172i 0.634730 + 0.688790i
\(958\) 356.348 + 617.213i 0.371971 + 0.644273i
\(959\) −233.737 + 529.565i −0.243730 + 0.552205i
\(960\) 76.7963 + 23.9767i 0.0799962 + 0.0249757i
\(961\) −88.9530 154.071i −0.0925630 0.160324i
\(962\) −1303.41 + 752.522i −1.35489 + 0.782247i
\(963\) 412.819 + 872.456i 0.428680 + 0.905977i
\(964\) −82.7511 + 143.329i −0.0858413 + 0.148682i
\(965\) 463.331 + 267.504i 0.480136 + 0.277207i
\(966\) −765.266 150.895i −0.792201 0.156206i
\(967\) 85.8474 + 148.692i 0.0887770 + 0.153766i 0.906994 0.421143i \(-0.138371\pi\)
−0.818217 + 0.574909i \(0.805037\pi\)
\(968\) 227.198i 0.234709i
\(969\) 1552.09 + 484.581i 1.60175 + 0.500084i
\(970\) −305.238 −0.314678
\(971\) −803.642 463.983i −0.827644 0.477840i 0.0254013 0.999677i \(-0.491914\pi\)
−0.853045 + 0.521837i \(0.825247\pi\)
\(972\) 218.330 434.198i 0.224619 0.446706i
\(973\) −76.0950 702.238i −0.0782066 0.721724i
\(974\) −358.693 207.092i −0.368268 0.212620i
\(975\) −670.265 + 150.572i −0.687451 + 0.154433i
\(976\) −31.9991 + 55.4240i −0.0327859 + 0.0567869i
\(977\) −1232.02 711.306i −1.26102 0.728051i −0.287749 0.957706i \(-0.592907\pi\)
−0.973272 + 0.229655i \(0.926240\pi\)
\(978\) −294.693 92.0067i −0.301322 0.0940763i
\(979\) −44.4893 + 77.0577i −0.0454436 + 0.0787107i
\(980\) −70.3696 320.888i −0.0718057 0.327437i
\(981\) −24.2958 + 296.916i −0.0247664 + 0.302667i
\(982\) 302.473 523.898i 0.308017 0.533501i
\(983\) 282.456i 0.287341i −0.989626 0.143670i \(-0.954110\pi\)
0.989626 0.143670i \(-0.0458905\pi\)
\(984\) 52.0240 11.6869i 0.0528699 0.0118770i
\(985\) −582.598 −0.591470
\(986\) 403.622 233.031i 0.409353 0.236340i
\(987\) −170.544 + 864.914i −0.172790 + 0.876306i
\(988\) −576.219 + 998.041i −0.583218 + 1.01016i
\(989\) −3.37825 1.95043i −0.00341583 0.00197213i
\(990\) 603.373 + 49.3724i 0.609468 + 0.0498711i
\(991\) 587.805 + 1018.11i 0.593143 + 1.02735i 0.993806 + 0.111129i \(0.0354465\pi\)
−0.400663 + 0.916226i \(0.631220\pi\)
\(992\) 165.329 95.4529i 0.166663 0.0962226i
\(993\) 1649.62 370.579i 1.66125 0.373192i
\(994\) −60.1892 555.452i −0.0605525 0.558805i
\(995\) 280.484 161.938i 0.281894 0.162751i
\(996\) 74.1855 + 330.234i 0.0744834 + 0.331560i
\(997\) −715.860 −0.718014 −0.359007 0.933335i \(-0.616885\pi\)
−0.359007 + 0.933335i \(0.616885\pi\)
\(998\) −252.776 + 145.940i −0.253283 + 0.146233i
\(999\) −239.847 1710.26i −0.240087 1.71198i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.i.a.65.6 32
3.2 odd 2 378.3.i.a.359.15 32
7.4 even 3 126.3.r.a.11.1 yes 32
9.4 even 3 378.3.r.a.233.2 32
9.5 odd 6 126.3.r.a.23.9 yes 32
21.11 odd 6 378.3.r.a.305.10 32
63.4 even 3 378.3.i.a.179.10 32
63.32 odd 6 inner 126.3.i.a.95.6 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.6 32 1.1 even 1 trivial
126.3.i.a.95.6 yes 32 63.32 odd 6 inner
126.3.r.a.11.1 yes 32 7.4 even 3
126.3.r.a.23.9 yes 32 9.5 odd 6
378.3.i.a.179.10 32 63.4 even 3
378.3.i.a.359.15 32 3.2 odd 2
378.3.r.a.233.2 32 9.4 even 3
378.3.r.a.305.10 32 21.11 odd 6