Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [126,3,Mod(65,126)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(126, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([1, 2]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("126.65");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 126.i (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.43325133094\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
65.1 | −1.22474 | + | 0.707107i | −2.78154 | + | 1.12385i | 1.00000 | − | 1.73205i | − | 1.41430i | 2.61199 | − | 3.34328i | 3.88340 | − | 5.82402i | 2.82843i | 6.47391 | − | 6.25207i | 1.00006 | + | 1.73216i | |||
65.2 | −1.22474 | + | 0.707107i | −2.66837 | − | 1.37106i | 1.00000 | − | 1.73205i | − | 2.72742i | 4.23756 | − | 0.207617i | −4.37650 | + | 5.46317i | 2.82843i | 5.24037 | + | 7.31701i | 1.92857 | + | 3.34039i | |||
65.3 | −1.22474 | + | 0.707107i | −2.19206 | − | 2.04814i | 1.00000 | − | 1.73205i | 6.40162i | 4.13297 | + | 0.958429i | 2.49631 | − | 6.53976i | 2.82843i | 0.610246 | + | 8.97929i | −4.52663 | − | 7.84035i | ||||
65.4 | −1.22474 | + | 0.707107i | −0.515888 | + | 2.95531i | 1.00000 | − | 1.73205i | − | 7.66608i | −1.45789 | − | 3.98429i | −6.97124 | + | 0.633929i | 2.82843i | −8.46772 | − | 3.04922i | 5.42073 | + | 9.38899i | |||
65.5 | −1.22474 | + | 0.707107i | 0.810726 | + | 2.88838i | 1.00000 | − | 1.73205i | 2.39465i | −3.03532 | − | 2.96426i | 6.52929 | + | 2.52357i | 2.82843i | −7.68545 | + | 4.68336i | −1.69327 | − | 2.93283i | ||||
65.6 | −1.22474 | + | 0.707107i | 0.894073 | − | 2.86367i | 1.00000 | − | 1.73205i | − | 3.35218i | 0.929913 | + | 4.13948i | −6.40395 | − | 2.82655i | 2.82843i | −7.40127 | − | 5.12067i | 2.37035 | + | 4.10556i | |||
65.7 | −1.22474 | + | 0.707107i | 2.28054 | − | 1.94914i | 1.00000 | − | 1.73205i | − | 0.989713i | −1.41483 | + | 3.99978i | 4.95314 | + | 4.94635i | 2.82843i | 1.40174 | − | 8.89017i | 0.699833 | + | 1.21215i | |||
65.8 | −1.22474 | + | 0.707107i | 2.94777 | + | 0.557369i | 1.00000 | − | 1.73205i | 7.35342i | −4.00438 | + | 1.40175i | −6.95892 | + | 0.757275i | 2.82843i | 8.37868 | + | 3.28599i | −5.19965 | − | 9.00606i | ||||
65.9 | 1.22474 | − | 0.707107i | −2.97687 | − | 0.371810i | 1.00000 | − | 1.73205i | 8.56422i | −3.90882 | + | 1.64959i | 4.01479 | + | 5.73423i | − | 2.82843i | 8.72351 | + | 2.21366i | 6.05582 | + | 10.4890i | |||
65.10 | 1.22474 | − | 0.707107i | −2.84195 | + | 0.960892i | 1.00000 | − | 1.73205i | − | 2.96160i | −2.80121 | + | 3.18641i | −2.14099 | − | 6.66455i | − | 2.82843i | 7.15337 | − | 5.46162i | −2.09417 | − | 3.62721i | ||
65.11 | 1.22474 | − | 0.707107i | −1.40668 | − | 2.64976i | 1.00000 | − | 1.73205i | − | 6.30630i | −3.59649 | − | 2.25061i | −3.75927 | + | 5.90490i | − | 2.82843i | −5.04249 | + | 7.45475i | −4.45923 | − | 7.72361i | ||
65.12 | 1.22474 | − | 0.707107i | 0.878690 | − | 2.86843i | 1.00000 | − | 1.73205i | 1.75162i | −0.952117 | − | 4.13443i | 6.58841 | − | 2.36493i | − | 2.82843i | −7.45581 | − | 5.04093i | 1.23858 | + | 2.14528i | |||
65.13 | 1.22474 | − | 0.707107i | 0.907763 | + | 2.85936i | 1.00000 | − | 1.73205i | 8.31909i | 3.13365 | + | 2.86011i | 0.934868 | − | 6.93729i | − | 2.82843i | −7.35193 | + | 5.19125i | 5.88249 | + | 10.1888i | |||
65.14 | 1.22474 | − | 0.707107i | 0.953952 | + | 2.84429i | 1.00000 | − | 1.73205i | − | 9.69788i | 3.17956 | + | 2.80898i | 6.99572 | + | 0.244854i | − | 2.82843i | −7.17995 | + | 5.42663i | −6.85744 | − | 11.8774i | ||
65.15 | 1.22474 | − | 0.707107i | 2.84405 | − | 0.954676i | 1.00000 | − | 1.73205i | − | 2.12829i | 2.80817 | − | 3.18028i | −5.95128 | − | 3.68541i | − | 2.82843i | 7.17719 | − | 5.43028i | −1.50493 | − | 2.60662i | ||
65.16 | 1.22474 | − | 0.707107i | 2.86580 | + | 0.887244i | 1.00000 | − | 1.73205i | 2.45915i | 4.13725 | − | 0.939777i | 1.16622 | + | 6.90217i | − | 2.82843i | 7.42560 | + | 5.08533i | 1.73888 | + | 3.01183i | |||
95.1 | −1.22474 | − | 0.707107i | −2.78154 | − | 1.12385i | 1.00000 | + | 1.73205i | 1.41430i | 2.61199 | + | 3.34328i | 3.88340 | + | 5.82402i | − | 2.82843i | 6.47391 | + | 6.25207i | 1.00006 | − | 1.73216i | |||
95.2 | −1.22474 | − | 0.707107i | −2.66837 | + | 1.37106i | 1.00000 | + | 1.73205i | 2.72742i | 4.23756 | + | 0.207617i | −4.37650 | − | 5.46317i | − | 2.82843i | 5.24037 | − | 7.31701i | 1.92857 | − | 3.34039i | |||
95.3 | −1.22474 | − | 0.707107i | −2.19206 | + | 2.04814i | 1.00000 | + | 1.73205i | − | 6.40162i | 4.13297 | − | 0.958429i | 2.49631 | + | 6.53976i | − | 2.82843i | 0.610246 | − | 8.97929i | −4.52663 | + | 7.84035i | ||
95.4 | −1.22474 | − | 0.707107i | −0.515888 | − | 2.95531i | 1.00000 | + | 1.73205i | 7.66608i | −1.45789 | + | 3.98429i | −6.97124 | − | 0.633929i | − | 2.82843i | −8.46772 | + | 3.04922i | 5.42073 | − | 9.38899i | |||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.n | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 126.3.i.a | ✓ | 32 |
3.b | odd | 2 | 1 | 378.3.i.a | 32 | ||
7.c | even | 3 | 1 | 126.3.r.a | yes | 32 | |
9.c | even | 3 | 1 | 378.3.r.a | 32 | ||
9.d | odd | 6 | 1 | 126.3.r.a | yes | 32 | |
21.h | odd | 6 | 1 | 378.3.r.a | 32 | ||
63.g | even | 3 | 1 | 378.3.i.a | 32 | ||
63.n | odd | 6 | 1 | inner | 126.3.i.a | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
126.3.i.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
126.3.i.a | ✓ | 32 | 63.n | odd | 6 | 1 | inner |
126.3.r.a | yes | 32 | 7.c | even | 3 | 1 | |
126.3.r.a | yes | 32 | 9.d | odd | 6 | 1 | |
378.3.i.a | 32 | 3.b | odd | 2 | 1 | ||
378.3.i.a | 32 | 63.g | even | 3 | 1 | ||
378.3.r.a | 32 | 9.c | even | 3 | 1 | ||
378.3.r.a | 32 | 21.h | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(126, [\chi])\).