Properties

Label 126.3.i.a
Level $126$
Weight $3$
Character orbit 126.i
Analytic conductor $3.433$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,3,Mod(65,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.65");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.i (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q + 32 q^{4} + 8 q^{6} + 2 q^{7} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 32 q + 32 q^{4} + 8 q^{6} + 2 q^{7} + 4 q^{9} + 10 q^{13} + 36 q^{14} + 10 q^{15} - 64 q^{16} + 54 q^{17} + 24 q^{18} + 28 q^{19} + 16 q^{21} + 8 q^{24} - 160 q^{25} + 72 q^{26} - 126 q^{27} - 4 q^{28} + 36 q^{29} - 80 q^{30} - 8 q^{31} - 106 q^{33} + 90 q^{35} + 40 q^{36} + 22 q^{37} - 170 q^{39} + 72 q^{41} + 72 q^{42} + 16 q^{43} - 72 q^{44} - 250 q^{45} - 12 q^{46} - 108 q^{47} + 74 q^{49} - 288 q^{50} + 122 q^{51} + 40 q^{52} + 72 q^{53} + 8 q^{54} - 24 q^{55} - 282 q^{57} + 48 q^{58} - 90 q^{59} + 52 q^{60} - 62 q^{61} - 438 q^{63} - 256 q^{64} + 378 q^{65} + 224 q^{66} + 70 q^{67} + 218 q^{69} - 108 q^{70} + 48 q^{72} + 196 q^{73} + 166 q^{75} - 56 q^{76} + 630 q^{77} + 32 q^{78} - 38 q^{79} + 400 q^{81} + 184 q^{84} + 60 q^{85} - 98 q^{87} + 486 q^{89} + 296 q^{90} - 122 q^{91} + 252 q^{92} - 182 q^{93} + 168 q^{94} - 72 q^{95} - 16 q^{96} - 38 q^{97} - 288 q^{98} + 394 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1 −1.22474 + 0.707107i −2.78154 + 1.12385i 1.00000 1.73205i 1.41430i 2.61199 3.34328i 3.88340 5.82402i 2.82843i 6.47391 6.25207i 1.00006 + 1.73216i
65.2 −1.22474 + 0.707107i −2.66837 1.37106i 1.00000 1.73205i 2.72742i 4.23756 0.207617i −4.37650 + 5.46317i 2.82843i 5.24037 + 7.31701i 1.92857 + 3.34039i
65.3 −1.22474 + 0.707107i −2.19206 2.04814i 1.00000 1.73205i 6.40162i 4.13297 + 0.958429i 2.49631 6.53976i 2.82843i 0.610246 + 8.97929i −4.52663 7.84035i
65.4 −1.22474 + 0.707107i −0.515888 + 2.95531i 1.00000 1.73205i 7.66608i −1.45789 3.98429i −6.97124 + 0.633929i 2.82843i −8.46772 3.04922i 5.42073 + 9.38899i
65.5 −1.22474 + 0.707107i 0.810726 + 2.88838i 1.00000 1.73205i 2.39465i −3.03532 2.96426i 6.52929 + 2.52357i 2.82843i −7.68545 + 4.68336i −1.69327 2.93283i
65.6 −1.22474 + 0.707107i 0.894073 2.86367i 1.00000 1.73205i 3.35218i 0.929913 + 4.13948i −6.40395 2.82655i 2.82843i −7.40127 5.12067i 2.37035 + 4.10556i
65.7 −1.22474 + 0.707107i 2.28054 1.94914i 1.00000 1.73205i 0.989713i −1.41483 + 3.99978i 4.95314 + 4.94635i 2.82843i 1.40174 8.89017i 0.699833 + 1.21215i
65.8 −1.22474 + 0.707107i 2.94777 + 0.557369i 1.00000 1.73205i 7.35342i −4.00438 + 1.40175i −6.95892 + 0.757275i 2.82843i 8.37868 + 3.28599i −5.19965 9.00606i
65.9 1.22474 0.707107i −2.97687 0.371810i 1.00000 1.73205i 8.56422i −3.90882 + 1.64959i 4.01479 + 5.73423i 2.82843i 8.72351 + 2.21366i 6.05582 + 10.4890i
65.10 1.22474 0.707107i −2.84195 + 0.960892i 1.00000 1.73205i 2.96160i −2.80121 + 3.18641i −2.14099 6.66455i 2.82843i 7.15337 5.46162i −2.09417 3.62721i
65.11 1.22474 0.707107i −1.40668 2.64976i 1.00000 1.73205i 6.30630i −3.59649 2.25061i −3.75927 + 5.90490i 2.82843i −5.04249 + 7.45475i −4.45923 7.72361i
65.12 1.22474 0.707107i 0.878690 2.86843i 1.00000 1.73205i 1.75162i −0.952117 4.13443i 6.58841 2.36493i 2.82843i −7.45581 5.04093i 1.23858 + 2.14528i
65.13 1.22474 0.707107i 0.907763 + 2.85936i 1.00000 1.73205i 8.31909i 3.13365 + 2.86011i 0.934868 6.93729i 2.82843i −7.35193 + 5.19125i 5.88249 + 10.1888i
65.14 1.22474 0.707107i 0.953952 + 2.84429i 1.00000 1.73205i 9.69788i 3.17956 + 2.80898i 6.99572 + 0.244854i 2.82843i −7.17995 + 5.42663i −6.85744 11.8774i
65.15 1.22474 0.707107i 2.84405 0.954676i 1.00000 1.73205i 2.12829i 2.80817 3.18028i −5.95128 3.68541i 2.82843i 7.17719 5.43028i −1.50493 2.60662i
65.16 1.22474 0.707107i 2.86580 + 0.887244i 1.00000 1.73205i 2.45915i 4.13725 0.939777i 1.16622 + 6.90217i 2.82843i 7.42560 + 5.08533i 1.73888 + 3.01183i
95.1 −1.22474 0.707107i −2.78154 1.12385i 1.00000 + 1.73205i 1.41430i 2.61199 + 3.34328i 3.88340 + 5.82402i 2.82843i 6.47391 + 6.25207i 1.00006 1.73216i
95.2 −1.22474 0.707107i −2.66837 + 1.37106i 1.00000 + 1.73205i 2.72742i 4.23756 + 0.207617i −4.37650 5.46317i 2.82843i 5.24037 7.31701i 1.92857 3.34039i
95.3 −1.22474 0.707107i −2.19206 + 2.04814i 1.00000 + 1.73205i 6.40162i 4.13297 0.958429i 2.49631 + 6.53976i 2.82843i 0.610246 8.97929i −4.52663 + 7.84035i
95.4 −1.22474 0.707107i −0.515888 2.95531i 1.00000 + 1.73205i 7.66608i −1.45789 + 3.98429i −6.97124 0.633929i 2.82843i −8.46772 + 3.04922i 5.42073 9.38899i
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 65.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.n odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.3.i.a 32
3.b odd 2 1 378.3.i.a 32
7.c even 3 1 126.3.r.a yes 32
9.c even 3 1 378.3.r.a 32
9.d odd 6 1 126.3.r.a yes 32
21.h odd 6 1 378.3.r.a 32
63.g even 3 1 378.3.i.a 32
63.n odd 6 1 inner 126.3.i.a 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.3.i.a 32 1.a even 1 1 trivial
126.3.i.a 32 63.n odd 6 1 inner
126.3.r.a yes 32 7.c even 3 1
126.3.r.a yes 32 9.d odd 6 1
378.3.i.a 32 3.b odd 2 1
378.3.i.a 32 63.g even 3 1
378.3.r.a 32 9.c even 3 1
378.3.r.a 32 21.h odd 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(126, [\chi])\).