Properties

Label 128.12.a.e.1.4
Level $128$
Weight $12$
Character 128.1
Self dual yes
Analytic conductor $98.348$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [128,12,Mod(1,128)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(128, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("128.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 128 = 2^{7} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 128.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.3479271116\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 4442x^{4} + 153566x^{3} - 1333532x^{2} - 4433532x + 49754286 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{43}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-80.0003\) of defining polynomial
Character \(\chi\) \(=\) 128.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+28.4295 q^{3} -13262.1 q^{5} +35677.5 q^{7} -176339. q^{9} -851940. q^{11} -50601.4 q^{13} -377034. q^{15} +1.30790e6 q^{17} -1.84759e7 q^{19} +1.01429e6 q^{21} -3.49995e7 q^{23} +1.27054e8 q^{25} -1.00494e7 q^{27} -1.74392e8 q^{29} -1.31509e8 q^{31} -2.42202e7 q^{33} -4.73157e8 q^{35} -5.07196e8 q^{37} -1.43857e6 q^{39} -2.56635e8 q^{41} +1.53556e9 q^{43} +2.33862e9 q^{45} -1.17238e9 q^{47} -7.04446e8 q^{49} +3.71829e7 q^{51} +1.84474e9 q^{53} +1.12985e10 q^{55} -5.25260e8 q^{57} +6.00452e9 q^{59} -4.42882e9 q^{61} -6.29132e9 q^{63} +6.71080e8 q^{65} -1.09668e10 q^{67} -9.95018e8 q^{69} -1.03768e10 q^{71} +1.07011e10 q^{73} +3.61209e9 q^{75} -3.03951e10 q^{77} -2.37762e10 q^{79} +3.09522e10 q^{81} -3.91314e9 q^{83} -1.73454e10 q^{85} -4.95788e9 q^{87} +1.28889e10 q^{89} -1.80533e9 q^{91} -3.73873e9 q^{93} +2.45028e11 q^{95} +6.65565e9 q^{97} +1.50230e11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 20 q^{3} - 1804 q^{5} + 49368 q^{7} + 313814 q^{9} - 688460 q^{11} - 2290348 q^{13} + 4828264 q^{15} + 4127636 q^{17} + 9936364 q^{19} + 20325616 q^{21} + 9921320 q^{23} + 51633002 q^{25} - 132503384 q^{27}+ \cdots + 240482467988 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 28.4295 0.0675464 0.0337732 0.999430i \(-0.489248\pi\)
0.0337732 + 0.999430i \(0.489248\pi\)
\(4\) 0 0
\(5\) −13262.1 −1.89791 −0.948956 0.315407i \(-0.897859\pi\)
−0.948956 + 0.315407i \(0.897859\pi\)
\(6\) 0 0
\(7\) 35677.5 0.802333 0.401167 0.916005i \(-0.368605\pi\)
0.401167 + 0.916005i \(0.368605\pi\)
\(8\) 0 0
\(9\) −176339. −0.995437
\(10\) 0 0
\(11\) −851940. −1.59496 −0.797479 0.603346i \(-0.793834\pi\)
−0.797479 + 0.603346i \(0.793834\pi\)
\(12\) 0 0
\(13\) −50601.4 −0.0377985 −0.0188992 0.999821i \(-0.506016\pi\)
−0.0188992 + 0.999821i \(0.506016\pi\)
\(14\) 0 0
\(15\) −377034. −0.128197
\(16\) 0 0
\(17\) 1.30790e6 0.223411 0.111706 0.993741i \(-0.464369\pi\)
0.111706 + 0.993741i \(0.464369\pi\)
\(18\) 0 0
\(19\) −1.84759e7 −1.71183 −0.855914 0.517118i \(-0.827005\pi\)
−0.855914 + 0.517118i \(0.827005\pi\)
\(20\) 0 0
\(21\) 1.01429e6 0.0541947
\(22\) 0 0
\(23\) −3.49995e7 −1.13386 −0.566929 0.823767i \(-0.691869\pi\)
−0.566929 + 0.823767i \(0.691869\pi\)
\(24\) 0 0
\(25\) 1.27054e8 2.60207
\(26\) 0 0
\(27\) −1.00494e7 −0.134785
\(28\) 0 0
\(29\) −1.74392e8 −1.57884 −0.789419 0.613854i \(-0.789618\pi\)
−0.789419 + 0.613854i \(0.789618\pi\)
\(30\) 0 0
\(31\) −1.31509e8 −0.825023 −0.412511 0.910952i \(-0.635348\pi\)
−0.412511 + 0.910952i \(0.635348\pi\)
\(32\) 0 0
\(33\) −2.42202e7 −0.107734
\(34\) 0 0
\(35\) −4.73157e8 −1.52276
\(36\) 0 0
\(37\) −5.07196e8 −1.20245 −0.601224 0.799080i \(-0.705320\pi\)
−0.601224 + 0.799080i \(0.705320\pi\)
\(38\) 0 0
\(39\) −1.43857e6 −0.00255315
\(40\) 0 0
\(41\) −2.56635e8 −0.345943 −0.172972 0.984927i \(-0.555337\pi\)
−0.172972 + 0.984927i \(0.555337\pi\)
\(42\) 0 0
\(43\) 1.53556e9 1.59291 0.796455 0.604697i \(-0.206706\pi\)
0.796455 + 0.604697i \(0.206706\pi\)
\(44\) 0 0
\(45\) 2.33862e9 1.88925
\(46\) 0 0
\(47\) −1.17238e9 −0.745643 −0.372822 0.927903i \(-0.621610\pi\)
−0.372822 + 0.927903i \(0.621610\pi\)
\(48\) 0 0
\(49\) −7.04446e8 −0.356262
\(50\) 0 0
\(51\) 3.71829e7 0.0150906
\(52\) 0 0
\(53\) 1.84474e9 0.605923 0.302961 0.953003i \(-0.402025\pi\)
0.302961 + 0.953003i \(0.402025\pi\)
\(54\) 0 0
\(55\) 1.12985e10 3.02709
\(56\) 0 0
\(57\) −5.25260e8 −0.115628
\(58\) 0 0
\(59\) 6.00452e9 1.09343 0.546716 0.837318i \(-0.315878\pi\)
0.546716 + 0.837318i \(0.315878\pi\)
\(60\) 0 0
\(61\) −4.42882e9 −0.671389 −0.335694 0.941971i \(-0.608971\pi\)
−0.335694 + 0.941971i \(0.608971\pi\)
\(62\) 0 0
\(63\) −6.29132e9 −0.798672
\(64\) 0 0
\(65\) 6.71080e8 0.0717382
\(66\) 0 0
\(67\) −1.09668e10 −0.992361 −0.496181 0.868219i \(-0.665265\pi\)
−0.496181 + 0.868219i \(0.665265\pi\)
\(68\) 0 0
\(69\) −9.95018e8 −0.0765880
\(70\) 0 0
\(71\) −1.03768e10 −0.682562 −0.341281 0.939961i \(-0.610861\pi\)
−0.341281 + 0.939961i \(0.610861\pi\)
\(72\) 0 0
\(73\) 1.07011e10 0.604160 0.302080 0.953283i \(-0.402319\pi\)
0.302080 + 0.953283i \(0.402319\pi\)
\(74\) 0 0
\(75\) 3.61209e9 0.175761
\(76\) 0 0
\(77\) −3.03951e10 −1.27969
\(78\) 0 0
\(79\) −2.37762e10 −0.869349 −0.434674 0.900588i \(-0.643137\pi\)
−0.434674 + 0.900588i \(0.643137\pi\)
\(80\) 0 0
\(81\) 3.09522e10 0.986333
\(82\) 0 0
\(83\) −3.91314e9 −0.109043 −0.0545213 0.998513i \(-0.517363\pi\)
−0.0545213 + 0.998513i \(0.517363\pi\)
\(84\) 0 0
\(85\) −1.73454e10 −0.424015
\(86\) 0 0
\(87\) −4.95788e9 −0.106645
\(88\) 0 0
\(89\) 1.28889e10 0.244665 0.122333 0.992489i \(-0.460963\pi\)
0.122333 + 0.992489i \(0.460963\pi\)
\(90\) 0 0
\(91\) −1.80533e9 −0.0303270
\(92\) 0 0
\(93\) −3.73873e9 −0.0557273
\(94\) 0 0
\(95\) 2.45028e11 3.24890
\(96\) 0 0
\(97\) 6.65565e9 0.0786948 0.0393474 0.999226i \(-0.487472\pi\)
0.0393474 + 0.999226i \(0.487472\pi\)
\(98\) 0 0
\(99\) 1.50230e11 1.58768
\(100\) 0 0
\(101\) −6.98312e10 −0.661122 −0.330561 0.943785i \(-0.607238\pi\)
−0.330561 + 0.943785i \(0.607238\pi\)
\(102\) 0 0
\(103\) 2.88946e10 0.245591 0.122795 0.992432i \(-0.460814\pi\)
0.122795 + 0.992432i \(0.460814\pi\)
\(104\) 0 0
\(105\) −1.34516e10 −0.102857
\(106\) 0 0
\(107\) 2.38747e10 0.164561 0.0822804 0.996609i \(-0.473780\pi\)
0.0822804 + 0.996609i \(0.473780\pi\)
\(108\) 0 0
\(109\) 2.00198e11 1.24628 0.623138 0.782112i \(-0.285857\pi\)
0.623138 + 0.782112i \(0.285857\pi\)
\(110\) 0 0
\(111\) −1.44193e10 −0.0812211
\(112\) 0 0
\(113\) −1.90785e9 −0.00974122 −0.00487061 0.999988i \(-0.501550\pi\)
−0.00487061 + 0.999988i \(0.501550\pi\)
\(114\) 0 0
\(115\) 4.64166e11 2.15196
\(116\) 0 0
\(117\) 8.92300e9 0.0376260
\(118\) 0 0
\(119\) 4.66625e10 0.179250
\(120\) 0 0
\(121\) 4.40491e11 1.54389
\(122\) 0 0
\(123\) −7.29600e9 −0.0233672
\(124\) 0 0
\(125\) −1.03744e12 −3.04059
\(126\) 0 0
\(127\) 3.33442e11 0.895570 0.447785 0.894141i \(-0.352213\pi\)
0.447785 + 0.894141i \(0.352213\pi\)
\(128\) 0 0
\(129\) 4.36553e10 0.107595
\(130\) 0 0
\(131\) −5.45163e11 −1.23462 −0.617312 0.786719i \(-0.711778\pi\)
−0.617312 + 0.786719i \(0.711778\pi\)
\(132\) 0 0
\(133\) −6.59172e11 −1.37346
\(134\) 0 0
\(135\) 1.33276e11 0.255809
\(136\) 0 0
\(137\) 5.79293e11 1.02550 0.512749 0.858538i \(-0.328627\pi\)
0.512749 + 0.858538i \(0.328627\pi\)
\(138\) 0 0
\(139\) 9.38023e11 1.53332 0.766659 0.642055i \(-0.221918\pi\)
0.766659 + 0.642055i \(0.221918\pi\)
\(140\) 0 0
\(141\) −3.33302e10 −0.0503655
\(142\) 0 0
\(143\) 4.31094e10 0.0602870
\(144\) 0 0
\(145\) 2.31280e12 2.99650
\(146\) 0 0
\(147\) −2.00270e10 −0.0240642
\(148\) 0 0
\(149\) −5.08299e11 −0.567016 −0.283508 0.958970i \(-0.591498\pi\)
−0.283508 + 0.958970i \(0.591498\pi\)
\(150\) 0 0
\(151\) 1.32466e12 1.37319 0.686594 0.727041i \(-0.259105\pi\)
0.686594 + 0.727041i \(0.259105\pi\)
\(152\) 0 0
\(153\) −2.30633e11 −0.222392
\(154\) 0 0
\(155\) 1.74408e12 1.56582
\(156\) 0 0
\(157\) 5.64872e11 0.472609 0.236304 0.971679i \(-0.424064\pi\)
0.236304 + 0.971679i \(0.424064\pi\)
\(158\) 0 0
\(159\) 5.24450e10 0.0409279
\(160\) 0 0
\(161\) −1.24869e12 −0.909732
\(162\) 0 0
\(163\) −6.31830e11 −0.430099 −0.215050 0.976603i \(-0.568991\pi\)
−0.215050 + 0.976603i \(0.568991\pi\)
\(164\) 0 0
\(165\) 3.21210e11 0.204469
\(166\) 0 0
\(167\) 1.06226e12 0.632834 0.316417 0.948620i \(-0.397520\pi\)
0.316417 + 0.948620i \(0.397520\pi\)
\(168\) 0 0
\(169\) −1.78960e12 −0.998571
\(170\) 0 0
\(171\) 3.25801e12 1.70402
\(172\) 0 0
\(173\) −2.41005e12 −1.18242 −0.591211 0.806517i \(-0.701350\pi\)
−0.591211 + 0.806517i \(0.701350\pi\)
\(174\) 0 0
\(175\) 4.53298e12 2.08773
\(176\) 0 0
\(177\) 1.70705e11 0.0738574
\(178\) 0 0
\(179\) 2.21326e12 0.900204 0.450102 0.892977i \(-0.351388\pi\)
0.450102 + 0.892977i \(0.351388\pi\)
\(180\) 0 0
\(181\) −7.50395e11 −0.287116 −0.143558 0.989642i \(-0.545854\pi\)
−0.143558 + 0.989642i \(0.545854\pi\)
\(182\) 0 0
\(183\) −1.25909e11 −0.0453499
\(184\) 0 0
\(185\) 6.72647e12 2.28214
\(186\) 0 0
\(187\) −1.11425e12 −0.356332
\(188\) 0 0
\(189\) −3.58538e11 −0.108142
\(190\) 0 0
\(191\) −2.98912e12 −0.850862 −0.425431 0.904991i \(-0.639877\pi\)
−0.425431 + 0.904991i \(0.639877\pi\)
\(192\) 0 0
\(193\) −3.63183e12 −0.976248 −0.488124 0.872774i \(-0.662319\pi\)
−0.488124 + 0.872774i \(0.662319\pi\)
\(194\) 0 0
\(195\) 1.90785e10 0.00484566
\(196\) 0 0
\(197\) −2.86938e12 −0.689008 −0.344504 0.938785i \(-0.611953\pi\)
−0.344504 + 0.938785i \(0.611953\pi\)
\(198\) 0 0
\(199\) −4.15302e12 −0.943349 −0.471675 0.881773i \(-0.656350\pi\)
−0.471675 + 0.881773i \(0.656350\pi\)
\(200\) 0 0
\(201\) −3.11782e11 −0.0670304
\(202\) 0 0
\(203\) −6.22186e12 −1.26675
\(204\) 0 0
\(205\) 3.40351e12 0.656570
\(206\) 0 0
\(207\) 6.17177e12 1.12868
\(208\) 0 0
\(209\) 1.57403e13 2.73029
\(210\) 0 0
\(211\) −4.58182e12 −0.754197 −0.377099 0.926173i \(-0.623078\pi\)
−0.377099 + 0.926173i \(0.623078\pi\)
\(212\) 0 0
\(213\) −2.95007e11 −0.0461046
\(214\) 0 0
\(215\) −2.03648e13 −3.02321
\(216\) 0 0
\(217\) −4.69190e12 −0.661943
\(218\) 0 0
\(219\) 3.04226e11 0.0408088
\(220\) 0 0
\(221\) −6.61816e10 −0.00844461
\(222\) 0 0
\(223\) 1.33092e13 1.61613 0.808065 0.589094i \(-0.200515\pi\)
0.808065 + 0.589094i \(0.200515\pi\)
\(224\) 0 0
\(225\) −2.24046e13 −2.59020
\(226\) 0 0
\(227\) −1.34550e13 −1.48163 −0.740817 0.671707i \(-0.765561\pi\)
−0.740817 + 0.671707i \(0.765561\pi\)
\(228\) 0 0
\(229\) 7.47737e12 0.784610 0.392305 0.919835i \(-0.371678\pi\)
0.392305 + 0.919835i \(0.371678\pi\)
\(230\) 0 0
\(231\) −8.64116e11 −0.0864383
\(232\) 0 0
\(233\) −1.27643e13 −1.21770 −0.608848 0.793287i \(-0.708368\pi\)
−0.608848 + 0.793287i \(0.708368\pi\)
\(234\) 0 0
\(235\) 1.55482e13 1.41517
\(236\) 0 0
\(237\) −6.75946e11 −0.0587214
\(238\) 0 0
\(239\) −5.85201e12 −0.485419 −0.242709 0.970099i \(-0.578036\pi\)
−0.242709 + 0.970099i \(0.578036\pi\)
\(240\) 0 0
\(241\) 7.45977e12 0.591060 0.295530 0.955333i \(-0.404504\pi\)
0.295530 + 0.955333i \(0.404504\pi\)
\(242\) 0 0
\(243\) 2.66018e12 0.201408
\(244\) 0 0
\(245\) 9.34241e12 0.676154
\(246\) 0 0
\(247\) 9.34906e11 0.0647045
\(248\) 0 0
\(249\) −1.11249e11 −0.00736543
\(250\) 0 0
\(251\) 1.40102e13 0.887643 0.443821 0.896115i \(-0.353622\pi\)
0.443821 + 0.896115i \(0.353622\pi\)
\(252\) 0 0
\(253\) 2.98175e13 1.80846
\(254\) 0 0
\(255\) −4.93122e11 −0.0286407
\(256\) 0 0
\(257\) −2.27084e13 −1.26344 −0.631718 0.775198i \(-0.717650\pi\)
−0.631718 + 0.775198i \(0.717650\pi\)
\(258\) 0 0
\(259\) −1.80955e13 −0.964764
\(260\) 0 0
\(261\) 3.07521e13 1.57163
\(262\) 0 0
\(263\) −3.06356e13 −1.50131 −0.750654 0.660695i \(-0.770262\pi\)
−0.750654 + 0.660695i \(0.770262\pi\)
\(264\) 0 0
\(265\) −2.44650e13 −1.14999
\(266\) 0 0
\(267\) 3.66426e11 0.0165263
\(268\) 0 0
\(269\) −2.34794e13 −1.01637 −0.508183 0.861249i \(-0.669683\pi\)
−0.508183 + 0.861249i \(0.669683\pi\)
\(270\) 0 0
\(271\) −1.59575e13 −0.663182 −0.331591 0.943423i \(-0.607585\pi\)
−0.331591 + 0.943423i \(0.607585\pi\)
\(272\) 0 0
\(273\) −5.13246e10 −0.00204848
\(274\) 0 0
\(275\) −1.08243e14 −4.15020
\(276\) 0 0
\(277\) −7.95571e12 −0.293117 −0.146558 0.989202i \(-0.546820\pi\)
−0.146558 + 0.989202i \(0.546820\pi\)
\(278\) 0 0
\(279\) 2.31901e13 0.821259
\(280\) 0 0
\(281\) 3.25060e13 1.10682 0.553412 0.832908i \(-0.313326\pi\)
0.553412 + 0.832908i \(0.313326\pi\)
\(282\) 0 0
\(283\) 1.98411e12 0.0649742 0.0324871 0.999472i \(-0.489657\pi\)
0.0324871 + 0.999472i \(0.489657\pi\)
\(284\) 0 0
\(285\) 6.96603e12 0.219451
\(286\) 0 0
\(287\) −9.15609e12 −0.277562
\(288\) 0 0
\(289\) −3.25613e13 −0.950087
\(290\) 0 0
\(291\) 1.89217e11 0.00531555
\(292\) 0 0
\(293\) −3.80297e13 −1.02885 −0.514423 0.857536i \(-0.671994\pi\)
−0.514423 + 0.857536i \(0.671994\pi\)
\(294\) 0 0
\(295\) −7.96323e13 −2.07524
\(296\) 0 0
\(297\) 8.56151e12 0.214976
\(298\) 0 0
\(299\) 1.77103e12 0.0428581
\(300\) 0 0
\(301\) 5.47850e13 1.27805
\(302\) 0 0
\(303\) −1.98527e12 −0.0446564
\(304\) 0 0
\(305\) 5.87353e13 1.27424
\(306\) 0 0
\(307\) 1.83935e13 0.384950 0.192475 0.981302i \(-0.438349\pi\)
0.192475 + 0.981302i \(0.438349\pi\)
\(308\) 0 0
\(309\) 8.21459e11 0.0165888
\(310\) 0 0
\(311\) −6.91084e13 −1.34694 −0.673470 0.739214i \(-0.735197\pi\)
−0.673470 + 0.739214i \(0.735197\pi\)
\(312\) 0 0
\(313\) −4.83426e13 −0.909571 −0.454785 0.890601i \(-0.650284\pi\)
−0.454785 + 0.890601i \(0.650284\pi\)
\(314\) 0 0
\(315\) 8.34359e13 1.51581
\(316\) 0 0
\(317\) −5.44259e13 −0.954948 −0.477474 0.878646i \(-0.658448\pi\)
−0.477474 + 0.878646i \(0.658448\pi\)
\(318\) 0 0
\(319\) 1.48572e14 2.51818
\(320\) 0 0
\(321\) 6.78745e11 0.0111155
\(322\) 0 0
\(323\) −2.41646e13 −0.382442
\(324\) 0 0
\(325\) −6.42913e12 −0.0983544
\(326\) 0 0
\(327\) 5.69153e12 0.0841815
\(328\) 0 0
\(329\) −4.18276e13 −0.598254
\(330\) 0 0
\(331\) 3.20522e13 0.443409 0.221704 0.975114i \(-0.428838\pi\)
0.221704 + 0.975114i \(0.428838\pi\)
\(332\) 0 0
\(333\) 8.94383e13 1.19696
\(334\) 0 0
\(335\) 1.45443e14 1.88342
\(336\) 0 0
\(337\) −1.13046e14 −1.41675 −0.708373 0.705838i \(-0.750571\pi\)
−0.708373 + 0.705838i \(0.750571\pi\)
\(338\) 0 0
\(339\) −5.42393e10 −0.000657985 0
\(340\) 0 0
\(341\) 1.12038e14 1.31588
\(342\) 0 0
\(343\) −9.56788e13 −1.08817
\(344\) 0 0
\(345\) 1.31960e13 0.145357
\(346\) 0 0
\(347\) −3.64920e13 −0.389390 −0.194695 0.980864i \(-0.562372\pi\)
−0.194695 + 0.980864i \(0.562372\pi\)
\(348\) 0 0
\(349\) −1.27749e14 −1.32074 −0.660372 0.750938i \(-0.729602\pi\)
−0.660372 + 0.750938i \(0.729602\pi\)
\(350\) 0 0
\(351\) 5.08515e11 0.00509466
\(352\) 0 0
\(353\) 1.13630e14 1.10340 0.551699 0.834043i \(-0.313980\pi\)
0.551699 + 0.834043i \(0.313980\pi\)
\(354\) 0 0
\(355\) 1.37618e14 1.29544
\(356\) 0 0
\(357\) 1.32659e12 0.0121077
\(358\) 0 0
\(359\) 1.28665e14 1.13879 0.569393 0.822065i \(-0.307178\pi\)
0.569393 + 0.822065i \(0.307178\pi\)
\(360\) 0 0
\(361\) 2.24867e14 1.93035
\(362\) 0 0
\(363\) 1.25229e13 0.104284
\(364\) 0 0
\(365\) −1.41918e14 −1.14664
\(366\) 0 0
\(367\) 1.35315e14 1.06092 0.530459 0.847711i \(-0.322020\pi\)
0.530459 + 0.847711i \(0.322020\pi\)
\(368\) 0 0
\(369\) 4.52547e13 0.344365
\(370\) 0 0
\(371\) 6.58156e13 0.486152
\(372\) 0 0
\(373\) −1.74152e14 −1.24891 −0.624453 0.781063i \(-0.714678\pi\)
−0.624453 + 0.781063i \(0.714678\pi\)
\(374\) 0 0
\(375\) −2.94939e13 −0.205381
\(376\) 0 0
\(377\) 8.82449e12 0.0596777
\(378\) 0 0
\(379\) 9.30974e13 0.611536 0.305768 0.952106i \(-0.401087\pi\)
0.305768 + 0.952106i \(0.401087\pi\)
\(380\) 0 0
\(381\) 9.47958e12 0.0604925
\(382\) 0 0
\(383\) −2.11399e14 −1.31072 −0.655359 0.755317i \(-0.727483\pi\)
−0.655359 + 0.755317i \(0.727483\pi\)
\(384\) 0 0
\(385\) 4.03101e14 2.42874
\(386\) 0 0
\(387\) −2.70779e14 −1.58564
\(388\) 0 0
\(389\) −1.99727e14 −1.13688 −0.568438 0.822726i \(-0.692452\pi\)
−0.568438 + 0.822726i \(0.692452\pi\)
\(390\) 0 0
\(391\) −4.57758e13 −0.253317
\(392\) 0 0
\(393\) −1.54987e13 −0.0833944
\(394\) 0 0
\(395\) 3.15322e14 1.64995
\(396\) 0 0
\(397\) −1.28753e14 −0.655255 −0.327627 0.944807i \(-0.606249\pi\)
−0.327627 + 0.944807i \(0.606249\pi\)
\(398\) 0 0
\(399\) −1.87399e13 −0.0927720
\(400\) 0 0
\(401\) −1.95881e14 −0.943407 −0.471703 0.881757i \(-0.656361\pi\)
−0.471703 + 0.881757i \(0.656361\pi\)
\(402\) 0 0
\(403\) 6.65454e12 0.0311846
\(404\) 0 0
\(405\) −4.10490e14 −1.87197
\(406\) 0 0
\(407\) 4.32101e14 1.91786
\(408\) 0 0
\(409\) −2.68622e13 −0.116055 −0.0580273 0.998315i \(-0.518481\pi\)
−0.0580273 + 0.998315i \(0.518481\pi\)
\(410\) 0 0
\(411\) 1.64690e13 0.0692687
\(412\) 0 0
\(413\) 2.14226e14 0.877297
\(414\) 0 0
\(415\) 5.18963e13 0.206953
\(416\) 0 0
\(417\) 2.66675e13 0.103570
\(418\) 0 0
\(419\) 7.77684e13 0.294189 0.147094 0.989122i \(-0.453008\pi\)
0.147094 + 0.989122i \(0.453008\pi\)
\(420\) 0 0
\(421\) 2.69602e14 0.993508 0.496754 0.867891i \(-0.334525\pi\)
0.496754 + 0.867891i \(0.334525\pi\)
\(422\) 0 0
\(423\) 2.06737e14 0.742241
\(424\) 0 0
\(425\) 1.66174e14 0.581332
\(426\) 0 0
\(427\) −1.58009e14 −0.538677
\(428\) 0 0
\(429\) 1.22558e12 0.00407217
\(430\) 0 0
\(431\) 4.84920e13 0.157053 0.0785263 0.996912i \(-0.474979\pi\)
0.0785263 + 0.996912i \(0.474979\pi\)
\(432\) 0 0
\(433\) −5.92881e14 −1.87191 −0.935953 0.352126i \(-0.885459\pi\)
−0.935953 + 0.352126i \(0.885459\pi\)
\(434\) 0 0
\(435\) 6.57517e13 0.202403
\(436\) 0 0
\(437\) 6.46646e14 1.94097
\(438\) 0 0
\(439\) 1.00830e14 0.295145 0.147572 0.989051i \(-0.452854\pi\)
0.147572 + 0.989051i \(0.452854\pi\)
\(440\) 0 0
\(441\) 1.24221e14 0.354636
\(442\) 0 0
\(443\) 6.55676e14 1.82587 0.912933 0.408109i \(-0.133812\pi\)
0.912933 + 0.408109i \(0.133812\pi\)
\(444\) 0 0
\(445\) −1.70934e14 −0.464353
\(446\) 0 0
\(447\) −1.44507e13 −0.0382999
\(448\) 0 0
\(449\) 4.52693e14 1.17071 0.585354 0.810778i \(-0.300956\pi\)
0.585354 + 0.810778i \(0.300956\pi\)
\(450\) 0 0
\(451\) 2.18638e14 0.551765
\(452\) 0 0
\(453\) 3.76593e13 0.0927539
\(454\) 0 0
\(455\) 2.39424e13 0.0575580
\(456\) 0 0
\(457\) 3.05085e14 0.715948 0.357974 0.933732i \(-0.383468\pi\)
0.357974 + 0.933732i \(0.383468\pi\)
\(458\) 0 0
\(459\) −1.31436e13 −0.0301124
\(460\) 0 0
\(461\) 1.73122e14 0.387255 0.193627 0.981075i \(-0.437975\pi\)
0.193627 + 0.981075i \(0.437975\pi\)
\(462\) 0 0
\(463\) −4.87251e13 −0.106428 −0.0532142 0.998583i \(-0.516947\pi\)
−0.0532142 + 0.998583i \(0.516947\pi\)
\(464\) 0 0
\(465\) 4.95833e13 0.105766
\(466\) 0 0
\(467\) 4.70608e14 0.980431 0.490215 0.871601i \(-0.336918\pi\)
0.490215 + 0.871601i \(0.336918\pi\)
\(468\) 0 0
\(469\) −3.91269e14 −0.796204
\(470\) 0 0
\(471\) 1.60590e13 0.0319230
\(472\) 0 0
\(473\) −1.30821e15 −2.54063
\(474\) 0 0
\(475\) −2.34744e15 −4.45430
\(476\) 0 0
\(477\) −3.25299e14 −0.603158
\(478\) 0 0
\(479\) −1.74144e14 −0.315547 −0.157774 0.987475i \(-0.550432\pi\)
−0.157774 + 0.987475i \(0.550432\pi\)
\(480\) 0 0
\(481\) 2.56649e13 0.0454507
\(482\) 0 0
\(483\) −3.54997e13 −0.0614491
\(484\) 0 0
\(485\) −8.82677e13 −0.149356
\(486\) 0 0
\(487\) −7.26735e14 −1.20217 −0.601086 0.799184i \(-0.705265\pi\)
−0.601086 + 0.799184i \(0.705265\pi\)
\(488\) 0 0
\(489\) −1.79626e13 −0.0290517
\(490\) 0 0
\(491\) −9.40666e14 −1.48760 −0.743802 0.668400i \(-0.766979\pi\)
−0.743802 + 0.668400i \(0.766979\pi\)
\(492\) 0 0
\(493\) −2.28087e14 −0.352730
\(494\) 0 0
\(495\) −1.99236e15 −3.01328
\(496\) 0 0
\(497\) −3.70217e14 −0.547642
\(498\) 0 0
\(499\) 1.04445e15 1.51124 0.755619 0.655012i \(-0.227336\pi\)
0.755619 + 0.655012i \(0.227336\pi\)
\(500\) 0 0
\(501\) 3.01995e13 0.0427456
\(502\) 0 0
\(503\) −1.27010e14 −0.175879 −0.0879393 0.996126i \(-0.528028\pi\)
−0.0879393 + 0.996126i \(0.528028\pi\)
\(504\) 0 0
\(505\) 9.26106e14 1.25475
\(506\) 0 0
\(507\) −5.08774e13 −0.0674499
\(508\) 0 0
\(509\) 1.46270e15 1.89762 0.948808 0.315852i \(-0.102290\pi\)
0.948808 + 0.315852i \(0.102290\pi\)
\(510\) 0 0
\(511\) 3.81787e14 0.484737
\(512\) 0 0
\(513\) 1.85672e14 0.230728
\(514\) 0 0
\(515\) −3.83202e14 −0.466110
\(516\) 0 0
\(517\) 9.98800e14 1.18927
\(518\) 0 0
\(519\) −6.85166e13 −0.0798684
\(520\) 0 0
\(521\) −1.17275e15 −1.33844 −0.669218 0.743066i \(-0.733371\pi\)
−0.669218 + 0.743066i \(0.733371\pi\)
\(522\) 0 0
\(523\) −9.04972e14 −1.01129 −0.505645 0.862742i \(-0.668745\pi\)
−0.505645 + 0.862742i \(0.668745\pi\)
\(524\) 0 0
\(525\) 1.28870e14 0.141019
\(526\) 0 0
\(527\) −1.72000e14 −0.184319
\(528\) 0 0
\(529\) 2.72155e14 0.285634
\(530\) 0 0
\(531\) −1.05883e15 −1.08844
\(532\) 0 0
\(533\) 1.29861e13 0.0130761
\(534\) 0 0
\(535\) −3.16627e14 −0.312322
\(536\) 0 0
\(537\) 6.29219e13 0.0608056
\(538\) 0 0
\(539\) 6.00146e14 0.568223
\(540\) 0 0
\(541\) 3.44934e14 0.320000 0.160000 0.987117i \(-0.448851\pi\)
0.160000 + 0.987117i \(0.448851\pi\)
\(542\) 0 0
\(543\) −2.13334e13 −0.0193937
\(544\) 0 0
\(545\) −2.65504e15 −2.36532
\(546\) 0 0
\(547\) 1.52598e15 1.33235 0.666174 0.745796i \(-0.267931\pi\)
0.666174 + 0.745796i \(0.267931\pi\)
\(548\) 0 0
\(549\) 7.80973e14 0.668325
\(550\) 0 0
\(551\) 3.22204e15 2.70270
\(552\) 0 0
\(553\) −8.48276e14 −0.697507
\(554\) 0 0
\(555\) 1.91230e14 0.154150
\(556\) 0 0
\(557\) 4.12629e14 0.326104 0.163052 0.986617i \(-0.447866\pi\)
0.163052 + 0.986617i \(0.447866\pi\)
\(558\) 0 0
\(559\) −7.77018e13 −0.0602096
\(560\) 0 0
\(561\) −3.16776e13 −0.0240689
\(562\) 0 0
\(563\) −8.20945e14 −0.611671 −0.305835 0.952084i \(-0.598936\pi\)
−0.305835 + 0.952084i \(0.598936\pi\)
\(564\) 0 0
\(565\) 2.53021e13 0.0184880
\(566\) 0 0
\(567\) 1.10430e15 0.791368
\(568\) 0 0
\(569\) 3.96770e14 0.278883 0.139441 0.990230i \(-0.455469\pi\)
0.139441 + 0.990230i \(0.455469\pi\)
\(570\) 0 0
\(571\) −4.80108e14 −0.331009 −0.165505 0.986209i \(-0.552925\pi\)
−0.165505 + 0.986209i \(0.552925\pi\)
\(572\) 0 0
\(573\) −8.49790e13 −0.0574727
\(574\) 0 0
\(575\) −4.44684e15 −2.95038
\(576\) 0 0
\(577\) −1.13938e15 −0.741657 −0.370828 0.928701i \(-0.620926\pi\)
−0.370828 + 0.928701i \(0.620926\pi\)
\(578\) 0 0
\(579\) −1.03251e14 −0.0659420
\(580\) 0 0
\(581\) −1.39611e14 −0.0874884
\(582\) 0 0
\(583\) −1.57161e15 −0.966422
\(584\) 0 0
\(585\) −1.18337e14 −0.0714109
\(586\) 0 0
\(587\) −6.07086e14 −0.359534 −0.179767 0.983709i \(-0.557534\pi\)
−0.179767 + 0.983709i \(0.557534\pi\)
\(588\) 0 0
\(589\) 2.42974e15 1.41230
\(590\) 0 0
\(591\) −8.15751e13 −0.0465400
\(592\) 0 0
\(593\) 1.85101e15 1.03659 0.518295 0.855202i \(-0.326567\pi\)
0.518295 + 0.855202i \(0.326567\pi\)
\(594\) 0 0
\(595\) −6.18841e14 −0.340201
\(596\) 0 0
\(597\) −1.18068e14 −0.0637198
\(598\) 0 0
\(599\) 1.02140e15 0.541186 0.270593 0.962694i \(-0.412780\pi\)
0.270593 + 0.962694i \(0.412780\pi\)
\(600\) 0 0
\(601\) −4.39352e14 −0.228561 −0.114281 0.993449i \(-0.536456\pi\)
−0.114281 + 0.993449i \(0.536456\pi\)
\(602\) 0 0
\(603\) 1.93388e15 0.987834
\(604\) 0 0
\(605\) −5.84182e15 −2.93017
\(606\) 0 0
\(607\) −9.02817e14 −0.444695 −0.222347 0.974968i \(-0.571372\pi\)
−0.222347 + 0.974968i \(0.571372\pi\)
\(608\) 0 0
\(609\) −1.76884e14 −0.0855647
\(610\) 0 0
\(611\) 5.93243e13 0.0281842
\(612\) 0 0
\(613\) −1.62435e15 −0.757959 −0.378980 0.925405i \(-0.623725\pi\)
−0.378980 + 0.925405i \(0.623725\pi\)
\(614\) 0 0
\(615\) 9.67601e13 0.0443489
\(616\) 0 0
\(617\) 2.90236e15 1.30672 0.653360 0.757048i \(-0.273359\pi\)
0.653360 + 0.757048i \(0.273359\pi\)
\(618\) 0 0
\(619\) −5.41571e14 −0.239528 −0.119764 0.992802i \(-0.538214\pi\)
−0.119764 + 0.992802i \(0.538214\pi\)
\(620\) 0 0
\(621\) 3.51725e14 0.152827
\(622\) 0 0
\(623\) 4.59845e14 0.196303
\(624\) 0 0
\(625\) 7.55479e15 3.16871
\(626\) 0 0
\(627\) 4.47490e14 0.184422
\(628\) 0 0
\(629\) −6.63361e14 −0.268640
\(630\) 0 0
\(631\) 1.05678e15 0.420554 0.210277 0.977642i \(-0.432563\pi\)
0.210277 + 0.977642i \(0.432563\pi\)
\(632\) 0 0
\(633\) −1.30259e14 −0.0509433
\(634\) 0 0
\(635\) −4.42213e15 −1.69971
\(636\) 0 0
\(637\) 3.56460e13 0.0134662
\(638\) 0 0
\(639\) 1.82983e15 0.679447
\(640\) 0 0
\(641\) −5.55504e14 −0.202753 −0.101377 0.994848i \(-0.532325\pi\)
−0.101377 + 0.994848i \(0.532325\pi\)
\(642\) 0 0
\(643\) 4.84392e15 1.73795 0.868974 0.494858i \(-0.164780\pi\)
0.868974 + 0.494858i \(0.164780\pi\)
\(644\) 0 0
\(645\) −5.78960e14 −0.204207
\(646\) 0 0
\(647\) 9.93347e13 0.0344451 0.0172225 0.999852i \(-0.494518\pi\)
0.0172225 + 0.999852i \(0.494518\pi\)
\(648\) 0 0
\(649\) −5.11549e15 −1.74398
\(650\) 0 0
\(651\) −1.33388e14 −0.0447119
\(652\) 0 0
\(653\) 1.05230e15 0.346832 0.173416 0.984849i \(-0.444520\pi\)
0.173416 + 0.984849i \(0.444520\pi\)
\(654\) 0 0
\(655\) 7.23000e15 2.34321
\(656\) 0 0
\(657\) −1.88701e15 −0.601403
\(658\) 0 0
\(659\) 1.32727e15 0.415997 0.207998 0.978129i \(-0.433305\pi\)
0.207998 + 0.978129i \(0.433305\pi\)
\(660\) 0 0
\(661\) −4.60364e15 −1.41903 −0.709517 0.704688i \(-0.751087\pi\)
−0.709517 + 0.704688i \(0.751087\pi\)
\(662\) 0 0
\(663\) −1.88151e12 −0.000570403 0
\(664\) 0 0
\(665\) 8.74198e15 2.60670
\(666\) 0 0
\(667\) 6.10363e15 1.79018
\(668\) 0 0
\(669\) 3.78375e14 0.109164
\(670\) 0 0
\(671\) 3.77309e15 1.07084
\(672\) 0 0
\(673\) −4.35945e15 −1.21716 −0.608582 0.793491i \(-0.708261\pi\)
−0.608582 + 0.793491i \(0.708261\pi\)
\(674\) 0 0
\(675\) −1.27682e15 −0.350719
\(676\) 0 0
\(677\) 6.30704e15 1.70446 0.852232 0.523164i \(-0.175249\pi\)
0.852232 + 0.523164i \(0.175249\pi\)
\(678\) 0 0
\(679\) 2.37457e14 0.0631395
\(680\) 0 0
\(681\) −3.82518e14 −0.100079
\(682\) 0 0
\(683\) 6.82212e15 1.75633 0.878164 0.478360i \(-0.158768\pi\)
0.878164 + 0.478360i \(0.158768\pi\)
\(684\) 0 0
\(685\) −7.68262e15 −1.94631
\(686\) 0 0
\(687\) 2.12578e14 0.0529976
\(688\) 0 0
\(689\) −9.33464e13 −0.0229030
\(690\) 0 0
\(691\) 5.14474e15 1.24232 0.621161 0.783683i \(-0.286661\pi\)
0.621161 + 0.783683i \(0.286661\pi\)
\(692\) 0 0
\(693\) 5.35983e15 1.27385
\(694\) 0 0
\(695\) −1.24401e16 −2.91010
\(696\) 0 0
\(697\) −3.35653e14 −0.0772876
\(698\) 0 0
\(699\) −3.62882e14 −0.0822509
\(700\) 0 0
\(701\) 4.93663e15 1.10149 0.550747 0.834673i \(-0.314343\pi\)
0.550747 + 0.834673i \(0.314343\pi\)
\(702\) 0 0
\(703\) 9.37089e15 2.05838
\(704\) 0 0
\(705\) 4.42028e14 0.0955894
\(706\) 0 0
\(707\) −2.49140e15 −0.530440
\(708\) 0 0
\(709\) −1.53781e15 −0.322366 −0.161183 0.986925i \(-0.551531\pi\)
−0.161183 + 0.986925i \(0.551531\pi\)
\(710\) 0 0
\(711\) 4.19267e15 0.865383
\(712\) 0 0
\(713\) 4.60275e15 0.935459
\(714\) 0 0
\(715\) −5.71720e14 −0.114420
\(716\) 0 0
\(717\) −1.66370e14 −0.0327883
\(718\) 0 0
\(719\) −2.67529e15 −0.519233 −0.259616 0.965712i \(-0.583596\pi\)
−0.259616 + 0.965712i \(0.583596\pi\)
\(720\) 0 0
\(721\) 1.03089e15 0.197045
\(722\) 0 0
\(723\) 2.12077e14 0.0399240
\(724\) 0 0
\(725\) −2.21573e16 −4.10825
\(726\) 0 0
\(727\) 8.79056e15 1.60538 0.802689 0.596398i \(-0.203402\pi\)
0.802689 + 0.596398i \(0.203402\pi\)
\(728\) 0 0
\(729\) −5.40746e15 −0.972729
\(730\) 0 0
\(731\) 2.00836e15 0.355874
\(732\) 0 0
\(733\) −4.31570e15 −0.753320 −0.376660 0.926352i \(-0.622928\pi\)
−0.376660 + 0.926352i \(0.622928\pi\)
\(734\) 0 0
\(735\) 2.65600e14 0.0456717
\(736\) 0 0
\(737\) 9.34309e15 1.58278
\(738\) 0 0
\(739\) −8.86681e15 −1.47987 −0.739934 0.672680i \(-0.765143\pi\)
−0.739934 + 0.672680i \(0.765143\pi\)
\(740\) 0 0
\(741\) 2.65789e13 0.00437056
\(742\) 0 0
\(743\) −2.00102e15 −0.324200 −0.162100 0.986774i \(-0.551827\pi\)
−0.162100 + 0.986774i \(0.551827\pi\)
\(744\) 0 0
\(745\) 6.74110e15 1.07615
\(746\) 0 0
\(747\) 6.90038e14 0.108545
\(748\) 0 0
\(749\) 8.51787e14 0.132033
\(750\) 0 0
\(751\) −9.30295e15 −1.42102 −0.710511 0.703686i \(-0.751536\pi\)
−0.710511 + 0.703686i \(0.751536\pi\)
\(752\) 0 0
\(753\) 3.98302e14 0.0599571
\(754\) 0 0
\(755\) −1.75677e16 −2.60619
\(756\) 0 0
\(757\) 8.24688e15 1.20576 0.602882 0.797830i \(-0.294019\pi\)
0.602882 + 0.797830i \(0.294019\pi\)
\(758\) 0 0
\(759\) 8.47696e14 0.122155
\(760\) 0 0
\(761\) −5.01587e15 −0.712412 −0.356206 0.934408i \(-0.615930\pi\)
−0.356206 + 0.934408i \(0.615930\pi\)
\(762\) 0 0
\(763\) 7.14256e15 0.999929
\(764\) 0 0
\(765\) 3.05867e15 0.422080
\(766\) 0 0
\(767\) −3.03837e14 −0.0413301
\(768\) 0 0
\(769\) 4.90706e15 0.658001 0.329001 0.944330i \(-0.393288\pi\)
0.329001 + 0.944330i \(0.393288\pi\)
\(770\) 0 0
\(771\) −6.45587e14 −0.0853406
\(772\) 0 0
\(773\) 8.93310e15 1.16417 0.582083 0.813129i \(-0.302238\pi\)
0.582083 + 0.813129i \(0.302238\pi\)
\(774\) 0 0
\(775\) −1.67088e16 −2.14677
\(776\) 0 0
\(777\) −5.14445e14 −0.0651663
\(778\) 0 0
\(779\) 4.74156e15 0.592195
\(780\) 0 0
\(781\) 8.84040e15 1.08866
\(782\) 0 0
\(783\) 1.75254e15 0.212803
\(784\) 0 0
\(785\) −7.49137e15 −0.896970
\(786\) 0 0
\(787\) 1.67113e15 0.197310 0.0986552 0.995122i \(-0.468546\pi\)
0.0986552 + 0.995122i \(0.468546\pi\)
\(788\) 0 0
\(789\) −8.70955e14 −0.101408
\(790\) 0 0
\(791\) −6.80674e13 −0.00781571
\(792\) 0 0
\(793\) 2.24105e14 0.0253775
\(794\) 0 0
\(795\) −6.95529e14 −0.0776776
\(796\) 0 0
\(797\) −1.39838e16 −1.54030 −0.770150 0.637863i \(-0.779819\pi\)
−0.770150 + 0.637863i \(0.779819\pi\)
\(798\) 0 0
\(799\) −1.53336e15 −0.166585
\(800\) 0 0
\(801\) −2.27282e15 −0.243549
\(802\) 0 0
\(803\) −9.11668e15 −0.963610
\(804\) 0 0
\(805\) 1.65603e16 1.72659
\(806\) 0 0
\(807\) −6.67508e14 −0.0686518
\(808\) 0 0
\(809\) −1.89059e16 −1.91814 −0.959068 0.283176i \(-0.908612\pi\)
−0.959068 + 0.283176i \(0.908612\pi\)
\(810\) 0 0
\(811\) 1.19978e16 1.20084 0.600421 0.799684i \(-0.295000\pi\)
0.600421 + 0.799684i \(0.295000\pi\)
\(812\) 0 0
\(813\) −4.53663e14 −0.0447956
\(814\) 0 0
\(815\) 8.37938e15 0.816291
\(816\) 0 0
\(817\) −2.83709e16 −2.72679
\(818\) 0 0
\(819\) 3.18350e14 0.0301886
\(820\) 0 0
\(821\) 4.39123e15 0.410865 0.205432 0.978671i \(-0.434140\pi\)
0.205432 + 0.978671i \(0.434140\pi\)
\(822\) 0 0
\(823\) 6.82449e15 0.630044 0.315022 0.949084i \(-0.397988\pi\)
0.315022 + 0.949084i \(0.397988\pi\)
\(824\) 0 0
\(825\) −3.07729e15 −0.280331
\(826\) 0 0
\(827\) −7.08030e15 −0.636460 −0.318230 0.948013i \(-0.603088\pi\)
−0.318230 + 0.948013i \(0.603088\pi\)
\(828\) 0 0
\(829\) 1.01034e16 0.896228 0.448114 0.893976i \(-0.352096\pi\)
0.448114 + 0.893976i \(0.352096\pi\)
\(830\) 0 0
\(831\) −2.26177e14 −0.0197990
\(832\) 0 0
\(833\) −9.21344e14 −0.0795929
\(834\) 0 0
\(835\) −1.40877e16 −1.20106
\(836\) 0 0
\(837\) 1.32159e15 0.111200
\(838\) 0 0
\(839\) −8.34065e15 −0.692642 −0.346321 0.938116i \(-0.612569\pi\)
−0.346321 + 0.938116i \(0.612569\pi\)
\(840\) 0 0
\(841\) 1.82121e16 1.49273
\(842\) 0 0
\(843\) 9.24128e14 0.0747620
\(844\) 0 0
\(845\) 2.37338e16 1.89520
\(846\) 0 0
\(847\) 1.57156e16 1.23872
\(848\) 0 0
\(849\) 5.64073e13 0.00438877
\(850\) 0 0
\(851\) 1.77516e16 1.36341
\(852\) 0 0
\(853\) −2.50294e16 −1.89771 −0.948857 0.315706i \(-0.897759\pi\)
−0.948857 + 0.315706i \(0.897759\pi\)
\(854\) 0 0
\(855\) −4.32080e16 −3.23408
\(856\) 0 0
\(857\) −2.29961e16 −1.69926 −0.849629 0.527381i \(-0.823174\pi\)
−0.849629 + 0.527381i \(0.823174\pi\)
\(858\) 0 0
\(859\) 4.89071e15 0.356787 0.178394 0.983959i \(-0.442910\pi\)
0.178394 + 0.983959i \(0.442910\pi\)
\(860\) 0 0
\(861\) −2.60303e14 −0.0187483
\(862\) 0 0
\(863\) 6.59421e15 0.468925 0.234463 0.972125i \(-0.424667\pi\)
0.234463 + 0.972125i \(0.424667\pi\)
\(864\) 0 0
\(865\) 3.19623e16 2.24414
\(866\) 0 0
\(867\) −9.25701e14 −0.0641750
\(868\) 0 0
\(869\) 2.02559e16 1.38658
\(870\) 0 0
\(871\) 5.54938e14 0.0375098
\(872\) 0 0
\(873\) −1.17365e15 −0.0783358
\(874\) 0 0
\(875\) −3.70133e16 −2.43957
\(876\) 0 0
\(877\) −1.15524e16 −0.751924 −0.375962 0.926635i \(-0.622688\pi\)
−0.375962 + 0.926635i \(0.622688\pi\)
\(878\) 0 0
\(879\) −1.08116e15 −0.0694949
\(880\) 0 0
\(881\) −1.92226e16 −1.22024 −0.610120 0.792309i \(-0.708879\pi\)
−0.610120 + 0.792309i \(0.708879\pi\)
\(882\) 0 0
\(883\) −2.96814e16 −1.86080 −0.930402 0.366542i \(-0.880542\pi\)
−0.930402 + 0.366542i \(0.880542\pi\)
\(884\) 0 0
\(885\) −2.26391e15 −0.140175
\(886\) 0 0
\(887\) −1.33218e16 −0.814674 −0.407337 0.913278i \(-0.633543\pi\)
−0.407337 + 0.913278i \(0.633543\pi\)
\(888\) 0 0
\(889\) 1.18964e16 0.718545
\(890\) 0 0
\(891\) −2.63694e16 −1.57316
\(892\) 0 0
\(893\) 2.16608e16 1.27641
\(894\) 0 0
\(895\) −2.93524e16 −1.70851
\(896\) 0 0
\(897\) 5.03493e13 0.00289491
\(898\) 0 0
\(899\) 2.29341e16 1.30258
\(900\) 0 0
\(901\) 2.41273e15 0.135370
\(902\) 0 0
\(903\) 1.55751e15 0.0863273
\(904\) 0 0
\(905\) 9.95179e15 0.544922
\(906\) 0 0
\(907\) −1.12918e15 −0.0610833 −0.0305417 0.999533i \(-0.509723\pi\)
−0.0305417 + 0.999533i \(0.509723\pi\)
\(908\) 0 0
\(909\) 1.23139e16 0.658106
\(910\) 0 0
\(911\) −1.27425e16 −0.672827 −0.336414 0.941714i \(-0.609214\pi\)
−0.336414 + 0.941714i \(0.609214\pi\)
\(912\) 0 0
\(913\) 3.33376e15 0.173918
\(914\) 0 0
\(915\) 1.66982e15 0.0860701
\(916\) 0 0
\(917\) −1.94500e16 −0.990579
\(918\) 0 0
\(919\) 2.69918e16 1.35830 0.679152 0.733998i \(-0.262348\pi\)
0.679152 + 0.733998i \(0.262348\pi\)
\(920\) 0 0
\(921\) 5.22919e14 0.0260020
\(922\) 0 0
\(923\) 5.25080e14 0.0257998
\(924\) 0 0
\(925\) −6.44415e16 −3.12886
\(926\) 0 0
\(927\) −5.09524e15 −0.244470
\(928\) 0 0
\(929\) −1.49837e16 −0.710447 −0.355223 0.934781i \(-0.615595\pi\)
−0.355223 + 0.934781i \(0.615595\pi\)
\(930\) 0 0
\(931\) 1.30152e16 0.609859
\(932\) 0 0
\(933\) −1.96472e15 −0.0909810
\(934\) 0 0
\(935\) 1.47773e16 0.676286
\(936\) 0 0
\(937\) −6.16754e15 −0.278961 −0.139481 0.990225i \(-0.544543\pi\)
−0.139481 + 0.990225i \(0.544543\pi\)
\(938\) 0 0
\(939\) −1.37436e15 −0.0614382
\(940\) 0 0
\(941\) 8.73576e15 0.385974 0.192987 0.981201i \(-0.438183\pi\)
0.192987 + 0.981201i \(0.438183\pi\)
\(942\) 0 0
\(943\) 8.98210e15 0.392250
\(944\) 0 0
\(945\) 4.75495e15 0.205244
\(946\) 0 0
\(947\) 1.17830e16 0.502726 0.251363 0.967893i \(-0.419121\pi\)
0.251363 + 0.967893i \(0.419121\pi\)
\(948\) 0 0
\(949\) −5.41490e14 −0.0228363
\(950\) 0 0
\(951\) −1.54730e15 −0.0645033
\(952\) 0 0
\(953\) −1.96538e16 −0.809907 −0.404954 0.914337i \(-0.632712\pi\)
−0.404954 + 0.914337i \(0.632712\pi\)
\(954\) 0 0
\(955\) 3.96418e16 1.61486
\(956\) 0 0
\(957\) 4.22382e15 0.170094
\(958\) 0 0
\(959\) 2.06677e16 0.822791
\(960\) 0 0
\(961\) −8.11388e15 −0.319337
\(962\) 0 0
\(963\) −4.21003e15 −0.163810
\(964\) 0 0
\(965\) 4.81655e16 1.85283
\(966\) 0 0
\(967\) 4.28168e16 1.62843 0.814213 0.580566i \(-0.197169\pi\)
0.814213 + 0.580566i \(0.197169\pi\)
\(968\) 0 0
\(969\) −6.86986e14 −0.0258326
\(970\) 0 0
\(971\) 4.18265e16 1.55506 0.777528 0.628849i \(-0.216473\pi\)
0.777528 + 0.628849i \(0.216473\pi\)
\(972\) 0 0
\(973\) 3.34663e16 1.23023
\(974\) 0 0
\(975\) −1.82777e14 −0.00664349
\(976\) 0 0
\(977\) 2.02626e16 0.728240 0.364120 0.931352i \(-0.381370\pi\)
0.364120 + 0.931352i \(0.381370\pi\)
\(978\) 0 0
\(979\) −1.09806e16 −0.390231
\(980\) 0 0
\(981\) −3.53027e16 −1.24059
\(982\) 0 0
\(983\) 3.18980e16 1.10846 0.554229 0.832364i \(-0.313013\pi\)
0.554229 + 0.832364i \(0.313013\pi\)
\(984\) 0 0
\(985\) 3.80539e16 1.30768
\(986\) 0 0
\(987\) −1.18914e15 −0.0404099
\(988\) 0 0
\(989\) −5.37440e16 −1.80613
\(990\) 0 0
\(991\) −3.06126e16 −1.01741 −0.508704 0.860942i \(-0.669875\pi\)
−0.508704 + 0.860942i \(0.669875\pi\)
\(992\) 0 0
\(993\) 9.11228e14 0.0299507
\(994\) 0 0
\(995\) 5.50777e16 1.79039
\(996\) 0 0
\(997\) 1.75855e16 0.565367 0.282683 0.959213i \(-0.408775\pi\)
0.282683 + 0.959213i \(0.408775\pi\)
\(998\) 0 0
\(999\) 5.09703e15 0.162072
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 128.12.a.e.1.4 6
4.3 odd 2 128.12.a.g.1.3 yes 6
8.3 odd 2 128.12.a.f.1.4 yes 6
8.5 even 2 128.12.a.h.1.3 yes 6
16.3 odd 4 256.12.b.q.129.6 12
16.5 even 4 256.12.b.p.129.6 12
16.11 odd 4 256.12.b.q.129.7 12
16.13 even 4 256.12.b.p.129.7 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
128.12.a.e.1.4 6 1.1 even 1 trivial
128.12.a.f.1.4 yes 6 8.3 odd 2
128.12.a.g.1.3 yes 6 4.3 odd 2
128.12.a.h.1.3 yes 6 8.5 even 2
256.12.b.p.129.6 12 16.5 even 4
256.12.b.p.129.7 12 16.13 even 4
256.12.b.q.129.6 12 16.3 odd 4
256.12.b.q.129.7 12 16.11 odd 4